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REGULARITY PROPERTIES OF SOLUTIONS TO THE
BASIC PROBLEM IN THE CALCULUS OF VARIATIONS

BY
F. H. CLARKE1 AND R. B. VINTER

ABSTRACT. This paper concerns the basic problem in the calculus of varia-
tions: minimize a functional J defined by

J(x) =  /   L(t,x(t),x(t))dt
Jo

over a class of arcs x whose values at a and b have been specified.
Existence theory provides rather weak conditions under which the problem

has a solution in the class of absolutely continuous arcs, conditions which must
be strengthened in order that the standard necessary conditions apply. The
question arises: What necessary conditions hold merely under hypotheses of
existence theory, say the classical Tonelli conditions? It is shown that, given a
solution x, there exists a relatively open subset f! of [a,b], of full measure, on
which x is locally Lipschitz and satisfies a form of the Euler-Lagrange equation.

The main theorem, of which this is a corollary, can also be used in con-
junction with various classes of additional hypotheses to deduce the global
smoothness of solutions. Three such classes are identified, and results of Bern-
stein, Tonelli, and Morrey are extended. One of these classes is of a novel
nature, and its study implies the new result that when L is independent of t,
the solution has essentially bounded derivative.

1. Introduction. The basic problem in the calculus of variations, which we
denote by (P), is that of minimizing the functional J defined by

J(x) :=  /   L{t,x{t),x(t))dt
Ja

over a given class of functions x, assuming given values at a and b: x(a) = A, x(b) —
B. (Here L is a function from [a, b] x Rn x Rn to R, and x signifies the derivative
of x.) It has been studied now for almost three hundred years.

One of the fundamental issues that was broached relatively late is that of exis-
tence: under what hypotheses on L, and within what class of functions x, can one
be assured that a solution exists? It was Tonelli, in work that also had great signif-
icance in several areas of functional analyis, who was able to develop a satisfactory
existence theory. Let us suppose that L is C2, the function v —> L(t,x,v) satisfies
globally Lvv > 0 for all (t,x), and the following coercivity condition holds:

L{t,x,v) > ß\v\2 + A    for all (í,x,u),
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7-1 F. H. CLARKE AND R. B. VINTER

where ß is a positive constant. (We refer to these as the classical Tonelli hypotheses,
although we have strengthened his slightly for ease of presentation.) Tonelli's cel-
ebrated existence theorem asserts that under these hypotheses, and with the class
of competing functions taken to be the absolutely continuous functions mapping
[a, b\ to Rn (we call such functions arcs for short), a solution to (P) exists. The
gamut of existence results for (P), including refinements and extensions of Tonelli's
is presented in [3, Chapters 11-16].

Much of the attention in the calculus of variations has been devoted to necessary
conditions for optimality, the best known of which is the Euler-Lagrange equation
(strong form):

(1.1) Lv{t,x{t),x{t)) — c + /   Lx(s,x(s),x(s))ds    a.e., a < t < b.
Ja

One finds however that the customary derivations of necessary conditions such as
this have imposed additional hypotheses, notably:

(a) an a priori assumption that x belongs to some special subclass of arcs (e.g.,
the piecewise-smooth functions of the classical calculus of variations, or arcs having
essentially bounded derivative; see for example [2-4]), or

(b) a priori growth conditions on L of the form

(1.2) |£»| + |£„|<c|L| + *
(also invoked in optimal control theory; see for example [7, 10, 12]).

The fact is that hypotheses of both these types can fail to be satisfied for very
reasonable-looking problems satisfying the Tonelli conditions (as in the example of
[9] in which L is a polynomial).

A natural question then, and the first that we address in this article, is to ask
what necessary conditions hold under strictly those assumptions guaranteeing the
existence of a solution (for example, the classical Tonelli hypotheses).

Tonelli was not insensible to this issue. Under the classical hypotheses he proved
[14] that when n = 1 (i.e., in the case of a single unknown function) and Lvv is
everywhere strictly positive, then there is an open set VI in [a, b] of full measure
such that in fi the solution x is C2 and satisfies

(1.3) jtLv{t, x{t), x(i)) = Lx{t, x{t),x{t)).

(We refer to this as Tonelli's regularity theorem.) Note that (1.3) is strictly weaker
than (1.1) (since, in general, we cannot integrate (1.3)).

The first object of this article is to obtain regularity properties and necessary
conditions for solutions to (P) in the vector case (n > 1), and under hypotheses
considerably weaker than the classical ones of Tonelli. This is done in Theorem 2.1,
where we find that progressively more can be said about x as the hypotheses on
L accumulate until we find as an extreme case the one we have labelled Tonelli's
regularity theorem (see Corollary 3).

As implied above, the question of whether the stronger condition (1.1) holds is
closely related to that of regularity of solutions: when can we assert that the solution
x to (P) lies in certain desirable subclasses of arcs and, in so doing, obtain stronger
necessary conditions? If, for example, x is essentially bounded (i.e., x is Lipschitz
continuous) then (as is well known) under the classical Tonelli hypotheses x is C
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THE BASIC PROBLEM IN THE CALCULUS OF VARIATIONS 75

and satisfies (1.1). This is proven, for example, in [3, §2.6], together with other
results in this vein, and some counterexamples are provided in different contexts in
which the solution turns out to be neither Lipschitz nor smooth.

The complexity of these issues is illustrated by the Lavrentiev phenomenon (see
[3, §18.5]) in which the minimum in (P) (over all feasible arcs) can be strictly less
than the infimum taken over feasible arcs having essentially bounded derivative.
In [3, §18.4] conditions due to T. S. Angelí are given which guarantee sufficiently
strong approximation properties to exclude the Lavrentiev phenomenon. These
results, which subsume earlier ones of Tonelli and Mania, hinge upon a hypothesis
called Condition (D) by Cesari and Suryanarayana, which also plays a key role in
a large class of existence theorems (see [3, Chapter 13]).

The second object of this article is to explore the nature of additional hypotheses
upon the problem which would serve to exclude (or limit) bad behaviour of the
solution x. Of special interest are hypotheses which exclude points of bad behaviour
of x (i.e., points at which x is not locally Lipschitz) altogether and which therefore
assure validity of the strong form of the Euler-Lagrange equation (1.1). Several sets
of hypotheses of this nature are given. In each case the regularity of x on an open
set of full measure, established in Theorem 2.1, plays a decisive part in improving
known results and in generating new ones.

First we show that points of bad behaviour can occur only at one endpoint of
[a,b] or the other, depending on whether t —> Lt(i,x(i),x(i)) is bounded above or
below by a summable function. We deduce as a consequence of these properties the
striking, new result that in a nonsmooth vector setting, merely under hypotheses
HI -H3, autonomous problems cannot give rise to points of bad behaviour, and,
hence, solutions are globally Lipschitz and satisfy the Euler-Lagrange equation in
strong form (1.1).

We then consider how Theorem 2.1 can be used to weaken growth conditions
of the type (1.2), under which points of bad behaviour cannot occur. Tonelli, in
the smooth, scalar case, has shown that the bound on Lv can be discarded. We
generalize Tonelli's result to apply in a nonsmooth, vector setting and weaken,
somewhat, the restrictions on Lx.

We next turn to hypotheses expressed in terms of growth assumptions on F =
L~v\Lx — Lvt — Lvx) as a function of v. Tonelli established in the scalar case that
points of bad behaviour cannot occur under hypotheses considered by Bernstein in
which the growth of F is restricted to be at most quadratic. This, and a little bit
more, is shown to be true also in a vector setting.

Finally, on this topic we present a novel technique which leads to information
concerning regularity of x when F is merely polynomially bounded. Such a con-
dition alone cannot be expected to exclude points of bad behaviour; indeed the
example of [9] exhibiting such a point satisfies the condition. However, we can
exclude them first when the Lagrangian is sufficiently close to a certain class of
well-behaved Lagrangians, and second when the interval of integration is suitably
small.

Note that each set of hypotheses in §3 which serves to exclude points of bad
behaviour ensures that any absolutely continuous arc which is minimizing is actually
Lipschitz and therefore excludes also the Lavrentiev phenomenon.
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76 F. H. CLARKE AND R. B. VINTER

We conclude this introduction with a word regarding hypotheses and methodol-
ogy. We impose the following conditions:

(HI) The function (£, x, v) —» L(t, x, v) is locally bounded on [a, b]xRnx
Rn, measurable as a function t, and convex as a function of v.

