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REGULARITY RESULTS FOR AN ELLIPTIC-PARABOLIC
FREE BOUNDARY PROBLEM

M. BERTSCH AND J. HULSHOF

ABSTRACT. We study an elliptic-parabolic free boundary problem in one
space dimension. We give several regularity results for both the weak solution
and the free boundary. In particular conditions are given which ensure that
the free boundary is a C1-curve.

1. Introduction. Consider the initial-boundary value Problem I:

(1.1)
(1.2)
(1.3)

(c(u))t=uxx inQT = (0,l)x(0,T],
ux(0, t) = 0 and ux(l, t) = f(t),    0<t<T,
c(u(x,0)) = vo(x), 0<z<l.

Here T > 0 and the functions c, / and vo satisfy the following hypotheses.
HI. c G G(R) n G2,a(R") for some a G (0,1), c = 1 on R+, and c' is strictly

positive and uniformly bounded on R~.
H2. /: [0, T] —y R is Lipschitz continuous and strictly positive.
H3. There exists a Lipschitz continuous function urj: [0,1] —► R such that vo =

c(uo).
H4. f¡ vo(x) dx + Jo f(t) dt < 1.

c(u).

Figure 1. The function c(u)

Problem I describes the one dimensional fluid flow in a partially saturated porous
medium: u denotes the hydrostatic potential due to capillary suction, c the moisture
content, and we assume that c depends on u as described in Figure 1. The saturation
value of c is taken to be one:

c(u(x,t)) = 1 ■& u(x,t) > 0 -O- saturation at the point (x, t).

From a mathematical point of view equation (1.1) is quite interesting. It is
of parabolic type at points (x, t) where the medium is unsaturated, i.e., where
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338 M. BERTSCH AND J. HTJLSHOF

u(x, t) < 0 (•» c'(u) > 0), and of elliptic type in the saturated region where
u(x,t) > 0 (-O- c'(u) = 0). In particular the answer to the question whether
Problem I has a classical solution is not a priori clear.

Problem I does have a unique weak solution [6, 8]. By this statement we mean
that there exists a unique function u G L2(0,T;Hx(0,1)) which satisfies

(i) c(u) G C(QT);
(ii) for every test function <f> G CX(QT) vanishing at t — T

II    {<t>xux — 4>tc(u)}dxdt —  I   <p(x,0)vo(x)dx + /    (¡)(l,t)f(t)dt
JJqt Jo Jo

(for more general existence results we refer to [1]). We observe here that condition
H4 is natural in view of the conservation law

/   c(u(x,t))dx=       v0(x)dx+       f(s)ds,        0<t<T,
Jo Jo Jo

and it expresses the fact that the medium is not completely saturated at time T.
Of special interest is the free boundary between the regions where the medium

is saturated, respectively, unsaturated. We define the set

f.imîPt    HPt¿í[t) "Il if Ä =

Pt = {0<x< l:c(u(-,t)) = Ion [i,l]}

and the function ç : [0, T] -» [0,1] by

(1.4)

Hulshof [6] has shown that

(1.5) c is continuous on [0, T]

and, if 0 < ç(t) < 1, the point x = ç(t) is the interface between the saturated and
the unsaturated region:

(1.6)
c(u(x, t))<l   if 0 < x < ç(t),    0<t<T,
c(u(x,t)) = l   iic(t)<x<l,    0<t<T.

Since c(u(-,t)) ^ 1 on [0,1] it follows that ç > 0 on [0,T\. It may happen however
that, for some t G (0,T], ^(i) = 1. In that case it is possible that c(u(c(t),t)) < 1,
i.e. the medium is completely unsaturated at that time.

c(u) < 1

c(u) = 1

Figure 2
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AN ELLIPTIC-PARABOLIC FREE BOUNDARY PROBLEM 339

In this paper we present some regularity results for the function ç which improve
(1.5). We shall give conditions which guarantee that ç is Lipschitz continuous,
respectively continuously differentiable. We also prove regularity results for the
weak solution u of Problem I. In particular we shall give conditions such that u is
a classical solution.

Before we state the precise results, we give a list of several additional assumptions
on the data.

Al. c(s) is concave near s = 0.
A2. u0 G C2'a([a,ç(0)))nCx([a,ç(0)}), where a G (0,1), c(0) is defined by (1.4)

andae[0,c(0));
\u'¿\ < Mc'(uo)    on [a, ç(0))    (M > 0),

uo is piecewise monotone, and u'0(<;(0)) = /(0).
A2*. uo satisfies A2, uq G C3'a([a,ç(0))) and u'¿/c'(uo) is uniformly Lipschitz

continuous on [a,c(0)).
Without loss of generality we may assume that uo < 0 on [a, ç(0)).

