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Abstract

Given a function ϕ and s ∈ (0, 1), we will study the solutions of the following

obstacle problem:

• u ≥ ϕ in Rn ,

• (−�)su ≥ 0 in Rn ,

• (−�)su(x) = 0 for those x such that u(x) > ϕ(x),

• lim|x |→+∞ u(x) = 0.

We show that when ϕ is C1,s or smoother, the solution u is in the space C1,α for

every α < s. In the case where the contact set {u = ϕ} is convex, we prove the

optimal regularity result u ∈ C1,s . When ϕ is only C1,β for a β < s, we prove

that our solution u is C1,α for every α < β. c© 2006 Wiley Periodicals, Inc.
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1 Introduction

1.1 Setup of Problem

In this work, we will consider a function u that solves an obstacle problem for

the operator (−�)s for s ∈ (0, 1). Given a continuous function ϕ with a compact

support (or at least rapid decay at infinity), we consider a continuous function u

satisfying

u ≥ ϕ in Rn,(1.1)

(−�)su ≥ 0 in Rn,(1.2)
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(−�)su(x) = 0 for those x such that u(x) > ϕ(x),(1.3)

lim
|x |→+∞

u(x) = 0.(1.4)

When ϕ ∈ C∞, the expected optimal regularity for this type of problem is C1,s .

We prove u ∈ C1,α for every α < s. In the case when the contact set {u = ϕ}
is convex, we achieve the optimal result u ∈ C1,s . If ϕ is only Cα for α < 1 or

Lipschitz, we will prove that u has the same modulus of continuity (Theorem 3.8).

If ϕ is C1,β , we will prove that u ∈ C1,α for every α < min(β, s) (Theorem 5.8).

The existence of such a function u can be obtained by variational methods as

the unique minimizer of

(1.5) J (u) :=
∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+2s

dx dy.

from all the functions u that satisfy ϕ ≤ u and are in a suitable function space.

We can also obtain u by adapting Perron’s method, as the least supersolution of

(−�)s such that u ≥ ϕ. Another approach is by choosing the optimal closed set

� ⊂ Rn to maximize the solution of

• u(x) = ϕ(x) in �,

• (−�)su = 0 in Rn \ �,

• lim|x |→∞ u(x) = 0.

We will choose the variational approach as the starting point. Then we will

prove that u also solves the other two (equivalent) problem formulations. Our

main focus, however, is the regularity of the solution.

Since we will be dealing with the operators (−�)σ , we will need several related

results. Most of the present theory can be found in [9]. We will cite some results

from there, and we will prove some others when we find it useful to present them

in a form more convenient to our purposes. In Section 2 we will study all the

basic properties of these operators that we will need. In Section 3, we will prove

the existence of a solution u of our free boundary problem and prove the first

regularity results. In Section 4 we will improve a regularity result; this is probably

the trickiest part of the paper. Finally, in Section 5 we will present the optimal

regularity result.

In the case s = 1, our problem turns into the usual obstacle problem. Given a

domain � ⊂ Rn and a function ϕ : � → R, in the usual obstacle problem we have

a function u that satisfies

• u ≥ ϕ in �,

• �u ≤ 0 in �,

• �u(x) = 0 for those x ∈ � such that u(x) > ϕ(x).

The existence of this problem can be obtained by minimizing a functional in

H 1 with the constraint of u ≥ ϕ and some given boundary condition. If ϕ is a

smooth function, then u is expected to be more regular than just in H 1(�). In 1971
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Frehse [7] showed for the first time that u is as smooth as φ up to C1,1; another

proof was given in [5]. This regularity is optimal; simple examples show that for

very smooth φ, u does not get any better than C1,1.

Most of the regularity properties of the usual obstacle problem for the Lapla-

cian, including the regularity of the free boundary, can be found in [4].

Another related problem is the Signorini problem, or the thin-obstacle problem,

where the obstacle is lower dimensional. We will continue with this problem in the

next subsection.

1.2 Applications to the Signorini Problem

Let us consider a smooth function with rapid decay at infinity u0 : Rn−1 → R.

Let u : Rn−1 × (0,∞) → R be the unique solution of the Laplace equation in the

upper half-space that vanishes at infinity with u0 as the boundary condition:

u(x ′, 0) = u0(x ′) for x ′ ∈ Rn−1,

�u(x) = 0 for x ∈ Rn−1 × (0,∞).

Consider the operator T : u0(x ′) 
→ −∂nu(x ′, 0). We see that∫
Rn−1

u(x ′, 0)(−∂nu(x ′, 0))dx ′ =
∫

Rn−1×(0,∞)

−u(x)�u(x) + |∇u(x)|2 dx,

∫
Rn−1×(0,∞)

|∇u(x)|2 dx ≥ 0.

Thus T is a positive operator. Moreover, since ∂nu(x) is also a harmonic function,

if we apply the operator twice we get

T ◦ T u0 = (−∂n)(−∂n)u(x ′, 0) = ∂nnu(x ′, 0) = −
n−1∑
i=1

∂i i u(x ′, 0) = −�u0.

Thus the operator T that maps the Dirichlet-type condition u0 into the Neumann-

type −∂nu is actually the operator (−�)1/2.

One version of the Signorini problem is this: given ϕ a smooth function in

Rn−1, the solution u of the Signorini problem is the least harmonic function in the

upper half semispace Rn−1 × (0,∞) such that u ≥ ϕ and ∂nu ≤ 0 on Rn−1 × {0}.
From the fact explained just above, we see that actually this problem is exactly our

obstacle problem for the operator (−�)1/2. The regularity we obtained is therefore

C1,1/2 in the case {u = ϕ} is convex, and C1,α for every α < 1
2

in the general

case. The optimal regularity C1,1/2 was obtained very recently for this problem

by Athanasopoulos and Caffarelli in [1]. The two-dimensional case was proven

previously by Richardson in [12]. In 1979 Caffarelli showed C1,α-regularity for a

small value of α in the n-dimensional case [3].

Usually the Signorini problem (or its equivalent formulation as the thin-obstacle

problem) is studied in bounded domains. For regularity purposes, one case can be
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deduced from the other. Suppose we have a solution of the Signorini problem in a

ball:

−�u(x) = 0 for |x | < 1 and xn > 0,

u(x) = 0 for |x | = 1 and xn ≥ 0,

u(x ′, 0) ≥ ϕ(x ′) for
∣∣x ′∣∣ ≤ 1,

∂nu(x ′, 0) ≤ 0 for
∣∣x ′∣∣ ≤ 1,

∂nu(x ′, 0) = 0 where u(x ′, 0) > ϕ.

For the problem to make sense, we assume that ϕ(x ′) < 0 when |x ′| = 1. Let η be a

radially symmetric cutoff function such that {ϕ > 0} � {η = 1} and supp η ⊂ B1.

The function ηu is above ϕ and also satisfies ∂nηu(x ′, 0) ≤ 0 for x ′ ∈ Rn−1 and

∂nηu(x ′, 0) = 0 for those x ′ ∈ Rn−1 such that ηu(x ′, 0) > ϕ(x ′). Although ηu

may not be harmonic in the upper half-space, its Laplacian is a smooth function.

Let v be the unique bounded solution of the Neumann-type problem in the

upper half semispace:

�v(x) = �ηu(x) = �η(x)u(x) + 2∇η(x) · ∇u(x),

∂nv(x ′, 0) = 0.

Since �ηu(x) is smooth and compactly supported, v is a smooth function. Now

ηu − v is a solution of the Signorini problem without boundary with ϕ − v as

the obstacle. Therefore, we reduce the regularity for the bounded case from the

regularity of the unbounded case and our result applies.

1.3 Variations of the Problem

There are small variations of the obstacle problem that can be considered. To

simplify the variational proof of existence, we could consider minimizers of the

standard H s-norm from all the functions u that lie above a given obstacle ϕ. By

the H s-norm we mean

‖u‖Hs =
√√√√∫

Rn

(1 + |ξ |2s)|û(ξ)|sdξ .

In this case we obtain a free boundary problem of the sort

• u ≥ ϕ in Rn ,

• u + (−�)su ≥ 0 in Rn ,

• u + (−�)su(x) = 0 for those x such that u(x) > ϕ(x).

The proofs of Section 3 have to be adapted to use the operator Id + (−�)s

instead of (−�)s . Once we get that the solution u is semiconvex, then it is going

to be Lipschitz and we can pass the term u to the right-hand side; everything in

Sections 4 and 5 applies without change. An advantage of this variation of the

problem is that we can get existence also in the case n = 1 and s > 1
2
.
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We could also consider a problem with boundary values. Let ϕ be such that

ϕ(x) < 0 for every |x | ≥ 1. Let u be the minimizer of J (u) (for J defined in (1.5))

from all the functions u that lie above ϕ and u(x) = 0 for every x ∈ Rn \ B1. Then

we obtain the following free boundary problem:

• u ≥ ϕ in Rn ,

• u = 0 in Rn \ B1,

• (−�)su ≥ 0 in B1,

• (−�)su(x) = 0 for those x ∈ B1 such that u(x) > ϕ(x).

With a trick as in Section 1.2, our result applies to the interior regularity of this

problem. However, this solution u is not going to be C1,α(Rn) since it is not going

to be differentiable across the boundary of the unit ball ∂ B1. (As a matter of fact,

we cannot expect better that Cs on ∂ B1, the boundary regularity of the Dirichlet

problem. See Proposition 5.1.)

1.4 Applications to Mathematical Finance

The operators (−�)s arise in stochastic theory as the operators associated with

symmetric α-stable Levy processes. Suppose we have such a Levy process Xt such

that X0 = x for some point x in Rn . We consider the optimal stopping time τ to

maximize the function

u(x) = sup
τ

E[ϕ(Xτ ) : τ < +∞].

Then the function u turns out to be the solution of our obstacle problem

• u ≥ ϕ in Rn ,

• (−�)su ≥ 0 in Rn ,

• (−�)su(x) = 0 for those x such that u(x) > ϕ(x),

• lim|x |→+∞ u(x) = 0.

If, on the other hand, we consider the problem

u(x) = sup
τ

E[e−λτϕ(Xτ )],

then the function u turns out to be the solution of the following obstacle problem:

• u ≥ ϕ in Rn ,

• λu + (−�)su ≥ 0 in Rn ,

• λu + (−�)su(x) = 0 for those x such that u(x) > ϕ(x),

• lim|x |→+∞ u(x) = 0.

A problem like this arises in financial mathematics as a pricing model for Amer-

ican options. These models have become of increasing interest in the last few years.

The function u represents the rational price of a perpetual American option where

the assets prices are modeled by a Levy process Xt and the payoff function is ϕ.

For nonperpetual options, a parabolic version of this problem is considered. A

very readable explanation of these models can be found in the book by Cont and

Tankov [6] (see also [10] and [11]). Usually the models are in one dimension, and
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although general payoff functions are considered, the case when ϕ = (K − ex)+

(the American put) is of special interest.

There is not much work done regarding regularity. In [2], S. Boyarchenko and

S. Levendorskiı̆ studied for which classes of Levy processes this problem has C1-

solutions (smooth pasting). They considered a very general family of (one-dimen-

sional) Levy processes, and a class of payoff functions that assures that the contact

set is a half-line.

When we consider jump processes whose corresponding integrodifferential op-

erators have a kernel that coincides with 1/|y|n+2s around the origin, then the so-

lutions of the corresponding obstacle problem also satisfy an obstacle problem for

the operator (−�)s with a right-hand side. In many cases, we can assure enough

regularity for that right-hand side, and the results of this work hold for those inte-

grodifferential operators, too.

2 Preliminary Properties of the Fractional Laplace Operator

In this section, we provide some elementary properties of the operators (−�)σ

that we will need. The usual reference for these operators is Landkof’s book [9].

We will show how (−�)σ interacts with Cα-norms, and characterize its supersolu-

tions.

2.1 Definitions and Properties

Throughout this section S stands for the Schwartz space of rapidly decreasing

C∞ functions in Rn . Its dual, written as S ′, is the space of tempered distributions

in Rn .

The following classical theorem about distributions is going to be used:

THEOREM 2.1 Suppose that a distribution f is such that for any nonnegative test

function g, 〈 f, g〉 ≥ 0. Then f is a nonnegative Radon measure in Rn.

Two distributions f and g in Rn are said to coincide in an open set � if for

every test function φ supported inside �

〈 f, φ〉 = 〈g, φ〉.
We recall the definition of (−�)σ as a pseudodifferential operator.

DEFINITION 2.2 Given σ ∈ (−n/2, 1] and f ∈ S, we define (−�)σ f as

(2.1) ̂(−�)σ f (ξ) = |ξ |2σ f̂ (ξ).

