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REGULARITY ON ABELIAN VARIETIES I

GIUSEPPE PARESCHI AND MIHNEA POPA

1. INTRODUCTION

This is the first in a series of papers meant to introduce a notion of regularity
on abelian varieties and more general irregular varieties. This notion, called Mukai
regularity, is based on Mukai’s concept of Fourier transform, and in a very particular
form (called Theta regularity) it parallels and strengthens the usual Castelnuovo-
Mumford regularity with respect to polarizations on abelian varieties. Mukai reg-
ularity turns out to have a large number of applications, ranging from basic prop-
erties of linear series on abelian varieties and defining equations for the ideals of
their subvarieties, to higher dimensional type statements and to a study of special
classes of vector bundles. As a quite surprising example, one obtains statements of
a very classical flavor about the ideals of special subvarieties in Jacobians. Some of
these applications are explained in the present paper, while others, together with
the necessary theoretical refinements, are the subject of the sequels [PP1], [PP2].

Let X be an abelian variety of dimension g over an algebraically closed field.
Denote by X its dual, and let P be a Poincaré line bundle on X x X, properly
normalized. The Fourier-Mukai functor is the derived functor assomated to the
functor which takes a coherent sheaf F on X to S(F) := Pg,.(P%F @ P) on X.
We define Mukai regularity to be a condition on the cohomologies of the derived
complex, weaker than the usual Index Theorem or Weak Index Theorem of [MI].
Concretely, a sheaf F on X will be called Mukai regular, or simply M -regular, if

codim(Supp R'S(F)) > i, Vi > 0.
Recall that a sheaf F is said to satisfy the Index Theorem (I.T.) with index 0 if
R(F®a)=0, ¥acPic®(X), Vi>0;

thus sheaves satisfying I.T. with index 0 are trivially M-regular. The main theme in
what follows is that M-regularity has significant geometric consequences and can be
verified in practice in a variety of situations. As in many other settings, geometric
information is obtained via the global generation of suitably chosen sheaves, as we
will see repeatedly below. This principle takes various forms, and the following is
the main and most commonly used in this paper.

Theorem (M-regularity criterion). Let F be a coherent sheaf and L an invertible
sheaf supported on a subvariety Y of the abelian variety X (possibly X itself). If
both F and L are M -regular as sheaves on X, then F ® L is globally generated.

Received by the editors October 22, 2001 and, in revised form, April 4, 2002.

2000 Mathematics Subject Classification. Primary 14K05; Secondary 14K12, 14H40, 14E05.

The second author was partially supported by a Clay Mathematics Institute Liftoff Fellowship
during the preparation of this paper.

(©2002 American Mathematical Society
285

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



286 G. PARESCHI AND M. POPA

By fixing a polarization © on X, one obtains a corollary which itself provides a
wide range of applications when combined with various vanishing theorems. It is a
generalization of a result on vector bundles proved in [Pal Theorem 2.1]. Loosely
speaking, it is precisely this extension to arbitrary coherent sheaves which allows
one to attack a number of problems related to ideal sheaves or sheaves supported
on subvarieties of X.

Corollary (Theta-regularity criterion). Let F be a coherent sheaf on the polarized
abelian variety (X,0). If F is O-regular, i.e., F(—0©) is M-regular, then F is
globally generated. In particular, if Y is a subvariety of X such that Ty (m®©) is
O-regular, then Ly is cut out by divisors linearly equivalent to mO.

Based on a more refined notion of continuous global generation, we will see in
fact that in the above the stronger fact that Zy is cut out by divisors algebraically
equivalent to (m — 1)© also holds. The corollary above, and other Theta-regularity
results, are collected in §6 in Theorem B3, which can be seen as an abelian analogue
of the well-known Castelnuovo-Mumford Lemma.

The M-regularity criterion is in turn a consequence of the following statement,
which is the main technical result of the paper. The theorem is an extended gen-
eralization of a result on vector bundles appearing in various forms in work of
Mumford, Kempf and Lazarsfeld (cf. [Ke2] or [Ke3|]) and is explained in detail in
[Pa]. The proof makes essential use of the full extent of Mukai’s Fourier transform
methods in a derived category setting.

Theorem. Let F and H be sheaves on X such that F is M -reqular and H is locally
free satisfying I.T. with index 0. Then, for any nonempty Zariski open set U C X,
the map

My : @ HX,F© P) © H(X,Hw PY) ™™ H(X,F © H)
geu
1s surjective, where me denote the multiplication maps on global sections.

Turning to applications, it is interesting to note in the first place that the ap-
parently involved machinery of M-regularity has in fact consequences of a very
elementary nature. The main application of this kind in the present paper is to the
cohomological properties and the equations defining the images Wy of symmetric
products of a curve C in its polarized Jacobian (J(C),®), via Abel-Jacobi map-
pings. The intuitive reason for the need of such methods is that naturally defined
sheaves, like the restriction Ow,(0), are Mukai-regular, while not having better
cohomological properties (cf. §4).

Theorem. For any 1 < d < g — 1, the twisted ideal sheaf is 3-O-regular, more
precisely Tw,(20) satisfies 1.T. with indez 0.

Corollary. For anyl < d < g—1, the ideal Ly, is cut out by divisors algebraically
equivalent to 20. It is also cut out by divisors linearly equivalent to 30.

As far as we are aware, the statement of the corollary seems to be new even in
the case i = 1, i.e., for an Abel-Jacobi embedding of C' in its Jacobian. Another
immediate consequence is an affirmative answer to Conjecture 10.3 in [OP], on the
sections of 20 on symmetric products.

Corollary (Oxbury-Pauly conjecture). In the notation above, the following are
true:
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(1) hO(C?, u30(20)) = L, (%)

(2) uy: H(J(C),0(20)) — H(C4, u%O(20)) is surjective.

