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Abstract

We consider nonlinear integro-differential equations like the ones that arise from

stochastic control problems with purely jump Lévy processes. We obtain a non-

local version of the ABP estimate, Harnack inequality, and interior C 1;˛ reg-

ularity for general fully nonlinear integro-differential equations. Our estimates

remain uniform as the degree of the equation approaches 2, so they can be seen

as a natural extension of the regularity theory for elliptic partial differential equa-

tions. © 2008 Wiley Periodicals, Inc.

1 Introduction
Integro-differential equations appear naturally when studying discontinuous sto-

chastic processes. The generator of an n-dimensional Lévy process is given by an

operator with the general form

Lu.x/ D
X
ij

aij @ijuC
X

i

bi@iu

C
Z

Rn

�
u.x C y/ � u.x/ � ru.x/ � y�B1

.y/
�
d�.y/:

(1.1)

The first term corresponds to the diffusion, the second to the drift, and the third to

the jump part. In this paper we focus on the equations obtained when we consider

purely jump processes—processes without diffusion or drift part. The operators

have the general form

(1.2) Lu.x/ D
Z

Rn

�
u.x C y/ � u.x/ � ru.x/ � y�B1

.y/
�
d�.y/;

where � is a measure such that
R

Rn jyj2=.1C jyj2/ d�.y/ < C1.

The value of Lu.x/ is well-defined as long as u is bounded in Rn and C 1;1 at x.

These concepts will be made more precise later.
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The operator L described above is a linear integro-differential operator. In this

paper we want to obtain results for nonlinear equations. We obtain this kind of

equations in stochastic control problems [11]. If in a stochastic game a player

is allowed to choose from different strategies at every step in order to maximize

the expected value of some function at the first exit point of a domain, a convex

nonlinear equation emerges,

(1.3) Iu.x/ D sup
˛
L˛u.x/:

In a competitive game with two or more players, more complicated equations

appear. We can obtain equations of the type

(1.4) Iu.x/ D inf
ˇ

sup
˛
L˛ˇu.x/:

The difference between (1.3) and (1.4) is convexity. Alternatively, an operator

like Iu.x/ D sup˛ infˇ L˛ˇu.x/ can be considered. A characteristic property of

these operators is that

(1.5) inf
˛ˇ
L˛ˇv.x/ � I.uC v/.x/ � Iu.x/ � sup

˛ˇ

L˛ˇv.x/:

A more general and better description of the nonlinear operators we want to

deal with is the operators I for which (1.5) holds for some family of linear integro-

differential operators L˛ˇ . The idea is that an estimate on I.u C v/ � Iu by

a suitable extremal operator can be a replacement for the concept of ellipticity.

Indeed, if we consider the extremal Pucci operators (see [7]) MC
�;ƒ

and M�
�;ƒ

,

and we have M�
�;ƒ

v.x/ � I.u C v/ � Iu � MC
�;ƒ

v.x/, then it is easy to see

that I must be an elliptic second-order differential operator. If instead we compare

with suitable nonlocal extremal operators, we will have a concept of ellipticity for

nonlocal equations. We will give a precise definition in Section 3 (Definition 3.1).

We now explain the natural Dirichlet problem for a nonlocal operator. Let� be

an open domain in Rn. We are given a function g defined in Rn n�, which is the

boundary condition. We look for a function u such that

Iu.x/ D 0 for every x 2 �;
u.x/ D g.x/ for x 2 Rn n�:

Notice that the boundary condition is given in the whole complement of � and

not only @�. This is because of the nonlocal character of the operator I . From

the stochastic point of view, it corresponds to the fact that a discontinuous Lévy

process can exit the domain � for the first time jumping to any point in Rn n�.

In this paper we will focus mainly on the regularity properties of solutions to

an equation Iu D 0. In order to obtain regularity results, we must assume some

nice behavior of the measures �. Basically, our assumption is that they are sym-

metric, absolutely continuous, and not too degenerate. To fix ideas, we can think
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of integro-differential operators with a kernel comparable to the respective kernel

of the fractional Laplacian �.�4/�=2u.x/ D R
.u.x C y/ � u.x//jyj�n�� dy.

This is the first of a series of papers where we plan to extend the existing theory

for (fully nonlinear) second-order elliptic equations to the case of discontinuous

processes in a seamless fashion, i.e., with methods and estimates that reach uni-

formly the second-order case. Our results in this paper are as follows:

� a comparison principle for a general nonlinear integro-differential equa-

tion,

� a nonlocal version of the Aleksandrov-Bakel0man-Pucci estimate,

� the Harnack inequality for integro-differential equations with kernels that

are comparable with the ones of the fractional Laplacian but can be very

discontinuous,

� a Hölder regularity result for the same class of equations as the Harnack

inequality, and

� a C 1;˛ regularity result for a large class of not necessarily convex, nonlin-

ear integro-differential equations.

Although there are some known results about Harnack inequalities and Hölder

estimates for integro-differential equations with either analytical proofs [10] or

probabilistic proofs [3, 4, 5, 12], the estimates in all these previous results blow

up as the order of the equation approaches 2. In this way, they do not generalize

to elliptic differential equations. We provide estimates that remain uniform in the

degree and therefore make the theory of integro-differential equations and elliptic

differential equations appear somewhat unified. Consequently, our proofs are more

involved than the ones in the bibliography.

In this paper we consider only nonlinear operators that are translation invari-

ant (independent of x or constant coefficients). The variable coefficient case will

be considered in future work. In future papers, we are also planning to address

the problem of the interior regularity of the integro-differential Hamilton-Jacobi-

Bellman equation. This refers to the equation involving a convex nonlocal operator

like (1.3). In that case we obtain an analogue of the Evans-Krylov theorem proving

that the solutions to the equation have enough regularity to be classical solutions.

In Sections 2 to 6 we develop the technical results that we need for the regularity

results presented in the second half of the paper. In this first part, definitions,

approximation, stability, and comparison results are discussed. The most important

results are in the second part of the paper, starting in Section 7, where the regularity

theory of solutions is developed.

In Section 2 we discuss the appropriate definition of viscosity solution given the

global nature of the problem. In Section 3 we introduce the notion of extremal

operators associated to a family of kernels. These operators play the same role as

the Pucci extremal operators in the second-order theory and allow us to define, in

a parallel fashion to [7], solutions to equations with bounded measurable coeffi-
cients as those functions that are super- and subsolutions of the lower and upper
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extremal operators. In Section 4 we show how the classes of equations introduced

above persist under appropriate limiting processes of (super- or sub-) solutions.

This provides a powerful compactness tool for a priori estimates. In Section 5 we

discuss approximation of solutions by sup (or inf) convolution and the resulting

comparison theorems. In particular, the fundamental conclusion is that the differ-

ence of two solutions to the fully nonlinear, translation-invariant equation satisfies

an equation with bounded measurable coefficients in the sense discussed above. In

Section 6 we show how to obtain an elliptic partial differential equation as a limit

of integro-differential equations.

In Section 7, for the reader’s convenience, we provide a quick overview of the

regularity results we will prove in the following sections. The most interesting

part of the paper starts in Section 8 with the nonlocal ABP estimate. In Sections 9

and 10 we construct a special function and prove some pointwise estimates that

will help in proving the Harnack inequality and Hölder estimates in Sections 11

and 12. In Section 13 we show the C 1;˛ estimates. Finally, in Section 14 we show

how to generalize our previous results when our operators have truncated kernels.

This last section is important for applications since very often the kernels of an

integro-differential equation are comparable to the ones of the fractional Laplacian

only in a neighborhood of the origin.

2 Definitions of Viscosity Solutions
As we mentioned in the introduction, equation (1.2) was given in too much

generality for our purposes. We will restrict our attention to the operators where �

is given by a symmetric kernel K. It takes the form

(2.1) Lu.x/ D PV

Z
Rn

.u.x C y/ � u.x//K.y/dy:

The kernel K must be a positive function, satisfy K.y/ D K.�y/, and also

(2.2)

Z
Rn

jyj2
jyj2 C 1

K.y/dy < C1:

The assumption (2.2) is the standard Lévy-Khintchine condition. It is not necessary

to subtract the term �ru.x/ �y�B1
if we think of the integral in the principal value

sense. Alternatively, due to the symmetry of the kernelK, the operator can also be

written as

Lu.x/ D 1

2

Z
Rn

.u.x C y/C u.x � y/ � 2u.x//K.y/dy:

In order to simplify the notation, we will write

ı.u; x; y/ WD u.x C y/C u.x � y/ � 2u.x/:
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The expression for L can be written concisely as

(2.3) Lu.x/ D
Z

Rn

ı.u; x; y/K.y/dy

for some kernel K (which would be half of the one of (2.1)). We will alternate

between writing the operators in the form (2.1) and (2.3) whenever it is convenient.

The nonlinear integro-differential operators that arise in stochastic control have

the form (1.4) where we think that for each L˛ˇ we have a kernel K˛ˇ so that

L˛ˇ has the form (2.3). We will define a more general form for nonlinear integro-

differential operators in Section 3.

The minimum assumption in order to have Iu well-defined is that every kernel

K˛ˇ must satisfy (2.2) in a uniform way. More precisely,

(2.4) if K.y/ WD sup
˛ˇ

K˛ˇ .y/; then

Z
Rn

jyj2
jyj2 C 1

K.y/dy < C1:

The value of Iu can be evaluated in the classical sense if u 2 C 1;1. If we want

to evaluate the value of Iu.x/ at only one point x, we need u to be punctually C 1;1

in the sense of the following definition.

DEFINITION 2.1 A function ' is said to be C 1;1 at the point x, and we write

' 2 C 1;1.x/, if there is a vector v 2 Rn and a number M > 0 such that

j'.x C y/ � '.x/ � v � yj � M jyj2 for jyj small enough.

We say that a function is C 1;1 in a set � if the previous definition holds at every

point with a uniform constant M .

As in the second-order case, we give a definition of viscosity sub- and superso-

lutions for integro-differential equations by testing the operators in C 1;1 functions

that touch the function u from either above or below. Often for nonlocal equations

the definition is given by test functions that remain on one side of u in the whole

space Rn. We take a slightly more general approach. We consider a test function '

that touches u at a point x and remains on one side of u but is only defined locally

in a neighborhoodN of x. Then we complete ' with the tail of u to evaluate the in-

tegrals (2.3). We do this in order to allow arbitrary discontinuities in the function u

outside of the domain � where it may be a solution of the equation.

DEFINITION 2.2 A function u W Rn ! R, upper (lower) semicontinuous in x�,

is said to be a subsolution (supersolution) to Iu D f , and we write Iu � f

(Iu � f ), if every time all the following happen:

� x is any point in �.

� N is a neighborhood of x in �.

� ' is some C 2 function in xN .

� '.x/ D u.x/.

� '.y/ > u.y/ ('.y/ < u.y/) for every y 2 N n fxg.
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Then if we let

v WD
(
' in N

u in Rn nN;
we have Iv.x/ � f .x/ (Iv.x/ � f .x/).

A solution is a function u that is both a subsolution and a supersolution.

Note that Definition 2.2 is essentially the same as definition 2 in [2]. In this

paper we will only consider continuous right-hand sides f .

