REGULARITY OF SOLUTIONS TO NONLINEAR EQUATIONS OF SCHRÖDINGER TYPE

Per SJÖLIN
(Received December 19, 1991)

Abstract

Regularity and local regularity of solutions to nonlinear equations of Schrödinger type are studied.

In Sjögren and Sjölin [5] we studied the local regularity of solutions to the equation $i \partial_{t} u=-P u+V u$. Here $u=u(x, t)$ where $x \in \boldsymbol{R}^{n}$ and $t \in \boldsymbol{R}, P$ is an elliptic constant-coefficient differential operator in x, and $V=V(x)$ a suitable potential. We assume that $u(x, 0)=f(x)$ and that f belongs to some Sobolv space $H_{s}=H_{s}\left(\boldsymbol{R}^{n}\right)$. To formulate the results we introduce the class
$\mathscr{A}=\left\{\varphi \in C^{\infty}\left(R^{n}\right)\right.$; there exists $\varepsilon>0$ such that $\left|D^{\alpha} \varphi(x)\right| \leq C_{\alpha}(1+|x|)^{-1 / 2-\varepsilon}$ for every $\left.\alpha\right\}$ and set $I=[0, T]$ where $T>0$. In the special case when $P=\Delta^{k}, k=1,2,3, \ldots$, it follows from the results in [5] that

$$
\begin{equation*}
\|\varphi u\|_{L^{2}\left(I ; H_{s+k-1 / 2}\left(\mathbf{R}^{n}\right)\right)} \leq C_{T}\|f\|_{H_{s}}, \quad s \geq 1 / 2-k, \tag{1}
\end{equation*}
$$

where C_{T} depends on φ and φu stands for $\varphi(x) u(x, t)$.
Kato [2], [3] has studied the existence and regularity of solutions to the non-linear equation

$$
\begin{equation*}
i \partial_{t} u=-\Delta u+F(u), \quad x \in \boldsymbol{R}^{n}, \quad t \geq 0 \tag{2}
\end{equation*}
$$

and in Sjölin [6] we obtained results about the local regularity of these solutions.
We shall study here the equation

$$
\begin{equation*}
i \partial_{t} u=-\Delta^{k} u+F(u), \quad k=1,2,3, \ldots \tag{3}
\end{equation*}
$$

To formulate the conditions of F we introduce a parameter γ satisfying $1<\gamma<\infty$ for $n=1$ and 2 , and $1<\gamma<(n+2) /(n-2)$ for $n \geq 3$. We assume that $F \in C^{1}\left(\boldsymbol{R}^{2}\right)=C^{1}(C), F$ is complex-valued, $F(0)=0$ and

$$
\begin{equation*}
\left|D^{\alpha} F(\zeta)\right| \leq C|\zeta|^{\gamma-1} \tag{4}
\end{equation*}
$$

for $|\zeta| \geq 1$ and $|\alpha|=1$. An example is $F(\zeta)=|\zeta|^{\gamma-1} \zeta$.
We also introduce the spaces $L^{p, r}=L^{r}\left(I ; L^{p}\left(\boldsymbol{R}^{n}\right)\right), 1 \leq p \leq \infty, 1 \leq r \leq \infty$, and let L_{s}^{p}
denote Bessel potential spaces for $1 \leq p \leq \infty$ and $s \in \boldsymbol{R}$. Hence $L_{s}^{p}=J_{s} L^{p}$, where J_{s} is the Bessel potential operator, defined by multiplication on the Fourier transform side by $\left(1+|\xi|^{2}\right)^{-s / 2}$. In particular $H_{s}=L_{s}^{2}$. We also set $L_{s}^{p, r}=L^{r}\left(I ; L_{s}^{p}\left(\boldsymbol{R}^{r}\right)\right)$ for $1 \leq p \leq \infty$, $1 \leq r \leq \infty$ and $s \in \boldsymbol{R}$. We write $u(t)=u(\cdot, t)$ and use the notation $\partial_{t}=\partial / \partial t, \partial_{i}=\partial / \partial x_{i}$ and $\partial=\left(\partial_{1}, \partial_{2}, \ldots, \partial_{n}\right)$.

We shall prove the following result.
Theorem. Assume that $f \in H_{1}\left(R^{n}\right)$. Then there exists a $T>0$ such that (3) has a solution $u \in C\left(I ; H_{1}\right)$ with $u(0)=f$. The functions u and ∂u belong to $L_{s}^{p+1, r}$, where $1<p<\infty$ for $n=1$ and 2 , and $1<p<(n+2) /(n-2)$ for $n \geq 3, r=4(p+1) / n(p-1)$ and $s=2(k-1) / r$. The solution u is unique.

Assume $\varphi \in \mathscr{A}$. If $k \geq 2$ or if $k=1,1 \leq n \leq 6$, then

$$
\begin{equation*}
\varphi u \in L^{2}\left(I ; H_{k+1 / 2}\right)=L_{k+1 / 2}^{2,2} . \tag{5}
\end{equation*}
$$

If $k=1$ and $n \geq 7$ then (5) holds under the additional assumption $\gamma<1+2 /(n-4)$.
In the case $k=1$ the first part of the theorem is proved in [2] and [3], and in this case the second part about local regularity is partially contained in [6].

