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Regularity of the Solutions of
Second Order Evolution Equations and Their Attractors

J.M. GHIDAGLIA - R. TEMAM

Introduction.

In this article we consider linear and nonlinear evolution equations of the
second order in time of the form

and we are interested in questions related to the regularity of the solutions in
time and space (when (0.1) corresponds to a partial differential equation in a:

and t). Two types of regularity problems are addressed. The first one is that of
the regularity of the solutions of (0.1) (0.2) for all t e R. A scale of Hilbert
spaces F m is considered

where FI x Fo D D(Al/2) x H and H is the basic Hilbert space for (o.1 ),
and we seek necessary and sufficient conditions for the data (A, g, f ) and the
initial values uo, which ensure that the solution (u, I = dul of (0.1)dt

belongs to x F",,, for all t E R. An obvious necessary condition is that
E x F,,,.,, : the other conditions are related to the so-called com-

patibility conditions which have been investigated in R. Temam [23] for the
first order parabolic equations. Let us point out that the situation is definitely
different for second order and first order equations: indeed for second order
equations there is no regularizing effect as one can reverse the time and solve
as well the equations backward in t. However some of the technics of [23]
are used here and, as in this last reference, we produce very simple necessary
and sufficient conditions of regularity. For other results on the regularity in

Pervenuto alla Redazione il 14 luglio 1986 e in forma definitiva il 14 dicembre 1987.
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relation with the compatibility conditions the reader is referred besides [23] to
O.A. Ladyzhenskaya, V.A. Solonnikov and N.N. Uralceva [13], J.B. Rauch and
F. Massey [19], S. Smale [22] and J. Sather [20].

The second type of regularity results which is addressed here is related
to the attractors and the long time behavior of the solutions of (0.1) (0.2).
The existence and the properties of the attractors for (0.1) have been studied
in a related paper [8] to which the reader is referred for more details and for
some points which are recalled without proofs, but the reading of this article
is essentially independent of [8]. In [8] and in previous related works of A.
Babin and M.I. Vishik [2,3], A. Haraux [12] and J. Hale [10] the existence
of a maximal attractor A for (0.1 ) was proved, and in [8] it was shown that
its Hausdorff and fractal dimensions in D(Al/2) x H were finite; in particular
A is compact in D(Al/2) x H and attracts in the norm of D(Al/2) x H any
bounded set of D(A 1/2) x H. Here we are interested in determining under what
conditions on f, g, A, the attractor A lies in a subspace x of Fl x Fo
(corresponding to more regular functions in the space variables); and when
A c Fm+i x F"~,, under what conditions a bounded set B"~, of x F"~, is
attracted by A in the norm of x F"z. As far as we know the problem of
the regularity of A(A c x has been only investigated, in a direct

framework, by J. Hale and J. Scheurle [11] but they make the assumption that
the nonlinear term g is small in an approppriate sense, a smallness assumption
that is not needed here.

We now describe how this article is organized: the compatibility conditions
and the smoothness at finite t are studied in § 1, the regularity results for the
attractors are studied in §2. In § 1.1 we describe the abstract setting for (0.1) in
the linear case (g = 0) and in §1.2a we show how the general setting applies to
the linear wave equation. The compatibility results for the linear wave equation
are proved in §1.2b and §1.2c for the nonlinear case; the assumption on the
nonlinear term g are the same as in [8] and this allows for non gradient
systems, non local nonlinear terms, linear self-adjoint operators other then -A
and general boundary conditions. Finally the application of the results to the
Sine-Gordon equation and the nonlinear wave equation of quantum mechanics
are described in §1.2d. Regularity results for solutions defined on the real line
are given in §1.3. In §2.1 we investigate the regularity result for A (conditions
insuring that A c x and finally in §2.2 we study the convergence
of bounded sets to A in the norm of Fm+i x F,~.

A few words about notations. Let f2 be a domain in and let p E [I , oa] .
We denote by the class of all measurable funtions u, ,defined on n, for
which

for 1  p  +00, and for p = oo those which are essentially bounded on 0:
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We denote by the Sobolev L 2-space of order m and by the
closure of Ð(n) (the space of C°° functions with compact support in fl).

Let I be and interval of R, p E [1, ool and X be a Banach space. We
denote by LP(I ; X) the space of classes of measurable functions f from I into
X such that liflix E LP(I). This space is a Banach space endowed with the
norm

The space C(I; X) is the space of continuous functions from I into X and we
shall denote by C b (I; X) = the space of continuous bounded
functions from I into X.
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1. - Smoothness and compatibility conditions.