For the set of test functions, we could also use a function ' that is C 1;1 only at

the contact point x. This is a larger set of test functions, so a priori it may provide

a stronger concept of solution. In Section 4 we will show that the two approaches

are actually equivalent.

Usually the nonlocal operators I allow some growth at infinity for the Dirichlet

data. For instance, if the value of Iu.x/ is well-defined every time u 2 C 1;1.x/

and u 2 L1 .Rn; w/ for any weight w that bounds at infinity the tails of the kernels

K˛, then the above definition would apply for semicontinuous functions in x� that

are in L1.Rn; w/ but not necessarily bounded. In most cases, our regularity results

in this paper can be extended to the unbounded case by truncating the function and

adding an error term in the right-hand side.

3 Extremal Operators of Pucci Type
In (1.3) and (1.4) we consider the supremum or an inf sup of a collection of

linear operators. Let us consider a collection of linear operators L that includes all

of them. The maximal and a minimal operator with respect to L are defined as:

MC
L v.x/ D sup

L2L
Lu.x/;(3.1)

M�
Lv.x/ D inf

L2LLu.x/:(3.2)

For example, an important class that we will use for regularity results is given

by the class L0 of operators L of the form (2.3) with

(3.3) .2 � �/ �

jyjnC�
� K.y/ � .2 � �/ ƒ

jyjnC�
where 0 < � < 2I

then MC
L0

and M�
L0

take a very simple form:

MC
L0
v.x/ D .2 � �/

Z
Rn

ƒı.v; x; y/C � �ı.v; x; y/�
jyjnC�

dy;(3.4)

M�
L0
v.x/ D .2 � �/

Z
Rn

�ı.v; x; y/C �ƒı.v; x; y/�
jyjnC�

dy:(3.5)

We will use these maximal operators to obtain regularity estimates. The factor

.2 � �/ is important when � ! 2. We need such a factor if we want to obtain



REGULARITY FOR INTEGRO-DIFFERENTIAL EQUATIONS 603

second-order differential equations as limits of integro-differential equations. In

terms of the regularity, we need the factor .2 � �/ for the estimates not to blow up

as � ! 2. This can be easily checked for fractional Laplacians.

Another interesting class is given when the kernels have the form

K.y/ D .2 � �/ ytAy

jyjnC2C�

for symmetric matrices A such that �I � A � ƒI . This is a smaller class than

the L0 above if we choose the respective constants � and ƒ accordingly, but it is a

large enough class to recover the classical Pucci extremal operators [7] as � ! 2.

Let K.x/ be the supremum of K˛.x/ where K˛ are all the kernels of all opera-

tors L 2 L. As a replacement for (2.4), for any class L we will assume

(3.6)

Z
Rn

jyj2
jyj2 C 1

K.y/dy < C1:

Using the extremal operators, we give a general definition of ellipticity for non-

local equations. The following is the kind of operators for which the results in this

paper apply:

DEFINITION 3.1 Let L be a class of linear integro-differential operators. We al-

ways assume (3.6). An elliptic operator I with respect to L is an operator with the

following properties:

� If u is any bounded function, Iu.x/ is well-defined for all u 2 C 1;1.x/.

� If u is C 2 in some open set �, then Iu.x/ is a continuous function in �.

� If u and v are bounded functions C 1;1 at x, then

(3.7) M�
L.u � v/.x/ � Iu.x/ � Iv.x/ � MC

L .u � v/.x/:
This last hypothesis allows us to linearize the equation in the translation-invariant

case.

Definition 2.2 applies for the general nonlocal elliptic operators of Definition 3.1

mutatis mutandis.

Definition 3.1 may apply to operators I whether or not they are translation in-

variant. However, in this paper we will only focus on the translation-invariant

case. In other words, for all nonlinear operators I in this paper we assume that

�´Iu D I.�´u/, where �´ is the translation operator �´u.x/ WD u.x � ´/.
We will show that any operator of the form (1.4) is elliptic with respect to any

class that contains all the operators L˛ˇ as long as condition (2.4) is satisfied

(Lemma 3.2 and Lemma 4.2). However, Definition 3.1 allows a richer class of

equations. For example, we can consider an operator I given by

Iu.x/ D
Z

Rn

G.u.x C y/ � u.x//
jyjnC�

d�
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for any function G such that G.0/ D 0 and � � G0.x/ � ƒ. This operator I

would be elliptic with respect to the class L0.

LEMMA 3.2 Let I be an operator as in (1.4) and L be any collection of integro-
differential operators. Assume every L˛ˇ belongs to the class L. Then for every
u; v 2 C 1;1.x/ we have

M�
L.u � v/.x/ � Iu.x/ � Iv.x/ � MC

L .u � v/.x/:
PROOF: Since u; v 2 C 1;1.x/, L˛ˇu.x/ and L˛ˇv.x/ are defined classically

for any L˛ˇ . Clearly, for each ˛; ˇ we have

L˛ˇv C M�
L.u � v/ � L˛ˇu � L˛ˇv C MC

L .u � v/:
Applying sup˛ and then infˇ , we conclude the proof

Iv C M�
L.u � v/ � Iu � Iv C MC

L .u � v/:

(We thank the referee for helping us to simplify the proof of this lemma.) �

The family of operators that satisfy condition (3.3) have another important prop-

erty. Definition 2.2 is made so that we never have to evaluate the operator I in the

original function u. Every time we touch u with a smooth function ' from above,

we construct a test function v 2 C 1;1.x/ to evaluate I . But it is implicit in the

viscosity method that a quadratic contact from one side forces some infinitesimal

flatness from the other. In our case, since C 1;1 exceeds the necessary regularity for

the convergence of the integral, if I is any nonlinear operator that is an inf sup (or

a sup inf) of linear operators that satisfy (3.3), then I can be evaluated classically

in u at those points x where u can be touched from above with a paraboloid. This

is explained in the next lemma.

LEMMA 3.3 Let I be an operator as in (1.4) so that for every K˛ˇ the equation
(3.3) holds. If we have a subsolution, Iu � f in � and ' is a C 2 function that
touches u from above at a point x 2 �, then Iu.x/ is defined in the classical sense
and Iu.x/ � f .x/.

PROOF: For any r > 0, we define

vr D
(
' in Br ;

u in Rn n Br ;

and we have MCvr.x/ � Ivr.x/ � f .x/. Thus

.2 � �/
Z
ı.vr ; x; y/

C ƒ

jyjnC�
� ı.vr ; x; y/

� �

jyjnC�
dy � f .x/:

Since ' touches u from above at x, for any y 2 Rn, ı.vr ; x; y/ � ı.u; x; y/.

Since vr 2 C 1;1.x/, jı.vr ; x; y/j=jyjnC� is integrable, so is ı.u; x; y/C=jyjnC� .
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We have

.2 � �/
Z
ı.vr ; x; y/

� �

jyjnC�
dy �

.2 � �/
Z
ı.vr ; x; y/

C ƒ

jyjnC�
dy � f .x/:

Since ' touches u from above at x, ı.vr ; x; y/ will decrease as r decreases. There-

fore, for every r < r0

(3.8) .2 � �/
Z

Rn

ı.vr ; x; y/
� �

jyjnC�
dy �

.2 � �/
Z

Rn

ı.vr0
; x; y/C ƒ

jyjnC�
dy � f .x/:

But ı.vr ; x; y/
� is monotone increasing as r decreases, and it converges to

ı.u; x; y/� as r ! 0. From the monotone convergence theorem

lim
r!0

.2 � �/
Z

Rn

ı.vr ; x; y/
� �

jyjnC�
dy D .2 � �/

Z
Rn

ı.u; x; y/� �

jyjnC�
dy:

And from (3.8), the integrals are uniformly bounded and thus

.2 � �/
Z

Rn

ı.u; x; y/� �

jyjnC�
dy �

.2 � �/
Z

Rn

ı.vr0
; x; y/C ƒ

jyjnC�
dy � f .x/ < C1:

Therefore, ı.u; x; y/=jyjnC� is integrable, andL˛ˇu is well-defined in the clas-

sical sense for any ˛ and ˇ. Thus, Iu.x/ is computable in the classical sense. The

difference ı.vr � u; x; y/=jyjnC� is monotone decreasing as r & 0, converges

to 0, and it is bounded by the integrable function ı.vr0
� u; x; y/=jyjnC� . We can

pass to the limit in the following expression:

lim
r!0

MC.vr � u/.x/ D lim
r!0

.2 � �/
Z
ı.vr � u; x; y/C ƒ

jyjnC�
dy

D 0

Now we use Lemma 3.2 to conclude

Iu.x/ � Ivr.x/C M�.u � vr/ D f .x/ � MC.vr � u/ ! f .x/:

So Iu.x/ � f .x/. �

Lemma 3.3 is convenient for making proofs involving MC and M� because it

allows us to deal with viscosity solutions almost as if they were classical solutions.
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4 Stability Properties of Solutions and Equations
under Appropriate Limits

In this section we show a few technical properties of the operators I like (1.4).

First, if u 2 C 1;1.�/, then Iu is continuous in �. As mentioned in the previous

sections, it is necessary to justify that operators of the form (1.4) satisfy the con-

ditions of Definition 3.1. Next, we will show that our notion of viscosity solutions

allows us to use test functions that are only punctually C 1;1 instead of C 2 in a

neighborhood of the point where the functions touch. Then we will show the im-

portant stability property of Definition 2.2. Namely, we show that if a sequence of

subsolutions (or supersolutions) in � converges in a suitable way on any compact

set in Rn, then the limit is also a subsolution (or supersolution).

We start with a technical real analysis lemma.

LEMMA 4.1 Let f 2 L1.Rn/ and g˛ be a family of functions so that jg˛.x/j �
g.x/ for some L1 function g. Then the family f � g˛ is equicontinuous in every
compact set.

PROOF: Let K be a compact set in Rn. Let " > 0. Since g 2 L1, we can pick

a large R so that K � BR and

kf kL1

� Z
RnnBR.x/

g.y/dy

�
� "

8

for any x 2 K. We write f D f1 Cf2, where f1 D f�B2R
and f2 D f�RnnB2R

.

From the above inequality, we have jf2 � g˛j � "
8

in K.