In the proof of the theorem we need two lemmas. We set $P=\Delta^{k}$ and write $P(\xi)$ for the corresponding symbol $(-1)^{k}|\xi|^{2 k}$. Our first lemma is a consequence of estimates in Kenig, Ponce and Vega [4].

Lemma 1. Set $u(t)=e^{i t P} u_{0}, t \geq 0$. For $T>0$ we then have

$$
\begin{equation*}
\|u\|_{L_{s}^{p}+1, r} \leq C_{T}\left\|u_{0}\right\|_{2}, \tag{6}
\end{equation*}
$$

where p, r and s are as in the theorem. Also

$$
\begin{equation*}
\|u(t)\|_{L_{s}^{2 / 1-\theta)}\left(\mathbf{R}^{n}\right)} \leq C_{T}|t|^{-\theta n / 2}\left\|u_{0}\right\|_{2 /(1+\theta)}, \quad 0 \leq t \leq T \tag{7}
\end{equation*}
$$

where $0 \leq \theta \leq 1$ and $s=n(k-1) \theta$.
Proof. We set

$$
V_{s}(t) u_{0}(x)=\int e^{i(t P(\xi)+x \cdot \xi)}|\xi|^{s} \hat{u}_{0}(\xi) d \xi
$$

It is proved in [4] that

$$
\begin{equation*}
\left\|V_{s}(t) u_{0}\right\|_{L^{r}\left(\boldsymbol{R} ; L^{p+1}\left(\mathbb{R}^{n}\right)\right)} \leq C\left\|u_{0}\right\|_{2} \tag{8}
\end{equation*}
$$

where p, r and s are as above. To obtain (6) we shall estimate

$$
J_{-s} u(t)(x)=c \int e^{i(t P(\xi)+x \cdot \xi)}\left(1+|\xi|^{2}\right)^{s / 2} \hat{u}_{0}(\xi) d \xi
$$

We choose $\psi \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ so that $\psi(x)=0$ for $|x|>2$, and $\psi(x)=1$ for $|x| \leq 1$. One then has

$$
\begin{aligned}
J_{-s} u(t)(x)= & c \int e^{i(t P(\xi)+x \cdot \xi)} \psi(\xi)\left(1+|\xi|^{2}\right)^{s / 2} \hat{u}_{0}(\xi) d \xi \\
& +c \int e^{i(t P(\xi)+x \cdot \xi)}(1-\psi(\xi))\left(1+|\xi|^{2}\right)^{s / 2} \hat{u}_{0}(\xi) d \xi \\
= & A(x, t)+B(x, t) .
\end{aligned}
$$

It is clear that

$$
|A(x, t)| \leq C \int_{|\xi| \leq 2}\left|\hat{u}_{0}(\xi)\right| d \xi \leq C\left\|u_{0}\right\|_{2}
$$

and from Plancherel's theorem it also follows that

$$
\left(\int|A(x, t)|^{2} d x\right)^{1 / 2} \leq C\left\|u_{0}\right\|_{2} .
$$

We conclude that

$$
\|A(t)\|_{L^{p+1}\left(\mathbb{R}^{n}\right)} \leq C\left\|u_{0}\right\|_{2}
$$

and hence

$$
\begin{equation*}
\|A\|_{L^{r}\left(I ; L^{p+1}\right)} \leq C_{T}\left\|u_{0}\right\|_{2} . \tag{9}
\end{equation*}
$$

We have

$$
\begin{equation*}
B(x, t)=c \int e^{i(t P(\xi)+x \cdot \xi)}(1-\psi(\xi)) \frac{\left(1+|\xi|^{2}\right)^{s / 2}}{|\xi|^{s}}|\xi|^{s} \hat{u}_{0}(\xi) d \xi \tag{10}
\end{equation*}
$$

and since

$$
(1-\psi(\xi)) \frac{\left(1+|\xi|^{2}\right)^{s / 2}}{|\xi|^{s}}
$$

is bounded, (8) shows that

$$
\begin{equation*}
\|B\|_{L^{r}\left(; L^{p+1}\left(\boldsymbol{R}^{n}\right)\right)} \leq C\left\|u_{0}\right\|_{2} . \tag{11}
\end{equation*}
$$

The inequality (6) is then a consequence of (9) and (11).
To prove (7) we then set $s=n(k-1) \theta$, where $0 \leq \theta \leq 1$. We write $J_{-s} u(t)=A(t)+B(t)$ as above and it then follows from the Hausdorff-Young theorem and Hölder's inequality that
(12) $\|A(t)\|_{2 /(1-\theta)} \leq C\left\|\psi \hat{u}_{0}\right\|_{2 /(1+\theta)} \leq C\left\|\psi \hat{u}_{0}\right\|_{2 /(1-\theta)} \leq C\left\|\hat{u}_{0}\right\|_{2 /(1-\theta)} \leq C\left\|u_{0}\right\|_{2 /(1+\theta)}$.