THEOREM 1.1. Let the hypotheses H1-H4 and A2 be satisfied and let u be the
weak solution of Problem I. If either c(u(l, ■)) = 1 on [0, T] or c satisfies assumption
Al, then

(i) ç is Lipschitz continuous on [0,T];
(ü) tiIeC([0,l]x(0,r]) and

ux(x, t) = f(t)    if ç(t) < x < 1, 0 < t < T;
(iii)utGL£c([0,l]x(0,T]);
(iv) if c'(0 ) = 0 then u is a classical solution of Problem I, i.e. (c(u))t G

C(Qt), uxx G C(Qt) and u satisfies (1.1)—(1.3) pointwise.
If we replace condition A2 by the stronger condition A2* we can improve Theo-

rem 1.1.

THEOREM 1.2. Let the hypotheses H1-H4 and A2* be satisfied and let u be
the weak solution of Problem I. If either c(u(l,-)) e 1 on [0,T], or c satisfies
assumption Al, then

(i) Ç is continuously differentiable in every t G [0, T] where c(t) < 1;
(ii)uItGL£j[0,l]x(0,r]);

(hi) ut G C(V n QT), where
(1.7) D = {(x,t)€QT:0<x<c(t)},
and if ç (t) < 1
(1.8) ç'(t) = -ut(c(t)-,t)/f(t);

(iv)   iff G Cx([0,T}) then ut G C(QT).
REMARK 1. In Theorems 1.1 and 1.2 the set [0,1] x (0, T] may be replaced by any

compact subset K of QT which does not contain the set {(x, t): 0 < x < a, t = 0}.
REMARK 2. If c'(0~) > 0 the weak solution is in general not classical in the

neighborhood of a point (?(ín),ío) with c(to) < 1. Otherwise (1.8) and the fact
that (c(u))t = uxx = 0 in {(x, t) G Qt- $(t) < x < 1} would imply

l(. n      -uMto)-,to) _     -(c(u(c(t0),t0)))t    _
ÇK0) /(to) ' c'(u(c(to)-,t0))f(to)
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340 M. BERTSCH AND J. HULSHOF

REMARK 3. The condition ç(t) < 1 in Theorem 1.2(i), (hi) cannot be omitted.
It can be shown that in general c arrives at, respectively departs from the lateral
boundary {x — 1} with nonzero speed.

REMARK 4. The condition that / G Cx([0,T}) in Theorem 1.2(iv) cannot be
omitted. This follows at once from the observation that, since uxx = 0 in Qt\D, u
is given by

u(x, t) = f(t){x - c(t)}   if f(t) < x < 1.
REMARK 5. We believe that the conditions A2 resp. A2* are not necessary for

the results of Theorem 1.1 (resp. Theorem 1.2). The proofs of these theorems are
based on bounds for the functions ut and uxt near the interface x = c(t). To obtain
these bounds, we need that ut (resp. uxt) are bounded at t = 0 near x = ç(0).
Since formally, from equation (1.1), ut = uxx/c'(u), we arrive at the conditions on
u'¿/c'(uo) in the assumptions A2 and A2*. We expect however that equation (1.1)
has a regularizing effect for t > 0, i.e. also if A2 and A2* do not hold, the function
uxx/c'(u) and its spatial derivative are bounded for every t > 0. In that case the
theorems would still be valid (except for the smoothness of ç at t = 0).

REMARK 6. Our method of proof is based on the maximum principle, i.e. we
use global techniques which depend heavily on the boundary conditions. Not only
the method, but also the results depend on the boundary condition at x = 1. It
follows for example from results in [7] that, if we drop our condition / > 0 on [0, T],
it is possible to construct a solution with a discontinuous function ç. So we cannot
expect that all our results can be proved with local techniques.

In this connection we mention that DiBenedetto and Gariepy [3] use local tech-
niques to prove that, in arbitrary space dimensions, for bounded weak solutions,
c(u) is continuous.

The proofs of Theorem 1.1 and 1.2 are given in §4 resp. §5 of this paper. §3
is devoted to the study of the level lines of u near the interface curve x — c(t)
(observe that, at least formally, x = ç(t) itself is a level line, namely {u = 0},
provided ç(t) < 1). In §6 we comment on generalizations of our results to the case
of a Dirichlet boundary condition at x — 1.