Notice that (−�)σ f /∈ S since |ξ |2σ introduces a singularity at the origin in its

Fourier transform. That singularity is going to translate in a lack of rapid decay for

(−�)σ f . However, (−�)σ f is still C∞.

If σ ≤ −n/2, then |ξ |2σ is not a tempered distribution, so we cannot allow that

case. Technically we could define the case σ > 1 this way, but we are not interested
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in this right now. Clearly, (−�)1 = −�, (−�)0 = Id and (−�)σ1 ◦ (−�)σ2 =
(−�)σ1+σ2 .

We can also compute the same operator using a singular integral. When f ∈ S

and σ ∈ (0, 1), we can compute (−�)σ f as

(2.2) (−�)σ f (x) = cn,σ PV

∫
Rn

f (x) − f (y)

|x − y|n+2σ
dy.

The operator (−�)−σ (for σ > 0) can also be computed with an integral when

n > 2σ by

(2.3) (−�)−σ f (x) = cn,−σ

∫
Rn

f (y)

|x − y|n−2σ
dy.

We refer to [9] for a detailed proof of the equivalence between (2.1) and (2.2) or

(2.3). From (2.3), we see that F(x) = cn,−σ /|x |n−2σ is the fundamental solution of

(−�)σ ; i.e., (−�)σ F = δ0 when n > 2σ . This function is generally known as the

Riesz kernel. From the definition of (−�)σ in S, we can extend it by duality in a

large class of tempered distributions.

DEFINITION 2.3 Let S̄σ be the space of C∞-functions f such that, for every k ≥ 0,

(1 + |x |n+2σ ) f (k)(x) is bounded. We consider the topology in S̄σ given by the

family of seminorms

[ f ]k = sup(1 + |x |n+2σ ) f (k)(x).

We take S̄ ′
σ to be the dual of S̄σ .

It is very simple to check that (−�)σ f ∈ S̄σ when f ∈ S.

The symmetry of the operator (−�)σ allows us to extend its definition to the

space S̄ ′
σ by duality; i.e., if u ∈ S̄ ′

σ ,

〈(−�)σ u, f 〉 = 〈u, (−�)σ f 〉
This definition coincides with the previous ones in the case where u ∈ S and

(−�)σ is a continuous operator from S̄ ′
σ to S ′.

We are rarely going to use these operators in such general spaces. But it is

convenient to have in mind how far they can be extended. In general, we will be

applying these operators to functions in L1
loc. The natural space that we are going

to use is a weighted L1-space:

Lσ := L1
loc ∩ S̄

′
σ =

{
u : Rn → R such that

∫
Rn

|u(x)|
1 + |x |n+2σ

dx < +∞
}
.

The norm in Lσ is naturally given by

‖u‖Lσ
=

∫
Rn

|u(x)|
1 + |x |n+2σ

dx .
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In special cases, our formulas with the Fourier transform or the singular inte-

grals are enough to compute the value. The following technical property exempli-

fies this situation:

PROPOSITION 2.4 Let f be a function in Lσ that is C2σ+ε (or C1,2σ+ε−1 if σ > 1
2
)

for some ε > 0 in an open set �; then for σ ∈ (0, 1), (−�)σ f is a continuous

function in � and its values are given by the integral of (2.2).

PROOF: Let us take an arbitrary open set �0 compactly contained in �. There

exists a sequence fk ∈ S uniformly bounded in Cσ+ε(�) (or C1,σ+ε−1), converging

uniformly to f in �0 and also converging to f in the norm of Lσ . By the uniform

bound on the Cσ+ε-norm of fk in �0, it can be shown that the integrals converge

uniformly in �0,

(−�)σ fk(x) =
∫
Rn

fk(x) − fk(y)

|x − y|n+2σ
dy →

∫
Rn

f (x) − f (y)

|x − y|n+2σ
dy.

But (−�)σ fk → (−�)σ f in the topology of S ′. That implies that (−�)σ f must

coincide with the integral in �0 by the uniqueness of the limits. Since �0 is arbi-

trary, this happens for any x ∈ �. �

The following propositions explain how the operators (−�)σ interact with Cα-

norms:

PROPOSITION 2.5 Let u ∈ C0,α(Rn) for α ∈ (0, 1] and α > 2σ > 0; then

(−�)σ u ∈ C0,α−2σ and

[(−�)σ u]C0,α−2σ ≤ C[u]C0,α

where C depends only on α, σ , and n.

PROOF: Let us estimate the difference |(−�)σ u(x1)− (−�)σ (x2)| for x1, x2 ∈
Rn:

|(−�)σ u(x1) − (−�)σ u(x2)|

= Cn,σ

∣∣∣∣ ∫
Rn

u(x1) − u(x1 + y) − u(x2) + u(x2 + y)

|y|n+2σ
dy

∣∣∣∣
≤ I1 + I2,

where

I1 = Cn,σ

∣∣∣∣ ∫
Br

u(x1) − u(x1 + y) − u(x2) + u(x2 + y)

|y|n+2σ
dy

∣∣∣∣,
I2 = Cn,σ

∣∣∣∣ ∫
Rn\Br

u(x1) − u(x1 + y) − u(x2) + u(x2 + y)

|y|n+2σ
dy

∣∣∣∣.
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For I1, we use that |u(xi ) − u(xi + y)| ≤ [u]C0,α |y|α for i = 1, 2. Therefore

I1 ≤ Cn,σ

∣∣∣∣∣∣
∫
Br

2[u]C0,α |y|α
|y|n+2σ

∣∣∣∣∣∣
≤ C[u]C0,αrα−2σ .

For I2, we use that |u(x1 + y) − u(x2 + y)| ≤ [u]C0,α |x1 − x2|α. Therefore

I1 ≤ Cn,σ

∣∣∣∣ ∫
Rn\Br

2[u]C0,α |x1 − x2|α
|y|n+2σ

∣∣∣∣
≤ C[u]C0,αr−2σ |x1 − x2|α .

Picking r = |x1 − x2| and adding I1 and I2, we obtain

|(−�)σ u(x1) − (−�)σ (x2)| ≤ C[u]C0,α |x1 − x2|α−2σ .

�

PROPOSITION 2.6 Let u ∈ C1,α(Rn) for α ∈ (0, 1] and σ > 0.

• If α > 2σ , then (−�)σ u ∈ C1,α−2σ and

[(−�)σ u]C1,α−2σ ≤ C[u]C1,α

where C depends only on α, σ , and n.

• If α < 2σ , then (−�)σ u ∈ C0,α−2σ+1 and

[(−�)σ u]C0,α−2σ+1 ≤ C[u]C1,α

where C depends only on α, σ , and n.

PROOF: The first part follows simply by Proposition 2.5 plus the fact that the

operators (−�)σ commute with differentiation.

For the second part, let us first assume that σ < 1
2
. We proceed as in the proof

of Proposition 2.5 to get

|(−�)σ u(x1) − (−�)σ (x2)| ≤ I1 + I2

for the same I1 and I2 as before. But now to estimate I1 we use that since u ∈ C1,α,

|u(x1) − u(x1 + y) − u(x2) + u(x2 + y)|
≤ |(∇u(x1) − ∇u(x2)) · y| + [u]C1,α |y|1+α

≤ [u]C1,α (|y| |x1 − x2|α + |y|1+α);
then I1 ≤ C[u]C1,α (r1−2σ |x1 − x2|α + r1+α−2σ ).

In the case σ ≥ 1
2
, we write (−�)σ = (−�)σ−1/2 ◦ (−�)1/2, and the result

follows from the observation that (−�)1/2 = ∑
i Ri∂i , where the Ri are the Riesz

transforms. �

Iterating the last two propositions we get the following result:
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PROPOSITION 2.7 Let u ∈ Ck,α and suppose that k+α−2σ is not an integer. Then

(−�)σ u ∈ Cl,β where l is the integer part of k + α − 2σ and β = k + α − 2σ − l.

PROPOSITION 2.8 Let w = (−�)σ u. Assume w ∈ C0,α(Rn) and u ∈ L∞ for

α ∈ (0, 1] and σ > 0.

• If α + 2σ ≤ 1, then u ∈ C0,α+2σ (Rn). Moreover,

‖u‖C0,α+2σ (Rn) ≤ C(‖u‖L∞ + ‖w‖C0,α )

for a constant C depending only on n, α, and σ .

• If α + 2σ > 1, then u ∈ C1,α+2σ−1(Rn). Moreover,

‖u‖C1,α+2σ−1(Rn) ≤ C(‖u‖L∞ + ‖w‖C0,α )

for a constant C depending only on n, α, and σ .

PROOF: We will show that u has the corresponding regularity in a neighbor-

hood of the origin. The same argument works for a neighborhood of every point;

so we get, respectively, that u ∈ C0,α+2σ (Rn) or u ∈ C1,α+2σ−1(Rn).

Let η be a smooth cutoff function such that η(x) ∈ [0, 1] for every x ∈ Rn ,

supp η ⊂ B2, and η(x) = 1 for every x ∈ B1. Let

u0(x) := cn,−σ

∫
Rn

η(y)w(y)

|x − y|n−2σ
dy = (−�)−σ ηw(x).

Then (−�)σ u0 = w = (−�)σ u in B1, and therefore u − u0 is smooth in B1/2.

Moreover, its C0,α+2σ - or C1,α+2σ−1-norm can be estimated from the L∞-norm of

u0 − u, which can be estimated from the L∞-norms of u and w.

So, we are only left to show that u0 ∈ C0,α+2σ (B1/2). Assume α < 1; then

we write u0 = (�)−σ ηw = (−�)1−σ ◦ (−�)−1ηw, and from the C2,α-estimates

for the Poisson equation (see [8]) we know that (−�)−1ηw ∈ C2,α and its norm

depends only on ‖w‖C0,α
. Now we apply Proposition 2.7 and we conclude the

proof. On the other hand, if α = 1, then α > 1 − 2σ , and we write u0 = (−�)−1 ◦
(−�)1−σ ηw; the result follows from Proposition 2.7 and the C2,α-estimates for the

Poisson equation. �

PROPOSITION 2.9 Let w = (−�)σ u. Assume w ∈ L∞(Rn) and u ∈ L∞ for

σ > 0.

• If 2σ ≤ 1, then u ∈ C0,α(Rn) for any α < 2σ . Moreover,

‖u‖C0,α(Rn) ≤ C(‖u‖L∞ + ‖w‖L∞)

for a constant C depending only on n, α, and σ .

• If 2σ > 1, then u ∈ C1,α(Rn) for any α < 2σ − 1. Moreover,

‖u‖C1,α(Rn) ≤ C(‖u‖L∞ + ‖w‖L∞)

for a constant C depending only on n, α, and σ .
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PROOF: The proof is identical to the one for Proposition 2.8 with the difference

that we have to use C1,α-estimates for the Poisson equation with the right-hand side

in L∞ instead of C2,α-estimates. �

2.2 Supersolutions and Comparison

We want the least restrictive possible definition of supersolutions for the equa-

tion

(2.4) (−�)σ u ≥ 0

so that we can prove general theorems of comparison. We want to be able to apply

maximum principles to nonsmooth functions for which the integral representation

(2.2) of (−�)σ does not apply. We also want to be able to check (2.4) in an open

domain � that is not the whole space Rn . We will obtain characterizations of

supersolutions similar to the mean value for superharmonic functions that we will

use later in the paper.

When we are interested in the whole space, (2.4) means of course that (−�)σ u

is a nonnegative measure.

DEFINITION 2.10 We say that u ∈ S̄ ′
σ satisfies (−�)σ u ≥ 0 in an open set � if for

every nonnegative test function φ whose support is inside �, 〈u, (−�)σφ〉 ≥ 0.

The definition says that (−�)σ u coincides with a nonnegative Radon measure

in �. This is good for a definition but it is awkward to deal with. We would like to

have a property like the definition of superharmonic functions comparing the value

at a point with the means in small balls centered there. We will restrict our study

to functions u ∈ Lσ . We are going to use some special test functions.

Let �(x) = C/|x |n−2σ be the fundamental solution of (−�)σ . Let us stick a

paraboloid from below to cut out the singularity at x = 0 to obtain a C1,1-function

�(x) that coincides with �(x) when x is outside the ball of radius 1 centered at the

origin (see Figure 2.1).

Given λ > 1, consider �λ = �(x/λ)/λn−2σ . The function �λ ∈ C1,1 coincides

with � outside of the ball of radius λ centered at the origin, and it is a paraboloid

inside that ball. Besides, �λ1
≥ �λ2

if λ1 ≤ λ2.

We need the next proposition in order to use (−�)σ�λ as an approximation of

the identity.

PROPOSITION 2.11 (−�)σ� is a positive continuous function in L1. Thus,

(−�)σ� ≥ 0.

In addition,
∫

Rn (−�)σ�(x)dx = 1.