Since g 2 L1, there is a ı0 > 0 so that

(4.1)

Z
A

g.x/dx <
"

16 kf kL1

for any set jAj < ı0:

Let �t be a standard mollifier with compact support. We have f1 � �t ! f1

a.e. (in every Lebesgue point of f1). Recall that the support of f1 is in B2R. For t

large, f1 ��t D 0 outside B4R. By Egorov’s theorem, there is a set A � B4R such

that

jAj < ı0;(4.2)

f1 � �t ! f1 uniformly in Rn n A:(4.3)

In particular, there is a Qf1 D f1 � �t0
such that jf1 � Qf1j < "=.8 kgkL1/ in

Rn n A. We have

(4.4) k.f1 � Qf1/.1 � �A/ � g˛kL1 � k.f1 � Qf1/.1 � �A/kL1kg˛kL1 <
"

8
:

On the other hand, from (4.1) and (4.2), we also get

(4.5) k.f1 � Qf1/�A � g˛kL1 <
"

8
:
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Since Qf1 is continuous and kg˛kL1 is bounded, the family Qf1 �g˛ is equicontin-

uous. There is a ı > 0 so that j Qf1�g˛.x/� Qf1�g˛.y/j < "
4

every time jx�yj < ı.
Moreover,

jf � g˛.x/ � f � g˛.y/j
� j Qf1 � g˛.x/ � Qf1 � g˛.y/j C j.f1 � Qf1/ � g˛.x/ � .f1 � Qf1/ � g˛.y/j

C jf2 � g˛.x/ � f2 � g˛.y/j
� "

4
C j.f1 � Qf1/�A � g˛.x/j C j.f1 � Qf1/�A � g˛.y/j

C j.f1 � Qf1/.1 � �A/ � g˛.x/j C j.f1 � Qf1/.1 � �A/ � g˛.y/j
C jf2 � g˛.x/j C jf2 � g˛.y/j

� "

for any ˛ and every time jx � yj < ı. �

LEMMA 4.2 Let I be an operator as in (1.4), and assume only (2.4). Let v be a
bounded function in Rn and C 1;1 in some set �. Then Iv is continuous in �.

PROOF: We must prove the L˛ˇv in (1.4) are equicontinuous. As in (2.4), we

write K D sup˛ˇ K˛ˇ . Let " > 0 and x0 2 �. Since v is C 1;1 in �, there is a

constant C so that

jı.v; x; y/j < C jyj2 if x 2 � and jyj < dist.x; @�/:

Let r > 0 be such that Z
Br

C jyj2K.y/dy < "

3

(note that we write Br D Br.0/).

We have

L˛ˇv.x/ D
Z

Rn

ı.v; x; y/K˛ˇ .y/dy

D
Z

Br

ı.v; x; y/K˛ˇ .y/dy C
Z

RnnBr

ı.v; x; y/K˛ˇ .y/dy

DW w1.x/C w2.x/

where

jw1j D
ˇ̌̌
ˇ
Z

Br

ı.v; x; y/K˛ˇ .y/dy

ˇ̌̌
ˇ �

Z
Br

C jyj2K.y/dy < "

3
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and

w2 D
Z

RnnBr

.v.x C y/C v.x � y/ � 2v.x//K˛ˇ .y/dy

D v � g˛ˇ C v � Og˛ˇ � 2
�Z

g˛ˇ dy

�
v

where g˛ˇ .y/ D �RnnBr
.y/K˛ˇ .y/ and Og˛ˇ .y/ D g˛ˇ .�y/. For any ˛ and ˇ,

g˛ˇ � �RnnBr
K, which is in L1. From Lemma 4.1, w2 is equicontinuous. So

there is a ı > 0 such that

jw2.x/ � w2.x0/j < "

3
if jx � x0j < ı:

Therefore

L˛ˇv.x/ � L˛ˇv.x0/j � jw1.x/j C jw1.x0/j C jw2.x/ � w2.x0/j < "
uniformly in ˛ and ˇ. Thus jIv.x/ � Iv.x0/j < " every time jx � x0j < ı. �

When we gave the definition of viscosity solutions in Section 2, we used C 2 test

functions. Now we show that it is equivalent to use punctually C 1;1 functions.

LEMMA 4.3 Let I be elliptic with respect to some class L in the sense of Def-
inition 3.1. Let u W Rn ! R be an upper-semicontinuous function such that
Iu � f .x/ in � in the viscosity sense. Let ' W Rn ! R be a bounded function,
punctually C 1;1 at a point x 2 �. Assume ' touches u from above at x. Then
I'.x/ is defined in the classical sense and I'.x/ � f .x/.

PROOF: Since ' is C 1;1, the expression (2.3) is clearly integrable for every ˛

and ˇ and I'.x/ is defined classically. Also, because ' is C 1;1, there is a quadratic

polynomial q such that jq.y/ � '.y/j � cjy � xj2 for y 2 Br.x/, where c can be

chosen as small as we want as r ! 0. Let

vr.x/ D
(
q in Br ;

u in Rn n Br :

Since Iu � f in � in the viscosity sense, then Ivr.x/ � f .x/ with Ivr.x/

well-defined. Moreover, let

'r.x/ D
(
q in Br ;

' in Rn n Br :

We have

I'.x/ � I'r.x/C M�
L.' � 'r/.x/

� Ivr.x/C M�
L.'r � vr/.x/C M�

L.' � 'r/.x/

� Ivr.x/C M�
L.' � 'r/.x/ (since 'r � vr has a minimum at x) �
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� f .x/C M�
L.' � 'r/.x/

� f .x/C
Z

Br

ı.q � '; x; y/�K.y/dy (where K is the one from (3.6))

� f .x/ �
Z

Br

2cjyj2K.y/dy:

Since jyj2K.y/ is integrable in a neighborhood of the origin, the expressionZ
Br

2cjyj2K.y/dy

goes to 0 as r ! 0. Thus, for any " > 0, we can find a small r so that

I'.x/ � f .x/ � ":
Therefore I'.x/ � f .x/. �

One of the most useful properties of viscosity solutions is their stability under

uniform limits on compact sets. We will prove a slightly stronger result. We show

that the notion of viscosity supersolution is stable with respect to the natural limits

for lower-semicontinuous functions. This type of limit is well-known in variational

analysis and usually called a �-limit. In the viscosity solution community it is

sometimes referred to as the “half-relaxed limit.”

DEFINITION 4.4 (�-convergence) A sequence of lower-semicontinuous functions

uk �-converges to u in a set � if the two following conditions hold:

� For every sequence xk ! x in �, lim infk!1 uk.xk/ � u.x/.

� For every x 2 �, there is a sequence xk ! x in � such that

lim sup
k!1

uk.xk/ D u.x/:

Naturally, a uniformly convergent sequence uk would also converge in the �

sense. An important property of �-limits is that if uk �-converges to u, and u

has a strict local minimum at x, then uk will have a local minimum at xk for a

sequence xk ! x.

LEMMA 4.5 Let I be elliptic in the sense of Definition 3.1 and uk be a sequence of
functions that are uniformly bounded in Rn and lower-semicontinuous in � such
that

(i) Iuk � fk in �,
(ii) uk ! u in the � sense in �,

(iii) uk ! u a.e. in Rn, and
(iv) fk ! f locally uniformly in � for some continuous function f .

Then Iu � f in �.
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PROOF: Let ' be a test function from below for u touching at a point x in a

neighborhood N . Since uk �-converges to u in �, for large k we can find xk

and dk such that ' C dk touches uk at xk . Moreover, xk ! x and dk ! 0 as

k ! C1. Since Iuk � fk , if we let

vk D
(
' C dk in N;

uk in Rn nN;
we have Ivk.xk/ � fk.xk/.

Let ´ 2 N be such that dist.´; @N / > 	 > 0. We have

jIvk.´/ � Iv.´/j � max
�jMC

L .vk � v/.´/j; jMC
L .v � vk/.´/j

�
� sup

L2L
jL.vk � v/.´/j ;

y �
Z

Rn

jı.vk � v; ´; y/jK.y/dy �
Z

RnnB�

jı.vk � v; ´; y/jK.y/dy:

The sequence vk is bounded and ı.vk �v; ´; y/ converges to 0 almost everywhere.

Since K 2 L1.Rn n B�/, we can use the dominated convergence theorem to show

that the above expression goes to 0 as k ! C1. Moreover, the convergence is

uniform in ´. We obtain Ivk ! Iv locally uniformly in N .

From Definition 3.1, we have that Iv is continuous in N . We now compute

jIvk.xk/ � Iv.x/j � jIvk.xk/ � Iv.xk/j C jIv.xk/ � Iv.x/j ! 0:

So Ivk.xk/ converges to Iv.x/ as k ! C1. Since xk ! x and fk ! f

locally uniformly, we also have fk.xk/ ! f .x/, which finally implies Iv.x/ �
f .x/. �

Remark 4.6. In the previous lemma it was used that since the sequence of fk con-

verges locally uniformly to a continuous f , then for any sequence xk ! x we

have fk.xk/ ! f .x/. The hypothesis of the lemma could be relaxed to the case

where f is only upper-semicontinuous and �fk �-converges to �f since in that

case we would have lim supfk.xk/ � f .x/. For simplicity, in this paper we are

only considering continuous right-hand sides.

In the previous lemma we showed the stability of supersolutions under �-limits.

Naturally, we also have the corresponding result for subsolutions. In that case we

would consider the natural limit in the space of upper-semicontinuous functions,

which is the same as the �-convergence of �uk to �u. As a corollary, we obtain

the stability under uniform limits.

COROLLARY 4.7 Let I be elliptic in the sense of Definition 3.1 and uk be a se-
quence of functions that are bounded in Rn and continuous in � such that

(i) Iuk D fk in �,
(ii) uk ! u locally uniformly in �,
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(iii) uk ! u a.e. in Rn, and
(iv) fk ! f locally uniformly in � for some continuous function f .

Then Iu D f in �.

Remark 4.8. �-convergence was introduced by De Giorgi in the framework of

variational analysis to study convergence of sequences of functionals in Banach

spaces. Here we are using the same notion of convergence for functions in Rn. This

type of limit usually appears in viscosity solution theory in one form or another,

even though the term �-convergence is rarely used.

5 Comparison Principle
The purpose of this section is to establish a basic comparison principle for

(super- and sub-) solutions to our equations.

It is, in principle, not possible to compare two solutions at any given point

since they may not have the appropriate classical behavior simultaneously. For

the second-order case that means C 2 behavior; for the case of integro-differential

equations, a quadratic behavior from one side would be enough. In our case, then,

the classical sup- and inf-convolution method of Jensen works in a straightforward

fashion. It is also important that in Theorem 5.9 we establish that the difference of

two (super- and sub-) solutions satisfies itself an elliptic equation.

The method of Jensen [9] has been successfully applied to prove uniqueness

results for integro-differential equations already [1]. In [2] a very general proof

was given. Our definitions do not quite fit into the previous framework mainly

because we consider the abstract class of operators given by Definition 3.1, and we

allow discontinuities outside of the domain of the equation�. However, with small

modifications, the same techniques can be adapted to our equations. We sketch the

important ideas to prove the comparison principle in this section.

In order to have a comparison principle for a nonlinear operator I , we need to

impose a minimal ellipticity condition to our collection of linear operators L. The

following assumption will suffice:

Assumption 5.1. There is a constant R0 � 1 so that for every R > R0, there exists

a ı > 0 (which could depend on R) such that for any operator L in L, we have that

L' > ı in BR, where ' is given by

'.x/ D min.1; jxj2=R3/:

In later sections we will need stronger assumptions to prove further regularity

properties of the solutions. But for the comparison principle Assumption 5.1 is

enough. Note that Assumption 5.1 is very mild. It just says that given the particular

function min.1; jxj2=R3/, the value of the operator will be strictly positive in BR,

but it does not require any uniform estimate on how that happens. If the operators

L 2 L are scale invariant, it just means that when we apply them to min.1; jxj2/,
they are strictly positive in some neighborhood of the origin.
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THEOREM 5.2 Let L be some class satisfying Assumption 5.1. Let I be elliptic
with respect to L in the sense of Definition 3.1. Let � be a bounded open set, and
u and v be two functions such that

(i) u; v are bounded in Rn,
(ii) u is upper-semicontinuous at every point in x�,

(iii) v is lower-semicontinuous at every point in x�,
(iv) Iu � f and Iv � f in � for some continuous function f , and
(v) u � v in Rn n�.

