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We summarize our recent contributions to the development of macroscopic
transport equations for rarefied gas flows. A combination of the Chapman-
Enskog expansion and Grad’s moment method, termed as the order of mag-
nitude method, yields the regularized 13 moment equations (R13 equations)
which are of super-Burnett order. A complete set of boundary conditions is
derived from the boundary conditions of the Boltzmann equations. The R13
equations are linearly stable and their results for Knudsen numbers below 0.5
stand in excellent agreement to DSMC simulations.

1. Introduction

Processes in rarefied gases are well described by the Boltzmann equation
[1,2] which describes the evolution of the particle distribution function in
phase space, i.e. on the microscopic level.

The relevant scaling parameter to characterize processes in rarefied gases
is the Knudsen number Kn, defined as the ratio between the mean free path
of a particle and a relevant length scale. If the Knudsen number is small, the
Boltzmann equation can be reduced to simpler models, which allow faster
solutions. Indeed, if Kn < 0.01 (say), the hydrodynamic equations, the laws
of Navier-Stokes and Fourier (NSF), can be derived from the Boltzmann
equation, e.g. by the Chapman-Enskog method [1,2]. The NSF equations are
macroscopic equations for mass density ρ, velocity vi and temperature T ,
and thus pose a mathematically less complex problem than the Boltzmann
equation.

Macroscopic equations for rarefied gas flows at Knudsen numbers above
0.01 promise to replace the Boltzmann equation with simpler equations
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that still capture the relevant physics. The Chapman-Enskog expansion is
the classical method to achieve this goal, but the resulting Burnett and
super-Burnett equations are unstable [3].

A classical alternative is Grad’s moment method [4] which extends the
set of variables by adding deviatoric stress tensor σij , heat flux qi, and
possibly higher moments of the phase density. The resulting equations are
stable but lead to spurious discontinuities in shocks, and for a given value
of the Knudsen number it is not clear what set of moments one would have
to consider [2].

Struchtrup and Torrilhon combined both approaches by performing a
Chapman-Enskog expansion around a non-equilibrium phase density of
Grad type [5,6] which resulted in the ”regularized 13 moment equations”
(R13 equations) which form a stable set of equations for the 13 variables
(ρ, vi, T, σij .qi) of super-Burnett order.

An alternative approach to the problem was presented by Struchtrup
in [7,8], partly based on earlier work by Müller et al. [9]. The Order of Mag-
nitude Method, which is briefly outlined in Section 2, is based on a rigorous
asymptotic analysis of the infinite hierarchy of the moment equations.

One of the biggest problems for all models beyond NSF is to prescribe
suitable boundary conditions for the extended equations, which should fol-
low from the boundary conditions for the Boltzmann equation. This task
was recently tackled in [11], and our solution to the problem [12] will be
briefly discussed in Section 3, which presents boundary conditions for the
R13 equations.

Section 4 will briefly discuss the properties of the R13 equations, which
are linearly stable, obey a H-theorem for the linear case, contain the Bur-
nett and super-Burnett equations asymptotically, predict phase speeds and
damping of ultrasound waves in excellent agreement to experiments, yield
smooth and accurate shock structures for all Mach numbers, and exhibit
Knudsen boundary layers and the Knudsen minimum in excellent agree-
ment to DSMC simulations.

Lack of space forbids to present any details, the interested reader is
referred to the cited literature, including the monograph [2].

2. The Order of Magnitude Method

The Order of Magnitude Method [7,8] considers not the Boltzmann equa-
tion itself, but its infinite system of moment equations. The method of
finding the proper equations with order of accuracy λ0 in the Knudsen
number consists of the following three steps:
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(1) Determination of the order of magnitude λ of the moments.
(2) Construction of moment set with minimum number of moments at

order λ.
(3) Deletion of all terms in all equations that would lead only to con-

tributions of orders λ > λ0 in the conservation laws for energy and
momentum.

Step 1 is based on a Chapman-Enskog expansion where a moment φ is
expanded according to φ = φ0 + Knφ1 + Kn2φ2 + Kn3φ3 + · · · , and the
leading order of φ is determined by inserting this ansatz into the complete
set of moment equations. A moment is said to be of leading order λ if φβ = 0
for all β < λ. This first step agrees with the ideas of [9]. Alternatively, the
order of magnitude of the moments can be found from the principle that a
single term in an equation cannot be larger in size by one or several orders
of magnitude than all other terms [10].