PROOF: Since � is C1,1, we can use the integral representation (2.2) to compute

(−�)σ�. If x0 /∈ B1, then �(x0) = �(x0); for every other x , �(x) ≤ �(x). Then

(−�)σ�(x0) =
∫
Rn

�(x0) − �(y)

|x0 − y|n+2σ
dy
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Φ

paraboloid

Γ

FIGURE 2.1. The function �.

>

∫
Rn

�(x0) − �(y)

|x0 − y|n+2σ
dy = 0

since � is the fundamental solution.

If x0 ∈ B1−{0}, there exist an x1 and a positive δ such that �(x−x1)+δ touches

� from above at the point x0. Now we use the singular integral representation

(−�)σ�(x0) =
∫
Rn

�(x0) − �(y)

|x0 − y|n+2σ
dy

>

∫
Rn

�(x0 − x1) + δ − �(y − x1) − δ

|x0 − y|n+2σ
dy = 0

since (−�)σ (�(x0 − x1) + δ) = 0.

If x0 = 0, then � attains its maximum at x0,

(−�)σ�(x0) =
∫
Rn

�(x0) − �(y)

|x0 − y|n+2σ
dy > 0,

because we are integrating a positive function.

To show that
∫

Rn (−�)σ�(x)dx = 1, we consider a smooth cutoff function η

such that η(x) ≤ 1 for every x ∈ Rn , η(x) = 1 for every x ∈ B1 and supp η ⊂ B2.

Let ηR(x) = η(x/R); then we have∫
Rn

(−�)σ�(x)dx − 1 = lim
R→∞

〈(−�)σ� − (−�)σ�, ηR〉

= lim
R→∞

〈� − �, (−�)σ ηR〉 = 0
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since clearly (−�)σ ηR goes to 0 uniformly on compact sets, and � − � is an

L1-function with compact support. �

Let γλ = (−�)σ�λ.

PROPOSITION 2.12 For any λ, the function γλ(x) decays like 1/|x |n+2σ when x →
∞.

PROOF: For |x | large, �λ(x) = �(x) and

γλ(x) =
∫

�λ(x) − �λ(y)

|x − y|n+2σ
dy

=
∫

�(x) − �(y)

|x − y|n+2σ
dy +

∫
�(y) − �λ(y)

|x − y|n+2σ
dy

=
∫

�(y) − �λ(y)

|x − y|n+2σ
dy

∼= 1

|x |n+2σ

since �(y) − �λ(y) is a compactly supported function in L1. �

PROPOSITION 2.13 The family γλ is an approximation of the identity as λ → 0.

In the sense that

u ∗ γλ(x) =
∫
Rn

u(y)γλ(x − y) dy → u(x) a.e. as λ → 0.

PROOF: First of all, notice that u(y)γλ(x − y) is integrable for every x since

u ∈ Lσ and γλ decays as 1/(1 + |x |n+2σ ) by Proposition 2.12.

We have to check the rescaling properties of γλ = (−�)σ�λ:

γλ(x) = (−�)σ�λ(x) = (−�)σ

(
1

λn−2σ
�

(
x

λ

))
= 1

λn
((−�)σ�)

(
x

λ

)
= 1

λn
γ1

(
x

λ

)
.

Since γ1 is nonnegative and
∫

γ1 dx = 1, we conclude the proof. �

PROPOSITION 2.14 If (−�)σ u is continuous at a point x ∈ Rn, then

(−�)σ u(x) = lim
λ→0

C

λn
(u(x) − u ∗ γλ(x)),

where the constant C depends only on σ and n.

PROOF: Since (−�)σ u is continuous at the point x , it is bounded in a neigh-

borhood of x , and for any function g ∈ L1(Rn) with compact support

(2.5) lim
λ→0

∫
Rn

(−�)σ u(x − y)
1

λn
g

(
y

λ

)
dy = (−�)σ u(x) ·

∫
Rn

g dx .
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Let g(y) = �(y) − �(y); then

1

λn
g

(
y

λ

)
= 1

λn
�

(
y

λ

)
− 1

λn
�

(
y

λ

)
= 1

λ2σ
(�(y) − �λ(y)).

Thus, substituting in (2.5),

(−�)σ u(x) = C lim
λ→0

1

λ2σ

∫
Rn

(−�)σ u(x − y)(�(y) − �λ(y))dy

= lim
λ→0

C

λ2σ
(u(x) − u ∗ γλ(x)).

�

PROPOSITION 2.15 Given a function u ∈ Lσ , (−�)σ u ≥ 0 in an open set � if and

only if u is lower-semicontinuous in � and

u(x0) ≥
∫
Rn

u(x)γλ(x − x0)dx

for any x0 in � and λ ≤ dist(x0, ∂�).

PROOF: We would like to test (−�)σ u against �−�λ and “integrate by parts.”

Unfortunately, this may not be a valid test function. The next few paragraphs

overcome this technical difficulty.

Let us consider a function u such that∫
Rn

|u(x)|
1 + |x |n+2σ

dx < +∞.

If r > λ1 > λ2, �λ2
− �λ1

is a nonnegative C1,1-function supported in Br . If

(−�)σ u ≥ 0 in Br (x0), then

〈(−�)σ u, �λ2
(x − x0) − �λ1

(x − x0)〉 ≥ 0.

Using the self-adjointness of (−�)σ , we have

〈u, (−�)σ�λ2
(x − x0) − (−�)σ�λ1

(x − x0)〉 ≥ 0.

Therefore

〈u, γλ2
(x − x0)〉 ≥ 〈u, γλ1

(x − x0)〉,
u ∗ γλ2

(x0) ≥ u ∗ γλ1
(x0).

Let �0 � � and (−�)σ u ≥ 0 in �. Let r = dist(�0, ∂�). Then if r > λ1 >

λ2 > 0,

(2.6) u ∗ γλ2
≥ u ∗ γλ1

in �0.

But γλ is an approximate identity, u ∗ γλ → u a.e. in �0 as λ → 0.
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For each λ, u ∗ γλ is continuous. So u is the limit of an increasing sequence of

continuous functions. That means that (possibly modifying u in a set of measure

zero), u is lower-semicontinuous.

Taking λ2 → 0 in (2.6), we obtain the important property of supersolutions of

the operator (−�)σ that replaces the mean value property of the classical Laplace

operator:

(2.7) u ∗ γλ(x0) ≤ u(x0) for every x0 ∈ � and λ small enough.

The “if” part is already proved when λ < dist(x0, ∂�) (notice that γ is sym-

metric). The case λ = dist(x0, ∂�) follows by passage to the limit. The “only if”

part follows easily. �

COROLLARY 2.16 There is a constant C such that for every x ∈ �,

(2.8) u(x) ≥ u ∗ γλ(x) − Cλ2s for every λ < dist(x, ∂�)

if and only if (−�)σ u ≥ −C in � (in the sense that (−�)σ u + C is a nonnegative

Radon measure).

PROOF: We can assume that � is bounded (since f ≥ −C locally in � is the

same as f ≥ −C in the whole � for any distribution f ). Let v = C� ∗ χ� so that

(−�)σ v = Cχ�. By Proposition 2.14, for any x ∈ �,

C = lim
λ→0

1

λ2σ
(v(x) − v ∗ γλ(x)).

But actually we can see that since (−�)σ v is constant in � and �−�λ is supported

in Bλ, then

C = 1

λ2σ
(v(x) − v ∗ γλ(x))

for λ < dist(x, ∂�).

Now we consider u + v; then u + v(x) ≥ (u + v) ∗ γλ(x) is equivalent to

(2.8), which means that (−�)σ (u + v) ≥ 0 in �. Thus (2.8) holds if and only if

(−�)σ (u + v) ≥ 0, i.e., (−�)σ u ≥ −C in �. �

With Proposition 2.15 in mind, we can prove the basic properties of superso-

lutions for the operator (−�)σ without requiring the singular integrals to be well-

defined. We now show a maximum principle.

PROPOSITION 2.17 Let � � Rn be an open set, and let u be a lower-semicontinu-

ous function in �̄ such that (−�)σ u ≥ 0 in � and u ≥ 0 in Rn \ �. Then u ≥ 0 in

Rn. Moreover, if u(x) = 0 for one point x inside �, then u ≡ 0 in all Rn.

PROOF: We need semicontinuity in �̄ because we cannot assure that any su-

perharmonic function will be semicontinuous up to the boundary of the domain.

If u takes negative values in Rn , then they must all lie inside �. Since u is

lower-semicontinuous, it attains its minimum in �̄ (which is a compact set in Rn).
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Suppose that the minimum is negative and is attained at a point x0 ∈ �. Then by

Proposition 2.15, there is a λ such that

u(x0) ≥
∫
Rn

u(x)γλ(x − x0)dx .

But γλ is strictly positive and has integral 1, so

0 ≥
∫
Rn

(u(x) − u(x0))γλ(x − x0)dx .

That is impossible because since u(x0) < 0, the right-hand side is strictly positive.

Now, if u(x0) = 0, we get

0 ≥
∫
Rn

u(x)γλ(x − x0)dx .

But because u(x) is nonnegative,

0 ≤
∫
Rn

u(x)γλ(x − x0)dx .

Therefore

0 =
∫
Rn

u(x)γλ(x − x0)dx .

Since γλ is strictly positive, we obtain u ≡ 0. �

PROPOSITION 2.18 If u1, u2 ∈ Lσ are two supersolutions for the operator (−�)σ

in � (i.e., (−�)σ u ≥ 0 and (−�)σ v ≥ 0 in �), then u(x) = min(u1(x), u2(x)) is

too.

PROOF: Given x0 ∈ �, then u(x0) = ui (x0) for i = 1 or i = 2. By Proposition

2.15 for λ small enough,

ui (x0) ≥
∫
Rn

ui (x)γλ(x − x0)dx .

But ui (x0) = u(x0) and u(x) ≤ ui (x) for every other x . Then

u(x0) ≥
∫
Rn

ui (x)γλ(x − x0)dx ≥
∫
Rn

u(x)γλ(x − x0)dx

and (−�)σ u ≥ 0. �

For functions u such that (−�)σ u ≤ 0, a similar property holds:

PROPOSITION 2.19 Given a function u ∈ Lσ , (−�)σ u ≤ 0 in an open set � if and

only if u is upper-semicontinuous in � and u ∗ γλ(x0) ≥ u(x0) for any x0 in � and

λ ≤ dist(x0, ∂�).
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We can also obtain the analogue of Corollary 2.16.

COROLLARY 2.20 There is a constant C such that for all λ ≤ dist(x0, ∂�) and

x ∈ �, u(x) ≤ u ∗ γλ(x) + Cλ2s if and only if (−�)σ u ≤ C in �.

PROPOSITION 2.21 Let � � Rn be an open set, (−�)σ u ≥ 0 and (−�)σ v ≤ 0 in

�, such that u ≥ v in Rn \�, and u −v is lower-semicontinuous in �̄. Then u ≥ v

in Rn. Moreover, if u(x) = v(x) for one point x inside �, then u ≡ v in all Rn.

PROOF: Apply Proposition 2.17 to u − v. �

We have a similar property for functions u such that (−�)σ u = 0 in an open

set �.

PROPOSITION 2.22 Given a function u ∈ Lσ , (−�)σ u = 0 in an open set �

if and only if u is continuous in � and u ∗ γλ(x0) = u(x0) for any x0 in � and

λ ≤ dist(x0, ∂�).

From the above proposition, with a standard convolution argument we can get

an iterative gain in regularity and prove that a function u such that (−�)σ u = 0

in an open set � is C∞ in that set. This is a well-known result not only for the

fractional Laplacian but for any pseudodifferential operator.

Remark 2.23. We are not going to compute γλ explicitly. The properties shown so

far are enough for all our purposes. In [9], functions u such that (−�)σ u ≥ 0 are

defined in a similar (and equivalent) way using some function in place of γλ that is

explicitly computed.

3 Basic Properties of the Free Boundary Problem

In this section we will construct a solution to our problem and show the first

regularity results.

3.1 Construction of the Solution

We recall the statement of the problem that we are going to study.

Let ϕ : Rn → R be a continuous function with compact support1 that we will

consider the obstacle. We look for a continuous function u satisfying

• u ≥ ϕ in Rn ,

• (−�)su ≥ 0 in Rn ,

• (−�)su(x) = 0 for those x such that u(x) > ϕ(x),

• lim|x |→+∞ u(x) = 0.

1 Rapid decay at infinity would suffice.
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We will prove that for any such ϕ, there is a solution u to this problem. The

proof fails when n = 1 and s > 1
2
, because in that case it is impossible to have

(−�)su ≥ 0 in Rn and at the same time for u to vanish at infinity.

We will construct u as the function that minimizes

(3.1) J (u) :=
∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+2s

dx dy

over all the functions u ∈ Ḣ s that satisfy ϕ ≤ u.