2. Preliminaries. First we collect some known results about the solution of
Problem I [6, 8].

PROPOSITION 2.1. Let H1-H4 be satisfied. Then Problem I has a unique weak
solution u, which has the following properties.

(i) u G L2(0, T; H_2(0,1)) n L°°(0, T; Wx<°°(0,1)).
(ii)c(u)eC°+x(QT)nH1(QT).

(hi) u is a classical solution in the region

V = {(x,t) E QT-c(u(x,t)) < 1}.

(iv) The equalities in Problem I all hold in the a.e. sense.
(v)    The function Ç, defined by (1.4) satisfies (1.6) and ç G C([0,T]).

By Proposition 2.1(iv) uxx = 0 a.e. in Qt\P and, by Proposition 2.1(i), u(-,t) G
Cx([0,1]) for a.e. t G [0,T]. Since ux(l,t) = f(t) a.e. on [0,T], this implies that
we may assume, after redefining u on a set of measure zero, that

(2.1) u(x,t) = f(t){x-c(t)}    on QT\D.
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The existence of a weak solution was proved in [8] by means of parabolic regular-
ization. In this method the functions c, uo and / are replaced by smooth functions
cn,uon and fn with the properties

(i) cn —y c, cn(u0n) -* v0, and /„ -» / as n -> oo;
(ii) KJ < L, u'0n(0) = 0, and u'0n(l) = /n(0);

(hi) 1/n < <4 < 7Í < oo.
Let un(x,t) denote the unique solution of Problem In:

(cn(u))t = uxx in QT,
ux(0,t)=Oandux(l,t)=fn(t),    0<t<T,
u(x,0) = U0n(x), 0 < X < 1.

Then t¿„ —> u as n —► oo.
The proofs of Theorems 1.1 and 1.2 are based on estimates of un which are

uniform with respect to n. For that reason we have to reconstruct the initial
functions uun in such a way that they satisfy the conditions A2 and A2*, uniformly
with respect to n.

LEMMA 2.2. Let uo satisfy assumption A2. Then there exists a sequence of
smooth functions uon'- [0,1] —» R such that

Cn(won) -» ^o in C([0,1]) as n —y oo,
(2.2) uon —► «o in Cx([a,ç(0)]) as n —> oo,
(2.3) u'0n -+ /(0) tn C([f (0), 1]) as n-* oo,

«On(0) = 0.
and

(2.4) lu'r^l < Mc'n(u0n)    on [a, 1].

7/urj satisfies A2*, we /lave in addition that

(2.5) uó'n/c^uon)    îs uniformly bounded in Cx([a,l\).

REMARK. Once we have constructed the functions uon, we can choose the
functions fn in Problem I„ such that they satisfy the compatibility condition
«ón(l) = /n(0).

PROOF. There exists a sequence of functions qn G C°°([a, 1]) such that

(2.6) \qn\<M    on[o,l]

and

(2.7) qn -y u'¿/c'(u0)    in C([a, t(0) - e)) as n -> oo

for any small e > 0.
Let uon- [a, 1} —> R be the unique solution of the initial-value problem

Í w" = qnc'n(w),        a < x < 1,
[ u;(o) = uo(o)    and   w'(a) = u0(a).

Here cn is a sequence of smooth functions such that
1/n < c'n < K on R,
c'n —y 0 uniformly on [6, oo) for all 6 > 0,
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342 M. BERTSCH AND J. HULSHOF

cn —y c in C2(I) for every compact set 7 C R~.
We extend uon to a smooth function on [0,1] in such a way that u'Qn(0) = 0, |u0n| <
L, and cn(uon) -* v0 on [0, a].

We claim that uon satisfies (2.2)-(2.4).
To prove (2.2), it is sufficient to show that uo„ —y uo in Cx([a, f(0)]) as n —► oo.

Since uon is uniformly bounded in C2([a,c(0)]), there exists a subsequence (which
we denote by {uun} again) such that UQn —» w in Cx([a, f(0)]) as n —> oo for some
tu G Cx([a, f(0)]). We have to show that

(2.8) w = Uo    on[a,f(0)].

From the construction of g„,c„, and uon, it can be easily derived that the limit
function w is the unique solution of the initial value problem

| w" = u'¿c'(w)/c'(u0),        a<x< f (0) - e,
\ w(a) = u0(a), w'(a) = u'0(a),

where e > 0 is an arbitrarily small number. Thus, by uniqueness, w = uo on
[a, c(0) - e] and (2.8) follows.