In Step 2, new variables are introduced by linear combination of the
moments originally chosen. The new variables are constructed such that
the number of moments at a given order λ is minimal. This step gives an
unambiguous set of moments at order λ.

Step 3 follows from the definition of the order of accuracy λ0: A set of
equations is said to be accurate of order λ0, when stress and heat flux are
known within the order O

(
Knλ0

)
.

The order of magnitude method gives the Euler and NSF equations at
zeroth and first order, and thus agrees with the Chapman-Enskog method
in the lower orders [7]. The second order equations turn out to be Grad’s 13
moment equations for Maxwell molecules [7], and a generalization of these
for molecules that interact with power potentials [2,8]. At third order, the
method was only performed for Maxwell molecules, where it yields the R13
equations [7], which read (θ is the temperature in energy units, µ is the
viscosity of the gas)
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3. Boundary Conditions for R13

The computation of boundary conditions for the R13 equations is based on
Maxwell’s model for boundary conditions for the Boltzmann equation [1,2],
which states that a fraction χ of the particles hitting the wall is thermalized,
while the remaining 1−χ particles are specularly reflected. Boundary con-
ditions for moments follow by taking moments of the boundary conditions
of the Boltzmann equation. To produce meaningful boundary conditions,
one needs to obey the following rules:

(1) Continuity: In order to have meaningful boundary conditions for all
accommodation coefficients χ in [0,1], only boundary conditions for
tensors with an odd number of normal components should be considered
[3,11,12].

(2) Consistency: Only boundary conditions for fluxes that actually appear
in the equations should be considered [12].

(3) Coherence: The same number of boundary conditions should be pre-
scribed for the linearized and the non-linear equations [12].

The application of Rules 1 and 2 is straightforward and yields the fol-
lowing set of boundary conditions (t and n denote tangential and normal

tensor components, respectively, and Vt = vt − vW
t , β = χ
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θW and vW denote temperature and velocity of the wall. The first con-
dition above is the slip condition for the velocity, while the third equation
is the jump condition for the temperature. In a manner of speaking, the
other conditions can be described as jump conditions for higher moments.

When the R13 equations are considered for channel flows in their original
form, it turns out that a different number of boundary conditions is required
to solve the fully non-linear and the linearized equations. Since this would
not allow a smooth transition between linear and non-linear situations, we
formulated the third rule as given above.

Asymptotic analysis shows that some terms can be changed without
changing the overall asymptotic accuracy of the R13 equations. This leads
to the algebraization of several non-linear terms in the pde’s which, after
some algebra, leads to algebraic relations, termed as bulk equations, be-
tween the moments which serve as additional boundary conditions for the
non-linear equations [12],
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4. Computations and Simulations

We summarize the most important features of the R13 equations which
result from analytical considerations, and from analytical and numerical
solutions:

The R13 equations:

• are derived in a rational manner by means of the order of magni-
tude method [7,8], or from a Chapman-Enskog expansion around non-
equilibrium [5,6],

• are of third order in the Knudsen number [2,5–8],
• are linearly stable for initial and boundary value problems [5,6],
• contain Burnett and super-Burnett asymptotically [5,6],
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• predict phase speeds and damping of ultrasound waves in excellent
agreement to experiments [5],

• give smooth shock structures for all Mach numbers, with good agree-
ment to DSMC simulations for Ma<3 [6],

• are accompanied by a complete set of boundary conditions [12],
• obey an H-theorem for the linear case, including the boundaries [13],
• exhibit the Knudsen paradox for channel flows [12,13],
• exhibit Knudsen boundary layers in good agreement to DSMC [14,15],
• are accessible to numerical simulations in higher dimensions [16],
• predict light scattering spectra in accordance to experiments [17]

With these properties and features, the R13 equations must be con-
sidered as the most successful macroscopic model for rarefied gas flows.
The application of the R13 equations to a wider variety of one-, two, and
three-dimensional rarefied gas flow problems is planned for the future.
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