In a rather different direction, in combination with Kawamata-Viehweg, Kollar
or Nadel vanishing type theorems (cf. [Lal]), our regularity criteria produce ap-
plications with a higher dimensional flavor. In this paper we take only the first
steps in this direction, by looking at subvarieties of abelian varieties and their finite
covers (but cf. also Remark [5.3)), while a more general study will be developed in
[PP2]. We collect in the following theorem some of the consequences obtained here
(cf. §5 for these and further results).

Theorem. (i) (Finite Albanese maps) LetY be a smooth irregular variety whose
Albanese map is finite onto its image and let L be a big and nef line bundle on
Y. Then ng ® L®? is globally generated. In particular, if Y is in addition a
minimal variety of general type, then wg‘l is globally generated. Moreover, if © is
a polarization on Alb(Y'), then wy ® L ® alby O(O) is globally generated.

(ii) (Generalized Lefschetz Theorem) Under the same hypotheses, w$> @ L®3
is very ample. In particular, if Y is also a minimal variety of general type, then
w{eﬁﬁ s very ample.

(iii) (Relative base point freeness) Let f : Y — X be a proper, surjective
morphism from a smooth variety Y to an abelian variety X, and denote by wy the
canonical line bundle on Y. Then f.wy ® Ox(20) is globally generated, for any
ample divisor © on X.

(iv) (Mumford Lemma for multiplier ideals) Let D be an effective Q-divisor
on a polarized abelian variety (X,0) and let J (D) be its associated multiplier ideal
sheaf. If L is a divisor on X such that L — D is ample, then the sheaf Ox(©+L)®

J (D) is globally generated.

The reader not familiar with the topic will find an explanation of the significance
of (iv) above in §6. Parts (i) and (ii) are based on the fact that wy ® L has an
M-regular (in fact 1.T.0) push-forward to the Albanese variety, which will also
imply that H%(wy ® L) # 0. This answers positively a nonvanishing conjecture of
Kawamata [Ka2] in the case of varieties of this kind (cf. Corollary [BA4)).

As one of the main applications of this theory, the concept of M-regularity
allows for a unified point of view in the study of linear series on abelian varieties
and their subvarieties. Here we discuss first cases of this assertion — for example,
it is interesting to note that the classical Lefschetz and Ohbuchi very ampleness
theorems and the fact that line bundles of degree 2g + 1 or more on curves are very
ample are simply instances of the same phenomenon of producing M-regularity from
numerical hypotheses (cf. §4). This can now be extended to a variety of numerical
statements on arbitrary varieties which can be embedded in abelian varieties (for
instance on Wy’s, to refer to the most direct generalization of the case of curves).

Restricting the present discussion to linear series on abelian varieties, based on
the methods of this paper and those of [Pal, in the sequel [PP1] we will show
among other things the following, improving on the well-known Lefschetz-Ohbuchi-
Mumford-Kempf-Koizumi type results:

Theorem. (i) If L is an ample line bundle on X with M -regularity index m(L),
then L®F+2=m(L) 45 k_jet ample.

(i) If L is an ample line bundle with no base divisor on X, then the ideal of X
is cut out by quadratic equations in the embedding given by L&, k > 3.
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(iii) Under the same hypothesis, the ideal of X is cut out by quadratic and cu-
bic equations in the embedding given by L®? (note that this is an embedding by a
theorem of Ohbuchi).

The M-regularity index is a new invariant introduced in [PP1]; we will not give
the definition here. Note only that if L has no base divisor, then m(L) > 1.
Statements (ii) and (iii) can be extended to arbitrary higher syzygies and also
related to the invariant m(L), improving on a conjecture of Lazarsfeld proved in
[Pa]. In fact it will be seen in [PPI] that essentially all the results on embeddings,
higher order properties and defining equations for multiples of ample line bundles
existing in the literature, plus new results like the theorem above, can be subsumed
in a more general framework depending on these invariants defined via M-regularity.

Finally, it is important to emphasize that some of the underlying ideas in this
work have separately existed in one form or another for quite some time. All our
constructions rely heavily on Mukai’s remarkable theory of the Fourier functor.
On the other hand, it was Kempf who first realized that results in the style of
Theorem 23] provide a theta-group-free approach to statements on linear series,
based on vanishing theorems for vector bundles. The new ingredients brought
in by the present approach are the inclusion of arbitrary coherent sheaves in the
general study, the systematic use of cohomological criteria for the global generation
of such sheaves, and the relaxation of strong vanishing conditions to the weaker
M-regularity, all of which largely extend the range of applications. It is here that
this paper claims its main originality.

The paper is structured as follows. In Section 2 we introduce the basic definitions
and prove the general M-regularity and multiplication criteria. Section 3 is devoted
to a series of examples and first applications. Sections 4 and 5 contain the main
applications of the paper. In Section 4 we study the cohomological properties and
the equations defining the W;’s in Jacobians, including the proof of the Oxbury-
Pauly conjecture. In Section 5 we give various effective results for linear series on
subvarieties of abelian varieties and more general irregular varieties | Finally, in
Section 6 we restrict ourselves to a discussion of Theta regularity, drawing on a
comparison with the usual Castelnuovo-Mumford regularity.

Background and notation. In what follows, unless otherwise specified, X will be
an abelian variety of dimension g over an algebraically closed field. We will always
denote arbitrary coherent sheaves on X with script letters (e.g., F) and locally free
sheaves with straight letters (e.g., F'). Given a line bundle L, we write B(L) for
the base locus of the linear series |L|.