For any function f ∈ S, the norm in Ḣ s is given precisely by

(3.2) ‖ f ‖Ḣ s =
√√√√∫

Rn

∫
Rn

| f (x) − f (y)|2
|x − y|n+2s

dx dy.

That is equivalent to

(3.3) ‖ f ‖Ḣ s
∼=

√√√√∫
Rn

|ξ |2s | f̂ (ξ)|2 dξ .

In some texts, this space Ḣ s is written as L̇2s,2.

When n−2s > 0, the Sobolev embedding results say that Ḣ s ⊂ L2n/(n−2s) (see,

for example, [14, chap. V]). The space Ḣ s is defined as the completion of S with

the norm ‖·‖Ḣ s . Indeed, Ḣ s is the space of L2n/(n−2s) functions for which (3.2) is

integrable. The space Ḣ s is a Hilbert space with the inner product given by

〈 f, g〉Ḣ s =
∫
Rn

∫
Rn

( f (x) − f (y))(g(x) − g(y))

|x − y|n+2s
dx dy

=
∫
Rn

f (x)(−�)s g(x)dx

�
∫
Rn

|ξ |2s f̂ (ξ)ĝ(ξ) dξ.

The set {u ∈ Ḣ s : ϕ ≤ u} is clearly convex and closed, and it is easy to

show that it is nonempty because ϕ is bounded and has compact support. Thus,

the (strictly convex) functional J has a unique minimum in that set. Let u be this

minimizer. In the following propositions, we will prove that u is a solution of our

obstacle problem.

PROPOSITION 3.1 The function u is a supersolution of (−�)su ≥ 0.

PROOF: Let h be any smooth nonnegative function with compact support, and

let t > 0. The function u + th is above the obstacle, and so ‖u + th‖Ḣ s ≥ ‖u‖Ḣ s .
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Therefore

〈u, u〉Ḣ s ≤ 〈u + th, u + th〉Ḣ s ,

0 ≤ t〈u, h〉Ḣ s + t2〈h, h〉Ḣ s

≤ t〈u, (−�)sh〉L2 + t2〈h, h〉Ḣ s

≤ t

∫
u(−�)sh dx + t2〈h, h〉Ḣ s .

Letting t → 0+, we get that
∫

u(−�)sh dx = ∫
((−�)su)h dx ≥ 0 for any

nonnegative test function h. Therefore (−�)su is a nonnegative measure. �

COROLLARY 3.2 The function u is lower-semicontinuous and the set {u > ϕ} is

open.

PROOF: Since (−�)su ≥ 0, by Proposition 2.15 u is lower-semicontinuous.

Thus {u > ϕ} is open. �

PROPOSITION 3.3 Let x0 ∈ Rn such that u(x0) > ϕ(x0). Let r > 0 such that

u > ϕ in Br (x0); then (−�)su(x0) = 0 in Br (x0).

PROOF: Since u is lower-semicontinuous, the infimum of u − ϕ is achieved in

Br (x0); then there is an ε > 0 such that u > ϕ + ε in Br (x0). For any continuous

function h supported in Br (x0), u+th is going to be above ϕ for t small enough. So

the same computation as in the proof of Proposition 3.1 takes place. But this time

t and h do not need to be nonnegative, and (−�)su = 0 is obtained in Br (x0). �

The following proposition is a modification of a theorem of Evans for superhar-

monic functions. It will be used to prove continuity for u.

PROPOSITION 3.4 Let v be a bounded function in Rn such that (−�)σ v ≥ 0 and

v|E is continuous where E = supp(−�)σ v. Then v is continuous in Rn.

PROOF: In the open set Rn \ E , (−�)σ v = 0, and thus v is continuous there.

We are left to check that v is continuous in E .

Let x0 ∈ E and xk → x0. Since v is lower-semicontinuous, lim infk→∞ v(xk) ≥
v(x0). We are left to prove lim supk→∞ v(xk) ≤ v(x0). Suppose the contrary; then

we can extract a subsequence such that

lim
k→∞

v(xk) = v(x0) + a

where a > 0. Since v|E is continuous, then xk /∈ E from some k on. We can

assume that xk /∈ E for any k by dropping the first few elements in the sequence.

Let yk be the point in E closest to xk (or one of them). Since v is continuous in

E , lim v(yk) = v(x0). Let λk = |xk − yk | = dist(xk, E), so λk → 0 as k → 0. Let
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c0 = inf(γ1(x + e))/(γ1(x)), where e is any unit vector. The infimum is achieved

at one point, and thus c0 > 0, since

lim
|x |→∞

γ1(x + e)

γ1(x)
= 1.

By symmetry, the value of c0 does not depend on e. Setting e = (xk − yk)/λk , we

have

γλk
(x − yk) − c0γλk

(x − xk) = 1

λn
k

(
γ1

(
x − xk

λk

+ xk − yk

λk

)
− c0γ1

(
x − xk

λk

))
≥ 0.

We now use Proposition 2.15 for v(yk) and Proposition 2.22 for v(xk) to get

v(yk) ≥
∫
Rn

γλk
(x − yk)v(x)dx

≥
∫
Rn

c0γλk
(x − xk)v(x)dx

+
∫
Rn

(γλk
(x − yk) − c0γλk

(x − xk))v(x)dx

≥ c0v(xk) + I1 + I2

(3.4)

where

I1 =
∫

B√
λk

(yk)

(
γλk

(x − yk) − c0γλk
(x − xk)

)
v(x)dx,(3.5)

I2 =
∫

Rn\B√
λk

(yk)

(
γλk

(x − yk) − c0γλk
(x − xk)

)
v(x)dx .(3.6)

Since v is lower-semicontinuous, when k → ∞, λk → 0, and v(x + yk) ≥
v(x0) − εk for any x ∈ B√

λk (yk )
and εk → 0. Moreover, recalling that γλ(x) =

γ1(x/λ)/λn and
∫

γ1 dx = 1, if we set z = (x − xk)/λk and e = (yk − xk)/λk ,∫
B√

λ
(yk )

(
γλk

(x − yk) − c0γλk
(x − xk)

)
dx =

∫
B

λ−1/2

(
γ1(z) − c0γ1(z + e)

)
dz

≥ 1 − c0 − ε̃k

for ε̃k → 0 as k → ∞. Combining these last two facts, we obtain

(3.7) I1 ≥ (1 − c0 − εk)(v(x0)− εk) = (1 − c0)v(x0)− ε̃kv(x0)+ εk(1 − c0 − ε̃k).
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Now we estimate I2,

(3.8) I2 ≥ −‖v‖L∞

∫
Rn\B√

λ
(yk )

(
γλk

(x − yk) − c0γλk
(x − xk)

)
dx ≥ −ε̃k ‖v‖L∞ .

Substituting (3.7) and (3.8) in (3.4), we get

v(yk) ≥ c0v(xk) + (1 − c0)v(x0) − 2ε̃k ‖v‖L∞ + εk(1 − c0 − ε̃k),

where εk and ε̃k go to 0 as k → ∞. But this is a contradiction since v(yk) → v(x0)

and v(xk) → v(x0) + a as k → ∞. �

COROLLARY 3.5 The function u is continuous.

In this way we finished proving that the minimizer of the functional J (u) solves

the original obstacle problem (1.1)–(1.4).

3.2 Semiconvexity

We are going to show that when ϕ is smooth enough, the solution u to our

obstacle problem is Lipschitz and semiconvex. When ϕ has weaker smoothness

assumptions, we will get correspondingly weaker conditions for u. The proofs in

this subsection depend only on the maximum principle and translation invariance.

This regularity is common for all obstacle problems with operators satisfying these

two conditions.

PROPOSITION 3.6 The function u is the least supersolution of (−�)su ≥ 0 that is

above ϕ (u ≥ ϕ) and is nonnegative at infinity (lim inf|x |→+∞ u(x) ≥ 0).

PROOF: Let v be another supersolution of (−�)sv ≥ 0 such that v ≥ ϕ and

lim inf|x |→+∞ v(x) ≥ 0. Let m = min(u, v). We want to show that actually m = u.

By definition m ≤ u, we are left to show m ≥ u.

Since both u and v are supersolutions, by Proposition 2.18, so is m. The func-

tion m is also above ϕ because both u and v are; then m is another supersolution

that is above ϕ. By Proposition 2.17, m is lower-semicontinuous in Rn .

Since ϕ ≤ m ≤ u, then limx→∞ m(x) = 0. For every x in the contact set

{u = ϕ}, m(x) = u(x). In � = {u > ϕ}, u is a solution of (−�)su = 0

and m a supersolution. By Corollary 3.5 u is continuous; then m − u is lower-

semicontinuous. Then m ≥ u by the comparison principle (Proposition 2.21). �

COROLLARY 3.7 The function u is bounded and sup u ≤ sup ϕ.

PROOF: By hypothesis u ≥ 0. The constant function v(x) = sup ϕ is a super-

solution that is above ϕ. By Proposition 3.6, u ≤ v in Rn . �

THEOREM 3.8 If the obstacle ϕ has a modulus of continuity c, then the function u

also has the same modulus of continuity.
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PROOF: Since c is a modulus of continuity for ϕ, for any h ∈ Rn , ϕ(x + h) +
c(|h|) ≥ ϕ(x) for every x ∈ Rn . Then the function u(x + h) + c(|h|) is also

a supersolution above ϕ. By Proposition 3.6, u(x + h) + c(|h|) ≥ u(x) for any

x, h ∈ Rn . Thus u also has c as a modulus of continuity. �

COROLLARY 3.9 The function u is Lipschitz, and its Lipschitz constant is not

larger than the one for ϕ.

PROOF: It follows from Proposition 3.8 with c(r) = Cr . �

PROPOSITION 3.10 Suppose that ϕ ∈ C1,1. For any vector e ∈ Rn, let C =
sup −∂eeϕ. Then ∂eeu ≥ −C too. Thus, u is semiconvex, and therefore for any

point x ∈ Rn, there is a paraboloid of opening C touching u from below.

PROOF: Since ∂eeϕ ≥ −C , we look at the second incremental quotients:

ϕ(x + te) + ϕ(x − te)

2
+ Ct2 ≥ ϕ

for every t > 0 and x ∈ Rn . Therefore

v(x) := u(x + te) + u(x − te)

2
+ Ct2 ≥ ϕ,

and v is also a supersolution of (−�)sv ≥ 0. By Proposition 3.6, v ≥ u; then

v(x) = u(x + te) + u(x − te)

2
+ Ct2 ≥ u(x)

for every t > 0 and x ∈ Rn . Therefore ∂eeu ≥ −C . �

The above proposition is enough to treat the case when ϕ is C1,1. However,

to obtain the sharp estimates for ϕ ∈ C1,α, we need to refine the previous result.

The following propositions are proven more or less with the same idea used in

Proposition 3.10, but with an incremental expression for the fractional Laplacian

instead of the second-order incremental quotient. The reader interested only in the

case when ϕ ∈ C1,1 can jump to Proposition 3.16.

PROPOSITION 3.11 Let us suppose that (−�)σϕ ≤ C for some constant C and

some σ ∈ (0, 1). Then also (−�)σ u ≤ C (maybe for another C depending on the

dimension n).

PROOF: We apply Corollary 2.20 instead of the second-order incremental quo-

tient to obtain

ϕ(x) ≤ ϕ ∗ γλ(x) + Cλ2σ

for any x ∈ Rn and any λ. Since (−�)s(u ∗ γλ + Cλ2σ ) = (−�)su ∗ γλ ≥ 0 and

u ∗ γλ + Cλ2σ ≥ ϕ ∗ γλ + Cλ2σ ≥ ϕ(x),

then u ∗ γλ + Cλ2σ ≥ u by Proposition 3.6. Thus (−�)su ≥ −C by Corollary

2.16. �

PROPOSITION 3.12 If (−�)sϕ ∈ L∞(Rn), then (−�)su ∈ L∞(Rn).
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PROOF: This proposition follows by combining Proposition 3.11 with the fact

that (−�)su ≥ 0. �

PROPOSITION 3.13 If ϕ ∈ C1,α, then for every x0 ∈ Rn, there is a vector a ∈ Rn

such that

u(x0 + h) ≥ u(x0) + a · h − C |h|1+α for every h ∈ Rn;
i.e., the function u has a supporting plane at each point with an error of order

1 + α.

To prove this proposition we will need a couple of lemmas.

LEMMA 3.14 Suppose ϕ ∈ C1+α. If 0 = ∑
λj h j for hj ∈ Rn and λj ∈ [0, 1] such

that
∑

λj = 1, then

(3.9) u(x) ≤
∑

λj u(x + hj ) + C
∑

λj |hj |1+α for any x ∈ Rn.