1.1. - Abstract setting.

We are given on a real Hilbert space H, with scalar product ( ., .) and
nonn [ I, a linear self-adjoint unbounded operator A with domain

dense in H. We assume that A is an isomorphism from D(A) (equipped with
the graph norm) onto H and that A is positive:

We recall that under these hypotheses, one can define the powers
All, 8 E R (see [6]) and that the space

is a Hilbert space for the scalar product and norm

It is well known that, given T with 0  T  oo, and satisfying

the initial value problem on [0, T]:

(a E R) possesses a unique solution {1£,ü} E C ([0, T]; V, x H); while if

,f, j’ E L2 (o, T; H), {u, u, ii) E C ([0, T]; V2 x V, x H). We
have denoted by a dot the differentiation with respect to the ("time") variable t.
The proof of this result can be found for instance in J.L. Lions and E. Magenes
[16]. The reader is also referred to [8] where some complements are given.
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1.2. - Compatibility conditions.

a) An example: the wave equation.

Let H be an open bounded set in R" with smooth C°° boundary an.
The wave equation x R+ reads

This set of equations can be written in the form (1.4)-(1.5) with a = 0 and

We seek a condition on the data f, uo and ul such that the function

{u(., t), ~(.,~)} belongs to x for every t &#x3E; 0, where m is a

given integer. This problem is naturally connected with the regularity properties
of the operator A (here the Dirichlet problem for the Laplacian on f2). If we
introduce the spaces F,~ = H’~ (ft), m &#x3E; 0, the question can be rephrased as

Find a condition on the data f, uo, ul

(1.7) such that the solution of (1.4)-(1.5) lies in
x Fm i.e. E C ([0, T]; F,.,.,,+1 X Fm).

As already noticed the well known regularity results on the operator
A (see e.g. S. Agmon, A. Douglis and L. Nirenberg [1 ] or J.L. Lions and
E. Magenes [16]) are related to (1.7). Indeed the (trivial) case where f does
not depend on time t, uo is such that -Auo = f, and

0 (i.e. the stationary case) shows that (1.7) is obtained if and only
if f E = This is an immediate consequence of the fact

( ~ denotes the p.d.e. operator -A) that

~I is continuous from into and

(1.8) ~i is an isomorphism from V2 n Fm+2 onto Fm, Vm E N,
Au = Au, Vu E V,,,~,,, m &#x3E; 2.

REMARK 1.1. The trivial case of stationary solutions to (1.6) shows
that if we take instead of Fm ~H’~ (~) , Fm = Vm = D(Am/2), which is
a closed proper subspace of when m &#x3E; 1, the answer to (1.7) is

uo E and f E since (1.6) reads Auo = f. But these conditions
(uo E f E are much more restrictive for m &#x3E; 2. They include
boundary conditions on f and uo which are not present when Fm = 
Indeed for, e.g. m = 4, the first condition is f E H 3 (f2) whereas the second is
f = w = 0 on To conclude we say that taking
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F,~ - leads to simpler conditions than taking Vm (also note
that the constraints in the last case are not physically relevant). However the
results in the second case are stronger since x Vm is a proper subspace
of x Hm(o).

b) The linear equations.

In accordance with the previous example, we assume that besides the scale
of Hilbert we are given a family of Hilbert spaces 
and an operator ~I that satisfy (1.8) with ( 1 )

c F,.,.,, the injection being continuous, V,~.,, is a closed

(1.9) subspace of F,~.,, , the norm induced by on being
equivalent to ( 1m; Vm G N ; finally Fo = H.

Our goal in this paragraph is to answer (1.7). In the previous example of the
wave equation, this problem is clearly a regularity result. Problems of this
kind have been investigated by various authors in case of linear equations ([4],
[19], [22], ...) and by one of the authors ([23]) in the context of semi-linear
evolution equations of parabolic type. Let us recall that, due to the well-known
smoothing effect of parabolic equations the analogue of Problem (1.7) reduces
in that case to the behavior at time t = 0. In the case of the second order
in time problem (1.4) (which includes hyperbolic problems) the situation is

definitely different. Indeed, this equation has no smoothing effect since one
can reverse time because the change of t in -t does not affect the type of the
equation. However the results and technics for solving (1.7) are very similar
to those of [23] and produce a very simple necessary and sufficient condition
that answers (1.7), see (1.17).