We denote by X the dual abelian variety, which will often be identified with
Pic’(X). Given a point £ € X, by P: e Pic’(X) we understand the corresponding
line bundle via this identification. By P we denote a Poincaré line bundle on X x X ,
normalized such that P|x o) and P|{0}><)? are trivial.

We briefly recall the Fourier-Mukai setting, referring to [M1] for details. To any
coherent sheaf F on X we can associate the sheaf pa, (p1*F®P) on )?, where p; and
p2 are the natural projections on X and X. This correspondence gives a functor
S : Coh(X) — Coh(X). If we denote by D(X) and D(X) the derived categories of

1We have recently found out about the paper [CH] which has, among other things, an overlap
with some of the results of this section.
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Coh(X) and Coh(X), then the derived functor RS : D(X) — D(X) is defined and
called the Fourier functor, and one can consider RS : D(X) — D(X) in a similar
way. Mukai’s main result [M1l, Theorem 2.2] is that RS establishes an equivalence
of categories between D(X) and D(X).

Let R/S(F) be the cohomologies of the derived complex RS(F). A coherent
sheaf F on X satisfies W.LT. (the weak index theorem) with index i if R/S(F) =0
for all j # i. It satisfies the stronger I.T. (the index theorem) with index 4 if
HY(F ® a) = 0 for all @ € Pic’(X) and all i # j. By the base change theorem, in
this situation R/S(F) is locally free. If F satisfies W.IT. with index i, R'S(F) is
denoted by F and is called the Fourier transform of F. Note that then RS(F) =

Fl—i].

2. MUKAI REGULARITY, GLOBAL GENERATION
AND CONTINUOUS GLOBAL GENERATION

Let X be an abelian variety of dimension g. Given a coherent sheaf F on X, we
denote

S*(F) := Supp(R'S(F)).

Definition 2.1. A coherent sheaf F on X is called Mukai-reqular (or simply M-
regular) if codim(S*(F)) > i for any i = 1,..., g (where, for i = g, this means that
S9(F) is empty).

Example 2.2. Sheaves satisfying I.T. with index 0 are the simplest examples of
M-regular sheaves. A first important class is that of ample line bundles on X.

Remark 2.3. From the definition of the Fourier transform we see that there is always
an inclusion S*(F) C Vi(F), where V(F) is the cohomological support locus (cf.
GLl):
VIF) =={ & | h(F® P) # 0} C Pic’(X).
Consequently, M-regularity is achieved if in particular
codim(V{(F)) >i foranyi=1,...,g.
It will be this property that we will usually check in applications.

The key point in what follows is that M-regularity is a cohomological condition
which has significant geometric consequences via the global generation of suitable
sheaves. The main result is the following:

Theorem 2.4. Let F be a coherent sheaf and L an invertible sheaf supported on
a subvariety Y of the abelian variety X (possibly X itself). If both F and L are
M -regular as sheaves on X, then F ® L is globally generated.

The proof of Theorem 2.4] essentially occupies the rest of this section; more pre-
cisely, it is a formal consequence of Proposition and Proposition [2.13] below.
The key technical theorem, for which we will also find independent use in later sec-
tions, generalizes in several ways a result of Mumford-Kempf-Lazarsfeld explained
in [Pal §2].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 2.5. Let F and H be sheaves on X such that F is M -reqular and H is
locally free satisfying I.T. with index 0. Then, for any nonempty Zariski open set
U C X, the map

My @ HX,F© P) © H (X, He PY) ™ H(X,F © H)
geu

is surjective, where the me denote the multiplication maps on global sections.

Proof. Note that when there is no danger of confusion, we will avoid writing explic-
itly the names of the maps involved. The conclusion of the theorem is equivalent
to the injectivity of the dual map:
HYFeH)Y — [[ H(F @ P)" @ H'(H& PY)",
£eu

or, by Serre duality (and the fact that H is locally free), with the injectivity of the
co-multiplication map:

(1) Ext?(F, H") — [[ Hom(H*(F @ P), HY(H" @ P)).
£eu

We will concentrate on showing (). The proof requires the language of derived
categories. Let us first reindex, for technical reasons, RjS(F) by R’j‘SA'(}'), —g <
j < 0. Note also that since H satisfies I.T. with index 0, by Serre duality H"
satisfies I.T with index g, and so HY = RIS (HVY) is locally free. We will freely
identify HV with the one-term complex RS(HY)[g].

Claim 1. There exists a bounded fourth quadrant cohomological spectral sequence

EY = Bxt/(ROS(F), HY) = H™ = Bt (RS(F), HY).

Consider the functors F = Hom(o, ﬁ?) and G = S. We first apply the derived

functor RG to F to obtain an object in D(X). We can then consider a standard
hypercohomology spectral sequence (cf. [Wel 5.7.9 and 10.8.3]:

EY = (R'F)(H'RG(F)) = R F(RG(F)),

where the R?F are the right hyperderived functors of F' (in this case the hyperexts).
This is precisely the sequence in Claim 1. Note that we have reindexed the R’ S (F)
in order to agree with the usual sign convention used for the Hom cochain complex
[Wel, 2.7.4]. The rest of the assertions are clear.

Claim 2. The spectral sequence in Claim 1 induces a natural inclusion

H = Homy, ¢(RS(F), HY) — EY = Hom(R"S(F), HY).
Note that the M-regularity assumption on F guarantees that Ext’(R~7 S (F), E\V)

=0 for i < —j and i > 0, so that the only E%J term such that i + j = 0 is E%.
This implies that

HO' = Homp, 4 (RS(F), HY) = E.