(H2) L is locally Lipschitz in (x, v) (uniformly in i); i.e., for each bounded
subset C of Rn X Rn, there exists a constant K such that, for all
(xi,vi), (x2,«2) m C, for all t in [a,b], one has

\L{t,xi,vi) - L(t,x2,v2)\ < K\{xi -x2,t>i — ̂ 2)!-

(H3) There is a constant a and a convex function 6 : [0,00) —» R such
that L(t,x,v) > -a\x\ + 0{\v\) for all {t,x,v) in [a,b] x Rn x Rn,
where 0{r)/r —> 00 as r —► 00.

It is easy to see that (H1)-(H3) extend the classical Tonelli hypotheses; in partic-
ular, it is not necessary that L be differentiable. This is not done merely in quest
of the greatest generality, but rather because the methods and techniques of non-
smooth analysis and optimization [7] are central to our approach. Thus, nonsmooth
analysis would remain an intrinsic part of the proof of Theorem 1, for example, even
if L were presumed to satisfy the classical Tonelli hypotheses. We remark that the
construction of an auxiliary Lagrangian with the requisite properties in that proof,
if one were constrained to smooth functions, is quite problematic and may have
posed the chief obstacle to treating the vector case (n > 1).

The reader whose interest lies in the results as they pertain to smooth contexts
need of course not be concerned with the methodology. To follow all the details,
however, it is necessary to have some familiarity with the generalized gradient df
of a (not necessarily differentiable) function /. We refer to [7] (or [5, 6]) for an
introduction to this topic.

2. The regularity theorem.
2.1. Statement of the result. We deal throughout this section with the basic

variational problem (P) under hypotheses (H1)-(H3).

THEOREM 2.1. A solution x(-) to (P) exists. Let t be any point in the interval
[a, b] for which

,n ,\ i-     •   e       \xis) - ^(*)l(2.1) hminf     J-V-r^ < °°-
v     ; s,t-r \s-t\

a<s<T<t<b
s^t

Then:
(i) There is an interval I which is a neighborhood of r in [a, b] in which the arc

x is Lipschitz and satisfies the Euler-Lagrange inclusion; i.e., there is an arc p
defined in I such that for almost all t in I one has

(2.2) (p(t),p(t))GdL(t,x(t),x(t)).
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THE BASIC PROBLEM IN THE CALCULUS OF VARIATIONS 77

(ii) //, in addition, for each t in [a, b] and w in Rn the function v —> L(t, x(t), v)
is strictly convex and the function s —► L(s,x(t),w) is continuous at t, then x is
C1 in I.

(iii) // in addition to the hypotheses of (ii), for each t in \a,b] the function L
is Cr (in all its arguments, r > 2) near (t,x(t),x(t)), and Lvv(t,x(t),x(t)) > 0
(positive definite), then x is Cr in I.

(When r is either a or 6, the term C1 may require explanation. We say x is C1
on [a, a + e), for example, when x is C1 on (a, a + e) and x(t) tends to a finite limit
as t decreases to a.)

We pause to make a few remarks about the theorem before turning to its proof.
Since x() is absolutely continuous, and so differentiable a.e., it follows that those
points r (if any) at which the mild condition (2.1) fails, form a set of zero measure.
In consequence:

COROLLARY 1. There is a set fi open in \a,b] and of full measure in which x
is locally bounded.

Of course, a great deal of interest resides in the question of how large or small
fi must be. The example of [9] confirms that under hypotheses (H1)-(H3) it is
possible for the solution arc x to have unbounded derivative (so that necessarily fi
cannot include all of [a, b}). In §3 we develop, among other things, various additional
hypotheses in the presence of which we can assert fi = [a, £>].

A word about the differential inclusion (2.2) is in order. The generalized gradient
dL is taken with respect to the (x, v) variables (for each i). If L happens to be C1
in these variables, then (2.2) implies that almost everywhere in / one has

^-VvL(t,x(t),x(t)) = VxL(t,x(t),x(t)),
at

the familiar form of the Euler-Lagrange equation. Necessary conditions for prob-
lems with nonsmooth data play an essential role in the proof of the theorem, regard-
less of whether the Lagrangian L is smooth or not. A discussion of such necessary
conditions and the underlying nonsmooth calculus appears in Chapter 1 of [7].

In the presence of strict convexity, one of the conclusions of the theorem may be
recast as follows:

COROLLARY 2. Let L satisfy the hypotheses o/ (ii). Then for any t in [a,b] one
has

,„,,                         r    . r\x(s)-x(t)\     ..           |x(s)-x(í)|(2.3) hm inf J—V-r^ = lim sup —V-r^
\s — t\ \s - t\

(where the limits are taken as in (2.1)).

This is easy to see, for if the left side of (2.3) is finite, then the theorem asserts
that x() is C1 near r, which implies equality (2.3), while if the left side of (2.3) is
+00, then equality holds automatically.

When there is a single dependent variable (i.e., n = 1), the case considered by
Tonelli, (2.3) lends itself to the interpretation that x(-) is everywhere differentiable
in an extended sense. The following is Tonelli's result captured under greatly
reduced hypotheses:
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78 F. H. CLARKE AND R. B. VINTER

COROLLARY 3. If n = 1 and L satisfies the hypotheses of (ii), then x(-) is
differentiable everywhere in [a,b], in the sense that the following limit exists (finite
or infinite) for each r in \a,b}:

(2.4) lim   îWzfW.
^       ' t-*r t - T

a<t<b

PROOF. If r is such that the left side of (2.1) is finite, then by the theorem x is
C1 near r, whence the limit above exists (and is finite). When the left side of (2.1)
is +00 and r — a, the limit (2.4) could only fail to exist if one had

,„., .. x(t) - x(a) ,.    .  .x(t)-x(a)
(2.5) limsup-^-— = +00,     hminf-^-— = -oo.

t|a t — O t\a t — a

But if (2.5) holds, there are points t distinct from, but arbitrarily near, a for which
x(t) = x(a), whence the left side of (2.1) is finite, a contradiction. The case t — b
is similar.

We are left then with the case in which t lies in (a, 6) and the left side of (2.1)
is +00. It follows (from reasoning as above) that the phenomenon to be ruled out
is that
/■« „\                     ,•    x(t) - x(t)                  ,.    x(s) - x(r)2.6 lim-^-— =+oo,     hm-^-— = -oo

tÍT t — T s]r S — T

(or the opposite, which is handled similarly). (The situation (2.6) is like that
of the cusp at zero of the function r —> [r)1/2.) Fix any c > 0. We assert the
existence of 6 > 0 with the following property: for any value r in (0,6), there
is a point s in (r — e,r) such that x(s) = x(r) + r (for if not, the intermediate
value property applied to x yields x(s) < x(r) for s in (r — e,r), contradicting
the second condition of (2.6)). By the same reasoning there is a point t lying in
(t,t + e) and some r in (0,6) for which x(t) = x(r) + r (for otherwise we would
have limsup£iT(x(£) — x(r))/(t — t) < 0, contradicting the first condition of (2.6)).
Pick s, t, and r as above. Then x(s) = x(t) and \s —1\ < 2e. Since e is arbitrary, it
follows that the left side of (2.1) is zero, a contradiction. G

The proof of the theorem will also show:

COROLLARY 4. If x is merely assumed to be a strong local solution to (P) (i.e.,
relative to arcs y satisfying ||x — y\\ < e for some s > 0), then conclusions (i)-(iii)
of the theorem remain valid for any r satisfying (2.1).

2.2. Some reductions to simpler cases. We begin by asserting that there is
no loss of generality in assuming that the function 6 in (H3) is nondecreasing on
[0, oo). For suppose this is not initially the case. From the growth and convexity
of 6 there exists r$ > 0 such that 6 is nondecreasing on [ro,oo), and such that
max{0(r) : 0 < r < r0} = 0(r0). Define a new function 6 via

0(r) := max[e(r),6(r0)} - 9(r0) + min{0(s) : 0 < s < r0}.

Because pointwise maxima of convex functions are convex, 9 continues to satisfy
the conditions of (H3) (note 9 < 9) and, in addition, is nondecreasing. We are
therefore content to prove the theorem under the additional hypothesis:

(H4) 6 is nondecreasing on [0, oo).
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THE BASIC PROBLEM IN THE CALCULUS OF VARIATIONS 79

The existence of a solution x to (P) follows from existence results that are now
standard (see for example [7, Theorem 4.1.3]); note that (HI) and (H2) play the role
of guaranteeing that there is at least one admissible arc y for which the functional

J(y):= f L(t,y(t),y(t))dt
Ja

is finite (e.g., take y(t) = A+(t- a)(B - A)/(b - a)).
Let r be the point in the statement of Theorem 2.1. Then there are sequences

Sj and ti converging to r, with a < st < r < tt < b, st ^ í¿, such that

(2.7) Um XM^M =: ,,
i—»oo *i — Si

where z is a point in Rn. Note that if (for example) we have r > a, then we can
arrange to have Si < t while preserving (2.7) (since x is continuous); if r = a then
of course every s¿ equals r. A similar argument at b shows that we can assume that
for each i, [s¿,£¿] is a neighbourhood of r relative to [a,b].