In accordance with the technics of [16] and [23], we introduce the Banach
space

endowed with the natural norm

where I denotes a closed (not necessarily bounded) interval of R and m is an
integer &#x3E; -1. We shall write W,n (0, T ) instead of Wm([0, T]) and instead

of 

First, we assume that the conclusion of (1.7) holds, and we seek a

necessary condition. We suppose that for some m &#x3E; 2,
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By successive differentiations of (1.4), it follows that

Indeed, let j, 0  j  m + 1 and

We obtain by ( 1.12) that ( 1.14)o and ( 1.14) 1 hold true. Assuming that ( 1.14)~
holds with 1  j  m, we differentiate (1.4) j - 1 times with respect to t.

Hence

and using (1.8)-(1.9), (1.12) and ( 1.14)~ we find that

This proves (1.14)~.i and by induction on j we obtain { 1.14)",,,+ 1 which is

exactly ( 1.13).
D

Now, if a solution u to (1.4)-(1.5) satisfies (1.13), thanks to (1.15) we
can easily compute the successive derivatives of u at time t = 0. These values
are determined by the following recurrent formula:

We have = f ~3~ - «u{3+1 ~ - thus according to (1.13), Au (i) E
C([O,T]; for 0  j  m - 1. Since c Fo it follows then
from (1.8) that E C([0,T]; V2 ) hence u(j) (0) E V2, 0  j  m - 1. On
the other hand by (1.13), E Fl); since V, is closed in F, and
u E C([0,T]; Vi) we deduce that E C([0,T]; Vi), hence u(rn) (0) E Vi . We
have shown that

REMARK 1.2. (i) These conditions are compatibility conditions between
the data f, uo and ul since the u(j) (0) can be computed in term of these
quantities using (1.16).

(ii) Returning to the wave equation (1.6), (1.17) simply means that the

u(j)(0) (which are elements of FI = vanish in the sense of trace on
= 0 (see also Corollary 1.1 ).

0
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We are going to prove that ( 1.17) is in fact a necessary and sufficient
condition. More precisely we have

THEOREM 1.1. Assume that the data f, uo and u 1 are such that

The solution u of (1.4)-(1.5) belongs to Wm(O,T) if and only if the 
given by (1.16) satisfy the compatibility conditions

PROOF. We have already noticed that this condition is necessary. For the
sufficient part, we denote by v the solution to the Cauchy problem

where u(-)(0) and u(m+I) (0) are obtained through (1.16). Thanks to (1.17)
and (1.18) the problem (1.19)-(1.20) is identical to (1.4)-(1.5) and {v, v } E
C ([0, T]; V, x H). Since u(m) = v, it follows that

For 0  k  m - 1, the function w = uk is also solution of a problem (1.4)-
(1.5) with right hand side g = f (k) and initial conditions wo = (0), w, =

(0). Since by (1.17) wo E V2, wi E Vl and by (1.18), g, g E L2(0, T; H),
we have {u(k), E C ([o, TJ; V2 x Vi ). Hence

The proof proceeds by induction. We assume that

holds for some k, 1  k  m. We differentiate equation (1.4) m - j times with
respect to t; it follows that
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Thanks to (1.21), E V2 hence by (1.8), and
then u(m-i) E C([O,T]; F~?+1~ ) : :(1.22)j+l is proved.

According to (1.21), ( 1.22) o and ( 1.22) 1 hold and (1.22),n+l follows by
induction. Therefore (1.13) and the Theorem are proved.

c) The nonlinear equations.

In this section we generalize Theorem 1.1 to a class of nonlinear equations
which includes in particular nonlinear wave equations. Although the method is
very general we will restrict ourselves for the sake of simplicity to the class
of second order in time nonlinear evolution equation:

We assume that the nonlinear operator g maps continuously Vi into H and
V2 into Vi. Moreover we assume that the problem (1.23)-(1.24) is well-posed
(2) in V1 x H and V2 x Vl, i.e. if f, uo and ul are given such that

(1.23)-(1.24) possesses on [-T, T] a unique solution satisfying

While, if f, uo and ul satisfy

the previous solution satisfies

In both cases, for t fixed, the solution depends continuously on
u1 } with respect to the corresponding topology.
We introduce a mapping Gk on Fk+l x - - - x Fo as follows. For