Then u � v in �.

By u being upper-semicontinuous at every point in x�, we mean that u is semi-

continuous in x� with respect to Rn. The same applies for the function v.

We will use the usual idea of sup- and inf-convolutions in order to prove com-

parison. We start by defining these concepts.

DEFINITION 5.3 Given an upper-semicontinuous function u, the sup-convolution
approximation u" is given by

(5.1) u".x/ D sup
y
u.x C y/ � jyj2

"
:

On the other hand, if u is lower-semicontinuous, the inf-convolution u" is given by

(5.2) u".x/ D inf
y
u.x C y/C jyj2

"
:

Notice that u" � u and u" � u. Note also that u" is a supremum of translations

of u, and u" is an infimum of translations of u. Finally, notice that if for x the

supremum is attained at y, i.e., u".x/ D u.x C y/ � jyj2=", then

u".x C ´/ � u.x C ´C y � ´/ � jy � ´j2
"

D u".x/ � j´j2
"C 2

´ � y
"

so u" is semiconvex.

The following two propositions are very standard, so we skip their proofs:

PROPOSITION 5.4 If u is bounded and lower-semicontinuous in Rn, then u" �-
converges to u. If u is bounded and upper-semicontinuous in Rn, then �u" �-
converges to �u.

PROPOSITION 5.5 If f is a continuous function and Iu � f , then Iu" � f �d".
And if Iv � f , then Iv" � f C d", where d" ! 0 as " ! 0 and depends on the
modulus of continuity of f .

Remark 5.6. Proposition 5.4 is a straightforward generalization of the fact that

u" ! u locally uniformly if u is continuous.
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LEMMA 5.7 Let u W Rn ! R be a lower-semicontinuous function in Rn such that
Iu � 0 in � in the viscosity sense. Let x be a point in � so that u 2 C 1;1.x/.
Then Iu.x/ is defined in the classical sense and Iu.x/ � 0.

PROOF: Use u as a test function for itself with Lemma 4.3. �

LEMMA 5.8 Let I be elliptic in the sense of Definition 3.1. Let u and v be two
bounded functions such that

(i) u is upper-semicontinuous and v is lower-semicontinuous in Rn, and
(ii) Iu � f and Iv � g in the viscosity sense in � for two continuous func-

tions f and g.

Then MC
L .u � v/ � f � g in � in the viscosity sense.

PROOF: By Proposition 5.5, we also have that Iu" � f � d" and Iv" �
g C d". Moreover, �u" ! �u and v" ! v in the � sense. By the stability of

viscosity solutions under �-limits and since d" ! 0, it is enough to show that

MC
L .u

" � v"/ � f � g � 2d" in � for every " > 0.

Let ' be a C 2 function touching .u" � v"/ from above at the point x. For

any " > 0 both functions u" and �v" are semiconvex, which means that for each

of them there is a paraboloid touching it from below at every point x. If a C 2

function touches .u" � v"/ from above at the point x, then both u" and �v" must

be C 1;1.x/. But by Lemma 5.7 and Definition 3.1, this means that we can evaluate

Iu".x/ and Iv".x/ in the classical sense and

MC
L .u

" � v"/.x/ � Iu".x/ � Iv".x/ � f � g � 2d";

which clearly implies that also MC
L '.x/ � f � g � 2d" since ' touches u" � v"

from above. Thus MC
L .u

" � v"/ � f � g � 2d" in � in the viscosity sense.

Taking " ! 0 and using Lemma 4.5 we finish the proof. �

The result of Lemma 5.8 is almost the result we need to prove the comparison

principle, except that we want to allow functions u and v that are discontinuous

outside of the domain �. We fix this last detail in the following theorem.

THEOREM 5.9 Let I be elliptic in the sense of Definition 3.1. Let u and v be two
bounded functions in Rn such that

(i) u is upper-semicontinuous and v is lower-semicontinuous in x�, and
(ii) Iu � f and Iv � g in the viscosity sense in � for two continuous func-

tions f and g.

Then MC
L .u � v/ � f � g in � in the viscosity sense.

PROOF: First we will show that there exist two sequences uk and vk , upper-

and lower-semicontinuous, respectively, such that

� uk D u in x� for every n,

� vk D v in x� for every n,
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� uk ! u and vk ! v a.e. in Rn n x�, and

� Iuk � fk and Ivk � gk with fk ! f and gk ! g locally uniformly

in �.

It is clear that we can find two sequences uk and vk satisfying the first three

items above by doing a standard mollification of u and v away from � and then

filling the gap in a semicontinuous way. What we will show is that then there are

functions fk and gk for which the fourth item also holds.

The function uk�u vanishes in� and thus M�
L.uk�u/ is defined in the classical

sense in �. Moreover,

M�
L.uk � u/.x/ �

� 2
Z

RnnBdist.x;@�/.x/

juk.x C y/ � u.x C y/jK.y/dy DW hk.x/:

Note that hk is continuous in �, and by dominated convergence hk ! 0 locally

uniformly in � as k ! 1.

Let ' be a function touching globally uk from above at a point x; assume only

that ' 2 C 1;1.x/. Then also ' C u � uk 2 C 1;1.x/. But ' C u � uk touches u

from above at x, so by Lemma 4.3 I.' C u � uk/.x/ � f .x/. But now

I'.x/ � I.' C u � uk/.x/C M�
L.u � uk/.x/ � f .x/C hk.x/;

so we prove the fourth item above for uk by choosing fk D f Chk . Similarly, we

prove it for vk .

Now that we have such sequences uk and vk , we apply Lemma 4.5 and finish

the proof. �

LEMMA 5.10 Let u be a bounded function, upper-semicontinuous at every point
in x�, such that MC

Lu � 0 in the viscosity sense in �. Then sup� u � supRnn� u.

PROOF: Let us choose R > R0 large enough so that � � BR. For any " > 0,

let 'M be the function

'M .x/ D M C ".1 � min.1; jxj2=R3//:

Note that M � 'M .x/ � M C " for every x 2 Rn. Also, by Assumption 5.1,

there is a ı > 0 such that MC
L 'M .x/ � �"ı for any x 2 BR.

LetM0 be the smallest value ofM for which 'M � u in Rn. We will show that

M0 � supRnn� u. Otherwise, if M0 > supRnn� u, there must be a point x0 2 �

for which u.x0/ D 'M0
.x0/. But in that case 'M0

would touch u from above at

x0 2 �, and by the definition of MC
Lu � 0 in the viscosity sense we would have

that MC
L 'M0

� 0, a contradiction. Therefore, for every x 2 Rn, we have

u.x/ � 'M0
.x/ � M0 C " � sup

Rnn�

uC ":

We finish the proof by making " ! 0. �
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PROOF OF THEOREM 5.2: By Theorem 5.9, MC
L .u � v/ � 0 in �. Then

Lemma 5.10 says that sup�.u � v/ � supRnn�.u � v/, which finishes the proof.

�

Once we have the comparison principle for semicontinuous sub- and superso-

lutions, existence of the solution of the Dirichlet problem follows using Perron’s

method [8] as long as we can construct suitable barriers.

6 Second-Order Elliptic Equations as Limits of Fractional Diffusions
In this section we briefly discuss how second-order equations appear as limits

of fractional diffusions as � goes to 2. This shows in particular how much larger

and complex the family of fractional, fully nonlinear equations is compared to the

second-order case.

It is well-known that

lim
�!2

Z
Rn

cn.2 � �/
jyjnC�

ı.u; x; y/dy D lim
�!2

�.�4/�=2u.x/ D 4u.x/:

With a simple change of variables ´ D Ay, we arrive at the following identity:

(6.1) lim
�!2

Z
Rn

cn.2 � �/
detAjA�1´jnC�

ı.u; x; ´/d´ D
X

aijuij .x/;

where faij g are the entries of AAT. This means that we can recover any lin-

ear second-order elliptic operator as a limit of integro-differential ones like (6.1).

Moreover, let us say we have a fully nonlinear operator of the form F.D2u/. Let

us assume the function F is Lipschitz and monotone in the space of symmetric

matrices. Then F can be written as

F.M/ D inf
˛

sup
ˇ

�X
a

˛ˇ
ij Mij C b˛ˇ

�

for some collection of positive matrices fa˛ˇ
ij g D A˛ˇA

T
˛ˇ

and constants b˛ˇ .

Thus any elliptic fully nonlinear operator can be recovered as a limit of integro-

differential operators as

F.D2u/ D lim
�!2

�
inf
˛

sup
ˇ

� Z
cn.2 � �/

detA˛ˇ jA�1
˛ˇ
´jnC�

ı.u; x; ´/d´C b˛ˇ

��

as long as the limit commutes with the operations of infimum and supremum. That

is going to be the case every time the convergence is uniform in ˛ and ˇ, which is

the case, for example, if the matrices A˛ˇ are uniformly elliptic.

Another possibility is to take a family A˛ˇ so that

F.D2u/ D lim
�!2

�
inf
˛

sup
ˇ

Z
ı.u; x; A˛ˇy/

jyjnC�
dy

�
:
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Note that we can also consider operators of the form

Iu.x/ WD .2 � �/
Z

1

jyjnC��2
G

�
ı.u; x; y/

jyj2 ; y

�
dy

with G.d; y/ being an arbitrary function, Lipschitz and monotone in d , such that

G.0; y/ D 0. This suggests an unusual family of second-order nonlinear equations:

for P a quadratic polynomial,

F.D2P / D
Z

@B1

G.P.�/; �/d�:

7 Overview of the Regularity Results
In the following sections we establish for integral diffusions the main techniques

and theorems to reproduce the regularity theory for fully nonlinear second-order

equations. A brief review of these steps follows (see [7]).

An essential step in the regularity theory for the second-order case is a Harnack

inequality and Hölder continuity for solutions of elliptic equations with bounded
measurable coefficients; this is the Krylov-Safonov theory.

By “solutions of elliptic equations with bounded measurable coefficients” we

understand the class S of continuous functions u satisfying in the viscosity sense

the extremal inequalities

M�.u/ � 0 � MC.u/
where M� and MC denote the extremal Pucci operators.

M�.u/ .resp., MC.u// D inf
�I�aij �ƒI

.resp. sup/ aij @iju.x/:

Heuristically these inequalities imply that for some pointwise choice of aij .x/, we

have aij .x/@iju.x/ D 0.

The Krylov-Safonov theorem asserts that if u 2 S and it is nonnegative in

B1, then supB1=2
u � C infB1=2

u. This implies in particular that u is Hölder-

continuous.

In Sections 11 and 12 we develop the corresponding nonlocal Harnack inequal-

ity. A fundamental tool in this theorem is a restricted version of the Aleksandrov-

Bakel0man-Pucci (ABP) theorem.