Our next step is to show that we need only consider the case z = 0. For suppose
z is not zero. Define a new version (P) of (P) which has data

A :- A- az,    B :- B - bz,    L(t,y,v) :- L(t,y + tz,v + z).

Then a solution to (P) is provided by x(t) :— x(t) - tz. Note that L satisfies (HI)
and (H2). We wish to show that for some suitable 9, (H3) and (H4) are satisfied.
We have

L(t,y,v) > -a\y + tz\ + 9(\v + z\) > -a\y\ - aC\z\ + 9(\v + z\),

where G = max[|o|, |6|]. We set

m := min{0(r) : 0<r < 2|z|},

and we define 9 by

(2.8) 9(r) := 0(max[r - ¡z|,0]) - max[e>(0),0] + min[m,0] - aC\z\.

If |v| > |z|, then by (H4) and (2.8) one has

9(\v + z\) > 9(\v\ - \z\) > 9(\v\) + aC\z\.

If \v\ < \z\, then \v + z\ < 2\z\, whence

ô(\v + z\) > m > 9(\v\) + aC\z\.

Combining these observations with the preceding we arrive at

L(t,y,v)>-a\y\+9(\v\),

and it follows that L and 9 satisfy (H3) and (H4).
Note that the limit in (2.7), when x is replaced by x, is zero, and the conclusions

of the theorem for L, x imply those for L, x. This establishes that without loss of
generality the theorem may be proven under the additional hypothesis:

There are sequences sl,U,i > 1, converging to r such that [sl,tl\

is a neighbourhood of r in [a, b] for each i and
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80 F. H. CLARKE AND R. B. VINTER

lim *(*)-«(«) = 0.
woo í¿ — Si

Let M be such that ||x|| < M (where || • || signifies the supremum norm on [a, b\),
and define a new Lagrangian L\ by

(2.9) Ly(t,y, v) := max[L(i,y, v), -aM + 9(\v\)}.

Observe that (H1)-(H4) continue to be satisfied (with 9(r) := 9(r)-aM and à = 0),
and (H5) is unaffected. We have Li > L, and it follows from (H3) that L\(t,y,v)
and L(t, y, v) coincide for y in a neighbourhood of x(t). Thus, x remains a solution
to the new problem, and it is easy to see that the conclusions of Theorem 1 for L\
imply the same for L. Because Li satisfies (H3) with a = 0, we deduce that no loss
of generality results in proving the theorem under the additional hypothesis:

(H6) The a in (H3) is equal to zero.

No change in hypotheses or conclusions results if a constant is added to L\ either.
We can then add the same constant to 9, so that no generality is lost in supposing
that 9 is nonnegative. We can then replace 9 by 9, where 9 is the convex hull of the
function 9(r) and the function r2 (i.e., 9 is the greatest convex function majorized
by each of the given functions, see [13]). This preserves all previous properties of
9. Consequently, we can suppose 0 < 6(r) < r2 without loss of generality. One last
property of 9 will prove of value: we wish 6 to be strictly convex for r sufficiently
large. To effect this, construct a new 9 (majorized by the old) as follows:

(2.10) ö{ry.= e{0) + J*^±^ei{s)ds

(note that 9 is locally Lipschitz, so 9' is defined, by [6, Proposition 2.2.6]). Then
9'(r) = (1 + r)6'(r)/(2 + r) is strictly increasing as soon as 9' is strictly positive, so
that 9 is eventually strictly convex. It is simple to verify via (2.10) that 9 continues
to satisfy all the previous properties listed for 9. In summary, we have shown that
there is no loss of generality in assuming:

The function 9 in (H3) satisfies 0 < 9(r) < r2 and is strictly convex

for r sufficiently large.

We now turn to the proof of the theorem under the additional hypotheses (H4)-
(H7), which have been shown to entail no loss of generality. We can summarize our
extra baggage as follows: 9(r) is nonnegative, nondecreasing, bounded above by r2,
and eventually strictly convex, the a is (H3) is 0, and condition (H5) holds. We
shall be glad to have these items for the next step.

2.3. Construction of an auxiliary Lagrangian. Let

S = {(t,y):a<t<b, \y\ < M},
where M, as earlier, satisfies ||x|| < M, and define

co:=sup{|L(i,y,0)|: (t,y) G S},

a finite quantity by (HI). Now pick RQ > 0 such that

(2.11) 9(R0) > 2[1 + c0]
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THE BASIC PROBLEM IN THE CALCULUS OF VARIATIONS 81

and 9 is strictly convex on [i?o,oo). (This is possible by (H7).) Let

a0 :=sup{|ç|: f GdvL(t,y,v), (t,y) G S, \v\ < R0}

(ero is finite by (H2)), and choose R\ > Rç> such that

(2.12) 9(r) >2r[l + cr0 + c0/ñi]    if r > J2i.

Now let
c1 := sap{\L{t,y,v)\: (t,y) G S, \v\ < R^,
cr, :=sup{|ç|: CGdvL(t,y,v), (t,y) G S, \v\<Ri},

and choose R2 > Ri such that

(2.13) 9(R2)>2[cl+2R2cr1}.

Let
4>(w):=lmax\9(\w\),9(R2)}.

We now define the function L(t,y,v), for each (t,y), as the convex hull of the
functions u —► L(t,y,u) (restricted to |u| < R2) and w —► <j>(w). Formally (see
[13]), L(t,y,v) is defined as

inf{XL(t, y, u) + (1 - X)<j>(w) : 0 < A < 1, |u| < R2, Xu + (1 - X)w = v}.

PROPOSITION 2.1.   L possesses the following properties:
(a) L(t,y,v) is (globally) measurable in t, convex in v, continuous in (y,v).
(b) There exist constants fci and k2 such that for all (t, y) in S, for all v, for all

ç in dL(t,y,v), one has |c| < k% + k2\v\ (where d denotes generalized gradient in
(y,v))\ in particular then, L is locally Lipschitz in (y,v)).

(c) L(t,y,v) > 9(\v\)/2 for all (t,y,v).
(d) // |v| < i?i and (t,y) G S, then in the inf defining L(t,y,v) we can limit

attention to \w\ < R2.
(e) For (t, y) in S, we have L(t, y, v) = L(t, y, v) if \v\ < R\, L(t, y, v) < L(t, y, v)

for \v\ < R2, and L(t,y,v) < L(t,y,v) for \v\ > R2.
(f) For (t,y) in S, we have L(t,y,v) = 9(\v\)/2 if\v\ > R2.
(g) If (t,y) G S and \v\ > Ri, then any element ç of dvL(t,y,v) satisfies |c| >

l+cr0.

PROOF. L is convex in v, by construction (see [13]), and measurable in t, since,
for fixed (y, v), the inf defining L(t, y, v) is equivalent to a pointwise inf of countably
many measurable functions of t (obtained by taking (A, u, w) in a suitable countable
dense set). Thus (a) follows, (c) follows from the fact that both L and 4> satisfy
the required inequality, and, hence, so does L, the convex hull.

Let us turn to (d). Let u,w,X be such that Au + (1 — X)w = v, where \v\ <
R\, \u\ < R2, and \w\ > R2. It follows that A > 0 necessarily. There exists
r > 0 such that the point w := w - r(w - u) has norm R2. Note that we can take
0 < r < A, since |f| < Ri < R2. Set A := (A - r)/(l - r), and note the relation
Au + (1 — X)w = v. We now claim that

(2.14) XL(t, y, u) + (1 - X)(p(w) < XL(t, y,u) + (l- \)4>{w),
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which will show that in the inf defining L, we gain nothing from taking \w\ > R2,
as claimed. Now (2.14) can be rewritten as

4>(w) < (A - À)/(l - X)L(t,y,u) + (1 - A)/(l - X)4>(w)
= rL(t,y,u) + (l-r)9(\w\)/2

(since 4>(w) = 9(\w\)/2 by (H4)), so it would suffice to establish

9(\w\)/2<r9(\u\)/2 + (l-r)9(\w\)/2,

since 4>(w) — 9(\w\)/2 and L(t,y,u) > 0(|/i|) > 0(|u|)/2 (the last inequality in view
of (H7)). But this last inequality is an immediate consequence of the convexity of
the function y —> 9(\y\), since w = ru + (1 -r)w (we have used the fact that fog is
convex when /: R —> R is convex and nondecreasing, and g: Rn —» R is convex).
Thus, (2.14) and, hence, (d) are proven.