PROOF: Since ϕ ∈ C1+α, there is a constant C for which∑
λjϕ(x + hj ) + C

∑
λj

∣∣hj

∣∣1+α

≥
∑

λj

(
ϕ(x) + ∇ϕ(x) · hj − C |hj |1+α

) + C
∑

λj |hj |1+α

≥ ϕ(x) + ∇ϕ(x) ·
∑

λj h j = ϕ(x).

As in the proof of Proposition 3.10, we obtain that

v(x) =
∑

λj u(x + hj ) + C
∑

λj

∣∣hj

∣∣1+α

is a function above ϕ such that (−�)sv ≥ 0, and thus it is also above u. By

Proposition 3.6, ∑
λj u(x + hj ) + C

∑
λj |hj |1+α ≥ u(x),

as we wanted to show. �

LEMMA 3.15 Let f : R → R be a Lipschitz function that satisfies an inequality

like (3.9). Then for every x ∈ R, f has right and left derivatives at x. Moreover,

the right derivative is greater than the left derivative, and for any number a in the

closed interval between them and for every h ∈ R,

(3.10) f (x + h) ≥ f (x) + a · h − C |h|1+α

where C depends only on the constant of inequality (3.9).

PROOF: We will show that f has derivatives from both sides, and the one from

the left is smaller than or equal to the one from the right. Then we will show that

(3.10) holds for any a between the two derivatives.
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Let x0 be any point in R, and 0 < h′ < h. Consider the inequality (3.9) with

x = x0 + h′, h1 = −h′, and h2 = h − h′, and thus λ1 = (h − h′)/h and λ2 = h′/h.

We have

f (x0 + h′) ≤ h − h′

h
f (x0) + h′

h
f (x + h)

+ C

(
h − h′

h
|h′|1+α + h′

h
|h − h′|1+α

)
≤ f (x) + h′

h
( f (x + h) − f (h)) + Ch′ · hα.

Then,

(3.11)
f (x + h′) − f (x)

h′ ≤ f (x + h) − f (x)

h
+ Chα.

Since f is Lipschitz, its incremental quotients are bounded, and then (3.11) implies

that ( f (x + h) − f (x))/h has a limit as h → 0+. Thus the right derivative exists.

Similarly, we can show that the left derivative exists.

We want to see now that the right derivative is greater than or equal to the left

one. Consider h1 = h and h2 = −h in inequality (3.9); then

f (x) ≤ 1

2
f (x + h) + 1

2
f (x − h) + Ch1+α.

Therefore,

f (x) − f (x − h)

h
≤ f (x + h) − f (x)

h
+ 2Chα.

Taking h → 0, we obtain that the right derivative is not less than the left one.

Let a be a real number that is not greater than the right derivative and no less than

the left derivative. Taking h′ → 0 in (3.11),

a ≤ f (x + h) − f (x)

h
+ Chα.

Then

f (x + h) ≥ f (x) + a · h − Ch1+α.

The result follows similarly for negative h. �

We are now ready to prove Proposition 3.13.

PROOF OF PROPOSITION 3.13: By Lemma 3.14 we have that if 0 = ∑
λj h j

for hj ∈ Rn and λj ∈ [0, 1] such that
∑

λj = 1, then

(3.12) u(x) ≤
∑

λj u(x + hj ) + C
∑

λj |hj |1+α for any x ∈ Rn.

Let us assume, without loss of generality, that x0 = 0. For any unit vector e,

we apply Lemma 3.15 to see that u satisfies the inequality (3.9) in every ray from
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the origin with possibly a different linear part. That means that for each e ∈ Sn−1,

there is a real number a(e) such that

(3.13) u(te) ≥ u(0) + a(e) · t − C |t |1+α

where the constant C does not depend on e and a(e) is the directional derivative

(3.14) a(e) = lim
t→0+

u(te) − u(0)

t
.

Now we will show that the function c(x) = a(x/|x |) · |x |, which is homoge-

neous of degree 1, is convex. We have to see that

c(λx + (1 − λ)y) ≤ λc(x) + (1 − λ)c(y).

We use inequality (3.12) to obtain

u(λt x + (1 − λ)t y) ≤ λu(t x) + (1 − λ)u(t y) + C(t |x − y|)1+α

for any real number t . We now subtract u(0) from both sides and divide by t to

obtain

u(λt x + (1 − λ)t y) − u(0)

t

≤ λ
u(t x) − u(0)

t
+ (1 − λ)

u(t y) − u(0)

t
+ Ctα(|x − y|)1+α.

Now we let t → 0 and replace the limit of the quotients by the corresponding

value of c using the directional derivatives of u to obtain

c(λx + (1 − λ)y) ≤ λc(x) + (1 − λ)c(y).

Now that we know that c is convex, let a be the slope of a supporting plane at

the origin (a is a vector in the subdifferential of c at 0). Then c(h) ≥ a · h for every

h ∈ Rn . Therefore, recalling (3.13),

u(h) ≥ u(0) + c(h) − C |h|1+α ≥ u(0) + a · h − C |h|1+α ,

which concludes the proof. �

We finish this section by showing that u solves the third specification of the

problem.

PROPOSITION 3.16 For any closed set � ⊂ Rn, let v be the solution of

• v(x) = ϕ(x) in �,

• (−�)sv = 0 in Rn \ �, and

• lim|x |→∞ v(x) = 0.

Then v ≤ u in Rn (obviously, in the case � = {u = ϕ}, u = v).

PROOF: Since u ≥ ϕ in Rn , then u ≥ v in �. Since u is a supersolution of

(−�)su ≥ 0 in Rn \ � and v is a solution, then u ≥ v in Rn \ � by the maximum

principle. �
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4 An Improvement in Regularity

In the rest of this work, we will study further regularity results for u. This

section is devoted to showing that (−�)su is Cα for some small α if the obstacle ϕ

is smooth enough.

4.1 Problem

To study the regularity of the problem, it is convenient to consider the difference

u − ϕ. The problem that we obtain is also an obstacle problem; the obstacle is 0,

but there is a right-hand side for the equation. For convenience, we will continue

to call u our solution, although the problem is slightly different.

Thus, we have u as a solution to the following free boundary problem:

u(x) ≥ 0,(4.1)

(−�)su(x) ≥ φ(x),(4.2)

(−�)su(x) = φ(x) when u > 0,(4.3)

where φ is −(−�)sϕ for the obstacle ϕ of the previous sections.

Since we are going to be using (−�)su(x) a great deal, we define w = (−�)su.

If we assume ϕ to be C∞, the right-hand side φ will be C∞ as well. However,

it will be enough for all the proofs to come (and actually more than enough) to

assume φ to be just Lipschitz.

If we assume ϕ ∈ C1,β for some β ∈ (0, 1) such that 1 + β > 2s, we will have

φ ∈ C1+β−2s . The results of this section will still apply for this case, but the proofs

have some extra complications. For simplicity, we will address this case only at the

end of the section. At first we will assume ϕ to be C∞, and thus φ to be Lipschitz.

In this situation, we know from Section 3 that the function u is a bounded

Lipschitz function (Proposition 3.9) and also semiconvex (Proposition 3.10), and

so far we know that w is L∞ from Corollary 3.12. We want to prove that w is

Hölder-continuous. To summarize, we know:

sup
x

|φ(x)| ≤ C,(4.4)

sup
x,y

|φ(x) − φ(y)|
|x − y| ≤ C,(4.5)

uee ≥ −C for every e such that |e| = 1,(4.6)

|w(x)| ≤ C,(4.7)

for some constant C .
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4.2 A Few Lemmas

LEMMA 4.1 For σ ∈ (0, 1), there is a constant C depending only on σ and dimen-

sion such that if v is bounded and semiconvex,

sup
x

|v(x)| ≤ A,(4.8)

inf
x

inf
|e|=1

vee(x) ≥ −B,(4.9)

then supx(−�)σ v(x) ≤ C · Bσ · A1−σ .

PROOF: We can assume that v is smooth. Otherwise, we take a smooth, com-

pactly supported function ψ with integral 1 and consider the approximation of the

identity ψλ(x) = λnψ(λx). Then for any λ > 0, ψλ ∗v satisfies (4.8) and (4.9) and

is a smooth function. If we can obtain that supx |(−�)σ (ψλ ∗ v)(x)| ≤ C ·Bσ ·A1−σ

uniformly in λ, then we pass to the limit as λ → 0. Therefore, it is enough to prove

the lemma for smooth v.

The value of (−�)σ v(x) can be computed with the integral

(−�)σ v(x) =
∫
Rn

v(x) − v(y)

|x − y|n+2σ
dy

≤
∫

BR(x)

v(x) − v(x) − ∇v(x) · (y − x) + B|y − x |2
|x − y|n+2σ

dy

+
∫

Rn\BR(x)

A

|x − y|n+2σ
dy

≤ B

( ∫
BR(x)

1

|x − y|n+2σ−2
dy

)
+ A

( ∫
Rn\BR(x)

1

|x − y|n+2σ
dy

)

≤ C(B · R2−2σ + A · R−2σ ).

Replacing R by
√

A/B in the above inequality we obtain

(−�)σ v(x) ≤ C Bσ A1−σ .

�

Remark 4.2. Actually in Lemma 4.1, condition (4.9) could be replaced by �v ≥
−B by using the fact that

�v = 2n lim
r→0+

r−2

(
1

|∂ Br |
∫

∂ Br

v(y) − v(x)dy

)
.

LEMMA 4.3 Let v be such that ‖(−�)σ v(x)‖∞ ≤ C. For α < 2σ , consider

vλ = v(λx)/λα. Then ‖(−�)σ vλ(x)‖∞ → 0 as λ → 0.
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PROOF: Recalling that (−�)σ (v(λx)) = λ2σ ((−�)σ v) (λx),

|(−�)σ vλ(x)| = |λ−α|λ2σ
(
(−�)2σ v

)
(λx)

≤ Cλ2σ−α → 0.

�

LEMMA 4.4 For any σ ∈ (0, 1) and δ > 0, if ε and α are chosen small enough,

then there is a γ > 0 such that if

(−�)σ v(x) ≤ ε for x ∈ B1,(4.10)

v(x) ≤ 1 for x ∈ B1,(4.11)

v(x) ≤ |2x |α for x ∈ Rn \ B1,(4.12)

δ ≤ |{x ∈ B1 : v(x) ≤ 0}|,(4.13)

then v(x) ≤ 1 − γ for x ∈ B1/2.

PROOF: As in Lemma 4.1, we can assume v to be smooth.

Let b(x) = β(|x |) be a fixed, smooth radial function with support in B1 such

that β(0) = 1 and β is monotone decreasing.

For small enough ε and α, we can choose a positive number κ < 1
2

such that

(4.14) ε + κ sup
x

(−�)σ b(x) +
∫

Rn−B1/4

|4y|α − 1

|y|n+2σ
dy <

δ

2 · 2n+2σ
.

Let γ = κ(β( 1
2
) − β( 3

4
)). Suppose there is a point x0 ∈ B1/2 such that v(x0) >

1−γ = 1−κβ( 1
2
)+κβ( 3

4
). Then v(x0)+κb(x0) ≥ 1+κβ( 3

4
), which is larger than

v(y)+κb(y) for any y ∈ B1 \ B3/4. This means that the supremum of v(x)+κb(x)

for x ∈ B1 is greater than 1 and is achieved at an interior point of B3/4. Let us call

that point x1. Now we will evaluate (−�)σ (v + κb)(x1).

On one hand, (−�)σ (v + κb)(x1) = (−�v)σ v(x1) + κ(−�v)σ b(x1) ≤ ε +
κ(−�v)σ b(x1). On the other hand, we have

(−�)σ (v + κb)(x1) =
∫
Rn

(v + κb)(x1) − (v + κb)(y)

|x1 − y|n+2σ
dy.

For any point z ∈ B1 we know (v + κb)(x1) ≥ (v + κb)(z). Let A0 = {y ∈
B1 ∧ v(y) ≤ 0}. By assumption |A0| ≥ δ. We use (4.12) and that κ < 1

2
to obtain

the lower bound:

(−�)σ (v + κb)(x1) ≥
∫

y∈Rn\B1

(v + κb)(x1) − (v + κb)(y)

|x1 − y|n+2σ
dy

+
∫

y∈B1

(v + κb)(x1) − (v + κb)(y)

|x1 − y|n+2σ
dy
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≥
∫

Rn\B1

1 − |2y|α
|x1 − y|n+2σ

dy +
∫
A0

1 − κ

|x1 − y|n+2σ
dy

≥
∫

Rn\B1/4

1 − |4y|α
|y|n+2σ

dy +
∫
A0

1/2

|x1 − y|n+2σ
dy

≥
∫

Rn−B1/4

1 − |4y|α
|y|n+2σ

+ δ

2 · 2n+2σ
.