The classical ABP estimate allows us to relate a pointwise estimate with an

estimate in measure. It says that if w satisfies

(1) aij .x/@ijw.x/ � �C in B1,

(2) w � 0 on @B1, and

(3) w.0/ � 1,

then jfw > 0gj � 
0 > 0.

Using this estimate, we can prove an estimate in L" through a Calderon-Zyg-

mund-type decomposition (Section 10). For that we need a localization argument
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for the set where w > 0 in the ABP above (Section 9). The estimate in L" says

that if

(1) u 2 S ,

(2) u � 0 in B1, and

(3) u.0/ D 1,

then jfu > �gj < ��".

The use of theL" estimate from both sides (for u and forC�u) gives a decrease-

in-oscillation lemma that implies Hölder continuity of u (Section 12) and a Har-

nack inequality (Section 11) under somewhat more stringent conditions.

With these tools at hand we can pass to the regularity of the solution to transla-

tion-invariant, fully nonlinear equations. Indeed, if v is a solution of such an equa-

tion, for any h
v.x C h/ � v.x/

jhj
is in the class S (because of Theorem 5.9). Therefore we should expect the deriva-

tives of v to be Hölder continuous, i.e., u 2 C 1;˛ for some ˛ > 0 (Section 13).

Finally, if the fully nonlinear, translation-invariant operator is convex (i.e., a

supremum of linear operators L˛), then the average of two solutions .v1 C v2/=2

is a supersolution. In particular, the second-order differential quotient .v.xCh/C
v.x � h/ � 2v.x//=2 is the difference of a supersolution and a solution, and thus

it is itself a supersolution of an extremal operator. The Evans-Krylov theorem

should imply that the function is more regular than the order of the equation, that

is, v 2 C �C˛. This is the topic of a forthcoming paper. We now start to develop

the plan presented above. We start with a nonlocal ABP estimate.

8 A Nonlocal ABP Estimate
The Aleksandrov-Bakel0man-Pucci (ABP) estimate is a key ingredient in the

proof of the Harnack inequality by Krylov and Safonov. It is the relation that

allows us to pass from an estimate in measure to a pointwise estimate. In this

section we obtain an estimate for integro-differential equations that converges to

the ABP estimate as � approaches 2. In a later section, we will use this nonlocal

version of the ABP theorem to prove the Harnack inequality.

In this and the next few sections we will consider the class L0 defined by con-

dition (3.3). We write MC and M� to denote MC
L0

and M�
L0

.

Let u be a function that is not positive outside the ball B1. Consider its concave

envelope � in B3 defined as

�.x/ WD
(

min
˚
p.x/ W for all planes p � uC in B3

�
in B3;

0 in Rn n B3:

We will concentrate in the contact set † D fu D �g \ B1. The first lemma

establishes that if x0 2 †, u stays quadratically close to the tangent plane to �

at x0 in a large portion of a neighborhood around x0.
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LEMMA 8.1 Let u � 0 in Rn n B1. Let � be its concave envelope in B3. Assume
MCu.x/ � �f .x/ inB1. Let 	0 D 1=.8

p
n/, rk D 	02

�1=.2��/�k , andRk.x/ D
Brk

.x/ n BrkC1
.x/.

There is a constant C0 depending only on n and � (but not on �/ such that for
any x 2 fu D �g and any M > 0, there is a k such that

(8.1) jRk.x/ \ fu.y/ < u.x/C .y � x/ � r�.x/ �Mr2
kgj � C0

f .x/

M
jRk.x/j

where r� stands for any element of the superdifferential of � at x that will coin-
cide with its gradient, and also the gradient of u, when these functions are differ-
entiable.

PROOF: Since u can be touched by a plane from above at x, from Lemma 3.3,

MCu.x/ is defined classically and we have

MCu.x/ D .2 � �/
Z

Rn

ƒıC � �ı�
jyjnC�

dy:

Recall ı D ı.u; x; y/ WD u.x C y/ C u.x � y/ � 2u.x/. Note that if both

x C y 2 B3 and x � y 2 B3, then ı.u; x; y/ � 0, since u.x/ D �.x/ D p.x/

for some plane p that remains above u in the whole ball B3. Moreover, if either

xCy … B3 or x�y … B3, then both xCy and x�y are not inB1, so u.xCy/ � 0

and u.x � y/ � 0. Therefore, in any case ı.u; x; y/ � 0. Thus we have

�f .x/ � MCu.x/ D .2 � �/
Z

Rn

��ı�
jyjnC�

dy

� .2 � �/
Z

Br0
.x/

��ı�
jyjnC�

dy

where r0 D 	02
�1=.2��/.

Splitting the integral in the rings Rk and reorganizing terms, we obtain

f .x/ � .2 � �/�
1X

kD0

Z
Rk.x/

ı�
jyjnC�

dy:

Let us assume that equation (8.1) does not hold. We will arrive at a contradic-

tion. We can use the opposite of (8.1) to estimate each integral in the terms of the

previous equation:

f .x/ � .2 � �/�
1X

kD0

Z
Rk.x/

ı�
jyjnC�

dy

� c.2 � �/
1X

kD0

M
r2
k

r�
k

C0
f .x/

M
�
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y

B2

B1

´2

´1

FIGURE 8.1. The balls B1 and B2.

� c.2 � �/ 	2
0

1 � 2�.2��/
C0f .x/

� cC0f .x/

where the last inequality holds because .2 � �/=.1 � 2�.2��// remains bounded

below for � 2 .0; 2/. By choosing C0 large enough, we obtain a contradiction. �

Remark 8.2. Note that Lemma 8.1 implies that if MCu.x/ � g.x/, then u.x/ ¤
�.x/ at every point where g.x/ > 0.

Remark 8.3. Lemma 8.1 would hold for any particular choice of 	0 (modifying C0

accordingly). The particular choice 	0 D 1=.8
p
n/ is convenient for the proofs in

Section 10 in this paper.

The next lemma says that the large-portion estimate for u in Lemma 8.1 implies

a uniform quadratic detachment of � from its tangent plane at x0 in a smaller ball.

LEMMA 8.4 Let � be a concave function in Br . Assume that for a small "

(8.2) jfy W �.y/ < �.x/C .y � x/ � r�.x/ � hg \ .Br.x/ n Br=2.x//j
� "jBr.x/ n Br=2.x/j;

then �.y/ � �.x/C .y � x/ � r�.x/ � h in the whole ball Br=2.x/.

PROOF: Let y 2 Br=2.x/. There are two points y1 and y2 in Br.x/ n Br=2.x/

such that

(1) y D .y1 C y2/=2 and

(2) jy1 � xj D jy2 � xj D 3
4
r .
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Let us consider the balls B1 D Br=4.y1/ and B2 D Br=4.y2/ (see Figure 8.1).

They are symmetrical with respect to y, and they are completely contained in

Br.x/ n Br=2.x/. If " is small enough, there will be two points ´1 2 B1 and

´2 2 B2 so that

(1) y D .´1 C ´2/=2,

(2) �.´1/ � �.x/C .´1 � x/ � r�.x/ � h, and

(3) �.´2/ � �.x/C .´2 � x/ � r�.x/ � h,

and by the concavity of � we finish the proof since �.y/ � .�.´1/ C �.´2//=2.

�

COROLLARY 8.5 For any "0 > 0 there is a constantC such that for any function u
with the same hypothesis as in Lemma 8.1, there is an r 2 .0; 	02

�1=.2��// such
that

(8.3)

ˇ̌fy 2 Br n Br=2.x/ W u.y/ < u.x/C .y � x/ � r�.x/ � Cf .x/r2gˇ̌
jBr.x/ n Br=2.x/j

� "0;

and

(8.4) jr�.Br=4.x//j � Cf .x/njBr=4.x/j:
Recall 	0 D 1=.8

p
n/.

PROOF: By choosing M D Cf .x/="0, we have (8.3) right away from Lem-

ma 8.1. Equation (8.4) then follows as a consequence of Lemma 8.4 and concavity.

�

The previous lemmas allow us to get a lower bound on the volume of the union of

balls where � (and u) detach quadratically from the corresponding tangent planes

to � by the volume of the image of the gradient map, as in the standard ABP

theorem. A rough estimate would be the following:

LEMMA 8.6 Let Br.x/ with x 2 † be the family of balls Brk
.x/ constructed in

Lemma 8.1; then ˇ̌̌ [
x2†

Br.x/
ˇ̌̌

� C.supu/n:

PROOF: We may extract a countable subcovering of †, Bj , with finite over-

lapping. Then the volume of the image of B3 by the gradient map of � coincides

with the volume of the gradient map restricted to† and thus with the gradient map

restricted to the intermediate set
S
Bj .

In each Bj , � has quadratic growth and therefore

jr�.Bj /j � C jBj j:
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Thus

.supu/n D .sup�/n � C jr�.B3/j � C
X

j

jBj j:

�
A more precise theorem that reproduces the classical ABP in the limit is the

following:

THEOREM 8.7 Let u and � be functions as in Lemma 8.1. There is a finite family
of (open) cubesQj .j D 1; : : : ; m/ with diameters dj such that the following hold
(see Figure 8.2):

(i) Any two cubes Qi and Qj in the family do not intersect.
(ii) fu D �g � Sm

j D1
xQj .

(iii) fu D �g \ xQj ¤ ¿ for any Qj .
(iv) dj � 	02

�1=.2��/, where 	0 D 1=.8
p
n/.

(v) jr�. xQj /j � C.max xQj
f /njQj j.

(vi) jfy 2 8pnQj W u.y/ > �.y/ � C.max xQj
f /d2

j gj � �jQj j.
The constants C > 0 and � > 0 depend on n, ƒ, and � (but not on �/.

Contact set: fu D �g.

B1

FIGURE 8.2. The family of cubes covering fu D �g.

PROOF: In order to obtain such a family we start by coveringB1 with a tiling of

cubes of diameter 	02
�1=.2��/. We discard all those that do not intersect fu D �g.

Whenever a cube does not satisfy (v) and (vi), we split it into 2n cubes of half-

diameter and discard those whose closure does not intersect fu D �g. The problem

is to prove that eventually all cubes satisfy (v) and (vi), and this process finishes

after a finite number of steps.

Let us assume the process does not finish in a finite number of steps. We assume

it produces an infinite sequence of nested cubes. The intersection of their closures
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will be a point x0. Since all of them intersect the contact set fu D �g, which is a

closed set, then u.x0/ D �.x0/. We will now find a contradiction by showing that

eventually one of these cubes containing x0 will not split.

Given "0 > 0, by Corollary 8.5, there is a radius r with 0 < r < 	02
�1=.2��/

such that

(8.5)
jfy 2 Br .x0/ n Br=2.x0/ W u.y/ < u.x0/C .y � x0/ � r�.x0/ � Cf .x0/r

2gj
jBr .x0/ n Br=2.x0/j

� "0:

and

(8.6) jr�.Br=4.x0//j � Cf .x0/
njBr=4.x0/j:

There is a cube Qj , with x0 2 xQj , with diameter dj , such that r
4

� dj <
r
2

.