Let us examine (e). Note first that L(t,y,v) is bounded above by L(t,y,v) if
M < R2, since we can take A = 1, u = v in the inf defining L. If \v\ > R2 take
A = 0, w — v to deduce

L(t,y,v) < <f>(\v\) = 9(\v\)/2 < 9(\v\) < L(t,y,v).

So in all cases, L < L, and the inequality is strict if \v\ > R2. Now let |u| < Ri
and let 6 > 0. Then there exist X,u,w as in the definition of L(t,y,v) and with
\w\ < R2, in view of (d), such that

~L(t,y,v) + 6> XL(t, y,u) + (l- X)<j>(w)
> X{L(t,y,v) + (u - v) ■ c} + (1 - \)4>(w),

where ç is any element of dvL(t, y, v) (since ç is a subgradient as in convex analysis
because L is convex in v (see [7, Proposition 2.27])),

> XL(t,y,v) -\u- v\ai + (1 - X)9(R2)/2
(by definition of o~\, and since <j> > 9(R2)/2)

= L(t,y,v) + (1 - A){0(Ä2)/2 - L(t,y,v)} - \u - v\o,
> L(t,y,v) + (I - X){9(R2)/2 - ci} - \u - v\ax    (by definition of a)
> L(t, y,v) + (l- X){9(R2)/2 - a - 2R2al}

(since |u - v\ = (1 - A)|u - w\ < (1 - A)2i?2)
> L(t,y,v),

in light of (2.13). Since 6 is arbitrary we deduce L(t,y,v) — L(t,y,v), and (e) is
proven.

We showed above that we have L(t,y,v) < 9(\v\)/2 whenever \v\ > R2- Equality
must then hold for such v in view of (c), which is assertion (f).

Let us turn now to (b). Let K be a Lipschitz constant for y —> L(t,y,u),
uniformly valid for t in [a,b], \u\ < R2, and for y in the region \y\ < M. Let yi,y2
be points in that region, and for any <5 > 0 and any v, let u, w, and A, as in the
definition of L(t,y,v), be such that

L(t,yuv)+6> XL(t,yuu) + (1 - X)(p(w).
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Then
L(t,y2,v) < XL(t,y2,u) + (1 - X)4>(w)

< X{L(t,yuu) + K\yi - y2\\ + (1 - X)<f>(w)
< L(t,yi,v) + K\yi -y2\ + 6.

Since 2/1,2/2 are interchangeable and 6 is arbitrary, it follows that L(t,-,v) is Lip-
schitz on \y\ < M with rank K. A simple argument also verifies that L(t,y,-) is
Lipschitz on \v\ < R2 of rank K\ for some constant K\. Thus dL(t, y, v) is uniformly
bounded for (t,y) G S, \v\ < R2. If \v\ > R2, then by (f), L(t,y,w) = 9(\w\)/2 for
w near v, so the truth of (b) is evident if we are armed with the following:

LEMMA 2.1.   For every r > 0 and every ç in d9(r), one has |ç| < 4r.

To see this, express the subdifferential inequality: 9(s) > 6(r) + f(s - r) for all
s. Put s = 2r and use (H7) to obtain çr < 4r2, whence the result.

Only (g) now remains to be proved. Let t, y, v and f be as described there. Then

L(t, y, w) - L(t, y, v) >< w - v, ç >     for all w,

whence, using (c) and (e),

(w-v,c)<L(t,y,w)-9(\v\)/2.

Put w = 0 to derive

\ç\>\9(\v\)/2-L(t,y,0)}/\v\>l + cr0    (by (2.12)).    D

2.4.   End of the proof.   Let us now consider the following variational problem
(P¿), where i is a positive integer: minimize

Jt :=  /    L(t,y,y)dt
J Si

over the arcs y on [s,,í¿] satisfying y(si) = A¿,u(í¿) = B¿, where we define Ai :=
x(sí),Bí := x(ti). In view of the properties of L enumerated in Proposition 2.1,
it is an easy consequence of standard existence theorems (e.g. [7, Theorem 4.1.3])
that (P¿) admits a solution, which we label x¿. The linear arc 2/¿, defined by

Vi(t) := Ai + (t - s,)(Bt - Ai)/(ti - Si),

is feasible for (P¿), whence Ji(xz) < J¿(y¿) < Ji(yi)- In view of Proposition 2.1(c),
we derive

\j' &i\ii\)dt<Ji{yi).

Since the terms on the right go to zero as i goes to oo, we conclude that, given
any e > 0, for i sufficiently large one has |x¿(í) - A¿| < e on [s¿,í¿]. It follows that
for some /0 and * > -^0; one has |x¿(í)| < M. The point of this observation is that
near x¿, for i > lo, the additional properties of L which hold for (t, y) in S become
available to us.

We now wish to set the stage for applying necessary conditions to the solution
Xi to (Pi), namely those of [7, Theorem 4.2.2]. The two hypotheses to be verified
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are "calmness" and the "strong Lipschitz condition" on the Hamiltonian H of the
problem, i.e., the function defined by

H(t,y,p) :=sup{(p,?j) - L(t,y,v): v G Rn}.

Note that H is finite everywhere by Proposition 2.1. Let (i,2/i) and (1,2/2) in S be
given. Then

H(t,yi,p) =sup{(p,i;) - L(t,yi,v)}
V

<sup{(p,v) - L(t,y2,v)} + sup\L(t,y2,v) - L(t,yuv)\
V V

= H(t,y2,p) + sup{\L(t,y2,v) - L(t,Vl,v)\: \v\ < R2}

(since L(t,y2,v) and L(t,y\,v) agree for \v\ > R2 by Proposition 2.1)

< H(t,y2,p) +k\yi - y2\,

where k is a Lipschitz constant valid on the relevant (bounded) set. This verifies the
strong Lipschitz condition. The argument proving calmness proceeds by showing
that the problem (P¿) is equivalent to a certain penalized free endpoint problem;
it is detailed in [7, Step 1, p. 183] (it is here that property (b) of Proposition 2.1 is
used).

We derive then (for i > Iç>) the existence of an arc p, on [s¿,í¿] such that

(2.15) (-pl,xl)GdH(t,xl,pl)    a.e. on [s¿, U\,

where dH signifies the generalized gradient in the (y,p) variables of H(t,y,p).
Relation (2.15) implies

(2.16) \i>i(t)\<k,
where Ac is the Lipschitz constant just introduced above, as well as (see [7, Propo-
sition 2.5.3])

(2.17) ±i G dpH(t,xi,pl)    a.e.

and (by the conjugacy of convex analysis)

(2.18) pi edvL(t,Xi,ii)    a.e.

LEMMA 2.2. There exist h > ^0 and R3 > 0 such that for all i > h, one has
\ii(t)\ < R3 a.e. in [s¿,ít].

To see this, begin by choosing R3 > R2 such that for all r > R3 and all s in
d9(r), one has s > 2\o2 + 2], where a2 is defined by

a2 := sup{|ç| : Ç G dvL(t, y, v) : (t, y) G S,  \v\ < R2 + 1}.

This is possible since 9(r)/r —> 00 as r —> 00. Now let us choose I\ > Iq such
that k(ti - Si) < 1 for all i > 71; and such that |A¿| < R2 for i > I\, where
A, := (Bi - Ai)/(U - Si) (recall (H5)).

Suppose that for such an i we fail to have |x¿| < A3 a.e. Then Pi(t) G d9(r)/2 for
at least one t (by (2.18) and Proposition 2.1(f)) and for r > A3, whence \pi(t)\ >
a2 + 2. In view of (2.16) and the choice of ii, we have

\Pi\ > <72 + 1    for all t in [s¿, í¿],
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so that |ij| > R2 + 1 for all t, by (2.18) and by definition of a2. But then for each
t there is a neighbourhood of (x,(í),p¿(í)) in which H(t, -, ■) is given by

H(t,y,p)=Sup{(p,v)~9(\v\)/2},
V

in view of Proposition 2.1(f). From (2.15) we conclude that pl = 0 a.e., so that p¿
is constant. Since 9(r) is strictly convex for r > Rq (see (H7)), (2.18) implies that
Xi is constant, in fact, by the above, a constant of norm exceeding R2. This implies

|AI|:=|(xI(iï)-xî(5t))/(iî-sî)|>A2,

a contradiction which establishes the lemma.
The proof also established

(2.19) |Pi(f)|<ff2 + 2    fori in [s¿,í¿].