Therefore

ε + κ sup
x

(−�)σ b(x) ≥
∫

Rn\B1/4

1 − |4y|α
|y|n+2σ

dy + δ

2 · 2n+2σ
.

But this is a contradiction to (4.14). �

Remark 4.5. The proof of Lemma 4.4 can be adapted to a more general family of

operators instead of (−�)σ . In [13], it is used to obtain Hölder estimates for the

corresponding equations. The operators for which the result applies include the

case

T v(x) =
∫
Rn

a(x, y)
v(x) − v(x + y)

|y|n+2σ(x)
dy

for a bounded and symmetric (a(x, y) = a(x,−y)) and 0 < σ0 ≤ σ(x) ≤ σ1 < 1.

No modulus of continuity whatsoever is required either for a or σ . All the details

can be found in [13].

COROLLARY 4.6 For any σ ∈ (0, 1), if ε and α are chosen small enough, then

there is a γ > 0 such that if

|(−�)σ v(x)| ≤ ε for x ∈ B1,

|v(x)| ≤ 1 for x ∈ B1,

|v(x)| ≤ |2x |α for x ∈ Rn \ B1,

then oscB1/2
v ≤ 2 − γ .

PROOF: Consider the same γ as in Lemma 4.4 for δ = |B1|/2. Suppose

|{x ∈ B1 : v(x) ≤ 0}| ≥ |B1|
2

;
otherwise we consider −v instead of v. By Lemma 4.4, we get v(x) ≤ 1 − γ for

x ∈ B1/2; we conclude oscB1/2
v ≤ 2 − γ . �

LEMMA 4.7 For any σ ∈ (0, 1) and α ∈ (0, 2σ), if δ is close to |B1|, then ε can

be chosen small enough so that there is a γ > 0 such that if

(−�)σ v(x) ≤ ε for x ∈ B1,

v(x) ≤ 1 for x ∈ B1,
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v(x) ≤ 1 + |2x |α for x ∈ Rn \ B1,

δ ≤ |{x ∈ B1 : v(x) ≤ 0} |,
then v(x) ≤ 1 − γ for x ∈ B1/2.

PROOF: The proof is the same as in Lemma 4.4 with the only difference that

we have to choose κ such that

ε + κ sup
x

(−�)σ b(x) +
∫

Rn−B1/4

|4y|α
|y|n+2σ

dy < inf
A⊂B1|A|=δ

∫
A

1/2

|x1 − y|n+2σ
dy

for which we need δ close to |B1| so that the right-hand side is larger than the last

term of the left-hand side. �

Remark 4.8. If α, σ , δ, and ε are a combination of constants for which Lemma 4.7

applies, then it also applies for lesser values of α. In other words, if it holds for one

α, then it also holds for any α smaller.

LEMMA 4.9 For any σ ∈ (0, 1), let v be a function such that (−�)σ v(x) = 0 for

x in some open set �. Suppose that

(4.15) |v(y) − v(x)| ≤ c(|x − y|)
for every x ∈ Rn \ �, y ∈ Rn, and some modulus of continuity c. Then the same

holds for every x, y ∈ Rn.

PROOF: We are left to show (4.15) when x, y ∈ �. The function v is continu-

ous in � because of the equation and in Rn\� because of (4.15), so v is continuous.

Let v1(z) = v(z) − v(z + x − y); then (−�)σ v1(z) = 0 for z ∈ � ∩ (� + y − x)

and v1(x) ≤ c(|x − y|) for z /∈ � ∩ (� + y − x). By the maximum principle

v1(z) ≤ c(|x − y|) for every z ∈ Rn; evaluating in z = y we obtain the desired

result. �

4.3 Further Regularity

LEMMA 4.10 Given µ > 0 and u satisfying (4.6), if u(x) ≥ µr2 for one x ∈ Br ,

then

|{x ∈ B2r | : u(x) > 0} ≥ δ|B2r |
for some δ depending on µ.

PROOF: We know that uee ≥ −C every time |e| = 1. In other words, u is

semiconvex, and for each point x there is a paraboloid touching u from below:

u(y) ≥ u(x) + B · (y − x) − C

2
|x − y|2

where B is any vector of the subdifferential of u(y) + (C/2)|x − y|2 at x .

Now, let us consider the set

A = {y : B · (y − x) ≥ 0} ∩ B(µ/C)1/2r (x).



OBSTACLE PROBLEM FOR FRACTIONAL LAPLACIAN 31

If y ∈ B(µ/C)1/2r (x), then (C/2)|x − y|2 ≤ (µ/2)r2. If y ∈ A, then

u(y) ≥ u(x) + B · (y − x) − C

2
|x − y|2

≥ u(x) − µ

2
r2

≥ µ

2
r2 > 0.

The set A is half of a ball. If µ/C ≤ 1, then A is going to be completely

contained in B2r , and we obtain the desired result with

δ = 1

2

(
µ

4C

)n/2

.

Otherwise, we take A′ = {y : B · (y − x) ≥ 0}∩ Br (x) instead of A, and we obtain

the desired result with

δ = 1

2

(
1

2

)n

.

�

Remark 4.11. Lemma 4.10, as well as Lemmas 4.4 and 4.7, can be applied to

any two balls, one inside the other. The outer radius does not have to be double

the inner radius. The lemmas, as stated, imply this by rescaling and a standard

covering argument. And the proofs also clearly do not depend on the ratio between

the radii. Of course, the constants will vary.

We are now ready to start the proof of w ∈ Cα.

THEOREM 4.12 Let u and w be as in (4.1)–(4.7) (recall 0 < s < 1); then w

is Cα for a universal α, and its Cα-norm depends on the various constants C of

(4.4)–(4.7).

PROOF: Let us normalize u and w so that ‖w‖L∞ = 1. We want to show that

there is a constant C0 ≥ 1 such that for every x0 ∈ Rn and k ∈ N,

(4.16) osc
B

2−k (x0)
w ≤ C02−αk .

This clearly means that w is Cα.

We will show by induction that (4.16) holds for every k. The induction step

works when k ≥ k0 for a large integer k0. Then we can choose a large value for C0

so that (4.16) holds for any k ≤ k0.

We can assume x0 = 0. Let us also assume that 0 ∈ supp u; we will consider

the case x0 /∈ supp u later. Suppose that (4.16) holds for k = 0, 1, . . . , k0. Let

us prove that it also holds for k = k0 + 1. Let δ > 0 be a small number to be

determined later. We will prove that

(4.17)

∣∣∣∣{x ∈ B2−k | : w(x) − inf
B

2−k0

w ≤ C0

2
2−αk0

}∣∣∣∣ ≥ δ|B2−k0 |.
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But first, let us show how (4.17) implies the inductive step.

Consider

(4.18) v(x) = 2C−1
0 2k0α(w(2−k0 x) − inf

B
2−k0

w) − 1.

By (4.6), −�u ≤ C ; thus (−�)1−sv ≤ C2k0(α+2s−2). Then, if α is chosen

smaller than 2−2s and k0 is large enough, then v satisfies the hypotheses of Lemma

4.4 with σ = 1−s. Therefore, there is a γ > 0 such that v(x) ≤ 1−γ for x ∈ B1/2.

Rescaling back to w, we obtain w(x) ≤ C02−k0α(1 − γ /2) + infB
2−k0

w for x ∈
B2−k0−1 . If α is chosen small enough so that 2−α ≥ 1−γ /2, then oscB

2−k0−1 (x0) w ≤
C02−α(k0+1), and the induction step is over.

We are left to prove (4.17). Suppose the contrary:

(4.19)

∣∣∣∣{x ∈ B2−k : w(x) − inf
B

2−k0

w ≤ C0

2
2−αk0

}∣∣∣∣ ≤ δ|B2−k0 |.

We know w(x) ≥ φ(x) for every x . Then infB
2−k0

w ≥ infB
2−k0

φ, and since φ is

Lipschitz,

osc
B

2−k0
(x0)

φ ≤ C2−k0 <
C0

2
2−αk0

for k0 large enough.

Every time u(x) > 0, w(x) = φ(x); therefore

{x ∈ B2−k : u(x) > 0} ⊂
{

x ∈ B2−k : w(x) − inf
B

2−k0

w ≤ C0

2
2−αk0

}
Thus

|{x ∈ B2−k : u(x) > 0}| ≤ δ|B2−k0 |.
We choose δ in this proof to be small, so that the contrareciprocal of Lemma

4.10 applies and we have u(x) ≤ µ2−2k0 for every x ∈ B(3/4)2−k0 .

Let us consider the rescaled problem:

ū(x) = C−1
0 2k0(α+2s)u(2−k0 x),

w̄(x) = C−1
0 2k0αw(2−k0 x),

φ̄(x) = C−1
0 2k0αφ(2−k0 x).

The pair ū and w̄ also satisfy the original hypotheses:

w̄(x) = (−�)s ū(x),

ū(x) ≥ 0,

w̄(x) ≥ φ̄(x),

w̄(x) = φ̄(x) when ū > 0.
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From (4.4)-(4.7),

sup
x,y

|φ̄(x) − φ̄(y)|
|x − y| ≤ C2−k0(1−α)

ūee ≥ −C2−k0(2−2s−α) for every e such that |e| = 1.

Also, ū(x) ≤ C2−k0(2−2s−α) for every x ∈ B3/4.

If k0 is large enough, then

sup
x,y

|φ̄(x) − φ̄(y)|
|x − y| ≤ ε,(4.20)

ūee ≥ −ε for every e such that |e| = 1,(4.21)

0 ≤ ū(x) ≤ ε for every x ∈ B3/4,(4.22)

for arbitrarily small ε. We choose ε much smaller than δ. From (4.21) and (4.22),

we conclude that u is Lipschitz in B5/8 and its norm is less than Cε.

The inductive hypothesis, rescaled, turns into

(4.23) osc
B

2k

w̄ ≤ 2kα

for k = 0, 1, 2, . . . .

Then

|w̄(x) − w̄(0)| ≤ |2x |α for |x | > 1,(4.24)

|w̄(x) − w̄(0)| ≤ 1 for |x | ≤ 1.(4.25)

We also know from (4.19) that∣∣∣∣{x ∈ B1 : w̄(x) − inf
B1

w̄ >
1

2

}∣∣∣∣ ≥ (1 − δ)|B1|.

Now, let b be a smooth cutoff function such that

b(x) = 0 for x ∈ Rn \ B5/8,

b(x) ≡ 1 for x ∈ B7/16,

b(x) ≤ 1 for every x ∈ Rn.

Thus

b(x)ū(x) ≤ ε,

(bū)ee = beeū + 2beūe + būee ≥ −Cε.

Let h = (−�)s(b ū). We can apply Lemma 4.1 to obtain h ≤ Cε.

By construction ū − bū ≡ 0 in B7/16, therefore

0 = −�(ū − bū) = (−�)1−s(w̄ − h) in B7/16.
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Let v(x) = 1 + 2(h(x) + infB1
w̄ − w̄(x) − Cε). Then

(−�)1−sv = 0 in B7/16,

sup
B1

v ≤ 1,

sup
B

2k

v ≤ 1 + (2 · 2k)α for every positive integer k,

|{x ∈ B1 : v(x) < 0}| ≥ (1 − δ)|B1|.
Then, if δ is chosen small, we can apply Lemma 4.7 (rescaled) to v in the ball

B7/16 to obtain v(x) ≤ 1 − γ for x ∈ B1/2, which means

(4.26) w̄(x) ≥ γ + inf
B1

w̄ + h(x) − Cε

for x in B1/2.

Let v1(x) = b(x)·ū(x)+εb(2x). Then max v1(x) = v1(x0) for some x0 ∈ B1/2.

Moreover, since 0 ∈ supp ū and εb(2x) constantly achieves its maximum in a

neighborhood of 0, then ū(x0) > 0. Therefore w̄(x) = φ̄(x) for every x in a neigh-

borhood of x0; thus w̄ and also ū are sufficiently smooth at x0 so that (−�)s ū(x0),

as well as (−�)sv1(x0), can be computed. Since v1 achieves its maximum at x0,

(−�)sv1(x0) ≥ 0. Therefore

0 ≤ (−�)sv1(x0) = h(x0) + ε2s(−�)sb (2x0)

≤ h(x0) + Cε.

Replacing in (4.26), we obtain

w̄(x0) ≥ γ + inf
B1

w̄ − Cε.

But since x0 ∈ supp ū, w̄(x0) = φ̄(x0), and infB1
w̄ ≥ infB1

φ̄, then

γ ≤ φ̄(x0) − inf
B1

φ̄ − Cε ≤ C ′ε.

But this is a contradiction if we choose the constants so that ε is much smaller

than δ.