Therefore (see Figure 8.3)

Br=2.x0/ � xQj ; Br.x0/ � 8
p
nQj :

8
p
nQ

Br.x0/ n Br=2.x0/
Q
x0

FIGURE 8.3. The largest cube in the family containing x0 and contained

in Br=2.

Recall that in B2, �.y/ � u.x0/ C .y � x0/ � r�.x0/ simply because � is

concave and �.x0/ D u.x0/. Using (8.5) and that dj and r are comparable, we getˇ̌˚
y 2 8pnQj W u.y/ � �.y/ � C.maxxQj

f /d2
j

�ˇ̌
� jfy 2 8pnQj W u.y/ � u.x0/C .y � x0/ � r�.x0/ � Cf .x0/r

2gj

� .1 � "0/jBr.x0/ n Br=2.x0/j � �jQj j:
Thus (vi) follows. Moreover, since xQj � Br , (v) also holds for Qj . Therefore

Qj would not be split and the process must stop. �
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Remark 8.8. Note that the upper bound for the diameters 	02
�1=.2��/ becomes

very small when � is close to 2. If we add
P jr�.Qj /j and let � ! 2, we obtain

the classical Aleksandrov estimate as the limit of the Riemann sums. For each

� > 0 we have

jr�.fu D �g/j �
X

j

C.maxxQj

f C/njQj j:

As � ! 2, the cube covering of fu D �g becomes thinner and the above becomes

the integral

jr�.fu D �g/j � C

Z
fuD�g

f C.x/n dx:

9 A Special Function
Following the proof of the Harnack inequality in [6] or [7] for the second-order

case, we need to show that under the hypotheses of Lemma 8.1, u is nonnegative

not just in a positive portion of B1 but more precisely in a positive portion of any

middle-size cube, say of diameter 1
100

, centered in B1=2. For that purpose, in this

section we construct a special function that is a subsolution of a minimal equation

outside a small ball and it is strictly positive in a larger ball. The importance of this

function is that by adding it to u we will force the contact set with � to stay inside

one of the intermediate cubes.

LEMMA 9.1 There is a p > 0 and �0 2 .0; 2/ such that the function

f .x/ D min.2p; jxj�p/

is a subsolution to

(9.1) M�f .x/ � 0

for every �0 < � < 2 and jxj > 1.

PROOF: It is enough to show (9.1) for x D e1 D .1; 0; : : : ; 0/. For ev-

ery other x such that jxj D 1, the relation follows by rotation. If jxj > 1,

we can consider the function Qf .y/ D jxjpf .jxjy/ � f .y/; thus M�f .x/ D
CM� Qf .x=jxj/ � CM�f .x=jxj/ > 0.

Let x D e1 D .1; 0; : : : ; 0/. We use the following elementary relations that hold

for any a > b > 0 and q > 0:

.aC b/�q � a�q

�
1 � q b

a

�
;(9.2)

.aC b/�q C .a � b/�q � 2a�q C q.q C 1/b2a�q�2I(9.3)
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then for jyj < 1
2

,

ı D jx C yj�p C jx � yj�p � 2jxj�p

D .1C jyj2 C 2y1/
�p=2 C .1C jyj2 � 2y1/

�p=2 � 2

� 2.1C jyj2/�p=2 C p.p C 2/y2
1.1C jyj2/�p=2�2 � 2

� p

�
�jyj2 C .p C 2/y2

1 � 1

2
.p C 2/.p C 4/y2

1 jyj2
�
:

We choose p large such that

(9.4) .p C 2/�

Z
@B1

y2
1 d�.y/ �ƒj@B1j D ı0 > 0:

We use the above relation to bound the part of the integral in the definition of

M� for which y stays in a small ball Br (with r < 1
2

). We estimate M�f .e1/:

M�f .e1/ D .2 � �/
Z

Br

�ıC �ƒı�
jyjnC�

dy C .2 � �/
Z

RnnBr

�ıC �ƒı�
jyjnC�

dy

� .2 � �/C
Z r

0

�pı0s
2 � 1

2
p.p C 2/.p C 4/Cƒs4

s1C�
ds

� .2 � �/
Z

RnnBr

ƒ
2p

jyjnC�
dy

� cr2��pı0 � p.p C 2/.p C 4/C
2 � �
4 � � r

4�� � 2 � �
�

C2pC1r��

where we used (9.4) to bound the first integral and the fact that 0 � f .x/ � 2p to

bound the second integral. Now we choose (and fix) r 2 .0; 1
2
/, and then take �0

close enough to 2 so that if 2 > � > �0, the factor .2 � �/ makes the second and

third terms small enough so that we get

M�f .e1/ � cr2��pı0

2
> 0;

which finishes the proof. �
COROLLARY 9.2 Given any �0 2 .0; 2/ and r > 0 there is a p > 0 and ı such
that the function

f .x/ D min.ı�p; jxj�p/

is a subsolution to

(9.5) M�f .x/ � 0

for every �0 < � < 2 and jxj > r .



REGULARITY FOR INTEGRO-DIFFERENTIAL EQUATIONS 625

PROOF: Without loss of generality, we prove it the corollary for r D 1. The

general case follows by rescaling.

The only difference from Lemma 9.1 is that now we are given the value of �0

beforehand. Let �1 and p0 be the �0 and p of Lemma 9.1. So we know that for

� > �1, the result of the Corollary holds if ı D 1
2

and p D p0. If we take ı < 1
2

,

we are only making the function larger away from x, so the result will still hold for

� > �1. Now we will pick ı smaller so that the result also holds for �0 < � � �1.

The key is that if p � n, jxj�p is not integrable around the origin. So we

take p D max.p0; n/. Now, let x D e1 as in the proof of Lemma 9.1. Assume

�0 < � � �1. We write

M�f .e1/ D .2 � �/
Z

Rn

�ıC
jyjnC�

dy � .2 � �/
Z

Rn

ƒı�
jyjnC�

dy

DW I1 C I2

where I1 and I2 represent the two terms in the right-hand side above. Since � >

�0, f 2 C 2.x/, and f is bounded below, we have I2 � �C for some constant C

depending on �0, �, ƒ, and dimension. On the other hand, since � � �1 and

.jxCyj�p Cjx�yj�p �2jxj�p/C is not integrable, if we choose ı small enough,

we can make I1 be as large as we wish. In particular, we can choose ı such that

I1 > C > �I2; thus M�f .e1/ > 0. �

COROLLARY 9.3 Given any �0 2 .0; 2/, there is a function ˆ such that
(i) ˆ is continuous in Rn,

(ii) ˆ.x/ D 0 for x outside B2
p

n,
(iii) ˆ.x/ > 2 for x 2 Q3, and
(iv) M�ˆ > � .x/ in Rn for some positive function  .x/ supported in xB1=4

for every � > �0.

PROOF: Let p and ı be as in Corollary 9.2 with r D 1
4

. We consider

ˆ D c

�
0 in Rn n B2

p
n;

jxj�p � .2pn/�p in B2
p

n n Bı ;

q in Bı ;

where q is a quadratic paraboloid chosen so that ˆ is C 1;1 across @Bı . We choose

the constant c so that ˆ.x/ > 2 for x 2 Q3 (recall that Q3 � B3
p

n=2 � B2
p

n).

Since ˆ 2 C 1;1.B2
p

n/, M�ˆ is continuous in B2
p

n, and from Corollary 9.2,

M�ˆ � 0 outside B1=4. �

10 Point Estimates
The main ingredient in the proof of the Harnack inequality, as shown in [7], is

a lemma that links a pointwise estimate with an estimate in measure. With the
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estimates developed in Sections 8 and 9, we are ready to obtain such estimates.

The corresponding lemma in our context is the following:

LEMMA 10.1 Let � > �0 > 0. There exist constants "0 > 0, 0 < � < 1, and
M > 1 (depending only on �0, �, ƒ, and dimension) such that if

(i) u � 0 in Rn,
(ii) infQ3

u � 1, and
(iii) M�u � "0 in Q4

p
n,

then jfu � M g \Q1j > �.

By Qr.x/ we mean the open cube fy W jyj � xj j � r
2

for every j g and Qr WD
Qr.0/. We will also use the following notation for dilations: if Q D Qr.x/, then

�Q WD Q�r.x/.

If we assume � � �1 < 2, there is a simpler proof of Lemma 10.1 using the

ideas from [10]. The result here is more involved because we want an estimate that

remains uniform as � ! 2.

PROOF: Consider v WD ˆ � u, where ˆ is the special function constructed in

Corollary 9.3. We want to apply Theorem 8.7 (rescaled) to v. Note that MCv �
M�ˆ � M�u � � � "0. Let � be the concave envelope of v in B6

p
n.

Let Qj be the family of cubes given by Theorem 8.7. We have

max v � C jr�.B2
p

n/j1=n � C
�X

j

jr�. xQj /j
�1=n

�
�
C

X
j

.max
Qj

. C "0/
C/njQj j

�1=n

� C"0 C C
�X

j

.max
Qj

 C/njQj j
�1=n

:

However, since infQ3
u � 1 and ˆ � 2 in Q3, then max v � 1 and we have

1 � C"0 C C
�X

j

.max
Qj

 C/njQj j
�1=n

:

If we choose "0 small enough, this will imply

1

2
� C

�X
j

.max
Qj

 C/njQj j
�1=n

:

Recall that  is supported in xB1=4 and is bounded; thus:

1

2
� C

� X
Qj \B1=4¤¿

jQj j
�1=n

;
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which provides a bound below for the sum of the volumes of the cubes Qj that

intersect B1=4,

(10.1)
X

Qj \B1=4¤¿
jQj j � c:

The diameters of all cubes Qj are bounded by 	02
�1=.2��/, which is always

smaller than 	0 D 1=.8
p
n/. Therefore, every time Qj intersects B1=4, the cube

4
p
nQj will be contained in B1=2.

Let M0 WD maxB1=2
ˆ. By Theorem 8.7, we have

(10.2) jfx 2 4pnQj W v.x/ � �.x/ � Cd2
j gj � cjQj j

and Cd2
j < C	2

0.

Let us consider the cubes 4
p
nQj for every cube Qj that intersects B1=4. It

provides an open cover of the union of the corresponding cubes xQj , and it is con-

tained in B1=2. We take a subcover with finite overlapping that also covers the

union of the original xQj . Combining (10.1) with (10.2), we obtain

jfx 2 B1=2 W v.x/ � �.x/ � C	2
0gj � c:

Then

jfx 2 B1=2 W u.x/ � M0 C C	2
0gj � c

Let M D M0 C C	2
0. Since B1=2 � Q1, we have

jfx 2 Q1 W u.x/ � M gj � c;

which finishes the proof. �
Lemma 10.1 is the key to the proof of the Harnack inequality. The following

lemma is a consequence of Lemma 10.1 as it is shown in lemma 4.6 in [7]. We

have intentionally written Lemma 10.1 and the following one identically to their

corresponding versions in [7].

LEMMA 10.2 Let u be as in Lemma 10.1. Then

jfu > M kg \Q1j � .1 � �/k
for k D 1; 2; : : : , where M and � are as in Lemma 10.1. As a consequence, we
have that

jfu � tg \Q1j � dt�" 8t > 0
where d and " are positive universal constants.