LEMMA 2.3. There exists I2 such that, for i > I2, there is a subset of [¡s¿,í¿]
of positive measure in which one has |x¿| < ño-

Choose I2 > Ii such that, for all i > I2,

(2.20) kR3(tt-sl) + (a2 + 2)\Al\<l

(recall that A¿ —> 0). Suppose the assertion of the lemma is false for such an i.
Then |¿¿| > fío a-e- on [s¿,í¿]. Because pi(t) is a subgradient a.e. of the convex
function v —► L(t,Xi(t),v) at v = x¿(í), one has, for almost all t,

L(t,xt(t),0) - L(t,xl(t),xl(t)) > -(xi(t),Pi(t)).

Now the left side is bounded above by L(t,xl(t),0) — 0(|x¿|)/2, which is in turn
majorized by Co — 9(Ro)/2, whence

(2.21) (xi(t),pi(t)) > 9(R0)/2 - c0 > 1    a.e.

by (2.11). Now we have

\Pi(t) ~Pi(st)\ < k\t-Si\ < k(U -Si)

by (2.16), so
k(U - si)\xl(t)\ + (xl(t),pl(si)) > 1    a.e.

Recalling Lemma 2.2, integrating this over [s¿,£¿] and invoking (2.19) yield

kR3(tz - Sl)2 + (o2 + 2)lA¿|(í¿ - Si) > (ti - Si),

contradicting (2.20) and proving the lemma.

LEMMA 2.4.   There exists I3 such that, for i > I3, one has ¡x¿(í)| < Ri a.e. in
[Si, ti\.

Pick I3 > I2 such that k(t%~Si) < 1 for i > I3. By Lemma 2.3 and (2.18), there is
at least one t in [$i, ti] for which |p¿(í)| < (To, so that |p,| < 00 +1 throughout [s,, {,].
It is now a direct consequence of (2.18) and Proposition 2.1(g) that necessarily
|x¿| < R\ a.e., establishing the lemma.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



86 F. H. CLARKE AND R. B. VINTER

We now observe that for i > I3 one has

Ji(xi) < Ji(x)        (since x¿ solves (P¿))

< Ji(x)        (since L < L)
< Ji(xi)        (since x solves (P))

= Ji(xi)        (by Lemma 2.4 and Proposition 2.1(e)).

It follows that Ji(x) and Jt(x) agree, whence |x| < R2 on [sí,í¿] by Proposition
2.1(e). When x is bounded, the Euler-Lagrange inclusion is a known necessary
condition [4] in this context. This proves the first assertions of the theorem (take
I = [Si,ti]).

We now posit the additional hypotheses of (ii). Pick any R > R2 and consider
the following problem for any integer i > I3 as above: minimize f ' L(t, y, y) dt over
the arcs y satisfying |y| < R a.e., y(s,-) = A¿, y(tt) = Bi. We know that x solves
this problem and (because of the compact set to which the velocity is constrained)
the necessary conditions [7, Theorem 4.2.2] for this optimal control problem apply
(for R > |Aj|; the arguments that verify the requisite hypotheses are precisely those
of [7, Proposition 4.2.4]). The Hamiltonian H for this problem is given by

H(t,y,p) =sup{(p,i;) - L(t,y,v): \v\ < R}.

The necessary conditions assert the existence of an arc p on [s¿,í¿] such that
(—p, x) G dH(t,x,p) a.e., which implies [7, Proposition 2.5.3]

(2.22) x(t)GdpH(t,x(t),p(t))    a.e.

The elements of dpH(t,x(t),p(t)) are those v maximizing?; —* (p(t),v)—L(t,x(t),v)
over |t;| < R. Thus the maximum is attained a.e. at x(t).

If the bounded function x has other than removable discontinuities, then we can
find two sequences c3, dj in [s¿, í¿] at each point of which (2.22) holds, converging
to a point r, and such that

lim x(cj) =: a ^ ß :=  lim x(cL).
j—>oo J—*oo

Let v be any point such that \v\ < R. Then by the preceding remarks we have

(2.23) (p(cj),v) - L^^x^j)^) < (p(cj),x(cj)) - L(cj,x(cj),x(cj)).

Because L(t, y, v) is Lipschitz in (y, v), the sequence L(c3,x(cj), x(cj)) has the same
limit as the sequence L(cj,x(r),a), namely L(r, x(r),a). Similarly, L(cj,x(cj),v)
converges to L(r, x(r),v). Taking limits in (2.23) gives

(p(r),v) - L(r,x(r),v) < (p(r),a) - L(r,x(r),a).

Since v is arbitrary, the point a maximizes the strictly concave function in question
over \v\ < R. But \a\ < R (recall |x| < R2 < R), so a globally maximizes the
strictly concave function v —► (p(r),v) - L(r,x(r),v) (local and global maxima of
concave functions coincide). The same conclusion obtains for ß (distinct from a),
the required contradiction. Hence, x is essentially continuous on [s¿,r¿].

And now the third and final part of the theorem. We merely sketch an argument
to derive this classical result, which goes back to Weierstrass (see for example [3,
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Theorem 2.6.iii]). Write the Euler-Langrange inclusion (which now reduces to an
equation) as

t*(2.24) Lv(t,x,x) — po + /   Lx(s,x,x)ds.
J Si

The right side is C1 and so is the function (t, v) —» Lv(t, x(t),v). It follows from the
Implicit Function Theorem that x is C1 on 7; i.e., that x is C2 on I. This allows
us to differentiate through in (2.24) and solve to get

(2.25) x = [.L+uJ    \LX ~ Lvt — Lvxx},

where the derivatives of L are evaluated at (í,x(í),x(í)). (It follows that x admits
finite limiting values at sr and í¿.) Now suppose x is known to be C""-1 and L is
Cr (r > 2). The right side of (2.25) is readily seen to be Cr~2, hence so is x; i.e.,
x is Cr on I.    D

3. Hypotheses which restrict the set of points of bad behaviour.
Throughout this section (H1)-(H3) are in force. We take x(-) to be a solution

to problem (P) and fi to be the subset of [a, b] in which x is locally Lipschitz.
We have already shown (§2) that the set of points of bad behaviour, namely

points at which x is not locally Lipschitz, is a closed set of zero measure. Various
additional hypotheses are now supplied under which it is possible to infer further
properties about the set; in certain cases, points of bad behaviour cannot exist.

In view of the results of §2, hypotheses which assure that fi = [a, 6], when
supplemented by conditions under which the stronger conclusions of Theorem 2.1
apply, immediately translate into hypotheses under which x() is globally C1 or C2,
etc.

The proof of a number of our results requires the following lemma:

LEMMA 3.1.   Let t G fi D [o, b) be given and define

(3.1) imax = sup < t G (t, b] : ess sup|x(s)| < oo > .
{ se[t,t] J

Then under either hypothesis (i) or (ii) below the restriction of x(-) to \t,b] is Lip-
schitz.

(i) |x(-)| is essentially bounded on [£, £max].
(ii) Corresponding to any increasing sequence of points {í¿} in [i, £max) which

converges to imax, there exists an absolutely continuous function Pi(-) : [t, ti] —> Rn
and a constant k independent of i, such that

(3.2) pi(t)GdvL(t,x(t),x(t))    a.e.tG[t,t%\,

and ¿ .,.'■'•'

(3.3) \Pi(t)\<k,    allte \t,ti]. .
PROOF. Notice first that imax is a well-defined number in (i, b] since í G fin [o, b),

and, therefore, x(-) is essentially bounded on a neighbourhood of í relative to [a, b}.
Suppose first (i). By Theorem 2.1 £max G fi, but then we must have imax — b,

i.e. x() is Lipschitz on [i, b], for if imax were interior to [i, b] then, again by Theorem
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2.1, x(-) would be essentially bounded on a neighbourhood of £max, in contradiction
of the definition of £max.

Suppose next (ii). Since L is convex in the v variable, (3.2) implies

L(t,x(t),v) - L(t,x(t),x(t)) >pi{t) ■ (v-x(t))    a.e. tG [£,£,].

Fix v G Rn. By (3.3)

(3.4) L(t,x(t),x(t)) < k\x(t)\ + fci    a.e.íe[í,¿i]

for k as in (3.3) and k\ a constant which does not depend on i. By hypothesis (H3),
however, we can choose a constant K > k\ such that

\w\~lL(t,x(t),w) > k+ 1    for all t G [a,b]

whenever \w\ > K. Now consider the set

S - {t G [t,ti\: x(t) exists and |x(£)| > K}.

For any £ S S we have

L(t,x(t),x(t)) > k\x(t)\ + |x(£)| > k\x(t)\ + fc,.

Comparing this inequality with (3.4), we see that S is a null-set. It follows that

\x(t)\<K    a.e. tG [t,ti\.