This finishes the proof for x in the support of u. To extend this modulus of

continuity for all x ∈ Rn , we observe that (−�)1−sw = 0 in the interior of {u = 0}
and apply Lemma 4.9. �

4.4 The Case When ϕ ∈ C
1,β

When we assume ϕ to be only C1,β in our obstacle problem, we can still obtain

the result of Theorem 4.12 when we have 1 + β > 2s. In order to show that, we

have to improve some of the lemmas. We will explain the modifications in detail

now.
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Since we are not assuming ϕ ∈ C∞, we only have φ ∈ Cτ for τ = 1 + β − 2s.

And instead of uee ≥ −C , we have only a one-sided C1,β-estimate saying that for

each x ∈ Rn , there is a vector a(x) such that

(4.27) u(y) ≥ u(x) + a(x) · (y − x) − C |y − x |1+β.

Instead of Lemma 4.1 we will need the following lemma:

LEMMA 4.13 For σ ∈ (0, β), there is a constant, depending only on σ , β, and

dimension, such that if supx |v(x)| ≤ A and for each x there is a a(x) such that

v(y) ≥ v(x) + a(x) · (y − x) − B|y − x |1+β for any y ∈ Rn,

then (−�)σ v(x) ≤ C B2σ/(1+β) A(1+β−2σ)/(1+β).

PROOF: The proof is very similar to that for Lemma 4.1. We can also assume

v to be smooth and do the computations:

(−�)σ v(x) =
∫
Rn

v(x) − v(y)

|x − y|n+2σ
dy

≤
∫

BR(x)

v(x) − v(x) − ∇v(x) · (y − x) + B|y − x |1+β

|x − y|n+2σ
dy

+
∫

Rn\BR(x)

A

|x − y|n+2σ
dy

≤ B

( ∫
BR(x)

1

|x − y|n+2σ−1−β
dy

)
+ A

( ∫
Rn\BR(x)

1

|x − y|n+2σ
dy

)

≤ C(B · R1+β−2σ + A · R−2σ ).

Replacing R by (A/B)1/(1+β) in the above inequality we obtain

(−�)σ v(x) ≤ C B
2σ

1+β A
1+β−2σ

1+β .

�

Instead of Lemma 4.10, we will use the following lemma, which does not pro-

vide an estimate that is as good as before, but it is enough for our purposes.

LEMMA 4.14 Given µ > 0 and u satisfying (4.27), if u(x) ≥ µr1+β for one

x ∈ Br , then

|{x ∈ B2r : u(x) > 0}| ≥ δ|B2r |
for some δ depending on µ.

PROOF: The proof is identical to the one for Lemma 4.10, but every time there

is an estimate with a term |x − y|2, |x − y|1+β has to be used instead. �
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A new lemma has to be added to replace the well-known fact that semiconvex

functions are locally Lipschitz.

LEMMA 4.15 Suppose

|u(x)| ≤ ε for x ∈ B1,(4.28)

u(y) ≥ u(x) + a(x) · (y − x) − ε|y − x |1+β for x, y ∈ B1.(4.29)

Then u is Lipschitz in B1/2 with a Lipschitz norm no greater than Cε for a con-

stant C.

PROOF: For x, y ∈ B1/2, let

K = |u(y) − u(x)|
|x − y| .

Let us assume that u(y) ≥ u(x) so that u(y) = u(x) + K |x − y|. Let z ∈ B1 be

in the line determined by x and y so that |x − z| ≥ |y − z| ≥ 1
2
. From (4.29), we

have

u(y) − K |x − y| = u(x) ≥ u(y) + a(y) · (x − y) − ε|x − y|1+β,(4.30)

u(z) ≥ u(y) + a(y) · (z − y) − ε|z − y|1+β.(4.31)

From (4.30),

a(y) · (y − x) ≥ K |x − y| − ε|x − y|1+β.

From (4.31),

u(z) ≥ −ε + a(y) · (y − x)
|z − x |
|y − x | − ε

≥ a(y) · (y − x)
1

2|y − x | − 2ε

≥ (K |x − y| − ε|x − y|1+β)
1

2|y − x | − 2ε

≥ K

2
− 3ε.

Since u(z) ≤ ε for any z ∈ B1, we have K < 8ε. �

Now we are ready to state the theorem. Our assumptions now match what we

know in the original obstacle problem when ϕ ∈ C1,β .

THEOREM 4.16 Let u and φ satisfy (4.1), (4.2), and (4.3). Let w = (−�)su (recall

0 < s < 1). Let us also assume (4.4) and (4.7), and also

C ≥ sup
x,y

|φ(x) − φ(y)|
|x − y|τ for τ = 1 + β − 2s,(4.32)

u(y) ≥ u(x) + a(x) · (y − x) − C |x − y|1+β,(4.33)

(−�)σ u ≤ C for any σ <
1 + β

2
,(4.34)
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where β is a positive real number such that 1+β > 2s. Then w ∈ Cα for an α > 0

depending only on s, β, and the dimension n.

Remark 4.17. In our original obstacle problem, we have (4.33) from Proposition

3.13 and (4.34) from Proposition 3.11. But actually (4.34) could be deduced from

4.33 and the boundedness of u by Lemma 4.13.

The proof is essentially the same as the proof of Theorem 4.12 with a few

modifications.

First of all, for the function v defined in (4.18), we have to use Lemma 4.4 for

a σ such that 0 < 2σ < 1 + β − 2s = τ , since it is for those σ that we know

(−�)σw = (−�)σ+su ≤ C and therefore (−�)σ v ≤ ε for k0 large enough.

Later in the proof, when we construct the rescaled function ū, we will have a

different upper bound for ū in B3/4 given by Lemma 4.14 instead of 4.10. We have

u(x) ≤ µ2−(1+β)k0 for x ∈ B(3/4)2−k0 , which is enough to obtain 0 ≤ ū(x) ≤ ε for

x ∈ B3/4 since 1 + β > 2s.

Instead of (4.20) and (4.21), we have

sup
x,y

|φ̄(x) − φ̄(y)|
|x − y|τ ≤ ε for τ = 1 + β − 2s,

ū(y) ≥ ū(x) + ā(x) · (y − x) − ε|y − x |1+β.

This is the point when we need to use Lemma 4.15 to obtain the Lipschitz bound

for ū in B5/8 to be less than Cε.

Then the proof follows as in Theorem 4.12 until we have to estimate (bū)ee

from below. Instead, we compute a one-sided C1,α-estimate for (bū)ee from the

corresponding one for ū and the smoothness of b. We have that

b(y) ≥ b(x) + b′(x) · (y − x) − C |x − y|1+β,

ū(y) ≥ ū(x) + ā(x) · (y − x) − ε|y − x |1+β.

Multiplying both inequalities and recalling that ‖ū‖Lip ≤ Cε, we get

b(y)ū(y) ≥ b(x)ū(x) + A(x) · (y − x) − Cε|y − x |1+β

where A(x) = ā(x)b(x) + b′(x)ū(x). Then we apply Lemma 4.13 instead of

Lemma 4.1 to obtain h = (−�)s(bū) ≤ Cε.

The rest follows exactly as in the proof of Theorem 4.12.

Remark 4.18. It is interesting to notice the difference with the classical obstacle

problem (case s = 1). In that case, the result of Theorem 4.16 is not true since �u

has a jump discontinuity across the free boundary. The key point is that when s <

1, we can use the semiconvexity of u to obtain that w = (−�)su is a subsolution

of (−�)1−sw ≤ C , and this is an elliptic-like equation in the sense that Lemma

4.4 holds. We are thus using this room that we have between s and 1 to gain some

extra regularity.
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5 Towards Optimal Regularity

The observation that (−�)1−sw = 0 in the interior of the contact set {u = 0}
will allow us to estimate its growth in the free boundary by using a few barrier func-

tions carefully. In this way, we will achieve optimal (or almost optimal) regularity

results.

5.1 Barriers

In [9] a Poisson formula for the balayage problem of (−�)σ is proven. The

formula says that if g is a continuous function in Rn\Br , then there exists a function

u, continuous in Rn , such that u(x) = g(x) for every |x | ≥ r , and (−�)σ u(x) = 0

for every |x | < r . The function u in Br is given by the formula

u(x) =
∫

Rn\Br

P(x, y)g(y)dy

where

P(x, y) = Cn,α

(
r2 − |x |2
|y|2 − r2

)σ
1

|x − y|n .

This is known as the balayage problem in Br , and P is its corresponding Poisson

function.

We can take r → ∞ in the above formula to obtain a solution of the balayage

problem in the semispace {xn < 0}. If g is a continuous function in {xn ≥ 0}, then

there is a function u, continuous in Rn , such that u(x) = g(x) for every x such that

xn ≥ 0 and (−�)σ u(x) = 0 every time xn < 0. The function u in {xn < 0} is

given by the formula

u(x) =
∫

{yn≥0}

P(x, y)g(y)dy

where

P(x, y) = Cn,α

( |xn|
|yn|

)σ
1

|x − y|n .

The constant Cn,α is chosen so that

1 =
∫

{yn≥0}

P(x, y)dy

for any x (by rescaling, it is not hard to see that the above actually does not depend

on x).

Notice that for each fixed y, P is Cσ across the boundary {xn = 0}. We are

going to construct barriers now to assure this regularity in several cases.
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B = 1

B = 0

(−�)σB = 0

FIGURE 5.1. The function B.

Let g0 = 1 − χB1
. When xn ≥ 0 let B(x) = g0(x), and when xn < 0 let B(x)

be given by the formula

(5.1) B(x) =
∫

{yn≥0}

g0(y)P(x, y)dy =
∫

{yn≥0∧|y|≥1}

P(x, y)dy.

The function B would be the solution of the balayage problem in the semispace

{xn < 0} for B(x) = g(x) in {xn ≥ 0} (see Figure 5.1). In this case g is not

continuous, so we just define B as the integral above.

Let us estimate now the behavior of B for small x . Let |x | < 1
2
. If |y| > 1,

1
2
|y| ≤ |x − y| ≤ 2|y|; therefore, since

P(x, y) = Cn,α

( |xn|
|yn|

)σ
1

|x − y|n ,

we have

Cn,α|xn|σ
1

2n|yn|σ |y|n ≤ P(x, y) ≤ Cn,α|xn|σ
2n

|yn|σ |y|n .

Applying these estimates to (5.1), we get

(5.2)
C

2n
|xn|σ ≤ B(x) ≤ 2nC |xn|σ

for every |x | < 1
2
, where C depends only on n and α and is given by

C = Cn,α

∫
{yn≥0∧|y|≥1}

1

|yn|σ |y|n dy.

On the other hand, when |x | > 1, it is clear that 1 ≥ B(x) > d1 for some constant

d1 > 0 depending only on α and n.
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Now let g1(x) = min(|x |, 1); let us solve the corresponding balayage problem

for the semispace {xn < 0}. We observe that g1(x) = ∫ 1

0
g0(x/t)dt . Then

A(x) =
∫

{yn≥0}

g1(y)P(x, y)dy =
∫ 1

0

B

(
x

t

)
dt.

We want to see the behavior of A when x approaches 0. Let |x | < 1
4
;

A(x) =
∫ 1

0

B
( x

t

)
dt =

∫ 2|x |

0

B
( x

t

)
dt +

∫ 1

2|x |
B

( x

t

)
dt

≤ 2|x | +
∫ 1

2|x |
2C

( |xn|
t

)σ

dt

≤ 2|x | + 2C

r + 1
|xn|σ (1 − (2|x |)σ )

≤ 2|x | + C |xn|σ .

On the other hand,

A(x) =
∫ 1

0

B

(
x

t

)
dt =

∫ 2|x |

0

B

(
x

t

)
dt +

∫ 1

2|x |
B

(
x

t

)
dt

≥
∫ 2|x |

0

B

(
x

t

)
dt

≥
∫ 2|x |

0

d1 dt = 2d1|x |.

The function A is continuous, and clearly A(x) → 1 as |xn| → ∞. Let µ =
minRn\B1/4

A(x). Then

A(x) ≥ min(µ, 2d1|x |).
If we consider Ã(x) = (1/µ)A(µx/(2d1)), then Ã(x) ≥ min(1, |x |).
PROPOSITION 5.1 Let v be a continuous function in Rn such that

• (−�)σ v = 0 in a convex open domain �,

• v(x) is Lipschitz and bounded in Rn \ �.

Then v ∈ Cσ (Rn).

PROOF: Without loss of generality, we can assume that the Lipschitz constant

of v is 1 and ‖v‖L∞ = 1. Let x0 ∈ Rn \ �. Since � is convex, there is a unitary

matrix U such that the function V (x) = Ã(U (x −x0))+v(x0) satisfies (−�)σ V =
0 in �. Since V (x) ≥ min(1, |x − x0|) + v(x0), then V (x) ≥ v(x) in Rn \ �.