But since we have a fourth quadrant spectral sequence, the differentials coming into
ESO are always zero, so we easily get a chain of inclusions

E¥ c...c EY c EY.
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Claim 3. There is a natural map of O -modules
¢ : Extd(F, H") © O — Hom(R'S(F), H)
such that, for & in a suitable open set V C X, the induced maps on the fibers
9(6) : Ext?(F, H") — Hom(R'S(F), HV)(€)

are the co-multiplication maps in (D).
By Mukai’s duality result [M1l Theorem 2.2], we have

Ext(F, HY) 2= Homp x) (F, H"[g]) = Homp, ¢, (RS(F), RS(HY)[g])

—

= Homp, ¢ (RS(F), HV[g — i(H")]) = Homp, ¢ (RS(F), HY).
We thus get a map at the level of global sections
(2) ® = H(¢) : Ext?(F, HY) — Hom(R°S(F), H),

induced by the spectral sequence map in Claim 2. This can be extended in turn
to a sheaf map as in the statement of the claim (since the first sheaf is the trivial
bundle). It is natural, and not hard to check, that this map coincides with the
above co-multiplication maps at the general point.

Finally, Hom(RS(F), RYS(H")) is a torsion-free sheaf (note that RIS(HY)
is locally free), so it is a standard fact that the injectivity of the map in () is
equivalent to the injectivity of the map ¢ of Claim 3 at the H° level, in other words
that of the map ® in (). This is precisely the statement of Claim 2, and the proof
is completed. ([

Remark 2.6. If in the theorem above we impose the stronger condition that F satisfy
I.T. with index 0, then the argument above shows the degeneration of the spectral
sequence at the Ey level, which implies that the map ® is in fact an isomorphism.

Remark 2.7. For the purposes of the present paper we only need Theorem in
the case when H is an ample line bundle on X. There are, however, interesting
applications of the full statement, for example, to the study of semihomogeneous
vector bundles, which we will describe in [PP2].

Corollary 2.8. Let F and H be as in the previous Atheorem. Then there is a positive
integer N such that for any general &1, ...,En € X, the map
N
P HX,Fo P) e H(X,He PY) =% H(X,F  H)
i=1

18 surjective.

Proof. Let U be an open set of X on which the rank of the map me is constant. The
surjectivity of the map My implies that the family of linear subspaces {Im(m¢) }ecrr
linearly spans the vector space H*(F ® H). But then there is an N such that N
general such subspaces span H(F @ H). O

In the same spirit we have a “preservation of vanishing” statement which will
be used in the subsequent sections to deduce vanishing results from M-regularity
results.

Proposition 2.9. Let F be an M -regular coherent sheaf on X and H a locally free
sheaf satisfying I.T. with index 0. Then F ® H satisfies I.T. with index 0.
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Proof. For an arbitrary a € Pic®(X), since H is locally free we have
HY(F® H®a) 2 Ext'(H® )Y, F).
Applying again Mukai’s duality theorem [MI Theorem 2.2] we get
Ext’((H ® @)Y, F) = Hompx)(H ® )", Fli])
> Homp, ¢, (RS((H ® @)"), RS(F)]i])

= Homp, ¢ ((H ® a)), RS(F)[i + g]) = Ext;r&)(((H ® a)¥),RS(F)).
As in the proof of Theorem[ZF] there is a bounded cohomological spectral sequence
EY =Ext'(H®a)V),R'S(F)) = H't = Ext;r(j)z)(((H ® a)¥),RS(F)).

Note now that the M-regularity assumption on X implies that

Ext'((H® a)V),RIS(F)) =0 fori+j>g,
so in particular E%J = 0 in the same range. This immediately implies that

i+g vy S _ .
EXtD(X)(((H ®a)),RS(F))=0 fori>0

as claimed. 0

The fact that Theorem 23] produces geometric statements is best explained by
introducing the intermediate notion of continuous global generation, which can be in
fact defined on an arbitrary irregular variety. As will be clear from the discussion
below, a good understanding of this concept provides in turn global generation
statements via Proposition

Definition 2.10. Let Y be an irregular variety. We define a sheaf F on Y to be
continuously globally generated if for any nonempty open subset U C Pic® (Y) the
sum of evaluation maps

@Ho(f®a)®ozv — F
acU

is surjective.

Remark 2.11. As in Corollary 28 this is equivalent to the existence of a number N
such that the finite sum of multiplication maps taken over N general line bundles
in Pic’(Y) is surjective. The intuitive significance of this notion comes from the
fact that it models precisely the behavior of line bundles on abelian varieties: the
“continous system” of all divisors algebraically equivalent to a given one on an
abelian variety is “base point free”, i.e., the intersection of all divisors in the class is
empty. Thus continuous global generation is a generalization to arbitrary coherent
sheaves on irregular varieties. Moreover, for line bundles it means precisely the
same as in the case of abelian varieties: the intersection of the divisors in |L ® «
is empty as « varies over an open subset of PicO(Y).

Proposition 2.12. Let Y be a subvariety of an irreqular variety X, F a coherent
sheaf and L a line bundle supported on Y, both continuously globally generated as
sheaves on X. Then F ® L is globally generated.
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Proof. We denote the inclusion of Y in X by 4, but for simplicity we use the same
notation F or L even when we consider them as torsion sheaves on X. We then have
HY(X,F®P¢) 2 H(Y, F®i*P¢) and the analogous statement for L. Consider the
following commutative diagram, obtained by alternating the order of the obvious
evaluation and multiplication maps:

@Y, H(F® P,)@ H(L® PY)® Ox — HO(F ® L) ® Ox

l lf

O, H(FeP,)®La P F®L

where N is chosen so that for general &1,...,&y € PicO(X) the bottom horizontal
map is onto. It follows that the support of Coker(evrgy) is contained in the union
of the base loci B(L®i*PE\Z) onY,for&,...,&n € Pic’(X) general, or equivalently
the loci where L ® ng are not generated by global sections on X individually, since
L has rank at most 1 everywhere. But the continuous global generation condition
implies precisely that the intersection of these loci is empty (cf. also the remark
above), which easily gives that the intersection of such unions is empty. O

Finally the key point, using the new language, is that M-regular sheaves are
always continuously globally generated. More precisely, we have the following;:

Proposition 2.13 (M-regularity implies continuous global generation). If F is
M -regular, then there is a positive integer N such that for general &1,...,En € X,
the sum of twisted evaluation maps

N
PH (FoPr,)0P — F
i=1

18 surjective.