To study B we use the formula (10) again. It follows from the results in [4] that

$$
\|B(t)\|_{2 /(1-\theta)} \leq C|t|^{-\theta n / 2}\left\|v_{0}\right\|_{2 /(1+\theta)}
$$

where

$$
\hat{v}_{0}(\xi)=(1-\psi(\xi)) \frac{\left(1+|\xi|^{2}\right)^{s / 2}}{|\xi|^{s}} \hat{u}_{0}(\xi)
$$

We want to prove that

$$
\begin{equation*}
\left\|v_{0}\right\|_{2 /(1+\theta)} \leq C\left\|u_{0}\right\|_{2 /(1+\theta)} \tag{13}
\end{equation*}
$$

which follows if we can prove that

$$
\begin{equation*}
(1-\psi(\xi)) \frac{\left(1+|\xi|^{2}\right)^{s / 2}}{|\xi|^{s}} \in M_{2 /(1+\theta)}\left(R^{n}\right) \tag{14}
\end{equation*}
$$

where $M_{q}\left(\boldsymbol{R}^{n}\right)$ denotes the space of Fourier multipliers for $L^{q}\left(\boldsymbol{R}^{n}\right)$. For $0 \leq \theta<1$ (14) is a consequence of the Hörmander-Mihlin multiplier theorem, and for $\theta=1$ one can argue as follows. We have $s=n(k-1)$ and have to prove that

$$
\begin{equation*}
(1-\psi(\xi)) \frac{\left(1+|\xi|^{2}\right)^{s / 2}}{|\xi|^{s}} \in M_{1}\left(R^{n}\right) \tag{15}
\end{equation*}
$$

The case $k=1$ is trivial and we may therefore assume $k \geq 2$. According to Stein [7, p. 133], one has

$$
\left(1+|\xi|^{2}\right)^{s / 2}=\hat{v}(\xi)+|\xi|^{s} \hat{\lambda}(\xi)
$$

where v and λ denote finite Borel measures. Hence

$$
(1-\psi(\xi)) \frac{\left(1+|\xi|^{2}\right)^{s / 2}}{|\xi|^{s}}=(1-\psi) \frac{\hat{v}(\xi)}{|\xi|^{s}}+(1-\psi) \hat{\lambda}(\xi)
$$

Setting $g=(1-\psi)|\xi|^{-s}$ it is easy to see that g and $D^{\alpha} g$ belong to L^{2} for every α and hence $\hat{g} \in L^{1}$. We conclude that (15) holds and hence (13) is proved for all θ. It follows that

$$
\|B(t)\|_{2 /(1-\theta)} \leq C|t|^{-\theta n / 2}\left\|u_{0}\right\|_{2 /(1+\theta)} .
$$

Hence

$$
\left\|J_{-s} u(t)\right\|_{2 /(1-\theta)} \leq C\left(1+|t|^{-\theta n / 2}\right)\left\|u_{0}\right\|_{2 /(1+\theta)} \leq C_{T}|t|^{-\theta n / 2}\left\|u_{0}\right\|_{2 /(1+\theta)}, \quad 0<t \leq T
$$

and the lemma is proved.
In the following lemma we shall use the notation

$$
\left(G_{0} f\right)(t)=e^{i t P} f \quad \text { and } \quad(G v)(t)=\int_{0}^{t} e^{i(t-s) P} v(s) d s
$$

Lemma 2. $\quad G_{0}$ and G have the properties

$$
\begin{align*}
& \left\|G_{0} f\right\|_{L^{2, \infty}} \leq C_{T}\|f\|_{2}, \tag{16}\\
& \left\|G_{0} f\right\|_{L_{s}^{p+1, r}} \leq C_{T}\|f\|_{2}, \tag{17}\\
& \|G v\|_{L^{2, \infty}} \leq C_{T}\|v\|_{L^{2,1}}, \tag{18}\\
& \|G v\|_{L_{s}^{p+1, r}} \leq C_{T}\|v\|_{L^{2,1}} \tag{19}\\
& \|G v\|_{L^{2}, \infty} \leq C_{T}\|v\|_{L_{-s}^{1+1 / p, r^{\prime}}} \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
\|G v\|_{L_{s}^{p+1, r}} \leq C_{T}\|v\|_{L^{1+s}}^{1 / 1_{p}, r^{\prime}}, \tag{21}
\end{equation*}
$$

where p, r and s are as in the theorem. The constant C_{T} has the property that $\sup _{0<T \leq A} C_{T}<\infty$ for every $A>0$.

Proof. The lemma is well-known for $k=1$ (see [2] and [3]) and essentially the same proof works for $k \geq 2$ if we use the estimates in Lemma 1.

It is clear that (16) is trivial and (17) follows from (6) in Lemma 1. The estimate (18) is a consequence of (16).