By a standard covering argument we obtain the following theorem:

THEOREM 10.3 Let u � 0 in Rn, u.0/ � 1, and M�u � "0 in B2 (supersolution).
Assume � � �0 for some �0 > 0. Then

jfu > tg \ B1j � Ct�" for every t > 0

where the constant C and " depend on �, ƒ, n, and �0.
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Scaling the above theorem, we obtain the following version:

THEOREM 10.4 Let u � 0 in Rn and M�u � C0 in B2r (supersolution). Assume
� � �0 for some �0 > 0. Then

jfu > tg \ Br j � Crn.u.0/C C0r
� /"t�" for every t

where the constant C and " depend on �, ƒ, n, and �0.

For second-order equations, Theorems 10.3 and 10.4 are referred in the literature

as u being in L" (see [7]).

11 Harnack Inequality
The Harnack inequality is a very important tool in analysis. In this section we

obtain a version for integro-differential equations. Our estimate depends only on

a lower bound � � �0 > 0, but it remains uniform as � ! 2. In that respect,

we can consider this estimate as a generalization of the Krylov-Safonov Harnack

inequality.

This section is not needed for the rest of the paper because we will prove our reg-

ularity results using Theorem 10.4 only. A reader interested only in the regularity

results can skip this section.

THEOREM 11.1 Let u � 0 in Rn, M�u � C0, and MCu � �C0 in B2. Assume
� � �0 for some �0 > 0. Then u.x/ � C.u.0/C C0/ for every x 2 B1=2.

PROOF: Dividing by u.0/CC0, it is enough to consider u.0/ � 1 and C0 D 1.

Let " > 0 be the one from Theorem 10.4. Let 
 D n
"

. Let us consider the minimum

value of t such that

u.x/ � ht .x/ WD t .1 � jxj/�� for every x 2 B1:

There must be an x0 2 B1 such that u.x0/ D ht .x0/; otherwise we could make t

smaller. Let d D .1 � jx0j/ be the distance from x0 to @B1.

For r D d
2

, we want to estimate the portion of the ball Br.x0/ covered by

fu < u.x0/=2g and by fu > u.x0/=2g. We will show that t cannot be too large. In

this way we obtain the result of the theorem, since the upper bound t < C implies

that u.x/ < C.1 � jxj/�� .

Let us first consider A WD fu > u.x0/=2g. By the L" estimate (Theorem 10.3)

we have

jA \ B1j � C

ˇ̌̌
ˇ 2

u.x0/

ˇ̌̌
ˇ
"

� Ct�"dn;

whereas jBr j D Cdn, so if t is large, A can cover only a small portion of Br.x0/

at most,

(11.1)

ˇ̌̌
ˇ
�
u >

u.x0/

2

	
\ Br.x0/

ˇ̌̌
ˇ � Ct�" jBr j :
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In order to get a contradiction, we will show that jfu < u.x0/=2g \ Br.x0/j �
.1�ı/Br for a positive constant ı independent of t . We estimate jfu < u.x0/=2g\
B�r.x0/j for � > 0 small. For every x 2 B�r .x0/ we have

u.x/ � ht .x/ � t

�
d � �d
2

���

� u.x0/

�
1 � �
2

���

;

with .1 � �=2/�� close to 1.

Let us consider

v.x/ D
�
1 � �

2

���

u.x0/ � u.x/

so that v � 0 in B� r , and also M�v � 1 since MCu � �1. We would want to

apply Theorem 10.4 to v. The only problem is that v is not positive in the whole

domain but only on B� r . In order to apply the theorem we have to consider w D
vC instead, and estimate the change in the right-hand side due to the truncation

error.

We want to find an upper bound for M�w D M�vC instead of M�v. We know

that

M�v.x/ D .2 � �/
Z

Rn

�ı.v; x; y/C �ƒı.v; x; y/�
jyjnC�

dy � 1:

Therefore, if x 2 B� r=2.x0/,

M�w D .2 � �/
Z

Rn

�ı.w; x; y/C �ƒı.w; x; y/�
jyjnC�

dy

� 1C 2.2 � �/
Z

Rn\fv.xCy/<0g
�ƒv.x C y/

jyjnC�
dy

� 1C 2.2 � �/
Z

RnnB�r=2.x0�x/

ƒ
.u.x C y/ � .1 � �

2
/��u.x0//

C

jyjnC�
dy:

(11.2)

Notice that the restriction u � 0 does not provide an upper bound for this last

expression. We must obtain it in a different way.

Let us consider the largest value � > 0 such that u.x/ � g� WD �.1 � j4xj2/.
There must be a point x1 2 B1=4 such that u.x1/ D �.1 � j4x1j2/. The value of �

cannot be larger than 1 since u.0/ � 1. Thus we have the upper bound

.2 � �/
Z

Rn

ı.u; x1; y/
�

jyjnC�
dy(11.3)

� .2 � �/
Z

Rn

ı.g� ; x1; y/
�

jyjnC�
dy � C(11.4)

for a constant C that is independent of � .
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Since M�u.x1/ � 1, then

.2 � �/
Z

Rn

ı.u; x1; y/
C

jyjnC�
dy � C:

In particular, since u.x1/ � 1 and u.x1 � y/ � 0,

.2 � �/
Z

Rn

.u.x1 C y/ � 2/C
jyjnC�

dy � C:

We can use the inequality above to estimate (11.2). We can assume u.x0/ > 2,

since otherwise t would not be large:

.2 � �/
Z

RnnB�r .x0�x/

ƒ
.u.x C y/ � .1 � �=2/��u.x0//

C
jyjnC�

dy

� .2 � �/
Z

RnnB�r=2.x0�x/

ƒ
.u.x1 C y C x � x1/ � .1 � �=2/��u.x0//

C
jy C x � x1jnC�

� jy C x � x1jnC�

jyjnC�
dy

� C.� r/�n�� :

So, finally, we obtain

M�w � C.� r/�n�� in B�r=2.x0/:

Now we can apply Theorem 10.4 to w in B�r=2.x0/. Recalling that w.x0/ D
..1 � �=2/�� � 1/u.x0/, we haveˇ̌̌

ˇ
�
u <

u.x0/

2

	
\ B �r

4
.x0/

ˇ̌̌
ˇ

D
ˇ̌̌
ˇfw > u.x0/

��
1 � �

2

���

� 1

2

�
g \ B�r=4.x0/

ˇ̌̌
ˇ

� C.� r/n
���

1 � �

2

���

� 1
�
u.x0/C C.� r/�n�� .r�/�

�"

�
�
u.x0/

��
1 � �

2

���

� 1

2

���"

� C.� r/n
���

1 � �

2

���

� 1
�"

C ��n"t�"

�
:

Now let us choose � > 0 so that the first term is small:

C.� r/n
��
1 � �

2

���

� 1
�"

� 1

4
jB�r=4.x0/j:
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Notice that the choice of � is independent of t . For this fixed value of � we

observe that if t is large enough, we will also have

C.� r/n��n"t�" � 1

4

ˇ̌
B�r=2

ˇ̌
and therefore ˇ̌̌

ˇ
�
u <

u.x0/

2

	
\ B�r=4.x0/

ˇ̌̌
ˇ � 1

2
jB�r=4.x0/j;

which implies that for t largeˇ̌̌
ˇ
�
u >

u.x0/

2

	
\ B�r=4.x0/

ˇ̌̌
ˇ � c jBr j :

But this contradicts (11.1). Therefore t cannot be large and we finish the proof. �

12 Hölder Estimates for Equations
with “Bounded Measurable Coefficients”

The purpose of this section is to prove the following Hölder regularity result.

THEOREM 12.1 Let � > �0 for some �0 > 0. Let u be a bounded function in Rn

such that

MCu � �C0 in B1;

M�u � C0 in B1I
then there is an ˛ > 0 (depending only on �,ƒ, n, and �0) such that u 2 C ˛.B1=2/

and
uC ˛.B1=2/ � C.sup

Rn

juj C C0/

for some constant C > 0.

Even though this result could be obtained as a consequence of the Harnack in-

equality, we will prove it using only Theorem 10.4. We do it in this way because

it looks potentially simpler to generalize since we proved the Harnack inequality

(Theorem 11.1) using Theorem 10.4.

Theorem 12.1 follows from the following lemma by a simple scaling.

LEMMA 12.2 Let � > �0 for some �0 > 0. Let u be a function such that

�1
2

� u � 1

2
in Rn; MCu � �"0 in B1; M�u � "0 in B1I

then there is an ˛ > 0 (depending only on �, ƒ, n, and �0/ such that u 2 C ˛ at
the origin. More precisely,

ju.x/ � u.0/j � C jxj˛
for some constant C .
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PROOF: We will show that there exists sequences mk and Mk such that mk �
u � Mk in B4�k and

(12.1) Mk �mk D 4�˛k

so that the theorem holds with C D 4˛.

For k D 0 we choose m0 D �1
2

and M0 D 1
2

. By assumption we have m0 �
u � M0 in the whole space Rn. We want to construct the sequences Mk and mk

by induction.

Assume we have the sequences up to mk and Mk . We want to show we can

continue the sequences by finding mkC1 and MkC1.

In the ball B4�k�1 , either u � .Mk C mk/=2 in at least half of the points (in

measure), or u � .Mk Cmk/=2 in at least half of the points. Let us say thatˇ̌̌
ˇ
�
u � Mk Cmk

2

	
\ B4�k�1

ˇ̌̌
ˇ � jB4�k�1 j

2
:

Consider

v.x/ WD u.4�kx/ �mk

.Mk �mk/=2

so that v.x/ � 0 in B1 and jfv � 1g \ B1=4j � jB1=4j=2. Moreover, since

M�u � "0 in B1,

M�v � 4�k�"0

.Mk �mk/=2
D 2"04

k.��˛/ � 2"0 in B4k

if ˛ is chosen less than � .

From the inductive hypothesis, for any j � 1, we have

v � .mk�j �mk/

.Mk �mk/=2
� .mk�j �Mk�j CMk �mk/

.Mk �mk/=2

� �2 � 4 j̨ C 2 � 2.1 � 4 j̨ / in B2j :

Therefore v.x/ � �2.j4xj˛ � 1/ outside B1. If we let w.x/ D max.v; 0/,

then M�w � M�v C 2"0 in B3=4 if ˛ is small enough. We still have jfw �
1g \ B1=4j � jB1=4j=2. Given any point x 2 B1=4, we can apply Theorem 10.4 in

B1.x/ to obtain

C.w.x/C 2"0/
" � jfw > 1g \ B1=2.x/j � 1

2
jB1=4j:

If we have chosen "0 small, this implies that w � � in B1=4 for some � >

0. Thus if we let MkC1 D Mk and mkC1 D mk C �.Mk � mk/=2, we have

mkC1 � u � MkC1 in B2kC1 . Moreover, MkC1 � mkC1 D .1 � �=2/4�˛k .