By the maximum principle V ≥ v in the whole Rn . In the same way we prove

v(x) ≥ v(x0) − Ã(U (x − x0)). Therefore we have a uniform Cσ -modulus of

continuity for every point x0 in Rn \ �. By Lemma 4.9, v ∈ Cσ (Rn). �
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5.2 Optimal Regularity Results

Optimal regularity can be quickly derived from what we have so far in the case

when the contact set {u = 0} is convex. The nonconvex case will require more

work.

THEOREM 5.2 Let u be as in Theorem 4.12; if the interior of the contact set {x :
u(x) = 0} is convex, then w ∈ C1−s and therefore u ∈ C1,s .

PROOF: By Theorem 4.12, w ∈ Cα for some small α. Then w is continuous

is Rn . Let � be the interior of {x : u(x) = 0}, that is, convex. We also know

w(x) = φ(x) for every x ∈ Rn \ �, and φ is Lipschitz. Since (−�)1−sw = 0 in

�, then we meet the conditions of Proposition 5.1 with σ = 1 − s, so we conclude

w ∈ C1−s . �

Remark 5.3. With a slightly different barrier function it could be shown that in the

situation of Theorem 4.16, w ∈ Cα for α = min(1 − s, τ ) where φ ∈ Cτ .

Remark 5.4. By constructing test functions that solve the equation outside of a

ball instead of a semispace, the above theorem could be refined to a contact set

that satisfies an exterior ball condition. For the time being we cannot assure any

regularity for the free boundary, and such regularity theory is likely to require a

sharp estimate on the regularity of the solution u.

The proofs from now on are not very different whether we consider φ to be

Lipschitz or merely Cτ . We will thus describe the general case right away. We

suppose that in our original obstacle problem ϕ ∈ C1,β and 2s < 1 + β, so that we

have φ ∈ Cτ for τ = 1 + β − 2s.

The following lemma gives us an idea about how far from convex the level sets

of u can be.

LEMMA 5.5 Let u be as in Theorem 4.16. Let’s assume that w ∈ Cα for some

given α < 1 + β − 2s (probably larger than the one from Theorem 4.16). Let x0

be a point such that u(x0) = 0. Then for a small enough δ, there is a constant C0

such that x0 is not in the convex envelope of the set

(5.3) Ar = {x ∈ Br (x0) : w(x) > w(x0) + C0rα+δ}
for any r > 0. Moreover, δ can be chosen to be any positive real number less than

((1 + β)/(α + 2s) − 1)α (for example, half of that number).

PROOF: Since w ∈ Cα, then u ∈ Cα+2s (or C1,α+2s−1) so w(x) = (−�)su(x)

can be computed by its integral representation.

We can assume x0 = 0 without loss of generality. We choose

δ <
1 + β

α + 2s
− 1α.

Notice that δ < τ −α (recall τ = 1+β−2s). If we take C0 = 1 in the definition of

Ar , we will prove that the result of the lemma is true for r small enough. Choosing
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C0 large enough in (5.3), we can then make it true for larger values of r . (Actually,

we can even make sure that Ar is empty for large r .) So we will consider now

(5.4) Ar = {x ∈ Br (x0) : w(x) > w(x0) + C0rα+δ},
and we want to show that for small enough r , 0 is not in the convex envelope of Ar .

Since φ is a Cτ -function, φ(x) ≤ φ(0)+C |x |τ . Then, when x ∈ Ar for r small

enough,

φ(x) ≤ φ(0) + C |x |τ ≤ w(0) + C0rα+δ < w(x);
then w(x) > φ(x); thus u(x) = 0 for every x ∈ Ar .

Let us argue by contradiction. Suppose that we have k points x1, . . . , xk ∈ Ar

such that a convex combination of them is 0,

k∑
j=1

λj xj = 0

for λj ≥ 0 and
∑

λj = 1. For each j , we have

w(xj ) =
∫
Rn

u(xj ) − u(xj + y)

|y|n+2s
dy =

∫
Rn

−u(xj + y)

|y|n+2s
dy.

Since u satisfies (4.33), at each point y there is a plane tangent from below with an

error of order C |z − y|1+β ; i.e., there is a vector A ∈ Rn such that

(5.5) u(z) ≥ u(y) + A · (z − y) − C |z − y|1+β

for every z ∈ Rn . If we replace z = xj + y in (5.5) and add, we get

(5.6)

k∑
j=1

λj u(xj + y) ≥ u(y) − Cr1+β.

Now we compute w(0) and compare it with the values of w(xj ),

w(0) =
∫
Rn

u(0) − u(y)

|y|n+2s
dy =

∫
Rn

−u(y)

|y|n+2s
dy

=
∫
Br̃

−u(y)

|y|n+2s
dy +

∫
Rn\Br̃

−u(y)

|y|n+2s
dy.

For the first term we use that w ∈ Cα and then u ∈ Cα+2s (or C1,α+2s−1). Then

u(x) ≤ C |x |α+2s , and

(5.7)

∫
Br̃

−u(y)

|y|n+2s
dy ≥ −Cr̃α.
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For the second term, we use (5.6):∫
Rn\Br̃

−u(y)

|y|n+2s
dy ≥

∫
Rn\Br̃

−∑k
j=1 λj u(xj + y) − Cr1+β

|y|n+2s
dy

≥
∫

Rn\Br̃

−∑k
j=1 λj u(xj + y)

|y|n+2s
dy − Cr1+β r̃−2s .

Now we make a convenient choice for r̃ . Let r̃ = r p for p = (1 + β)/(α + 2s).

We observe that since p > (α + δ)/α, xj ∈ Ar , and u is Cα, then for r small

enough u(xj + y) = 0 for every y ∈ Br̃ . Thus∫
Rn\Br̃

−u(y)

|y|n+2s
dy ≥

∫
Rn\Br̃

−∑k
j=1 λj u(xj + y)

|y|n+2s
dy − Cr1+β r̃−2s

≥
k∑

j=1

λjw(xj ) − Cr1+β r̃−2s

≥ w(0) + C0rα+δ − Cr1+β−2sp.

(5.8)

Adding (5.7) to (5.8), we get

w(0) ≥ −Cr̃α + w(0) + C0rα+δ − Cr1+β−2sp

≥ w(0) + C0rα+δ − Cr pα − Cr1+β−2sp

≥ w(0) + C0rα+δ − Cr
(1+β)α
α+2s .

But this is impossible for small r because we chose δ so that α+δ < 2α/(α + 2s).

�

LEMMA 5.6 Let u be as in Theorem 4.16. Let’s assume that w ∈ Cα for some

given α < min(1 − s, 1 + β − 2s) (probably larger than the one from Theorem

4.16). Then w is actually in Cγα, where

γ = 1 − s

1 − s + δ
· α + δ

α

=
(

(1 − s)(α + 2s + 1 + β)

2(1 − s)(α + 2s) + α(1 + β − α − 2s)

)
> 1

(5.9)

where δ is as defined in Lemma 5.5.

PROOF: First we will construct some auxiliary functions. Let B be as in (5.1)

with σ = 1 − s. Recall that B(x) ≥ β when |x | ≥ 1. Then, for 1 > r > 0, let

D(x) = rα

d1

B

(
x

r

)
+

∫ 1

r

1

d1

B

(
x

t

)
tα−1 dt.
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Clearly, D(x) = 0 when |x | < r and xn ≥ 0. When |x | ≥ r ,

(5.10) D(x) ≥ rα

d1

d1 +
∫ min(|x |,1)

r

1

αd1

d1tα−1 dt ≥ min(|x |α, 1).

For xn < 0 and |x | < r/2, applying (5.2), we have

D(x) ≤ C

(
rα

( |xn|
r

)1−s

+
∫ 1

r

( |xn|
t

)1−s

tα+1 dt

)
≤ C(rα+s−1 + 1)|xn|1−s .

(5.11)

Now, let us take a point in the free boundary ∂{u = 0} that we will suppose to

be the origin. Since w is Cα for 0 < r < 1, by (5.10) there is a constant C such

that w(x)−w(0) ≤ C D(x) for every |x | > r . By Lemma 5.5, if we choose r small

enough, then w(x) ≤ w(0) + rα+δ at least in half of the ball Br . We can assume

that Br ∩ {xn ≥ 0} is that half of the ball. Therefore

(5.12) w(x) ≤ w(0) + rα+δ + C D(x)

for every x except maybe some x ∈ Br ∩ {xn < 0}.
Since φ is Cτ and r was chosen small, φ(x) ≤ φ(0)+C |x |τ = w(0)+C |x |τ ≤

w(0) + rα+δ + C D(x). Therefore all the points for which (5.12) does not hold

must be in the set where w(x) > φ(x), i.e., in the interior of {u(x) = 0}. But in

that set (−�)1−sw = 0; also (−�)1−s D = 0 in that set (since it is included in

{xn < 0} ∩ Br ). By the maximum principle, (5.12) holds in all of Rn .

Let x be such that |x | is small. Let p = (1 − s)/(1 − s + δ) < 1 and r =
|x |p > 2|x |. Then, combining (5.12) with (5.11), we get

w(x) ≤ w(0) + rα+δ + C(rα+s−1 + 1)|xn|1−s

≤ w(0) + |x |(α+δ)p + C(|x |(α+s−1)p + 1)|x |1−s

≤ w(0) + C(|x |q + |x |1−s) ≤ w(0) + C |x |q,
(5.13)

where

q = (α + δ)p = (α + δ)(1 − s)

1 − s + δ
= (α + s − 1)(1 − s)

1 − s + δ

= (α + s − 1)p + (1 − s) < 1 − s.

Since w(0) = φ(0), then w(x) ≥ φ(x) ≥ φ(0) − C |x | ≥ φ(0) − C |x |q for |x |
small. And this Cq modulus of continuity holds at every point in the free boundary

∂{u = 0}.
Let x0 be such that u(x0) > 0; let x be any other point in Rn . Let x1 be a point

in the segment between x and x0 that is in the free boundary ∂{u = 0}. Then

|w(x0) − w(x)| ≤ |w(x0) − w(x1)| + |w(x1) − w(x)|
≤ |φ(x0) − φ(x1)| + |w(x1) − w(x)|
≤ C(|x0 − x1|τ + |x1 − x |q) ≤ C |x0 − x |q .
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Thus, there is a uniform Cq modulus of continuity for every x in the set {u > 0}.
Since (−�)1−sw = 0 in the complement of this set, we can apply Lemma 4.15 to

conclude w ∈ Cq(Rn). Recalling that in Lemma 5.5 δ can be chosen to be

1

2

(
1 + β

α + 2s
− 1

)
α,

we get a complicated formula for q,

q = (α + δ)(1 − s)

1 − s + δ
= 1 − s

1 − s + δ
· α + δ

α
· α

=
(

(1 − s)(α + 2s + 1 + β)

2(1 − s)(α + 2s) + α(1 + β − α − 2s)

)
α

= γα.

�

PROPOSITION 5.7 Let u and w be as in Theorem 4.16. Then w ∈ Cα for every

α < min(1 − s, 1 + β − 2s). Thus u ∈ C1,α for every α < min(s, β).

PROOF: From Theorem 4.12, we know that w ∈ Cα for some small α > 0.

Then we can apply Lemma 5.6 repeatedly to get w ∈ Cα for larger values of

α. To check that α gets as close to min(1 − s, 1 + β − 2s) as desired, we only

have to observe that the application I (α) = γα, where γ is given by (5.9), is

continuous and such that I (α) > α for every α ∈ (0, min(1 − s, 1 + β − 2s)) and

I (min(1 − s, 1 + β − 2s)) = min(1 − s, 1 + β − 2s). �

THEOREM 5.8 Let β > 0. Given a function ϕ ∈ C1,β , let u be the solution of the

obstacle problem given by (1.1)–(1.4). Then u ∈ C1,α for every positive number α

less than min(β, s).

PROOF: In the case 1 + β > 2s, we apply Proposition 5.7 to u − ϕ with

φ = −(−�)sϕ. Recall that u −ϕ satisfies (4.33) and (4.34) because of Proposition

3.11 and Proposition 3.13, and (4.7) is satisfied because of Corollary 3.12.

In the case 1 + β ≤ 2s, the proof is simpler. From the definition of the

problem (1.1)–(1.4) (or from Proposition 3.1 if we start with the variational ap-

proach) (−�)su ≥ 0 in Rn . Moreover, (−�)σ u ≥ 0 in Rn for any σ ≤ s,

since (−�)σ u = (−�)σ−s(−�)su, and the operator (−�)σ−s is given by the

convolution with a positive kernel. Since ϕ ∈ C1+β , (−�)σϕ ∈ L∞ for any

σ < (1 + β)/2. Then we can apply Proposition 3.11 to conclude that (−�)σ u ≤ C

in Rn for any σ < (1 + β)/2. Thus (−�)σ u ∈ L∞ for any σ < (1 + β)/2, and

from Proposition 2.9 u ∈ C1,α for any α < β. �
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