To prove (19) we observe that

$$
\|(G v)(t)\|_{L_{s}^{p+1}\left(\mathbf{R}^{n}\right)} \leq \int_{0}^{T}\left\|e^{i\left(t-t_{1}\right) P} v\left(t_{1}\right)\right\|_{L_{s}^{p+1}\left(\mathbf{R}^{n}\right)} d t_{1}
$$

and

$$
\|G v\|_{L_{s}^{p+1, r}} \leq \int_{0}^{T}\left\|e^{i t P} e^{-i t_{1} P} v\left(t_{1}\right)\right\|_{L_{s}^{p+1, r}} d t_{1} \leq C_{T} \int_{0}^{T}\left\|e^{-i t_{1} P} v\left(t_{1}\right)\right\|_{2} d t_{1}=C_{T}\|v\|_{L^{2,1}}
$$

where we have used (17).
To prove (21) we observe that it follows from Lemma 1 that

$$
\|u(t)\|_{L_{s}^{2 /(1-\theta)}} \leq C_{T}|t|^{-\theta n / 2}\left\|u_{0}\right\|_{L^{2 / /(1+\theta)}}, \quad 0 \leq t \leq T, \quad 0 \leq \theta \leq 1
$$

where $s=n(k-1) \theta / 2$. We set $p+1=2 /(1-\theta)$ so that $\theta=(p-1) /(p+1)$ where $0<\theta<1$.
One then also has

$$
\frac{2}{1+\theta}=1+\frac{1}{p}
$$

and

$$
s=\frac{1}{2} n(k-1) \frac{p-1}{p+1}=(k-1) \frac{2}{r} .
$$

The above estimate therefore gives

$$
\begin{aligned}
\|(G v)(t)\|_{L_{s}^{p+1}\left(\mathbf{R}^{n}\right)} & \leq \int_{0}^{t}\left\|e^{i\left(t-t_{1}\right) P} v\left(t_{1}\right)\right\|_{L_{s}^{p+1}\left(\mathbf{R}^{n}\right)} d t_{1} \\
& \leq C_{T} \int_{0}^{t}\left|t-t_{1}\right|^{-\theta n / 2}\left\|v\left(t_{1}\right)\right\|_{L^{-\frac{s}{s}}} 1 / p
\end{aligned} t_{1}, \quad 0 \leq t \leq T .
$$

We have

$$
\frac{1}{r^{\prime}}-\frac{1}{r}=1-\frac{\theta n}{2}
$$

and (21) now follows if we invoke Hardy's inequality.
Finally (20) can be proved as in the proof in the case $k=1$ in [3, Lemma 3.2].
We remark that it is easy to see that in (16), (18) and (20) $L^{2, \infty}$ can be replaced by $C\left(I ; L^{2}\right)$.

Proof of the Theorem. To prove the first part of the theorem we shall generalize the proof in the case $k=1$ in [2].

We set

$$
r=r(\gamma)=\frac{4(\gamma+1)}{n(\gamma-1)}, \quad s=s(\gamma)=(k-1) \frac{2}{r}
$$

and introduce the following spaces:

$$
\begin{aligned}
& X=L^{2, \infty} \cap L_{s}^{\gamma+1, r}, \quad \bar{X}=C\left(I ; L^{2}\right) \cap L_{s}^{\gamma+1, r}, \quad X^{\prime}=L^{2,1}+L_{-s}^{1+1 / \gamma, r^{\prime}}, \\
& Y=\{v \in X ; \partial v \in X\}, \quad \bar{Y}=\{v \in \bar{X} ; \partial v \in \bar{X}\}, \quad Y^{\prime}=\left\{v \in X^{\prime} ; \partial v \in X^{\prime}\right\} .
\end{aligned}
$$

It then follows from Lemma 2 that

$$
\begin{align*}
& \left\|G_{0} f\right\|_{\bar{X}} \leq C_{T}\|f\|_{2}, \tag{22}\\
& \left\|G_{0} f\right\|_{\bar{Y}} \leq C_{T}\|f\|_{H_{1}}, \tag{23}\\
& \|G v\|_{\bar{X}} \leq C_{T}\|v\|_{X^{\prime}} \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
\|G v\|_{\bar{Y}} \leq C_{T}\|v\|_{Y^{\prime}} . \tag{25}
\end{equation*}
$$

It also follows from Lemma 2.2 in [2] that F maps Y into Y^{\prime} and

$$
\|F(v)\|_{Y^{\prime}} \leq C\left(T+T^{1-\alpha}\|v\|_{Y}^{\gamma-1}\right)\|v\|_{Y},
$$

where $0<\alpha<1$. Hence there exists a number $\beta, 0<\beta<1$, such that

$$
\begin{equation*}
\|F(v)\|_{Y^{\prime}} \leq C T^{\beta}\left(\|v\|_{Y}+\|v\|_{Y}^{\gamma}\right) \tag{26}
\end{equation*}
$$

for $0<T<1$.