Bearing in mind that K does not depend on i, we see that (i) is confirmed. We
have shown that this yields [£, b] C fi.

3.1. The autonomous case and extensions. Perhaps the most noteworthy special
case of (P) when points of bad behaviour cannot occur is when L does not depend
on £. This is an immediate corollary of a more general result; here conditions are
imposed on the time derivative of L, appropriately defined, in order that points of
bad behaviour be confined to one endpoint or the other of [a, b]. These conditions
are automatically satisfied in the autonomous case.

At this stage some new notation is required: TrtdttXL(t, x, v) denotes the projec-
tion onto the £-coordinate of the generalized gradient of (£, x) —► L(t, x, v) for fixed
v. This reduces to the partial derivative in the £-variable Lt(t, x, v) when L(t, x, v) is
continuously differentiable in (£,x). Also, we point out in connection with inclusion
(3.7) that, given a subset Q C fi, we write \Q\ for the set {}q\ : q G Q}.

Recall that here, and elsewhere in this section, x(-) is a solution to (P).

PROPOSITION 3.1. Suppose that L(t,x,v) is Lipschitz in (t,x,v) on bounded
sets. Suppose further that there exists a summable function *)(■) such that

(3.5) -y(s) $. Trtdt,xL(s, x(s), x(s)) + [0, oo)    a.e. s G [a, b};

then (a,b\ C fi.
If (3.5) is replaced by

(3.6) -y(s) ^ irtdt,xL(s,x(s),x(s)) - [0,oo)    a.e.sG[a,b],

then [a, b) c fi.
7/(3.5) is replaced by

(3.7) -y(s) ^ \irtdt,xL(s, x(s),x(s))\ - [0, oo)    a.e. s G [a, b],

then fi = [a, b].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE BASIC PROBLEM IN THE CALCULUS OF VARIATIONS 89

Note that, when L(t,x,v) is continuously differentiable in (£, x), (3.5)-(3.7) re-
duce to

l(s) < Lt(s,x(s),x(s)),    -y(s) > Lt(s,x(s),x(s)),    ~j(s) > \Lt(s,x(s),x(s))\,

respectively.
PROOF OF PROPOSITION 3.1. Suppose that (3.5) is true. We show that

(a, b] C fi. Choose an arbitrary point £ from fi n [a, b). Define £max by (3.1) and let
{ti} be an increasing sequence of points in (£,£max) which converges to £max.

Fix i. Note that the restriction of x(-) to [£, £¿] solves (P) when (x(£), £), (x(tt), ti)
replace (A,a), (B,b) as boundary data. By definition of £max, |x(-)| is essentially
bounded on \t,tt}. In view of these observations it is not difficult to deduce from
[7, Theorem 5.2.3] the following facts concerning x(-):

There exist an absolutely continuous function Pi(-): [£, í¿] —► 72" and a constant
Ci such that

(3.8) pi(t)GdvL(t,x(t),x(t))    a.e.íe[t,í,]

and

(3.9) L(t,x(t),x(t))'-pi(t):x{t) = ci+ j \i(s)ds   &.e. t G [t,U]

for some summable function £¿(-) such that

&(£) £ *tdt,xL(t, x(t), x(t))    a.e. £ G [t, ti]

(to be more precise, these conclusions are obtained by applying [7, Theorem 5.2.3]
to the autonomous optimal control problem in which time is treated as a dependent
variable governed by the differential equation £ = 1 on the interval [£, £¿] and subject
to the constraints £(i) = 0, £(£¿) G R).

Now since £ G fi, |x(-)| is bounded (off a null set) on some neighbourhood of t.
It follows from (3.8), continuity of p¿(-) and the local Lipschitz continuity of L that
|p¿(£)| is bounded by some constant independent of i. But then c¿, which, by (3.9),
can be expressed

Ci = lim < ess sup[L(s,x(s),x(s)) — Pi(s) ■ x(s)] > ,
nt [ B€[t¿] J

satisfies

(3.10) \a\<ki,
where ki is a constant which does not depend on i.

Since L is convex in the velocity variable, (3.8) implies

L(t, x(t),v) - L(t, x(t), x(£)) > pi{t) ■ (v - x(t)),    a.e. £ G [£, k\,

for arbitrary v G Rn. Combination of this inequality with (3.9), for arbitrary v,
yields

L(t,x(t),v)-pl(t)-v>ct+ I   £i(s)ds,        £ e [£, U\,

j   l(s)ds, tG [t,U],

't
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where ^(-) is the summable function of hypothesis (3.5). In view of (3.10)

L(t, x(t), v) - Pi(t) -v>k2,        tG [£, U], VG Rn,

for some constant k2 which does not depend on i. It follows that

lw(*)|<*3,    all tG[t,U],
for i = 1,2,..., where k3 is the constant

k3 =   sup   \L(t,x(t),v)\ + |fc2|.

te[o,6]

In view of (3.8), we have verified the hypotheses of Lemma 3.1. We conclude that
the restriction of x(-) to [i, 6] is Lipschitz. By Theorem 2.1, \t,b] C fi.

The above argument applies for arbitrary t G fin [a, b). However, £ can be chosen
arbitrarily close to the point a since fi has full measure. It follows that (o, b] C fi.

A similar argument yields [a, b) C fi under assumption (3.6); the difference is that
we must consider a maximal interval [£min,£] such that |x(-)| is essentially bounded
on [£m¡n + e,t] for arbitrary e > 0 to the left of an arbitrary point £ G fi n (a, b].

Observe finally that if (3.7) is true then certainly (3.5) and (3.6) are true, so
fi = [a,b].

COROLLARY 3.1.   Suppose L is independent oft. Then fi = [a, b].

Even in the smooth, scalar case Corollary 3.1 is, apparently, a new result. In
this context Tonelli has shown [15, p. 366] that the hypothesis "L is independent of
£", supplemented by the hypothesis: "there exist positive constants a, M, Mi such
that

\L-vLv\ > M\v\a -Mi    for all (t,x,v) G [a,b] x R x R",

assures that fi = [a,b]. We have shown that (in the presence of (H1)-(H3)) the
supplementary hypothesis is superfluous.

The hypotheses of Proposition 3.1 can be replaced by others of less generality
but of a more directly verifiable nature. As an illustration we note:

COROLLARY 3.2. Suppose L(t,x,v) is Lipschitz in (t,x,v) on bounded sets,
and, corresponding to any bounded open set S C 72", there exist a constant c and a
summable function ^(-) such that

(3.11) Lt(t,x,v)<c\L(t,x,v)\+1(t)

for all points (£, x, v) in (a, b)x S x 72" at which (a, y) —> L(a, y, v) is differentiable.
Then [a, b) C fi.

If inequality (3.11) is replaced by -Lt(t,x,v) < c\L(t,x,v)\+^(t), then (a,b] C fi;
if it is replaced by \Lt(t,x,v)\ < c\\L(t,x,v)\ +t(£), then fi = [a,b].

PROOF. Choose S sufficiently large to contain the values of x(-). In view of the
characterization of the generalized gradient provided in [7, Theorem 2.5.1], (3.11)
implies

c\L(t,x,v)\ +i(t) <£ Tvtdt,xL(t,x,v) - [0, oo)
for all points in (a,b) x S x 72". But £ —> L(t,x(t),x(t)) is summable by the
properties of the arc x(). Replacing (£, x, v) by (£, x(£), x(£)) wherever x(£) is defined
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and bearing in mind x(t) G S, we see that (3.6) is satisfied. By Proposition 3.1,
\a,b) C fi. The other cases are treated in similar fashion.

3.2. Conditions of Morrey type. Among hypotheses which assure existence of a
solution to (P) which is smooth and satisfies the Euler-Lagrange equation, those
which involve some kind of summability assumptions on the derivatives of L, both
in x and v along the minimizing arc, have received the most attention. A simple
form of such hypotheses, applicable to the smooth, vector case, is given in Morrey's
book [12, p. 28]. See also [10, p. 379 and 7, Theorem 4.4.1]. In the smooth,
scalar case Tonelli [15, p. 368] showed that summability requirements on Lv can
be dispensed with.

In a nonsmooth, vector setting we now give hypotheses in which Lv (strictly
speaking the partial generalized gradient) is unrestricted, and in which the summa-
bility requirement on Lx is weakened by inclusion of a term which involves Lv in
the bound.

PROPOSITION 3.2. Suppose there exist a summable function ~f(-) and a non-
negative constant c such that

(3.12)    i(s) ^ \dxL(s,x(s),x(s))\ — c|<9„7,(s,x(s),x(s))| - [0, oo)    a.e. s G [a,b].