From (2.6) and the construction of tto„ we find at once that (2.4) is satisfied.
To prove (2.3) we observe that, by (2.2),

«on(?(0)) -/(0)    asn-^oo,

since u'o(ç(0)) = /(0). We know that /(0) > 0, uOn(ç(0)) -y 0 as n -> oo, u0' is
uniformly bounded, and that cJ,->0 uniformly on [6, oo) for all 6 > 0. Combining
these facts we obtain (2.3).

Finally, if i¿o satisfies A2*, we can choose the functions qn such that

q'n is uniformly bounded on [a, 1]

and
qn -> 9oo    in C([a, 1]),

where qoo G C([o, 1]) is defined by

<(x)

<?oo(z) =  <

and (2.5) is clearly satisfied.

a < x < c(0),

.fflflv, f(0)<Kl,
C'(7i0(x))'

ti''
lim   —r5

xîf(o) c'(u0(2;))

3. The level curves. In the Introduction we mentioned already that, as long
as ç(t) < 1, the set x = c(t) is, at least formally, the level curve {(x,t):u(x,t) = 0}.
Since our main objective is to study the regularity of ç, it seems a natural approach
to study the level curves of u in a neighborhood of x — ç(t) (see also [2]).

Our plan is as follows. First, to eliminate the formal aspect of calculations, we
shall study the level curves of the approximating smooth solutions un of Problem
In which we introduced in §2. Given a level curve x = X(t) of un, it follows from
(d/dt){un(X(t),t)} = 0 that

(3.1) Xt = -unt/unx    ifunx^0.
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Defining

(3.2) nn(x, t) = -unt(x, t)/unx(x, t)    if unx(x, t) =¿ 0,

we derive a parabolic partial differential equation for nn. In the following sections
this equation will be the main tool to obtain uniform bounds for nn, which, by
(3.1), are bounds for the time derivatives of level curves.

Secondly, to control the condition unx ^ 0 in (3.1), we shall prove that the
condition f(t) > 0 in (1.2) implies that unx > 6 > 0 in a neighborhood of x = c(t)
for n large enough and for some 6 > 0.

LEMMA 3.1. Let un be the solution of Problem I„. Ifunx ^ 0 at (xo,to) G Qt
then the function nn, defined by (3.2), satisfies

(3.3) rjt = Vxx/c'n(un) - (n2)x    at (x0,t0).

PROOF. Although it is possible to obtain (3.3) by direct calculation, we choose
a proof which uses the level curves of un as a new coordinate system, following an
idea by Gurtin, MacCamy, and Socolovsky [5].

For convenience we drop the subscript n.
Since ux ,¿ 0 in a neighborhood M of (xo,to), we can define in "V a coordinate

transformation (x,t) —► (p,r) defined by x = X(p,r), t = r, where X is defined by
u(X(p,t),t) = p. Hence ut + uxXT = 0 and uxXp = 1. Using this we derive that

l-XT = uxXT = -ut = -Uxx ±-(±\   -1     J-*e>
XPT       XT l        c'(u) c'(u)\XpJpXp      c'(u)X$'

or

(3.4) XT = Xpp/c'(p)X¡.

We set Y(p,r) = Xr(p,r) and differentiate (3.4) with respect to r. This yields

y    _ 1        *pp   _ ¿Xpp _ 1 7pp   ^   ¿I   Ip
T - c'(p) X2     c'(p)Xl  p - c'(p) X2 '    Xp  '

where we used (3.4) another time. Defining

n(x,t) = Y(p,T)

we find that

m = YT - nxn = yy^Vxx + yj^ -^§Vx - 2nr)x - Wx = yjf^Vxx - 2nnx,

which completes the proof.
In the following lemmas we establish lower bounds for ux and unx near x = c(t).

LEMMA 3.2. Let hypotheses H1-H4 be satisfied and let tin be piecewise mono-
tone. Let u be the solution of Problem I. For every to G [0, T] there exists a neigh-
borhood N(to) of (ç(to),to) in Qt such that ux > 0 a.e. in N(to).

PROOF. If ç(to) = 1 and c(u(ç(to), to)) < 1, u is a classical solution of Problem
I in a neighborhood of (f(ío),¿o)- Since ux(ç~(t0),to) = /(ío) > 0, the existence of
A^(io) is obvious.