We now fix $f \in H_{1}\left(R^{n}\right)$ and set $\Phi(v)=G_{0} f-i G F(v), v \in Y$. It follows from the above estimates that

$$
\|G F(v)\|_{Y} \leq C_{T}\|F(v)\|_{Y^{\prime}} \leq C_{T} T^{\beta}\left(\|v\|_{Y}+\|v\|_{Y}^{\gamma}\right) .
$$

We set $B_{R}(Y)=\left\{v \in Y:\|v\|_{Y} \leq R\right\}$ and choose $R>1$ and $v \in B_{R}(Y)$. Then

$$
\|\Phi(v)\|_{Y} \leq C_{T}\|f\|_{H_{1}}+C_{T} T^{\beta} R^{\gamma} .
$$

We now choose $R>C^{\prime}\|f\|_{\boldsymbol{H}_{1}}$, where $C^{\prime}=\sup _{0<\boldsymbol{T} \leq 1} C_{T}$, and then choose T so small that

$$
C^{\prime}\|f\|_{H_{1}}+C^{\prime} T^{\beta} R^{\gamma}<R .
$$

It follows that Φ maps $B_{R}(Y)$ into $B_{R}(Y)$.
If v and $w \in B_{R}(Y)$ it follows from [2, p. 117], that

$$
\|F(v)-F(w)\|_{X^{\prime}} \leq C(R) T^{\beta}\|v-w\|_{X},
$$

where $0<\beta<1$. Invoking (24) we obtain

$$
\|G F(v)-G F(w)\|_{X} \leq d\|v-w\|_{X},
$$

where $0<d<1$, if T is small enough.
It is easy to prove that $B_{R}(Y)$ with the X-metric is a complete metric space and it follows that Φ is a contraction on this space. Invoking the contraction theorem we find that Φ has a fixed point $u \in Y$ and that $u=\Phi(u) \in \bar{Y}$. Hence

$$
\begin{equation*}
u=G_{0} f-i G F(u) \tag{27}
\end{equation*}
$$

and $u(0)=f$. It follows from (27) that u satisfies the equation (3). We remark that in proving the equivalence of (27) and (3) it is useful to observe that $F(u) \in C\left(I ; H_{-1}\right)$, which can be proved by use of the implications

$$
u(t) \in H_{1} \Rightarrow u(t) \in L^{2} \cap L^{\gamma+1} \Rightarrow F(u(t)) \in L^{2}+L^{1+1 / v} \subset H_{-1}
$$

(see [2, Lemma 1.3 and its proof]).
To prove that u is unique assume that v is another solution of (3) with $v(0)=f, v \in \bar{Y}$. It follows that

$$
v=G_{0} f-i G F(v) \quad \text { and } \quad u-v=-i(G F(u)-G F(v)) .
$$

An application of the contraction property of $G F$ then shows that $u=v$.
We have thus found a unique solution $u \in \bar{Y}$ of (3) with $u(0)=f$. It follows that $u \in C\left(I ; H_{1}\right)$ and that u and $\partial u \in L_{s(\gamma)}^{\gamma+1, r(\gamma)}$. We shall now prove that u and ∂u also belong to $L_{s}^{p+1, r}$, where p, r and s satisfy the conditions in the theorem. For $1<p<\gamma$ this follows from the properties of the spaces $L_{s}^{p+1, r}$ (see Bergh and Löfström [1, pp. 107 and 153]). For $p>\gamma$ we can simply use the fact that

$$
\left|D^{\alpha} F(\zeta)\right| \leq C|\zeta|^{\gamma-1} \quad \text { implies } \quad\left|D^{\alpha} F(\zeta)\right| \leq C|\zeta|^{p-1}
$$

$(|\zeta| \geq 1)$ and we can apply the above result with γ replaced by p.
It remains to prove the local regularity (5). We first choose $\psi \in C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right)$ so that $\psi=1$ in a neighbourhood of the origin. Set $F_{1}=\psi F$ and $F_{2}=(1-\psi) F$ so that $F=F_{1}+F_{2}$. The proof of Lemma 2.2 in [2] shows that

$$
\begin{equation*}
F_{1}(u) \quad \text { and } \quad \partial\left(F_{1}(u)\right) \in L^{2,1} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}(u) \quad \text { and } \quad \partial\left(F_{2}(u)\right) \in L^{1+1 / \gamma, r(\gamma)^{\prime}} . \tag{29}
\end{equation*}
$$

We have

$$
u(t)=e^{i t P} f-i \int_{0}^{t} e^{i(t-\tau) P} F(u(\tau)) d \tau
$$

and choosing $\varphi \in \mathscr{A}$ we obtain

$$
\|\varphi u(t)\|_{H_{k+1 / 2}} \leq\left\|\varphi e^{i t P} f\right\|_{H_{k+1 / 2}}+\int_{0}^{t}\left\|\varphi e^{i(t-\tau) P} F(u(\tau))\right\|_{H_{k+1 / 2}} d \tau
$$

