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Regularity properties lie at the core of variational analysis because of their

importance for stability analysis of optimisation and variational problems, constraint

qualifications, qualification conditions in coderivative and subdifferential calculus and

convergence analysis of numerical algorithms [3–5, 7, 21, 23]. The thesis is devoted to

investigation of several research questions related to regularity properties in variational

analysis and their applications in convergence analysis and optimisation.

Following the works by Kruger [13, 14], we examine several useful regularity

properties of collections of sets in both linear and Hölder-type settings and establish

their characterisations and relationships to regularity properties of set-valued mappings

[16, 17].

Following the recent publications by Lewis et al. [19, 20], Drusvyatskiy et al. [6]

and some others, we study application of the uniform regularity and related properties

of collections of sets to alternating projections for solving nonconvex feasibility

problems and compare existing results on this topic [15, 18, 22].

Motivated by Ioffe [8] and his subsequent publications [9–11], we use the classical

iteration scheme going back to Banach, Schauder, Lyusternik and Graves to establish

criteria for regularity properties of set-valued mappings and compare this approach

with the one based on the Ekeland variational principle [12].

Finally, following the recent works by Anh and Khanh [1] on stability analysis

for optimisation-related problems, we investigate calmness of set-valued solution

mappings of variational problems [2].
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