So let c(u(ç(to),to)) = 1. Since uq is piecewise monotone, it follows from the so-
called lap-number arguments in [6, Appendix] that the function u(-,t) is piecewise
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monotone on [0,f(i)] for ail t G [0,T]. Thus there exists for every t a number
<t>(t) G [0, ç(t)) such that ux(-,t) > 0 on [<j>(t),ç(t)). Here we recall that u is a
classical solution in D and hence ux is a smooth function. We may choose <p(t) as
small as possible. Observe that ux(-,t) ^ 0 on [4>(t),ç(t)].

We now argue by contradiction. Since by (2.1) ux — f > 0 if x > ç(t), we
suppose that there exists a sequence (xn,tn) G D with (xn,tn) —> (ç(to),to) as
n —► oo and ux(xn,tn) < 0.

First we consider the case that tn / to as n —» oo. For all n there exists a
maximal interval (yn,zn) with 0 < yn < xn < zn < ç(tn), such that ux(-,tn) < 0
on (yn,zn). Hence c(u(-,tn)) attains a local maximum in yn. Since u(yn,tn) >
u(xn,tn) and since, by the continuity of c, c(u(xn,tn)) —y 1 as n —» oo, we have
that

(3.5) c(u(t/n,r.n)) —y 1    as n—y oo.

Since u(-,t) is piecewise monotone, the largest local maximum of c(u(-,t)) less
than one, which we denote by S(t), is well defined. In [6] it was proved that S(t)
is decreasing with respect to t. Hence

S(tn) -** 1    as n —y oo,

which is a contradiction to (3.5).
Finally we consider the case that tn \ io as n —y oo. We choose x G (<j>(to), c(to))

and t > fo such that ux(x, ■) > 0 on [to»7"]- Using that, by (2.1), ux = f in Qt\~D~,
it follows that ux > 0 on the parabolic boundary of the set (x, 1) x (io,r]. By
the maximum principle for ux (which can be easily proved using the approximating
sequence {un}) it follows that ux > 0 a.e. in this set, and we obtain a contradiction.

LEMMA 3.3. Let the assumptions of Lemma 3.2 be satisfied and let uo G
Cx([a, 1}) (0 < a < c(0)) with u'o(c(0)) = f(0). Then there exist a function
Ç G C°°([0,T]) with 0 < £ < c on [0,T] and £(0) > a and a number 6 > 0
such that ux > 26 a.e. in Bt, where

(3.6) Bt = {(x, t): £(t) < x < 1, 0 < t < T}.

PROOF. By Lemma 3.2 and a straightforward compactness argument there exist
a function £ G C°°([0,T]) and an e > 0 with e < £ < c on [0,T] such that ux > 0
a.e. in the set {(x, t): £(i) — e < x < 1, 0 <t < T}. Since u'0 > 0 near r;(0) we may
assume that u'0 > 0 on [£(0), 1]. By the strong maximum principle, applied to ux
in a neighborhood of the curve x — £(i), there exists a number 6, with 0 < 26 < f
on [0, T], such that ux > 26 on the parabolic boundary of Bt- Then Lemma 3.3
follows from the maximum principle for ux.

LEMMA 3.4. Let the hypotheses H1-H4 and assumption A2 be satisfied and
let un be the solution of Problem ln. Then there exists an N G Z+ such that
Unx > 6 > 0 on Bt for all n> N, where 6 and Bt are given by Lemma 3.3.

PROOF. The approximating functions i¿on and fn in Problem In can be chosen
in such a way that u'0n > 6 on [£(0), 1] and /„ > 6 on [0, T\.

Since the curve x = £(i) lies entirely in the region where u is a classical solution,
it follows from standard a priori estimates [9] that un —> u in C2'X(M), where
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M is a neighborhood of x = £(i) in Qt- Hence it follows from Lemma 3.3 that
unx(x, t) > 6 if x = £(t) for n large enough.

Thus unx > 6 on the parabolic boundary of Bt for n large, and Lemma 3.4
follows form the maximum principle.

4. Theorem 1.1. In this section we shall prove Theorem 1.1. The main step
in the proof is to show the uniform boundedness of unt near x — ç(t). At this point
we distinguish two cases. In Lemma 4.1 we give a proof in the case that

(4.1) c(u(l,t)) = l   foralliG[0,T].

In Lemma 4.2 we consider the general case, but there we shall need concavity of
c(s) near s — 0.

Below C denotes a generic constant.

LEMMA 4.1. Let hypotheses H1-H4 and assumption A2 be satisfied, and let u
resp. un be the solution of Problem I resp. ln, with uon defined by Lemma 2.2.
If u satisfies (4.1), then there exists a constant C such that, for n large enough,
\v-nt\ < C in Bt, where Bt is defined by (3.6).