Hence

$$
\|\varphi u\|_{L^{2}\left(I ; H_{k+1 / 2)}\right.} \leq\left\|\varphi e^{i t P} f\right\|_{L^{2}\left(I ; H_{k+1 / 2}\right)}+\int_{0}^{T}\left(\int_{0}^{T}\left\|\varphi e^{i t P} e^{-i \tau P} F(u(\tau))\right\|_{H_{k+1 / 2}}^{2} d t\right)^{1 / 2} d \tau .
$$

Invoking the estimate (1) we then get

$$
\|\varphi u\|_{L^{2}\left(I ; H_{k+1 / 2}\right)} \leq C\|f\|_{H_{1}}+C \int_{I}\|F(u(t))\|_{H_{1}} d t
$$

To prove (5) it is therefore sufficient to prove that $F(u) \in L^{1}\left(I ; H_{1}\right)$. We have $F(u)=F_{1}(u)+F_{2}(u)$ and it follows from (28) that $F_{1}(u) \in L^{1}\left(I ; H_{1}\right)$. Furthermore

$$
F_{2}(u) \in L_{1}^{1+1 / \gamma, r(y)^{\prime}} \subset L_{1}^{1+1 / v, 1} \subset L^{2,1}
$$

and it remains to prove that

$$
\begin{equation*}
\partial\left(F_{2}(u)\right) \in L^{1}\left(I ; L^{2}\right) . \tag{30}
\end{equation*}
$$

We shall use the estimate

$$
\begin{equation*}
\left|\partial\left(F_{2}(u)\right)\right| \leq C|u|^{\gamma-1}|\partial u| \tag{31}
\end{equation*}
$$

(see [6, p. 149]).
In proving (30) we first assume $k=1$. Using Hölder's inequality we obtain

$$
\begin{equation*}
\int_{\mathbf{R}^{n}}\left|\partial\left(F_{2}(u)\right)\right|^{2} d x \leq C \int_{\mathbf{R}^{n}}|u|^{2 y-2}|\partial u|^{2} d x \tag{32}
\end{equation*}
$$

$$
\leq C\left(\int|u|^{(2 \gamma-2) \alpha} d x\right)^{1 / \alpha}\left(\int|\partial u|^{\gamma+1} d x\right)^{2 /(\gamma+1)}
$$

where

$$
\frac{2}{\gamma+1}+\frac{1}{\alpha}=1
$$

and thus $\alpha=(\gamma+1) /(\gamma-1)$.
We now first consider the case $n=1$ or 2 . We have

$$
\|u\|_{2 \gamma+2} \leq C\|u\|_{L_{1}^{2}}
$$

since

$$
\frac{1}{2 \gamma+2} \geq \frac{1}{2}-\frac{1}{n}
$$

and it follows from (32) that

$$
\begin{aligned}
\left\|\partial\left(F_{2}(u)\right)\right\|_{2} & \leq C\left(\int|u|^{2 \gamma+2} d x\right)^{(\gamma-1) / 2(\gamma+1)}\|\partial u\|_{\gamma+1} \\
& \leq C\|u\|_{L_{1}^{2}}^{\gamma-1}\|\partial u\|_{\gamma+1} \leq C_{u}\|\partial u\|_{\gamma+1},
\end{aligned}
$$

where we have used the fact that $u \in C\left(I ; H_{1}\right)$. Now (30) follows since $\partial u \in L^{\gamma+1, r(\gamma)}$.
We then consider the case $3 \leq n \leq 5$. We have $\gamma<(n+2) /(n-2)$ and $r=4(\gamma+1) / n(\gamma-1)$ and we may assume that γ is close to $(n+2) /(n-2)$. Setting

$$
p=\frac{2 \gamma(n-1)+n-2}{n+2+2 \gamma},
$$

we observe that since γ is close to $(n+2) /(n-2), p$ is close to

$$
\frac{2(n+2)(n-1) /(n-2)+n-2}{n+2+2(n+2) /(n-2)}=\frac{3 n-2}{n+2} .
$$

We have

$$
1<\frac{3 n-2}{n+2}<\frac{n+2}{n-2}
$$

and it follows that

$$
1<p<\frac{n+2}{n-2} .
$$

From the definition of p we conclude that

$$
p+1=\frac{2 n(\gamma+1)}{n+2+2 \gamma}
$$

and

$$
\frac{1}{p+1}-\frac{1}{n}=\frac{n+2+2 \gamma}{2 n(\gamma+1)}-\frac{1}{n}=\frac{1}{2 \gamma+2} .
$$

We have $u \in L_{1}^{p+1, r_{1}}$, where $r_{1}=4(p+1) / n(p-1)$, and it follows from Sobolev's theorem that $u \in L^{2 \gamma+2, r_{1}}$.