Proof. We apply Theorem 2Blwith H a line bundle, sufficiently ample so that F® H
is globally generated. As in the proof of Proposition[212, consider the commutative
diagram:

DL, HY(F e P,) @ H(H® PY)® Ox — H(F @ H) ® Ox

| J

@O, H(FoP,) 9 Ho P F®H

By Corollary[2.8 and the choice of H, the top-right composition must be surjective,
so the same must hold for the bottom map, which is what we wanted to show. O

3. FIRST EXAMPLES AND APPLICATIONS OF M-REGULARITY

Example 3.1. A line bundle L on a smooth curve C of genus g > 1 is M-regular
(via an Abel-Jacobi embedding C C J(C)) if and only if d = deg L > g¢. Indeed,
the M-regularity of L is equivalent by Riemann-Roch to the fact that Wj ~9t has
codimension at least 2 in Picd(C). But this is easily seen to be equivalent to d > g.
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Example 3.2. More generally, let Wy C J(C) be an Abel-Jacobi embedding given
by the choice of a line bundle of degree d on C, and consider the natural map
g 1 C1 — W,. Let also Ny,... Ny be line bundles of degree ¢ on C, and on Wy
consider the sheaf

F = 7Td*(N1 &@Nd)

Then one can see similarly that F is M-regular as a sheaf on J(C). From Theorem
2.4 and Example B.4] below, one then gets immediately the following

Corollary 3.3. The sheaf F @ Ow,(0) is globally generated on Wy.

This example is of interest in the sense that it is a priori not clear (at least to us)
how to prove this global generation by standard methods. Note that F @ O, ()
is the push-forward of the line bundle (N, X --- K Ng) ® 750(©) on Cy, which is of
the form

[A®@ N K- K (A® Ny O(-A),
where A is a line bundle of degree g+d—1 on C' and A is the union of the diagonal
divisors (cf. §5).

Example 3.4. If O is a theta divisor on the Jacobian of C, then Ow,(©) is M-
regular. This fact will be important in §5. The proof is not immediate, but see
Proposition 44

Linear series — an introduction to [PPI]. In a different direction, our M-
regularity and global generation results provide a unified approach to very ample-
ness (in a first stage) statements on abelian varieties and their subvarieties. We
will need the following standard lemma.

Lemma 3.5. Let L be a line bundle on a variety Y. Then L is very ample if and
only if L ® Z,, is globally generated for all y € Y.

As an immediate consequence of Theorem 2.4 and Lemma B.H, we get:

Corollary 3.6. Let Y be a subvariety of an abelian variety X. Let L and M be
line bundles on'Y such that L is M -regular and M ® 1, is M -regular for ally € Y,
both as sheaves on X. Then L @ M is very ample.

Lemma 3.7. If L is an ample line bundle with no base divisor on an abelian variety
X, then L ® I, is M-regular for any z € X.

Proof. The cohomological support locus V(L ® Z,) is the locus of ¢ € X corre-
sponding to P: € Pic’(X) such that h'(L ® P; ® Z,)) # 0. Since L @ P; ® I, =
t'L®ZT, 2 t:(L®ZI,,) for some v € X, and since h*(L) = 0, this is precisely
isomorphic to the locus where L fails to be globally generated. But now L has no
base divisor, so this implies that V(L ® Z,,) has codimension at least 2. Also the
V(L ® Z,.) are obviously empty for i > 2, so L ® Z,, is M-regular. O

Example 3.8. To give a flavor of the range of applications that can be derived
as consequences of Corollary we explain how some of the most basic facts on
curves and abelian varieties are incorporated in this theory. For the abelian varieties
statements below cf. [LBl Ch.4, §5].

Corollary 3.9. Let X be an abelian variety and C a smooth projective curve.
Then:
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(i) (Lefschetz Theorem) If L is an ample line bundle on X, then L®3 is very
ample.

(ii) (Ohbuchi’s Theorem) If L is an ample line bundle on X with no base diwisor,
then L®? is very ample.

(i) If L is a line bundle of degree at least 2g + 1 on C, then L is very ample.

Proof. By Theorem [3.6] (i) and (ii) follow if we prove that L®? @ Z,., respectively
L ® Z,, are M-regular. But this is a consequence of Lemma [B.7] since in the first
case L®? is globally generated and in the second case L has no base divisor by
assumption. For part (iii) note that a line bundle of degree 2g + 1 on C' can be
written as A ® B, where A has degree g and B has degree > g + 1. By Example
B, A and B(—x) are M-regular for all z € X, and so again by Theorem [2.4] this
implies that A ® B(—xz) is globally generated. O

Remark 3.10. The above corollary is just intended to be an amusing illustration of
the fact that well-known and seemingly unrelated results are in fact realizations of
the same principle. On the other hand, and more importantly, the proof is a toy
version of a general approach, based on the notion of M-regularity, which provides
a unified treatment of essentially all the known geometric and syzygetic statements
on multiples of ample line bundles on abelian varieties, and also produces new basic
statements on higher order properties of such embeddings, projective normality and
defining equations, as explained in the introduction. This is the main topic of the
sequel [PPI] to this paper.