PROOF. We extend the solution u by

u(x,t) = f(t)(x - c(t)),        x>l, 0<t<T.

Since c(u(l, ■)) — 1 on [0, T], it follows that u can be considered as the solution of
Problem I on [0, A] X [0, T] for any A > 1, where the boundary condition ux = f
holds at x = A instead of at x = 1. This argument implies that we may assume
without loss of generality that

(4.2) <:(*)< 1   on [0,21.
By Lemma 3.4, uniform boundedness on Bt of unt and of r,„ are equivalent for

n large enough. Below we shall estimate r)n.
We observe that nn is the classical solution of the initial-boundary value Problem

n„:
(4-3) Í r?t = nxx/c'n(un) - (n2)x        in Bt,
(4-4) I rjx = -f'Jfn + c'n(un)n2,      x = l,0<t<T,
(4.5) j n = -unt/unx, x = £(t), 0<t<T,
(4.6) U(-,0) = -tign/C'(«On)«On.       £(0)<*<1.
Here (4.3) follows from Lemma 3.1, and (4.4) is derived from

/ unt \ unxt     untunxx f       ,       . / unt \
Vnx = ~[u~~)   =~~ + ~tf~ = ~T+Cn{Un)\u~)\ "ni 7 i anx anx Jn \ unx /

for x = 1, 0 < t < T.
To prove Lemma 4.1, we construct comparison functions which do not depend on
n.

Define, for A > 0,

R(x, t) = -A(x - 1) - e2A{t+x)    on Bt-

We claim that, for A and n large, p satisfies (4.3)-(4.6) with equality replaced by <.
Concerning (4.3) and (4.4), this follows from a simple calculation. Concerning (4.5)
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and (4.6) we use the uniform boundedness of nn on x = £(i), resp. Bt n {t — 0},
which, at x = £(t), follows from the proof of Lemma 3.4, and, at t = 0, from Lemma
2.2.

Hence, for A and n large, n is a subsolution of Problem IIn and thus, by the
maximum principle [4],

(4.7) Vn>V   in Bt-

Next we define
rf(x,t) = B(x+l),        (x,t)eBT.

As above, it follows that, for B large enough fj satisfies (4.3), (4.5) and (4.6) with
equality replaced by >. To prove the same for (4.4), we have to show that

(4.8) c'n(un(l, t)) -> 0   as n -> oo

which enables us to neglect the term c'n(un)n2 in (4.4). Accepting (4.8) for the
moment, it follows that fj is a supersolution of Problem IIn for B and n large, and
thus

(4.9) nn < rj   in Bt-

Lemma 4.1 follows from (4.7) and (4.9).
So it remains to prove (4.8). For every <f> G C([0,T}) with 0 < 4> < c on [0,T]

we known that un(<p(t),t) —► u(<p(t),t) in C([0,T]) as n —> oo. Since u(ç(t),t) = 0
and unx(ç(t), t) > 6 > 0 on Bt, it follows from (4.2) that there exists an e > 0 such
that un(l, •) > e on [0, T] for n large enough. Since c'n —> 0 uniformly on [e, oo) as
n —y oo, we obtain (4.8).

LEMMA 4.2. Let hypotheses H1-H4 and assumptions Al, A2 be satisfied. Let
un be the solution of Problem ln with uo„ defined by Lemma 2.2. Then there exists
a constant C such that for n large enough \unt\ < C in Bt-

PROOF. The upper bound for unt follows, as in the proof of Lemma 4.1, by
constructing a lower bound for r/n.

The construction of a supersolution of Problem IIn fails, because we can no
longer neglect the term c'n(un)n2 in (4.4). For that reason we give a different proof,
where we need the concavity of c(s) near s = 0.

We choose e > 0 and c„ such that for all n cn(s) is concave on (—4e, oo). It
follows easily from the uniform continuity of c(tt(l, •)) on [0, T) that there exists a
finite partition

(4.10) 0 = io < ii < • • • < tm = T

of the interval [0, T] such that for all i = 1,..., m either u(l, t) > -2e or u(l, t) <
-e on (U-f,U).