From (32) we conclude that

$$
\begin{equation*}
\left\|\partial\left(F_{2}(u)\right)\right\|_{2} \leq C\|u\|_{2 \gamma+2}^{\gamma-1}\|\partial u\|_{\gamma+1} \tag{33}
\end{equation*}
$$

and hence

$$
\left\|\partial\left(F_{2}(u)\right)\right\|_{L^{2,1}} \leq C \int_{I}\|u\|_{2 \gamma+2}^{\gamma-1}\|\partial u\|_{\gamma+1} d t \leq C\left(\int_{I}\|u\|_{2 \gamma+2}^{(\gamma-1) r^{\prime}} d t\right)^{1 / r^{\prime}}\left(\int_{I}\|\partial u\|_{\gamma+1}^{r} d t\right)^{1 / r} .
$$

Since $\partial u \in L^{\gamma+1, r}$ and $u \in L^{2 \gamma+2, r_{1}}$ the above right hand side is finite if $(\gamma-1) r^{\prime} \leq r_{1}$. To show this we shall prove that

$$
\begin{equation*}
\frac{1}{r_{1}}-\frac{1}{(\gamma-1) r^{\prime}} \leq 0 \tag{34}
\end{equation*}
$$

We have

$$
\begin{aligned}
\frac{1}{r_{1}}-\frac{1}{(\gamma-1) r^{\prime}} & =\frac{n(p-1)}{4(p+1)}-\frac{1}{\gamma-1}\left(1-\frac{1}{r}\right)=\frac{n}{4}\left(1-\frac{2}{p+1}\right)-\frac{1}{\gamma-1}+\frac{n}{4(\gamma+1)} \\
& =\frac{n}{4}-\frac{n+2+2 \gamma}{4(\gamma+1)}-\frac{1}{\gamma-1}+\frac{n}{4(\gamma+1)}=\frac{n-2}{4}-\frac{1}{\gamma-1} \\
& =\frac{(n-2) \gamma-n-2}{4(\gamma-1)}=\frac{(n-2)(\gamma-(n+2) /(n-2))}{4(\gamma-1)}
\end{aligned}
$$

and since the right hand side is negative we have proved (34) and (30).
We then assume $n \geq 6$. One has

$$
\int\left|\partial\left(F_{2}(u)\right)\right|^{2} d x \leq C \int|u|^{2 \gamma-2}|\partial u|^{2} d x
$$

and we assume $\gamma<1+2 /(n-4)$ and that γ is close to $1+2 /(n-4)$. We remark that $1+2 /(n-4) \leq(n+2) /(n-2)$ with equality for $n=6$. We shall choose p such that $\gamma<p<(n+2) /(n-2)$ and use the fact that $u \in L_{1}^{p+1, r}$, where $r=4(p+1) / n(p-1)$.

Using Hölder's inequality one obtains

$$
\begin{equation*}
\left\|\partial\left(F_{2}(u)\right)\right\|_{2} \leq C\|u\|_{2(y-1)(p+1) /(p-1)}^{\gamma-1}\|\partial u\|_{p+1} . \tag{35}
\end{equation*}
$$

Now assume that we can choose p so that

$$
\begin{equation*}
\frac{1}{p+1} \geq \frac{p-1}{2(\gamma-1)(p+1)} \geq \frac{1}{p+1}-\frac{1}{n} . \tag{36}
\end{equation*}
$$

Then

$$
\|u\|_{2(\gamma-1)(p+1) /(p-1)} \leq C\|u\|_{L_{1}^{p+1}}
$$

and it follows from (35) that

$$
\left\|\partial\left(F_{2}(u)\right)\right\|_{2} \leq C\|u\|_{L_{1}^{p+1}}^{\gamma} \quad \text { and } \quad\left\|\partial\left(F_{2}(u)\right)\right\|_{L^{2,1}} \leq C \int_{I}\|u\|_{L_{1}^{p+1}}^{\gamma} d t
$$

However, the above right hand side is finite since $\gamma<2 \leq r$.
It remains to prove that the above choice of p is possible. The right hand side inequality in (36) is equivalent to

$$
\frac{p-1}{2(\gamma-1)} \geq 1-\frac{p-1}{n}
$$

and to

$$
p\left(\frac{1}{2(\gamma-1)}+\frac{1}{n}\right)-\frac{1}{2(\gamma-1)} \geq 1-\frac{1}{n} .
$$

Thus we can find a suitable p by choosing p close to $(n+2) /(n-2)$ if

$$
\frac{n+2}{n-2}\left(\frac{1}{2(\gamma-1)}+\frac{1}{n}\right)-\frac{1}{2(\gamma-1)}>1-\frac{1}{n} .
$$

This inequality is equivalent to

$$
\frac{1}{2(\gamma-1)}\left(\frac{n+2}{n-2}-1\right)+\frac{n+2}{n(n-2)}>1-\frac{1}{n}
$$

and to

$$
\frac{2}{\gamma-1}>n-4
$$

which holds since $\gamma<1+2 /(n-4)$.
The left hand side inequality in (36) is equivalent to $2(\gamma-1) \geq p-1$, which is easily seen to be true if p is chosen close to $(n+2) /(n-2)$. Thus (30) is proved also in the case $n \geq 6$.

We shall then study the case $k \geq 2$. The above argument for $k=1$ clearly works also in the case $k \geq 2$. Thus it only remains to prove (30) in the case $k \geq 2$ and $n \geq 7$. In fact, in the following proof it is sufficient to assume $n \geq 5$.