{~(0),~~(0),...,~+~(0)}e~+ix- - -xjPo, we set

We shall assume that for k &#x3E; 1,

( 1.29)k Gk is a continuous bounded map from x - - - x Fo into itself.
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It- follows from this hypothesis that for every interval I c R,. g is a continuous
and bounded map from Wk (1) into itself. This is shown by observing that for
any r, the formula above is verified:

(r = 0 does not play a particular role) and then we apply (1.29)k.
Let there be given m &#x3E; 2. Assuming that ( 1.29)~ holds for 1  k  m -1,

by the same kind of method as in the linear case it follows that if (1.12) holds
then u satisfies ( 1.13) and the (0) are determined by

We can now state the analogue of Theorem 1.1:

THEOREM 1.2. Let m &#x3E; 2 and assume that (1.29)k holds for 1 ~ k  m - I.
If the data f, uo and ul are such that

Then the solution u of (1.23)-(1.24) belongs to Wm(O,T) if and only if the
uW (0) given by (1.30) satisfy the compatibility conditions:

PROOF. The proof of the necessary part is parallel to that in Theorem 1.1.
We are going to establish the sufficient part by induction on m. For m = 2,
it follows from ( 1.31 )-( 1.32) that (1.27) is fulfilled. Hence according to (1.28)
and (1.23), we have: u E t~i(0,T’). Thanks to ( 1.29) 1,

We write (1.23) as

According to (1.31), (1.32) and (1.33), Theorem 1.1 (with m = 2) applies to
(1.34) and we obtain that u E T). Theorem 1.2 is proved for m = 2.
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Suppose that this theorem is true for some m &#x3E; 2 and that hypotheses
( 1.29),~, (1.31)m and ( 1.32)m+ 1 are satisfied. Applying Theorem 1.2 at rank
m, we deduce that

From ( 1.29)"~, it follows that

and according to (L31)~+i, ( 1.32)m+1 and (1.36) we can apply Theorem 1.1
at rank m + 1 and it follows that u E Wm+1 (0, T).

REMARK 1.2. (i) In the proof of this Thorem we have only used the
fact that g is a continuous and bounded map from Wk (I ) into for
k  m - 1.

(ii) The case where g depends on time t can also be considered. In that
case (1.29)k is replaced by the assumption that g is a continuous and bounded
map from Wk(I) into itself.

d) Example: a nonlinear wave equation.

We return to the notation of Section 1.2.a on the linear wave equation in
% x R+ and introduce g a C°° mapping from the real line R into itself (3).
The nonlinear wave equation in 3 x R+ reads

together with (1.6)2 and (1.6)3.
We make the following assumptions on g

there exists Cl &#x3E; 0 such that

and (when n &#x3E; 2)
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The two main types’ of applications we have in view are

(i) g(u) = sin u in which (1.37) is the well known Sine-Gordon equation,
( ii) g ( u) - u2p+ 1, p E N, and q = 2p satisfying (1.40) (here for physical

reasons 12 with n  3).

These examples satisfy obviously that g is C~ and (1.38)-(1.40).

0

Under the previous hypotheses, it is well known (see [2], [8]) that

Equations (1.37), (1.6)2, (1.6)3 are well-posed in Vi x H and V2 x Vl.
In order to apply Theorem 1.2 to (1.37), we observe that for f2 c R

n  3 (the physical case) it follows from Sobolev imbeddings Theorems
(in particular since H2(0) c and from Faà di Bruno formula (see
L. Comtet [5], p. 137) which gives the derivatives d - (g(u(t))) as functionsdtk
of those of g and u, that (1.29)k holds for every k &#x3E; 1 (see the Appendix).
Therefore under the previous hypotheses, Theorem 1.2 reads

COROLLARY 1.1. We assume that f2 is a smooth (C°° ) bounded open set
in R~, ~  3. If the data f, uo and ul are such that (m &#x3E; 2)

then the solution u of (1.37), ( 1.6)Z, ( 1.6) 3 satisfies

if and only if the (0) computed recursively by

are such that

1.3. - Bounded trajectories on the real line.