If u(i,t) < -e on (ti-f,ti), u is a classical solution on [0,1] x [í¿_i,í¿]. Thus if
U-f ^ 0, ut and unt are uniformly bounded on these subsets and, if í¿_i = 0, on
compact subsets of {[0,1] X [0,ii]}\{[0, a] X {0}}. In particular, if m in (4.10) is
chosen minimal, then

,       » junt>-C    on [0,1] X {U}, i = l,...,m,
(4'llj \unt>-C    on[a,l]x{0}.
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It remains to prove that, for some <f> G C°°([0, T}) with 4>(0) > a and <j> < ç on
[0, T], and for n large
(4.12) Unt > -C in <i = {(x, t): <p(t) <x<l, i»_i < t < U}
for all i with u(l,t) > -2s on (í»_i,í¿). We fix such an i. We choose cj> such that
u > —3e on iC¿. Then, for n large, ttn > —4e on 7v~¿. Defining qn = unt it follows
from the concavity of cn that

<4(Wri)9nt = -Cn(Un)u2nt + Çnxx > Qnxx      On Ki-

ln addition, unt > —C on the lateral boundary x = 0(i) of Ki (where u is a classical
solution) and on Ki f) {t = í¿_i} (by (4.11)).  Finally, (unt)x = f'n is uniformly
bounded on the lateral boundary x — 1. Hence (4.12) follows from the maximum
principle.

PROOF OF THEOREM 1.1. (in) By Lemmas 4.1 and 4.2 and from the fact
that u is a classical solution in Qt\Bt, it follows that un is uniformly Lipschitz
continuous with respect to t (and also, by Proposition 2.1(i), with respect to x) on
[0,1] x [t, T] for any t > 0. Hence the limit function u is Lipschitz continuous on
[0,1] x [t,T], and ut G L,~([0,1] x (0,T]).

(iv) Since, by (2.1), (c(u))t = uxx = 0 if x > ç(t), and since (c(u))t = uxx G
C(D), it is enough to prove that

lim (c(u(x,t)))t = 0   ifu(?(to),to)=0.
(x,t)-*(c(to),t0)

{x,t)eD

This follows at once from (iii) and the fact that c'(0~) = 0.
(i) It is sufficient to prove that ç(t) is uniformly Lipschitz continuous on {t G

[0,r]:?(t)<l}.
We fix r G [0,T] with c(t) < 1. Then c(t) < 1 in a neighborhood 0T of r. By

Lemma 3.3 the level curves x = ç£(t) with u(çe(t),t) = —e are well defined smooth
curves for e small enough and t G 0T- Since f£ / c on 0T as e \ 0 it is sufficient
to prove that

(4.13) \¿\<C    on Or
where C does not depend on e and t.

We derive from the fact that (d/dt)u(çE(t),t) — 0 on 0T, that
Ç'£(t) = -Ut(Çe(t),t)/ux(Çe(t),t), t G 0T.

Since, for e small, ux is bounded away from zero (by Lemma 3.3), (4.13) follows
from the fact that ut is bounded in a neighborhood in Qt of x — ç(t).

(ii) Because, by (2.1), ux = f if x > ç(t) and since ux G C(D), it is enough to
show that

lim ux(x,t) = f(t0),        0<to<T.
(x,t)^(?(to),to)

(x,t)eP
Since c g C([0, T}), we only have to show that

lim ux(c(t) - e, t) — f(t)    uniformly on [0, T}.

Because uxx is bounded near x — ç(t),ux(ç(t) — £, t) converges uniformly on (0, T)
to a continuous function g(t) on [0,T]. By Proposition 2.1(i), u(-,t) G C1([0,1])
for a.e. t G [0,T], and hence f(t) = g(t) a.e. on [0,T]. Since both / and g are
continuous, / = g on [0, T].
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5. Theorem 1.2. We proceed as in the proof of Theorem 1.1: first we use
Problem IIn to obtain estimates for r?n.

LEMMA 5.1. Let the assumptions of Theorem 1.2 be satisfied, let uon be defined
by Lemma 3.2, and let fn satisfy the compatibility condition

(tC(l)/<(llO»(l)))' = fn(0)-
Let r]n be defined by (3.2). Then \nnx\ < C on Bt for n large enough.

PROOF. First we observe that nrai is uniformly bounded on the parabolic bound-
ary of Bt- On the lateral boundary x = £(f) this follows from the fact that u is a
classical solution of Problem I and unx —> ux in C2'1 near x = £(f). On BrC\{t = 0}
it follows from (2.5), where we use that

/r |\ _ _Unxt    ,   UntUnxx  _ 1      /    Unxx    \      ¡If      \

Unx (Unx) Unx   \CnyUn)/x

Finally, (4.4) implies the uniform boundedness of nnx on the lateral boundary x = 1.
Here we use the uniform bound on nn, established in §4.