4. THE EQUATIONS DEFINING THE Wj’S IN JACOBIANS
AND A CONJECTURE OF OXBURY AND PAULY

Let C be a smooth curve of genus g > 3, and denote by J(C) the Jacobian of
C'. Let © be a theta divisor on J(C), and let Cy be the d-th symmetric product of
C, for 1 <d<g—1. Consider

uq: Cqg — J(C)

to be an Abel-Jacobi mapping of the symmetric product (depending on the choice
of a line bundle of degree d on C), and denote by W, the image of uq in J(C).
In this section we show how the methods developed in this paper allow one to
understand the “regularity” of the ideal sheaf Zyy, (cf. §6 for the precise meaning
of this). This gives a positive answer to a conjecture of Oxbury and Pauly [OP]
(cf. Corollary below) and bounds in turn the degrees of the Theta-equations
defining Wy in J(C).

Theorem 4.1. For any 1 < d < g — 1, the twisted ideal sheaf Ty, (20) satisfies
L.T. with index 0.

A first application of this result is to defining equations. One would like to know
what multiples of © cut out the ideal of Wy in J(C), in other words for what m
the sheaf Zy, @ O;(mO) is globally generated (or better, continuously globally
generated). The answer to this question turns out to be independent of d, namely:

Corollary 4.2. For any 1 < d < g — 1, the ideal Ty, is cut out by divisors
algebraically equivalent to 20. Moreover, Iy, is also cut out by divisors linearly
equivalent to 30.
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Proof. The first statement means precisely that Zyy, (20) is continuously globally
generated. But this follows immediately from Proposition ZT3] since by Theorem
BT Zw, (20) satisfies I.T. with index 0, hence it is M-regular. On the other hand,
by Theorem [2.4] this implies that Zyw, (30) is globally generated, which gives the
second statement. (]

As mentioned above, Theorem B:1] also gives an affirmative answer to Conjecture
10.3 in [OP], stated there in the slightly more restrictive case when © = 0, where
k is a theta-characteristic on C'.

Corollary 4.3 (Oxbury-Pauly conjecture). In the notation above the following are
true:

(1) KO(C, w50(20)) = B, (9).

(2) uj: HO(J(C),0(20)) — H°(C?, u;0(20)) is surjective.
Proof. Both statements follow immediately from the vanishing of hi(Zy, ® O(20))
for all 4 > 0, combined with the computation of x(u50(20)) given in [OP, Proposi-
tion 10.1(3)]. But this vanishing (together with that for any other translate) means
precisely that Zy, (20) satisfies I.T. with index 0, as stated in Theorem @Il O

A key step in the proof of Theorem H.1l is the following (cf. also Example 3.4):

Proposition 4.4. (i) The sheaf Ow,(0) is M-regular on J(C').
(i) We have h®(Wy, Ow,(©) @ P¢) =1 for £ € Pic’(J(C)) generic.

Proof. We will prove the two statements at the same time, by computing explicitly
the corresponding cohomology groups. The Abel-Jacobi map has projective spaces
as fibers, so the vanishings we are interested in follow as soon as we prove them
after pulling back via ug. We are then interested in computing the cohomology
groups
H(Cq,ujO(©) @ ujPe), ¥ € € Pic’(J(C)).

For this we appeal to the technical results proved in [Iz, Appendix 3.1], which we
use freely below. If we denote by 74 : C¢ — J(C) the corresponding desymmetrized
Abel-Jacobi map, we have:

T5O0) 2 (AR --- K A) ® O(-A),

where A is the union of all the diagonal divisors in C? and A is a line bundle of
degree g + d — 1. We then have the identification:

Hi(uj0(0) @ ujPe) = S'HY(C,A® &) @ N""H(C, A® €),

obtained as the skew-symmetric part of the cohomology group H*((A®&)®¢) under
the action of S3. Now we only have to compute the loci on which these cohomology
groups do not vanish, for each 0 < ¢ < d. Since £ is a general line bundle on C of
degree 0, A ® & is a general line bundle of degree g + d — 1. Thus statement (ii)
follows immediately, since H'(C, A ® &) = 0 and so

H(C,A®¢) =d.

On the other hand, for i > 0, if H(u;0(0) ® u}P) is nonzero, then h'(A ® &) =
hO(we ® A7 @ €71) # 0. This locus is isomorphic to Wy_4—1, and so it is of
codimension d + 1, which gives (i). O
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Proof of Theorem [{.1] From the standard cohomology sequence associated to the
exact sequence

0 — Zw,(20) — 0;(0)(20) — Ow,(20) — 0,

we see that the theorem follows as soon as we prove the following two statements,
where this time for simplicity we denote by © any of its translates:

o H{(Ow,(20)) =0, Vi>0.

e The restriction map H°(O ;) (20)) — H°(Ow,(20)) is surjective.

The first statement means precisely that Oy, (20) satisfies I.T. with index 0, which
follows immediately from Proposition Z4Yi) and Proposition 29
For the second statement we will appeal directly to Theorem [235] Note that for

—

any open subset U € J(C) we have a commutative diagram as follows, where the
vertical maps are the natural restrictions.

Becv H(O5(c)(0¢)) @ H(O () (0-¢)) —— HY(O(¢(20))

| |

Decv H°(Ow,(09¢)) ® H*(O1(c)(0-¢)) —— H(Ow,(20))

Now Theorem [2.5] says that the bottom horizontal map is surjective. On the other
hand, by Propositiond4(ii) we can choose the open set U such that the left vertical
map is an isomorphism. (Note that we cannot include all the translates ©¢ such
that h°(Ow, (O¢)) = 1, but certainly those that satisfy this property plus the fact
that Wy is not contained in ©¢.) This in turn implies that the right vertical map
is surjective, which is precisely our statement. O

5. APPLICATIONS VIA VANISHING THEOREMS

In combination with various vanishing theorems, like those of Kawamata-
Viehweg, Kolldr or Nadel, the M-regularity criterion produces effective geomet-
ric results on linear series and special coherent sheaves on subvarieties of abelian
varieties and more general irregular varieties, in the spirit of [Ko2]. We assume
here that we are working over a field of characteristic zero. In all the applications
below, M-regularity will be satisfied in the strong form of I.T. with index 0.