Then fi= [a,b].

In inclusion (3.12), \dxL(s,x(s),x(s))\ denotes the set {|c£|: d G 72", d G
dxL(s,x(s),x(s))}, and \dvL(s,x(s),x(s))\ has asimilar interpretation. Condition
(3.12) reduces to

\Lx(s,x(s),x(s))\ < c\Lv(s,x(s),x(s))\ + i(s)    a.e. s G [a,b]

when L(t,x,v) is continuously differentiable in x and v.
PROOF. Choose an arbitrary point t from fi n [a,b), define £max by (3.1), and

let ti be an increasing sequence of points in (i, £max) which converges to £max.
Fix i. The subarc x(s),t < s < £¿, solves (P) for appropriately modified boundary

data, and x(i) is essentially bounded on [£, ti]. From [7, Theorem 5.2.1] we conclude:
There exists an absolute continuous function p¿(): [£, tt] —» 72" such that

(3.13) pi(t)GdxL(t,x(t),x(t))    a.e. tG[t,U\

and

(3.14) pi(t)edvL(t,x(t),x(t))    a.e. tG [£,£¿].

Since x(£) is essentially bounded on a neighbourhood of £, we deduce from (3.13)
and the continuity of Pi(-) that |p¿(£)| < k\ for some constant k\ which does not
depend on i.

In view of hypothesis (3.12)

\Pl(t)\ - c\p(t)\ <7(£)    a.e. tG[t,tt]

for a summable function i(-). In view of these inequalities, we deduce from Gron-
wall's inequality that

\Pi(t)\<k2,        tG[t,U],
for some constant k2 which does not depend on i.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



92 F. H. CLARKE AND R. B. VINTER

Noting (3.14), we see that the hypotheses of Lemma 3.1 are satisfied. In conse-
quence, [£, b] C fi. However, £ can be chosen arbitrarily close to the point a, whence
(a,b] C fi.

A similar argument applied to a "maximal" interval to the left of an arbitrary
point £ G fi n (a, b] yields the conclusion [a, b) c fi. It follows that [a, b] C fi.

Essentially the same arguments which permitted us to deduce Corollary 3.2 from
Proposition 3.1 lead to:

COROLLARY 3.3. Suppose that, corresponding to any bounded, open set S G
72", there exist constants c\,c2 and a summable function ^(-) such that

\Lx(t,x,v)\ < ci|L(£,x,u)| +c2\Lv(t,x,v)\ + ~y(£)

for all points (t, x, v) in (a, b) x S x 72" at which (y, v) —> L(t, y, v) is differentiable.
Then fi = [a,b].

3.3. Conditions of Bernstein type. In [1, p. 433] Bernstein gave conditions
under which the Euler-Lagrange equation admits a global solution on [a,b]. The
main feature of Bernstein's conditions is the requirement that F has growth in v of
degree at most quadratic, uniformly over bounded sets in the (£, x) variables. Here
F signifies the "Bernstein function":

(3.15) F = L-V1(LX-Lvt-Lvxv),

which is the function resulting from expressing the Euler-Lagrange equation in the
form x(t) = F(t,x(t),x(t)).

Tonelli [15, p. 363] showed in the scalar case that Bernstein's condition is suffi-
cient to exclude points of bad behaviour. It is evident from the corollary to the next
result that the same is true in a vector setting, and, further, that we can permit
growth in v more than quadratic when additional hypotheses are placed upon L.

PROPOSITION 3.3. Suppose L(t,x,v) is twice continuously differentiable in
(t,x,v), Lvv(t,x(t),x(t)) > 0 a.e. t G [a,b], and there exists a summable function
7(-) such that

\F(t,x(t),x(t))\ < i(t)(\x(t)\ + 1)    a.e. t G [a,b],

where F was defined in (3.15). Then fl = [a,b\.

PROOF. Choose any £ G fi n (a, b). Define £max as in (3.1) and consider a
sequence {£¿} such that £¿ | £max as before. Fix i. According to Theorem 2.1, x(-)
is twice continuously differentiable at all points in [t, ti]. The restriction of x(-) to
[£, ti] solves (P) for suitably modified boundary conditions and therefore satisfies
the Euler-Lagrange equation there:

-L„(i, x(£), x(£)) = Lx(t, x(t),x(t)),        t G [t, ti].

This can be expressed

x(£) = F(£,x(£),x(£)),        ÍG [í,í¿],

whence, for any t,s 6 [£, £max],

x(t) - x(s) — j   F(a,x(a),x(a))da.
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Under the hypotheses, then,

|[x(£)|-|x(S)|| < j  \F(a,x(a),x(a))\do-

<d   /    7(cr)(|x(cr)| + l)d<T.
J s

We conclude that the absolutely continuous function |x(-)| satisfies

-|x(£)|<cn(£)[|x(£)| + l]    a.e. ££[£,£,].
at

By Gronwall's inequality

\x(t)\<h,        ££[£,£,],
for some constant fci which does not depend on i.

By Lemma 3.1 then, x(-) is Lipschitz on [£,/>]. Likewise, we show that x(-) is
Lipschitz on [a,t\. It follows that x(-) is Lipschitz on all of [a, b] and, therefore,
fi = [a, b].

Given a > 0 we now define the Lagrangian L to be a-coercive when there exist
a function g: Rk —* 72, bounded on bounded sets, and a positive constant k such
that
(3.16) L(t,x,v) > g(x) + k\v\1+a    for all (t,x,v) G [a,b] x 72" x 72".

Note that, in view of hypothesis (H3), L is always 0-coercive.

COROLLARY 3.4. Suppose L is a-coercive for some a > 0, L(t,x,v) is twice
continuously differentiable in (t,x,v), and Lvv(t,x,v) > 0, all (t,x,v) G [a,b] x
72" x 72". Suppose further that, corresponding to every bounded set S C 72", there
exists a constant c such that

(3.17) \F(t,x,v)\<c(l + \v\2+a)    for all (t,x,v) G{a,b] x S x 72".

Then fi = [a,b].

PROOF. Take S to be a set which contains the values of x(-). Then, by (3.17),
|F(í,x(í),x(í))|<c(l + |x(í)|2+«)

<7(£)(l + |x(£)|)    a.e. tG[a,b],

where 7(-) is the function t —> c(l + |x(£)|1+Q). However, t —> L(t,x(t),x(t))-g(x(t))
is summable by the properties of the minimizing arc x(-). But then, by (3.16), ^y(-)
also is summable. The hypotheses of Proposition 3.3 have been verified, and we
are justified in concluding that fi = [a, b].

3.4. The case in which the Bernstein function is polynomially bounded. We have
established that if L is a-coercive and F (given by (3.15)) has polynomial growth
of degree at most 2 + a, then points of bad behaviour cannot occur. What can
be said when F has polynomial growth of arbitrary degree? In such circumstances
it is possible at least to calculate a lower bound for J \x(t)\dt in the event that
points of bad behaviour exist. This information can be used to exclude points of
bad behaviour when it permits us to deduce that, if they occurred, they would give
rise to an excessively large value of Ja \x(t)\ dt. We prove the lower bound first and
then proceed to illustrate the technique with two examples.
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PROPOSITION 3.4. Suppose L(t,x,v) is twice continuously differentiable in
(t,x,v), Lvv(t,x(t),x(t)) > 0 a.e. t G [a,b], and there exist constants ci and c2
and m > 1 such that

(3.18) |F(£,x(£),x(£))| <ci(|x(£)| + c2)m+1    for a.e. t G[a,b],

where F(t,x,v) is defined by (3.15).
Suppose also that fi is not the whole interval [a,b].  Then

[   \x(t)\dt>-.-\-j--JO— \b-a\l-l/m-c2\b-a\.
Ja - (mc)^(m-l)1

Before proving the proposition we note

LEMMA 3.2.   fi can be expressed as a countable union

(3.19) fi = (Jfi,
i

of nonempty, disjoint, relatively open subintervals of [a, b] in which, for each i, fi¿
is of the form:

(i) [a, bi) for some bi G (a,b], or
(ii) (üi,b] for some ai G [a,b), or
(iii) (ai,bi) for some ai, bi G [a,b].
In (i) limsupi|6i |x(i)| = oo; in (ii) limsuptjai |x(£)| = oo; and in (iii)

limsup |x(£)| = oo    and    limsup |x(£)| — oo.
tlbi t[ai

PROOF. Since fi is a relatively open subset of [a,b], it is known that fi can
be expressed as a countable union (3.19) of nonempty, disjoint, relatively open
subintervals. Such subintervals are of the form (i), (ii), or (iii).