This section is devoted to the study in the dissipative case (i.e. a &#x3E; 0) of
solutions of the linear equation
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satisfying the boundary condition at - o0

where hE Cb (R, H).
We write (1.41) as a first order system by introducing 9 = {~,v}, y ==

{0, h}, A E L (Vi x H, H x V_1):

where e is chosen in (1.45).
With these notations (1.41) reads

and we introduce the linear group {E(t)}tEx which acts on V1 x H by setting
E(t)po = p(t) where p is the solution to (1.43) with this 0 and

Concerning the choice of E we denote by x the norm of the injection from
Vi into Vu E Vi ) and we compute for p E V2 x Vi, p = { u, v },

Now we take

hence

From (1.46) it follows that for po E T~Z x Vi,

and since E(t) is linear and continuous on Vi x H by density of V2 x V, in
V, x H we deduce (1.47) for every cpo E Vi x H. Hence
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The goal of this section is the following result

PROPOSITION 1.1. Let k be a positive integer and let h be such that

Then equation (1.41) possesses a unique solution u which satisfies

Moreover u E Wk and there exists a constant ck such that

PROOF. Let us first prove this Proposition for k = 1. For the uniqueness
we have to prove that if u satisfies (1.50) and (1.41) with h = 0, then u - 0.
Let t &#x3E; s then (p = {u, v}) by (1.43) with 7 =- 0,

and by (1.48),

But by (1.50), since v = is bounded when s --+ -00. Hence

letting s -~ - oo in (1.52),

i.e. p(t) = 0 which implies u =_ 0. The existence is obtained by the variation
of constants formula. Indeed we set r) = E(t - r){0, h(r)}; from (1.48) we
have 0(t, .) E Ll (-oo; t ; Vi x H) and

Therefore we can define If’ E C(R,Vi x H) by

and
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It is easily seen that p defined by (1.53) satisfies (1.43) and since fP = {u, v}
with v = u is solution to (1.41) with (1.50) thanks to (1.54) which
shows also (1.51). In fact we have obtained that the solution is given by

For k &#x3E; 2, we first differentiate (1.55) k times with respect to t. Since
E Cb (R, H) we find that E x H). Let us prove by

induction on j, 0  j  k + 1, that

For j = 0 and j = 1 it has just been shown. We assume that ( 1.56)~ holds for
some j &#x3E; 1. According to (1.41),

and by (1.56)j-,, (1.56)~ and (1.49),

Since ,~ is an isomorphism from V2 n Fi+I into (by (1.18)) we deduce
(1.56)m+1. 

’

. Hence (1.56)k+i, i.e. u E follows by induction and (1.51) by
inspection of the proof.

2. - Application to the attractors.

In this paragraph we derive some properties concerning the long time
behavior of the infinite dimensional dynamical system generated by the equation

where a is positive. We assume that the right-hand side, f, of (2.1) is

independent of t and belongs to H, so that (2.1) is an autonomous ( 4 ) dynamical
system.

. The hypotheses are those of Section 1.2.c, in particular those concerning
the well-posedness of (2.1)-(2.2) in Vi x H and V2 x Vi ; we assume further that
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the injection from Vl into H is compact. Equation (2.1) can be for instance
the damped nonlinear wave equation of Section 1.2.d (see (1.37)).

The previous hypotheses are such that the mapping S (t) from Vl x H or
T~2 x Vi into itself defined by

is continuous and since (2.1) is autonomous, is a group which acts
on both spaces. We recall that a subset X of Vl x H is a functional invariant
set for S(t) if

Given which acts continuously on a metric space G, we recall
that Ba is a bounded absorbing set in F if Ba is bounded in E and for every
bounded subset B in G, there exists T(B) E R such that S(t)B c Ba, for every
t &#x3E; T(B)..

Concerning the long time behavior of (2.1) we assume that there exist a
bounded absorbing set Bo (respectively B1 ) in Vi x H (resp. and a

compact set in Vi x H, A, which is bounded in V2 x Vi, functional invariant
and attracts bounded sets in Vi x H i.e. for every bounded set B in Vi x H,

where we have denoted

This set, A, which is necessarily unique is called the universal attractor for
the flow (2.1) in Vi x H.

Under the assumptions of Section 1.2.d., it was shown in [8] that the
maximal attractor A exists for the nonlinear wave equation of Sec. 1.2.d

(provided -y  2 if n = 3); cf. also related results of A.V. Babin and
M.I. Vishik [8,3], A. Haraux [12] and J.K. Hale [10]. The more general
framework considered in [8] includes non gradient systems, non local nonlinear
terms, linear self-adjoint elliptic differential operators other than -A and other
boundary conditions.

For f given in Fo = H, according to the previous assumptions and
remarks, the universal attractor is included and bounded in V2 x Vi. In the

following section 2.1 we address the natural question whether A is more

regular, i.e. included in Fp+l x Fp for some p, provided f is more regular. We
will give a positive (and optimal) answer in Theorem 2.1 which shows that if
f E Fm, we have A c x Then in Section 2.2 we study whether
(when / E F m) the convergence in (2.5) is achieved in a better norm than that
of V, x H. Finally we give some generalizations to the time periodic case.
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2.l. - Attractors are made of smooth functions.