Effective global generation and very ampleness. The following result treats
the case of (finite covers of) subvarieties of abelian varieties (but see also Remark
below).

Theorem 5.1. (i) Let Y be a smooth irreqular variety whose Albanese map is finite
onto its image and let L be a big and nef line bundle on Y. Then w%?Q ® L®? s
globally generated. In particular, if Y is in addition a minimal variety of general
type, then w§4 s globally generated.

(ii) Under the same hypotheses, wg?’ ® L®3 is very ample. In particular, if Y is

also a minimal variety of general type, then w{eﬁﬁ is very ample.

Proof. (1) By Proposition 212, the result follows if we prove that wy ® L is con-
tinuously globally generated. As with global generation, it is easy to see that the
continuous global generation of wy ® L is implied by that of alby , (wy ® L), since
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alby is finite. The Kawamata-Viehweg vanishing theorem on Y, and again the fact
that alby is finite, imply that

hi(alby, (wy®L)®a) = h(wy ®L@a) = 0, ¥i > 0, ¥ a € Pic’(Y) = Pic’(Alb(Y)).

This means that alby, (wy ® L) satisfies I.T. with index 0, hence it is continuously
globally generated by Proposition 213

(ii) By Lemma B35 Proposition and the fact that wy ® L is continuously
globally generated, it would be enough to show that w%?Q ® L®2?® 1T, is continuously
globally generated for all y € Y. As above, this is implied by the same statement for
the push-forward to Alb(Y), which in turn follows as long as alby, (w$? ® L®2®1Z,)
satisfies I.T. with index 0. But this is immediate, since as wy ® L is continuously
globally generated, it is nef and so wy ® L®? is big and nef. Consequently,

H(W?e LT, ®a)=0

(for all o € Pic’(Y)), trivially for i > 2, and because of the global generation of
(deformations of) wi? @ L®? for i = 1. O

Remark 5.2. The result above can be stated more generally for Gorenstein varieties
with rational singularities, on which the vanishing theorem still applies.

Remark 5.3. Although we have preferred to state the result above in the most
compact form, it is important to mention that the same statments hold (and with
essentially the same argument) in the more naturally occurring situation of varieties
of maximal Albanese dimension, at least outside the exceptional loci, i.e., outside
the higher dimensional fibers of the generically finite Albanese map.

The point in the above is that given a big and nef line bundle L on an irregular
variety Y with finite Albanese map, wy ® L is continuously globally generated. This
implies in particular both that it is nef and that it has global sections. Consequently
this gives a positive answer to Kawamata’s nonvanishing conjecture [Ka2] on vari-
eties of this kind (note that the nefness hypothesis in the conjecture is superfluous
in this case).

Corollary 5.4. Let Y be a smooth irreqular variety with finite Albanese map and
let L be a big and nef line bundle on' Y. Then H°(wy ® L) # 0.

The proof of Theorem [G.1] produces also a similar result depending this time on
a fixed arbitrary polarization on the target abelian variety.

Proposition 5.5. Let f : Y — X be a finite morphism from a projective variety
to a polarized abelian variety (X,©), and let F be a coherent sheaf on' Y. If f.F is
M -regular, then F ® f*Ox(0) is globally generated. In particular, if Y is smooth
and L is big and nef on Y, then wy ® L ® f*Ox(0©) is globally generated and
wg@ ® L®? ® f*Ox(0) is very ample, where © is an arbitrary polarization on X.

On a slightly different note, Fujita’s problem on the global generation of adjoint
bundles has a relative version, which we learned of from [KaTl]. Since on abelian
varieties the square of an ample line bundle is always globally generated, it is natural
to ask whether there is an analogous uniform statement in the relative setting. This
again follows quickly from Theorem 241

Proposition 5.6. Let f : Y — X be a proper, surjective morphism from a smooth
variety Y to an abelian variety X, and denote by wy the canonical line bundle on
Y. Then f.wy ® Ox(20) is globally generated, for any ample divisor © on X.
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Proof. This follows from Theorem [Z4] via a special case of Kollar’s theorem on
direct images of dualizing sheaves [Kol|], which states that

hi(fiwy ® L) =0, Vi > 0,

for any ample line bundle L on X. U

An optimal Mumford type lemma for multiplier ideals. Vanishing theorems
for coherent sheaves often lead to global generation statements via the Castelnuovo-
Mumford Lemma (cf. §6). In particular, a general such statement for multiplier
ideal sheaves is getting to be known as Mumford’s Lemma. This has found some
very important applications, for example, in Siu’s proof of the deformation invari-
ance of plurigenera or to Fujita type statements on the volume of big divisors (cf.
[Lall §4.3] for a general discussion). We show here that on abelian varieties one
can do substantially better: the analogy to keep in mind is the difference between
the general Fujita type statements and the best possible global generation bounds
on abelian varieties (like the global generation of Ox (20)). For the general theory
of multiplier ideals we refer the reader to [Lall.

Let D be an effective Q-divisor on X and denote by J(D) the associated mul-
tiplier ideal sheaf.

Proposition 5.7. If L is a divisor on X such that L — D is ample, then the sheaf
Ox(©+ L) ® J(D) is globally generated.