Suppose fi¿ = \a,bi) for some bi G (a,b\. We claim 6¿ ^ fi. If, on the contrary,
6, G fi then, since 6¿ ^ fi,-, we must have 6¿ G fiy, for some j ^ i. But fiy is
relatively open so there exists some b' G [a, bi) such that b' G fiy. But b' G Cli- This
is not possible since fi,,fij are disjoint.

Now 6, ^ fi and bi G (a,b] imply limsup^. |x(£)| = oo, for otherwise the restric-
tion of x(-) to [a,bi\ would be a Lipschitz function. By Theorem 2.1, however, this
would imply 6, G fi, a contradiction.

The other cases are treated in similar fashion.
PROOF OF PROPOSITION 3.4. We decompose fi into nonempty, disjoint,

relatively open subintervals fi = 1J¿ fi¿ as in Lemma 3.2. For each i, let o¿ and 6,
be the left and right endpoints of fi,, respectively. Consider fii. By Lemma 3.2
either

(3.20) limsup |x(£)| = oo
tîbi

or

(3.21) limsup |x(£)| = oo.
tlai

Let us assume (3.20).   We shall obtain a lower bound on Jn   \x\dt.  Similar argu-
ments will give the same bound if, alternatively, (3.21) is assumed.
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By the results of §2, x(-) is C2 on (a\,b\) and x(-) satisfies the Euler equation,
which we can write as

X (5 - x(£) = /   F(cr,x(a),x(cr))da,        t,s G (a\,bi)

Arguing as in the proof of Proposition 3.3, we deduce from the hypothesis (3.18)
that the absolutely continuous function s —> |x(s)| satisfies

±\x(s)\<Cl(\x(s)\ + c2)m+l    a.e.t€(<n,6i).

Now take £ € (a\,b\) and consider the function y(-) which satisfies the differential
equation (with boundary condition)

(3.22) J^2/(s)=c1(2/(s) + c2r+1,        s>t,
\y(t) = \x(t)\.

The differential equation well defines y(-) on some maximal half-open interval [£,£ +
e) with e G (0, oo]. By a comparison theorem [11, Theorem 1.4.1]

(3.23) ]x(s)\<y(s)    for all s G [£,£ + s).

Now

(3.24) &i>£ + £,
for if this inequality did not apply, it would follow from (3.23) and the monotonicity
of y(-) that

oo = lim sup |x(s)| < lim y(s) < oo,
sîbi sîbi

a contradiction.
The differential equation (3.22) can be solved by the separation of variables

technique, e is finite and, in particular, (3.24) can be satisfied only if |x(£)| + c2 > 0.
In this case we have

y(s) = [(|x(£)| + c2)-m - mci(s - £)]"1/m - c2    for all s G [£, £ + e),

where

(3.25) e=(mci)-1(|x(£)|+c2)-m.

We deduce from (3.24) and (3.25) that

h-t>(mci)-1(]x(t)\+c2)-m.

This inequality can be rearranged to give

|x(£)| > (mci)-1/"1^! - £)"1/m - c2.

But then

/   \x(t)\dt > (mci)-1/m / \b1-t)"i/mdt-c2\b1-al\
•/Hi J a\

= (mc1)-1/m|fi1|1-1/"i-^^--c2|fi1|,
TO - 1

in which |fi¿| denotes |6¿ — a¿|, the length of the interval fi¿.  Identical reasoning
applied when i = 2,3,... gives the same inequality when fii is replaced by fi,, i —
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2, 3,-Since the fi¿'s are disjoint we deduce that, for any integer N in the index
set for the fi,'s,

./;
b x(£)|dt > (TOd)-1/- ■ j-ZL- ■ ¿ ifi,!1-1/™ _ C2 ¿ |n,

\m ¿=i ¿=i
/  N \  l-l/m N

*(^)~1/m-7¿rhr 5>i       -C2Ei"
¿=i

However, |J,^ has full measure, whence J^i l^¿l = 1^ ~ al-   Taking the limit as
iV —> oo, if necessary then, we deduce that

i

b m
x(t)\dt > (TOCl)-1/m •       _     |6 - al1"1/"1 - c2\b - a\,

I Til L I

as required.    D
We now consider Lagrangians L = N + eP expressed in terms of a nominal

Lagrangian N and a perturbation term eP. Attention is limited to a certain class
of nominal Lagrangians N with the property that they cannot give rise to points
of bad behaviour. We show that, under very mild hypotheses on P, this property
is preserved under sufficiently small perturbations.

COROLLARY 3.5. Take L(t,x,v) = N(v) + eP(t,x,v) in which e is a nonneg-
ative parameter.  We assume that N satisfies:

N(v) is twice continuously differentiable in v, and there exists 6 > 0 such that
Nvv(v) > 61 for allvGRn.

We assume further that P satisfies
P(t,x,v)  is twice continuously differentiable in (t,x),   P(t,x,v)  >  0 for all

(t,x,v) G \a,b] x 72" x 72", Pvv(t,x,v) > 0 for all (t,x,v) G [a,b] x 72" x 72",
and there exists some constant c and some m > 1 such that

\PX - Pvt - Pvx\(t,x(t),x(t)) < c(\x(t)\ + l)m+1, £ G [a,b].

Then fi = [a, b], provided e is sufficiently small.

PROOF. It is easy to check that conditions are satisfied under which a solution
to (P) exists, whatever e. In particular, there exists a solution z(-) to the problem
which results from setting e equal to zero. Since N does not depend on x, we
deduce from Proposition 3.2 that i(-) is essentially bounded. It follows that £ —»
P(t,z(t),z(t)) is summable.

Now our solution x() to (P) must satisfy

rb rb pb
(3.26) /   N(x(t)dt<       N(z(t))dt + e      P(t,z(t),z(t))dt,

Ja Ja Ja

since P is nonnegative.   In view of the hypothesis A^,, > 61, consideration of a
Taylor expansion of N about the origin with second order remainder term yields

fbN(y(t))dt3.27 lim Ja, m "      = +00,
¡ba\y(t)\dt
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where the limit is taken as /  ju(£)| dt tends to +00. Now (3.26) and (3.27) imply

(3.28) /   |x(£)|d£<fc
Ja

for some constant k\ which does not depend on e, as e ranges over the interval
[0,1], say.

Now examine F = L~J[LX — Lvt — Lvx\. We deduce from the hypotheses that

|F(£,x,x)| < (ec/6)(\x\ + l)m+1    for almost all £ in \a,b].

Suppose that fi ^ [a,b]. The last inequality implies, via Proposition 3.4, that
-l/m(3.29) £nm>f¥)-l'm^*-^     .        ,

Now suppose e G (0,1] is chosen so that the right side is greater than fci. For such
an £, (3.29) contradicts (3.28). We conclude that fi = [a, b].    D

A different approach to some of the issues treated in this article is possible—one
that leads to results that are not global, but which hold "in the small". A thorough
discussion along these lines will appear in [8]. We now derive one such result as
a second consequence of Proposition 3.4. It is distinguished by the precision with
which the degree of "smallness" can be specified.

COROLLARY 3.6. Suppose that for a given interval [a,T] the Lagrangian L and
the Bernstein function F satisfy the following hypotheses on [a, T] x 72" x 72" :

(a) L is twice continuously differentiable, Lvv > 0, L(t,x,v) > ß\v\p + A, where
ß,p, X are constants with ß > 0, p > 1.

(b) \F(t,x,v)\ < c\(\v\ + c2)m+1, where c\,c2 and m are constants with c2 >
0,   TO >  1.

Let any number M and point A in 72" be given, and set

E := max{L(£, y, v) : a < t < T,  \y - A\ < (T - a)M,  \v\ < M},
A := [mci(m - l)m\-l[ß/(V - X)\m'p.

Then for any b in (a, T] satisfying b < a + A and for any B in 72" satisfying
\B — A\ < M(b — a), the problem of minimizing J"  L(t,y,y)dt subject to y(a) =
A, 2/(6) = B has a solution, and any solution is twice continuously differentiable.

PROOF. Let q satisfy 1/p + l/q = 1, and apply Holder's inequality to get, for
any solution x,

|   Í  \x\dt\    < (b-a)p/q f   \x\pdt

<(b- a)p/q | f [L(t, x, x) - A] dt l ¡ß.

If j/ denotes the linear arc joining (a, A) to (b, B), the observation
rb rb

/   L(t,x,x)dt<       L(t,y,y)dt<(b-a)E
Ja Ja

together with the preceding inequality lead to an upper bound for J \x\dt. If x
fails to be C2, then fi must fail to be all of [a,b], and Proposition 3.4 provides a
lower bound for f  |x| dt. A contradiction results, as long as b < a + A.    DJa *    * °
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