Differentiating equation (4.3) with respect to x, we find that w — nnx satisfies

wt = {wx/c'n(un) - 2nnw}x.

By [9, p. 181, Theorem 7.1], this implies that nni is uniformly bounded on Bt-
PROOF OF THEOREM 1.2. (ii) By Lemma 5.1 and (5.1), unxt is uniformly

bounded in Bt, and thus also in [0,1] x [r, T] for all r G (0, T). In view of Theorem
l.l(iii), unxx is uniformly bounded in [0,1] x [r,T] and hence unx is Lipschitz
continuous in this set. Since the Lipschitz constant does not depend on n, the same
is true for ux, which shows that uxt G Lf£c([0,1] x (0, T]).

(i)-f(iii) Using that uxt is bounded, it follows that ut(i(t) — e,t) converges uni-
formly on [0, T] as £ \ 0. Hence ut G C(D~ D QT)-

Let 0T and Ç£(t) be defined as in the proof of Theorem l.l(i). Then, for e small,

¿(t) = -Ut(Çs(t),t)/ux(is(t),t), t G 0T.

Since (ut/ux)x is bounded, and c g C([0,T]), it follows that ç£ —»■ c in CX(ÖT) and
ç' is given by (1.8).

(iv) By (2.1)
(5.2) ut = f'(x -ç)- ft',        c(t) <x<l.
Hence ut G C(QT\D). In view of (ii), ut G C(QTr\V). Finally, by (1.8) and (5.2),
ut is continuous across the interface x — ç(t).

6. A Dirichlet boundary condition. In this section we briefly indicate how
the main results of this paper can be generalized to the case that the Neumann
condition at x = 1 is replaced by a Dirichlet condition:

(6.1) u(l,t) = g(t) > 0   on [0,71,
where g is a Lipschitz continuous and positive function on [0,T]. We shall, for
convenience, refer to this problem as the Dirichlet problem, although we still have
ux = 0 at x = 0. Again (see [8]) there exists a unique weak solution u and, as long
as the medium is not completely saturated, i.e.,

c(u(-, t)) ¿ 1    on [0,1] for all 0 < t < T,
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the interface x = ç(t) is continuous and satisfies

(6.2) 0<?<1   on[0,T].
We claim that in the situation described above, Theorems 1.1 and 1.2 still hold,

if in assumption A2 the condition u'0(ç(0)) = /(0) is replaced by

«o(f(0)) = 9(0)/( W(0)).
Observe that, in view of (6.2), c(u(l, ■)) = 1 on [0, T] and hence assumption Al can
be omitted. Of course we do not need the assumptions concerning f(t) anymore.

To prove our claim, we notice that in the saturated region uxx = 0 a.e. and thus
we may assume that (cf. (2.1))

^,t) = j^r{x-t(t)}, X<c(t)<l,  0<t<T.

In particular u can be considered as the solution of Problem I with the Neumann
condition ux(l,t) = f(t), where

(6-3) f(t) = g(t)/(l-ç(t)).
Since ç g C([0, T]) and c < 1 on [0, T], / is a positive and continuous function, but
not, as was assumed in the previous sections, a Lipschitz continuous function. In
the first step of the proof of Theorem 1.1, namely Lemma 3.3, we did not use the
Lipschitz continuity of /, and so Lemma 3.3 still holds.

In the rest of the proof of Theorem 1.1 we consider u as the solution of the
Dirichlet problem. In particular, u can be obtained as the limit of smooth solutions
un of an approximating Dirichlet problem, with g replaced by gn- The main line of
the proof of Theorem 1.1 remains the same. Only at two parts, which we discuss
below, the proof has to be adapted.

First, to prove Lemma 3.4, we need to know that unx(l, ■) is positive and bounded
away from 0 on [0,T] for n large. To do this, a supersolution ün(x,t) with the
properties ûnx(l, •) > 6 > 0 and ñ„(l, •) = gn on [0, T], ün > 0 in Qt, can be used
as a barrier function. The construction of ön is left to the reader.

Secondly, the proof of Lemma 4.1 is simplified since the boundary condition (4.4)
for nn at x = 1 is replaced by

Vn(l,t) = -g'n(t)/unx(l,t),        0<t<T.

Hence nn is uniformly bounded on the boundary x = 1 and the construction of a
subsolution and a supersolution is straightforward.

Finally we observe that, once we have proved Theorem 1.1, we know that Ç is
Lipschitz continuous, and so is /, given by (6.3). Hence Theorem 1.2 follows at
once if we consider u as the solution of the Neumann problem.
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