In this section we prove

THEOREM 2.l. Let m be a non negative integer and assume that f E F m
and g satisfies ( 1.29) k for 1 ~ k  m. Then every functional invariant set X
bounded in V, x H is included and bounded in Fm+2 x 

PROOF. Let us first observe that if X satisfies the hypotheses of the
Theorem then X c A. Indeed since S(t)X = X and X is bounded in V, x H
by (2.5) we have d({uo, ul), A) = 0 for every { uo , u 1 } E X. Hence the Theorem
is proved for m = 0. In fact according to what precedes it is sufficient to show
that if f E Fm,

Let there be given A. Since A is invariant by S(t) and bounded
in Vl xv2 we know that the trajectory I u (t), ii (t) ) = S (t) {uo, ul ) lies in A for
every t E R and therefore is bounded in V2 x Vi, i.e. we have

where

and

We are going to prove by induction on m that

where pm is independent of A.
The case m = 0 follows immediately from (2.10). Indeed since g is

bounded from V2 into H we have E = f - g(u) - Au - au E and the
norm of u in W, is bounded by a constant which only depends on A.

We assume that (2.11)m is proved for some m &#x3E; 0. Let f E Fm+I;
since c F. by (2.11 )m we deduce that u E and since g satisfies
( 1.29),,",+1 we know that

where p:n does not depend on (uo, ui) E A. Now it follows from (2.12) and
f E that h, given by (2.9), satisfies
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and by Proposition 1.1 with k = m + 1, we deduce (2.11)m+I.
Now Theorem 2.1 follows from (2.11 ),~ since from u E we deduce

that E hence at time t = 0, E 

and (2.7) follows. The boundedness of A in x is a consequence
of the estimate in (2.11),.,.

ll

In particular, the application of Theorem 2.1 to the nonlinear wave

equation of Sec. 1.2.d. gives the

COROLLARY 2.1. We assume that Q is a bounded domain in n  3,
with C°° boundary and that f E The universal attractor A for (1.37)-
(1.6)2 is included and bounded in Hm+2(n) x When f E Coo (-a), A
is included in Coo (a) 2.

2.2. - Convergence to the universal attractor in stronger norms.

According to (2.5), we know that for E V, x H, the trajectory
starting at time t = 0 from this point converges to A in the norm of Vi x H.
But when f belongs to Theorem 2.1 shows that A is included in

x Fm+1, therefore a natural question is whether the convergence to A of
the trajectory is achieved in a norm stronger than that of Vi x H. This problem
is by nature connected with the question of smoothness of the trajectory i.e.
the analogue of (1.7) for the nonlinear equation (2.1)-(2.2). Let us emphazise
the fact that when the semi-group possesses a smoothing effect (e.g.
in the case of parabolic equations) the problem of the convergence of the
trajectories with respect to stronger norms is totally different. Indeed, starting
from any point the trajectory becomes regular for t &#x3E; 0, and since it is only the
long time behavior that is concerned the convergence is automatically achieved
in stronger norms.

20132013In our case, since we work with a group (i.e. the Cauchy problem is well-
posed forward and backward), the smoothness of the points of the trajectory is
constant in time. Hence in order to insure that the trajectory {u(t), lies
in some space Fp+l x Fp it is necessary and sufficient that the initial conditions

satisfy the compatibility conditions (1.32)p.

a) A family of invariant nonlinear manifolds.

In this Section we study the set of initial conditions that produce regular
trajectories.
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Let there be given m &#x3E; 2 and f and g such that

(2.13) f E Fm and Gk is bounded and continuous from

x - - - x Fo into itself (see (1.29)A;) for I  k  m.

For we introduce the finite sequence (ul’) (0) )§£$ :

Now for f and g satisfying (2.13), we set

(2.15) = { E Fm+i x F,.", such that the 

computed by (2.14) satisfy ( 1.32)m },
(2.16) = v1 x H, = V2 x v1.

PROPOSITION 2.1. For f and g satisfying (2.13) when m &#x3E; 2,
the set is a closed subset of F",,+1 x Fm which satisfies

REMARKS 2.2. (i) From (2.18), it follows that is not empty.
(ii) The em ( f) are, in general, unbounded functional invariant sets.