Proof. By Theorem 24 it is sufficient to have the vanishing:
R(Ox(L)® J(D)®a)=0, Vi>0, VY ac Pic(X).

Now by assumption Ox (L — D) ® « is ample (and of course wx = Ox), so this
follows from the Nadel vanishing theorem (cf. [Lall Theorem 4.6]. O

Although not in direct relationship with our criterion, in order to complete the
picture we note also that the abelian varieties variant of the nonvanishing theorem
for multiplier ideals [Lall, §4.3] holds in a very strong form.

Proposition 5.8. Under the assumptions of Proposition [5.7]
H°(Ox(L) ® J(D)) # 0.

Proof. Since Ox(L — D) ® a is ample for all a € Pic’(X), the Nadel vanishing
theorem implies that Ox (L) ® J(D) satisfies I.T. with index 0. By Proposition
it is then continuously globally generated, so it has sections. O

One can formulate analogous statements for multiplier ideals of QQ-divisors on
smooth subvarieties of abelian varieties. One such version, whose proof is essentially
that of Proposition 5.7 together with Proposition ZT2] can be stated as follows:

Proposition 5.9. Let Y be a smooth subvariety of X and D an effective Q-divisor
on Y. Assume that L is a divisor such that L — D is big and nef, and M is a
continuously globally generated divisor on Y. Then the sheaf

Oy(Ky +L+M)® J(D)

is globally generated.
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6. THETA REGULARITY AND AN “ABELIAN” CASTELNUOVO-MUMFORD LEMMA

The notion of M-regularity might not be an a priori obvious analogue of the usual
notion of regularity on projective spaces. There is however a particular instance of
the general theory, depending on a fixed polarization ©, which is more intuitive and
is already responsible for some of the applications above. We will call this Theta
reqularity in what follows. The point of this section is to see that the theory of Theta
regularity is strikingly similar to the theory of Castelnuovo-Mumford regularity for
coherent sheaves on (subvarieties of) projective spaces.

Definition 6.1. A coherent sheaf F on a polarized abelian variety (X, ©) is called
m-0-regular if F((m — 1)0) is M-regular. If F is 0-O-regular, we will simply call
it ©-regular.

Example 6.2. Many of the results of the previous two sections can be phrased in
the language of Theta regularity. For example, O, is 2-O-regular, while Theorem
K] implies that Zy, is 3-O-regular.

We collect in the following theorem a number of results which show the simi-
larity mentioned above. This can be considered a Theta-regularity version of the
Castelnuovo-Mumford Lemma. For the usual Castelnuovo-Mumford Lemma cf.,
e.g., [Mu3, Lecture 14].

Theorem 6.3. Let F be a O-regular coherent sheaf on X. Then:

(1) F is globally generated.

(2) F is m-O-regular for any m > 1.

(3) The multiplication map

H°(F(©)) @ H'(O(k©)) — H°(F((k +1)0))

is surjective for any k > 2.
Proof. Part (1) is a particular case of Theorem [2.4] while (2) follows immediately
from Proposition 29 as O(0) satisfies I.T. with index 0. For (3) note that, for any
open subset U C X , we have a commutative diagram

Becv H'(F(=0) @ Pe) @ H°(Ox(20) @ PY) @ H°(Ox (k©)) —— HO(F(©)) ® HO(Ox (kO))

| |

Decv HO(F(=0) ® Pe) ® H(Ox ((k +2)0) ® PY) —————— HY(F((k + 1)0))

Now the left vertical map is surjective if U is chosen such that Ohbuchi’s projective
normality theorem (cf. [OL]) applies for any £ € U. In addition, since F(—0) is
assumed to be M-regular, the bottom horizontal map is also surjective by Theorem
B.5. This implies that the right vertical map is surjective. U

Remark 6.4. The numerical analogy with Castelnuovo-Mumford regularity is not
perfect in part (3) of Theorem 6.3} Tt is easy to see though that the statement in
(3) is optimal, as it follows, for example, by considering F equal to O(20) (when
we cannot make k = 1). This particular choice also shows that this “abelian”
Castelnuovo-Mumford statement contains the well-known Mumford type projec-
tive normality results for multiples of ample line bundles (cf. [Mu2]). Note also
that in this form part (3) generalizes to Theta-regular coherent sheaves a weaker
statement about locally free sheaves satisfying I.T. with index 0, which follows as
a consequence of [Pal Theorem 3.8].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY ON ABELIAN VARIETIES I 301

Bounds on O-regularity in terms of defining equations. The Castelnuovo-
Mumford regularity of a subvariety in projective space is a measure of the com-
plexity of the computations involving its ideal (cf., e.g., [BM]). It is natural to ask
for bounds on this invariant in terms of the degrees of defining equations for the
subvariety. This has been optimally achieved for smooth subvarieties of projective
spaces in [BEL]. Completely similar arguments (which we will not repeat here) can
be used to give a bound on the O-regularity of a smooth subvariety of an abelian
variety in terms of the degrees of its pluritheta generators. This can be quite nat-
urally seen as a converse of the cohomological global generation criterion Theorem
B-3(1) in the case of ideal sheaves of smooth subvarieties.

Theorem 6.5. Let Y be a codimension e smooth subvariety of the polarized abelian
variety (X,0), and assume that the ideal of Y in X is cut out by dO-equations
(i.e., the sheaf Ty @ Ox (dO) is globally generated). Then Iy is ed-O-regular, more
precisely, Ty @ Ox ((ed+1)©) satisfies I. T. with index 0. Moreover, the ©-regularity
of Ly is precisely ed if and only if Y is a complete intersection of d©-hypersurfaces
in X.

Theorem also has a more general version, where the degrees of the defining
O-equations are allowed to vary, along the lines of [BEI], Corollary 4].
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