We start from the estimate

$$
\begin{equation*}
\int\left|\partial\left(F_{2}(u)\right)\right|^{2} d x \leq C \int|u|^{2 \gamma-2}|\partial u|^{2} d x \tag{37}
\end{equation*}
$$

and define q by

$$
\frac{1}{q}=\frac{1}{2}-\frac{1}{n} .
$$

It then follows that $q=2 n /(n-2)$ and

$$
\begin{equation*}
\|u(t)\|_{q} \leq C\|u(t)\|_{L_{1}^{2}} . \tag{38}
\end{equation*}
$$

We have

$$
2 \gamma-2<2 \frac{n+2}{n-2}-2=\frac{8}{n-2}<q,
$$

since $n \geq 5$, and we set $\alpha_{1}=q /(2 \gamma-2)=n /(n-2)(\gamma-1)$. Also define α_{2} by

$$
\frac{1}{\alpha_{1}}+\frac{1}{\alpha_{2}}=1 .
$$

From (37), (38) and the fact that $u \in C\left(I ; H_{1}\right)$ we obtain

$$
\int\left|\partial\left(F_{2}(u)\right)\right|^{2} d x \leq C\left(\int|u|^{q} d x\right)^{1 / \alpha_{1}}\left(\int|\partial u|^{2 \alpha_{2}} d x\right)^{1 / \alpha_{2}}
$$

and

$$
\begin{equation*}
\left\|\partial\left(F_{2}(u)\right)\right\|_{2} \leq C_{u}\|\partial u\|_{2 \alpha_{2}} . \tag{39}
\end{equation*}
$$

We have $\partial u \in L_{s}^{\gamma+1, r}$, where $r=r(\gamma), s=s(\gamma)$ and we will obtain (30) from (39) if we can prove that

$$
\begin{equation*}
\|\partial u\|_{2 \alpha_{2}} \leq C\|\partial u\|_{L_{s}^{\nu^{+1}}} . \tag{40}
\end{equation*}
$$

To prove (40) it is sufficient to prove the inequality

$$
\begin{equation*}
\frac{1}{\gamma+1} \geq \frac{1}{2 \alpha_{2}} \geq \frac{1}{\gamma+1}-\frac{s}{n} . \tag{41}
\end{equation*}
$$

The right hand side inequality in (41) is equivalent to

$$
\frac{s}{n} \geq \frac{1}{\gamma+1}-\frac{1}{2}\left(1-\frac{1}{\alpha_{1}}\right)=\frac{1}{\gamma+1}-\frac{1}{2}+\frac{1}{2 \alpha_{1}}
$$

which gives

$$
\frac{(k-1)(\gamma-1)}{2(\gamma+1)} \geq \frac{1}{\gamma+1}-\frac{1}{2}+\frac{(n-2)(\gamma-1)}{2 n}
$$

and

$$
\frac{(k-1)(\gamma-1) n-2 n+n(\gamma+1)-(n-2)(\gamma-1)(\gamma+1)}{2 n(\gamma+1)} \geq 0
$$

We may assume $k=2$ and the above numerator then equals

$$
(2-n) \gamma^{2}+2 n \gamma-n-2=(2-n)\left(\gamma^{2}-\frac{2 n}{n-2} \gamma+\frac{n+2}{n-2}\right)=(2-n)(\gamma-1)\left(\gamma-\frac{n+2}{n-2}\right),
$$

which is positive since $1<\gamma<(n+2) /(n-2)$.
The left hand side inequality in (41) leads in a similar way to the inequality

$$
(n-2) \gamma^{2}-n \gamma+2 \geq 0
$$

However,

$$
(n-2) \gamma^{2}-n \gamma+2=(n-2)\left(\gamma^{2}-\frac{n}{n-2} \gamma+\frac{2}{n-2}\right)=(n-2)(\gamma-1)\left(\gamma-\frac{2}{n-2}\right)
$$

which is positive for $1<\gamma<(n+2) /(n-2)$. Hence (41) is proved and (40) and (30) follow. The proof of the theorem is complete.

References

[1] J. Bergh and J. LöFström, Interpolation spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[2] T. Kato, On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Physique théorique, 46 (1987), 113-129.
[3] T. Kato, Nonlinear Schrödinger equations, in Schrödinger operators, Proc. of the Nordic Summer School in Mathematics, Sønderborg (H. Holden and A. Jensen, eds.), Lecture Notes in Physics 345, Springer-Verlag, Berlin-New York, 1989.
[4] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69.
[5] P. SjöGren and P. Suölin, Local regularity of solutions to time-dependent Schrödinger equations with smooth potentials, Ann. Acad. Sci. Fenn. Ser. A.I. Math. 16 (1991), 3-12.
[6] P. SJölin, Local regularity of solutions to nonlinear Schrödinger equations, Ark. mat. 28 (1990), 145-157.
[7] E. M. Stein, Singular integrals and differentiability properties of functios, Princeton, 1970.

Department of Mathematics
Uppsala University
Box 480
S-751 06 Uppsala
Sweden