So we must choose ˛ and � small and so that .1 � �
2
/ D 4�˛, and we obtain

MkC1 �mkC1 D 4�˛.kC1/.
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On the other hand, if jfu � .Mk Cmk/=2g \ B4�k j � jB4�k j=2, we define

v.x/ WD Mk � u.4�kx/

.Mk �mk/=2

and continue in the same way using that MCu � �"0. �

13 C 1C˛ Estimates
In this section we prove an interior C 1;˛ regularity result for the solutions to

a general class of fully nonlinear integro-differential equations. The idea of the

proof is to use the Hölder estimates of Theorem 12.1 to incremental quotients of

the solution. There is a difficulty in that we have no uniform bound in L1 for the

incremental quotients outside of the domain. This becomes an issue since we are

dealing with nonlocal equations. The way we solve it is by assuming some extra

regularity of the family of integral operators L. The extra assumption, compared

to the assumptions for Hölder regularity (3.3), is a modulus of continuity of K in

measure, so as to make sure that faraway oscillations tend to cancel out.

Given 	0 > 0, we define the class L1 by the operators L with kernels K such

that

.2 � �/ �

jyjnC�
� K.y/ � .2 � �/ ƒ

jyjnC�
;(13.1) Z

RnnB�0

jK.y/ �K.y � h/j
jhj dy � C every time jhj < 	0

2
(13.2)

A simple condition for (13.2) to hold would be that jrK.y/j � ƒ=jyj1CnC� .

In the following theorem we give interior C 1;˛ estimates for fully nonlinear

elliptic equations.

THEOREM 13.1 Assume � > �0. There is a 	0 > 0 (depending on �, ƒ, �0,
and n/ so that if I is a nonlocal elliptic operator with respect to L1 in the sense of
Definition 3.1 and u is a bounded function such that Iu D 0 in B1, then there is a
universal ˛ > 0 (depending only on �, ƒ, n, and �0/ such that u 2 C 1C˛.B1=2/

and
uC 1C˛.B1=2/ � C.sup

Rn

juj C jI0j/
for some constant C > 0 (where by I0 we mean the value we obtain when we
apply I to the function that is a constant equal to 0/. The constant C depends on
�, ƒ, �0, n, and the constant in (13.2).

PROOF: Because of the assumption (13.1), the class L1 is included in L0 given

by (3.3). Since Iu D 0 in B1, in particular MCu � Iu � I0 D �I0 and also

M�u � I0 in B1, and therefore by Theorem 12.1 we have u 2 C ˛.B1�ı/ for any

ı > 0 with kukC ˛ � C.sup juj C jI0j/.
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Now we want to improve the obtained regularity iteratively by applying Theo-

rem 12.1 again until we obtain Lipschitz regularity in a finite number of steps.

Assume we have proved that u 2 C ˇ .Br/ for some ˇ > 0 and 1
2
< r < 1. We

want to apply Theorem 12.1 for the difference quotient

wh D u.x C h/ � u.x/
jhjˇ

to obtain u 2 C ˇC˛.Br�ı/. By Theorem 5.9, MC
L1
wh � 0 and M�

L1
wh � 0 in

Br . In particular, MCwh � 0 and M�wh � 0 in Br .

The function wh is uniformly bounded in Br because u 2 C ˇ .Br/. Outside

Br the function wh is not uniformly bounded, so we cannot apply Theorem 12.1

immediately. However, wh has oscillations that cause cancellations in the integrals

because of our assumption (13.2).

Let � be a smooth cutoff function supported in Br such that � 	 1 in Br�ı=4,

where ı is some small positive number that will be determined later. Let us write

wh D wh
1 C wh

2 , where

wh
1 D �u.x C h/ � �u.x/

jxjˇ ; wh
2 D .1 � �/u.x C h/ � .1 � �/u.x/

jxjˇ :

Let x 2 Br=2 and jhj < ı
16

. In this case .1 � �/u.x/ D .1 � �/u.x C h/ D 0 and

wh.x/ D wh
1 .x/. We have to show that wh

1 2 C ˇC˛.Br�ı/.

We have

MCwh
1 � MC

L1
wh

1 D MC
L1
.wh � wh

2 / � 0 � MC
L1
wh

2 ;

M�wh
1 � M�

L1
wh

1 D M�
L1
.wh � wh

2 / � 0 � M�
L1
wh

2 :

In order to apply Theorem 12.1, we will show that jMC
L1
wh

2 j and jM�
L1
wh

2 j are

bounded in Br�ı=2 by C sup juj for some universal constant C . We must show

those inequalities for any operator L 2 L1.

Since .1 � �/u.x/ D .1 � �/u.x C h/ D 0 and wh.x/ D wh
1 .x/, we have the

expression

Lwh
2 D

Z
Rn

.1 � �/u.x C y C h/ � .1 � �/u.x C y/

jhjˇ K.y/dy;

and we notice that both terms .1 � �/u.x C y C h/ D .1 � �/u.x C y/ D 0 for

jyj < ı
8

. We take 	0 D ı
4

; therefore we can integrate by parts the incremental

quotient to obtain

jLwh
2 j D

ˇ̌̌
ˇ
Z

Rn

.1 � �/u.x C y/
K.y/ �K.y � h/

jhjˇ dy

ˇ̌̌
ˇ

�
Z

Rn

j.1 � �/u.x C y/j jhj1�ˇ jK.y/ �K.y � h/j
jhj dy using (13.2) �
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� jhj1�ˇ

Z
RnnBı=4

jK.y/ �K.y � h/j
jhj dy sup

Rn

juj

� C jhj1�ˇ juj � C sup
Rn

juj:

So, we have obtained MCwh
1 � �C sup juj and M�wh

1 � C sup juj in Br�ı=2

for jhj < ı
16

. We can apply Theorem 12.1 to get that wh
1 (and thus also wh) is

uniformly C ˛ in Br�ı . By the standard telescopic sum argument [7], this implies

that u 2 C ˛Cˇ .Br�ı/.

Iterating the above argument, we obtain that u is Lipschitz in Œ1=˛� steps. Then,

for any unit vector e, we use the same reasoning for the incremental quotients

wh D u.x C he/ � u.x/
h

to conclude that u 2 C 1;˛ in a smaller ball. If we choose the constant ı appropri-

ately, we get u 2 C 1;˛.B1=2/. �

Remark 13.2. Note that the value of 	0 in Theorem 13.1 is not scale invariant. If

we want to scale the estimate to apply it to a function u such that Iu D 0 in Br ,

then we also have to multiply the value of 	0 times r .

Remark 13.3. Note that the family L given by the operators L with the form

Lu.x/ D
Z

Rn

cn.2 � �/
detAjA�1´jnC�

ı.u; x; ´/d´

satisfies conditions (13.1) and (13.2). Thus, from the arguments in Section 6 and

Theorem 13.1, we recover the C 1;˛ estimates for fully nonlinear elliptic equations.

14 Truncated Kernels
For applications, it is important to be able to deal with integro-differential op-

erators whose kernels do not satisfy (3.3) in the whole space Rn but only in a

neighborhood of the origin. For example, we want to be able to deal with the op-

erators related to truncated ˛-stable Lévy processes. In this section we extend our

regularity results for this kind of operator.

We consider the following class L: We say that an operator L belongs to L if its

corresponding kernel K has the form

(14.1) K.y/ D K1.y/CK2.y/ � 0

where

.2 � �/ �

jxjnC�
� K1.y/ � .2 � �/ ƒ

jxjnC�

and K2 2 L1.Rn/ with kK2kL1 � .
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In this class L we can consider kernels that are comparable to jyj�n�� near the

origin but decay exponentially at infinity or even become zero outside some ball.

For example,

K.y/ D 1

jyjnC�
e�jyj2 or K.y/ D a.y/

jyjnC�
�B1

.y/ where � � a.y/ � ƒ:

This class L is larger than the class L0 in (3.3). However, in the following

lemma we show that the extremal operators MC
L and M�

L are controlled by the

corresponding extremal operators of L0, MC and M�, plus the L1 norm of u.

LEMMA 14.1 Let u be a bounded function in Rn and C 1;1 at the point x. Then

M�
Lu.x/ � M�u.x/ � 4 kukL1 ; MC

L u.x/ � MCu.x/C 4 kukL1 :

PROOF: All we have to do is show that for each L 2 L, we have Lu.x/ �
M�u.x/ �  infRn u and Lu.x/ � MCu.x/C  supRn u.

We have

Lu D
Z
ı.u; x; y/.K1.y/CK2.y//dy

D
Z
ı.u; x; y/K1.y/dy C

Z
ı.u; x; y/K2.y/dy

� M�u.x/C
Z
.u.x C y/C u.x � y/ � 2u.x//K2.y/dy

� M�u.x/ � 4 kukL1 kK2kL1 D M�u.x/ � 4 kukL1 :

In a similar way the inequality for MC
L u.x/ follows. �

COROLLARY 14.2 If u is bounded in Rn and in an open set �, MC
L u � �C , and

M�
Lu � C , then

MCu � �C � 4 kukL1 ; M�u � C C 4 kukL1 :

THEOREM 14.3 Let � > �0 for some �0 > 0. Let u be a bounded function in Rn

such that
MC

Lu � �C0 in B1; M�
Lu � C0 in B1I

then there is an ˛ > 0 (depending only on �,ƒ, n, and �0/ such that u 2 C ˛.B1=2/

and
uC ˛.B1=2/ � C.kukL1 C C0/

for some constant C > 0 that depends on �, ƒ, n, �0, and .

PROOF: From Corollary 14.2

MCu � �C0 � 4 kukL1 ; M�u � C0 C 4 kukL1 :

Then, from Theorem 12.1,

uC ˛.B1=2/ � C.kukL1 C C0 C 4 kukL1/ � QC.kukL1 C C0/:

�
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If we use Theorem 14.3 instead of Theorem 12.1 in the proof of Theorem 13.1,

we obtain a C 1;˛ result for a class L that includes kernels with exponential decay

or compact support.

THEOREM 14.4 Let L be the class of operators with kernels K such thatZ
RnnB�0

jK.y/ �K.y � h/j
jhj dy � C every time jhj < 	0

2
;(14.2)

K D K1 CK2;(14.3)

.2 � �/ �

jyjnC�
� K1.y/ � .2 � �/ ƒ

jyjnC�
;(14.4)

kK2kL1 � :(14.5)

There is a 	0 > 0 so that if I is a nonlocal elliptic operator in the sense of
Definition 3.1 and u is a bounded function such that Iu D 0 in B1, then there is
an ˛ > 0 (depending only on �, ƒ, n, and �/ such that u 2 C 1C˛.B1=2/ and

uC 1C˛.B1=2/ � C.sup
Rn

juj C jI0j/

for some constant C > 0.

Remark 14.5. We can prove Theorem 14.3 because in our C ˛ estimates we allow a

bounded right-hand side. Theorem 14.4 would be more general if inequality (14.2)

was required withK1 instead ofK. In order to prove such a result, we would need

to have C 1;˛ estimates like the ones of Theorem 13.1 with a nonzero right-hand

side. This type of result is well-known for elliptic partial differential equations [6],

and we are planning to extend it to nonlocal equations in future work.

It is not hard to check that if assumption (14.2) involved K1 instead of K, then

the class L above would be the same as the larger class L0 of (3.3), and Theo-

rem 14.4 would apply to a very large family of operators.
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