’ 

0

PROOF. The fact that is closed is a consequence of the continuity of
from F",,,+1 x - - - x Fo into itself, (see (1.29),,",)). Let A; thanks

to Theorem 2.1 we have {u(t),ii(t)} = S(t) E x 

and by (1.12)-(1.13), which is also valid in the nonlinear case, we deduce
that u E Wm. Now from the necessary part of Theorem 1.2 we deduce that
the (ul’) (0) }~o satisfy (1.32)m, hence {uo, u1 } E This shows (2.18).
Concerning (2.19), we notice that for m = 0 and m = 1 the invariance follows
from the fact that {S (t) }t ER is a group on Vi x H and V2 x Vi . Let m be greater
or equal to 2; if we take {uo, E by the sufficient part of Theorem
1.2, the corresponding trajectory u belongs to W m (0, t) for every t E R and

therefore by the necessary part {u (t), i~ (t) } E 

Applying S(-t) to both sides of (2.20) we obtain (2.19). Finally (2.17) follows
by construction.
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b) The dynamics on the nonlinear manifolds.

PROPOSITION 2.2. The hypotheses on f and g are those in Proposition
2.1. The group possesses a bounded absorbing set Bm 

PROOF. For m = 0 and 1, the conclusion of this proposition is included in
the assumptions we have made at the beginning of Section 2. We then proceed
by induction on m. Let m &#x3E; 2 and f E Since Proposition 2.2 is true at
rank m - 1, there exists bounded in i.e. in x such
that for every bounded set B in there exists such that

Now we take a bounded set B in since B is also bounded in 

(2.21) holds. It follows that the trajectory u belongs to a bounded set in

and since f E F,,,-., and ( 1.29),~_ 1 holds,

(2.22) f - 9 (u) belongs to a bounded set in +oo)

with a bound independent of B.
We write now (2.1 ) as

and from (2.22) and the fact. that a is positive, it follows that there exists

Trn-I(B) and Bm which is bounded in Em ( f ) and does not depend
on B such that

Hence Proposition 2.2 is proved at rank m.

0

Now we can state the main result of this section. Before that, we denote
(when f E F~)

THEOREM 2.2. Let there be given f E Fm and assume that Gk satisfies
(1.29)k for 1 ~ k  m. For every bounded set B in Em(j),

i.e. A is the universal attract or for S (t) in Em(f).
Before giving the proof of this Theorem we recall some definitions and

a general result on abstract groups.
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Let ? be a metric space and a group which acts on f and such
that for every t E R, ,St is continuous on £. We recall that the w-limit set of
a subset B in £ is

We have the following result (see for instance [8]):

PROPOSITION 2.3. We assume that

(i) St possesses a bounded absorbing set Ba in £,
(ii) for every bounded set B in £, there exists a compact set K in 6 such

that

Then w(Ba) is the universal attractor for St in E.

0

PROOF of THEOREM 2.2. Let there be given m &#x3E; 1, according to

Proposition 2.2, the point (i) of Proposition 2.1 is satisfied with 6 = 6,,,(f) and
B. = Bm. We prove now the point (ii). Let there be given B a bounded set in
er,,(f), and let E B. We set = this trajectory
satisfies u E and by the hypotheses on g (namely (1.29)m) we find
that g (u) E and rm. Since f ~ Fm, we have

By reflexion around the origin t = 0, we can construct h with

and

where C,.", is a constant which does not depend on f and u.
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According to Proposition 1.1, with k = m + 1, the equation

possesses a unique solution and

where r:n depends only on rm, Cm and by (2.28). If we study the
difference between u and v, 5 = u - v, according to (2.29) we have

Since E Cb(R+;Fm+I x F",,) and (v, I) E Cb(1R+;Fm+I x we have

{$,6} E x F,.",) and using (2.31) and (1.48) it follows that {~6}
goes to {0, 0} exponentially in x Fm, uniformly with respect to 
in B.

Thanks to (2.30),

is bounded in Fm,.+2 x it is compact in x Fm and by

we deduce the point (ii) of Proposition 2.3. According to this result, As =
is the universal attractor for S(t) in Now since f E Fm, we

know by Theorem 2.1 that A is included and bounded in x on

the other hand S(t)A = A, dt E R; it follows that A c Conversely A ",,
is included in Vi x H and = A,n therefore Am c A.

0

c) Applications.

In particular, the application of Theorem 2.2 to the nonlinear wave

equations of Section 1.2.d gives the

COROLLARY 2.2. Let 0 be a bounded domain in l(~’~, n  3, with Coo
boundary and f E For every bounded set B in 
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In this Section (Sec. 2) we have only considered the autonomous case.
In fact Theorems 2.1 and 2.2 can be extended to the time periodic case, i.e.
the case where the right-hand side of (2.1) depends on t and satisfies

for some positive T (a period). This case occurs naturally in physics in e.g.
Sine-Gordon equation. Concerning the existence of an universal attractor and
related results the reader is referred to [8]. Let us only mention that the

hypotheses f E in Theorems 2.1, 2.2 must be replaced by

Then the universal attractor A is this time invariant under the action of the
discrete group The conclusions are the same, under hypotheses
(2.33) and ( 1.29) 1 ~ l ~ ",, we obtain that A is included and bounded in

F m+2 x and provided that the compatibility conditions of order m are
satisfied, the convergence to the attractor is achieved with respect to the norm
induced by x F",, .

Appendix

We aim to show that the continuity and boundedness properties (1.27) k
hold in the case of the nonlinear wave equation (1.37). We are given a function
g E C°° (R , R) and we want to prove that the mapping Gk, k &#x3E; 1:

is continuous and bounded from Fk+1 x ... x Fo into itself:

We recall that in the present case

and since n is a regular bounded open set in = 1, 2 or 3,

(A.4) Fk is an algebra for every k &#x3E; 2.

More generally, when f2 is a regular bounded open set in (d arbitrary)
and h E Coo (JR, 1R), the composition mapping: u - h o u is continuous and



508

bounded from H8 (12) into itself as soon as s &#x3E; d/2, 8 eR. Although a direct
proof when BEN (s &#x3E; d/2) can be made possible using FaA di Bruno formula
(A.7) below and Sobolev-Gagliardo-Nirenberg inequalities, the general result
i.e. for 8 &#x3E; d/2, 8 ~ R is proved in [24] using the paradifferential calculus.
Therefore when h ~ 

(A.5) U --+ h o u is continuous and bounded in Fk, t &#x3E; 2.

In order to prove (A.2), we have to show that (ui == (0),

di ’

(A.6)i (A.6)i is {Uo..... Uk+1} -+ dti {g(u(t))} t=o .. , x Fo into Fk+i-;is continuous and bounded from x ... x Fo into 

holds for j = 0,..., k + 1. We first notice that (A.5) shows (A.6)o.
Concerning the cases j &#x3E; 1, we recall that the FaA di Bruno formula (cf. [5]
p. 137) yields .

where the C1 E N are such that

and we have set all the multiplicative constants appearing in the terms in the
right-hand side of (A.7), equal to 1. We have

since p &#x3E; 1, k + p - j &#x3E;_ k + 1 - j and then according to (A.4) and (A.5),
regarding (A.7) we obtain (A.6)~ for j, 1  j  k -1. It remains to study the
two cases j = k and j = k + 1. In the former case, (A.7) reads

The question is whether this function is continuous and bounded with values
in Fl = H1(0). The terms corresponding to p &#x3E; 2 are easy since the uk-p+i
belong to which is an algebra. It remains to study the case p = 1:
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with (A.8). We have C~ E {0,1}. When Ck = 0, all the terms are in H2(~2).
When Ck = 1, then by (A.8), GI = C2 = ... = = 0 and the term reduces
to which obviously define a continuous and bounded function from

x Hl (Q) into Hl(f2). We have shown (A.6)k. Finally we consider the
case j = k + 1, then (A.7) reads

We want to check that this defines a continuous and bounded function with
values in Fo = As before the p &#x3E; 3 terms are easy. When p = 1, we
have to consider

and the worst case is again Ck+1 = 1 : g’(uo)uk+,, which belongs to 
since E L2(Q) and E c H2 (S2) c When p = 2,
we study

with

Here the worst case is 01 = C2 = ... = Ck-, = 0, Ck = 2 i.e.

But uk E c L4(S2), hence is continuous and
bounded from x into £2(0).

ll

Notes.

(1 ) The following properties are well-known in the previous example.

(2 ) In Section 1.2.d we give, in the particular case of nonlinear wave equations, sufficient
conditions which guarantee the well-posedness. More general conditions are given
in details in [8].

(3 ) The smoothness assumption on g can be considerably weakened. In fact it is

sufficient that g satisfies (1.29)k for 1  k  m - 1 as in Theorem 1.2.

(4 ) See Section 2.2.c for the time periodic case.
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