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Abstract We study a generalized 1d periodic SPDE of Burgers type:

∂t u = −Aθu + ∂x u2 + Aθ/2ξ

where θ > 1/2, −A is the 1d Laplacian, ξ is a space–time white noise and the initial
condition u0 is taken to be (space) white noise. We introduce a notion of weak solution
for this equation in the stationary setting. For these solutions we point out how the
noise provide a regularizing effect allowing to prove existence and suitable estimates
when θ > 1/2. When θ > 5/4 we obtain pathwise uniqueness. We discuss the use
of the same method to study different approximations of the same equation and for a
model of stationary 2d stochastic Navier–Stokes evolution.
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The stochastic Burgers equation (SBE) on the one dimensional torus T = (−π, π ]
is the SPDE

dut = 1

2
∂2
ξ ut (ξ)dt + 1

2
∂ξ (ut (ξ))

2dt + ∂ξdWt (1)
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where Wt is a cylindrical white noise on the Hilbert space H = L2
0(T) of square

integrable, mean zero real function on T and it has the form Wt (ξ) =∑k∈Z0
ek(ξ)β

k
t

with Z0 = Z\{0} and ek(ξ) = eikξ /
√

2π and {βk
t }t≥0,k∈Z0 is a family of complex

Brownian motions such that (βk
t )

∗ = β−k
t and with covariance E[βk

t β
q
t ] = Iq+k=0.

Formally the solution u of Eq. (1) is the derivative of the solution of the Kardar–Parisi–
Zhang equation

dht = 1

2
∂2
ξ ht (ξ)dt + 1

2
(∂ξht (ξ))

2dt + dWt (2)

which is believed to capture the macroscopic behavior of a large class of surface growth
phenomena [20].

The main difficulty with Eq. (1) is given by the rough nonlinearity which is incom-
patible with the distributional nature of the typical trajectories of the process. Note in
fact that, at least formally, Eq. (1) preserves the white noise on H and that the square in
the non-linearity is almost surely +∞ on the white noise. Additive renormalizations
in the form of Wick products are not enough to cure this singularity [9].

In [7] Bertini and Giacomin studying the scaling limits for the fluctuations of an
interacting particles system show that a particular regularization of (1) converges in
law to a limiting process uhc

t (ξ) = ∂ξ log Zt (ξ) (which is referred to as the Hopf–Cole
solution) where Z is the solution of the stochastic heat equation with multiplicative
space–time white noise

dZt = 1

2
∂2
ξ Zt (ξ)dt + Zt (ξ)dWt (ξ). (3)

The Hopf–Cole solution is believed to be the correct physical solution for (1) however
up to recently a rigorous notion of solution to Eq. (1) was lacking so the issue of
uniqueness remained open.

Jara and Gonçalves [15] introduced a notion of energy solution for Eq. (1) and
showed that the macroscopic current fluctuations of a large class of weakly non-
reversible particle systems on Z obey the Burgers equation in this sense. Moreover
their results show that also the Hopf–Cole solution is an energy solution of Eq. (1).

More recently Hairer [18] obtained a complete existence and uniqueness result
for KPZ. In this remarkable paper the theory of controlled rough paths is used to
give meaning to the nonlinearity and a careful analysis of the series expansion of the
candidate solutions allow to give a consistent meaning to the equation and to obtain a
uniqueness result. In particular Hairer’s solution coincide with the Cole–Hopf ansatz.

In this paper we take a different approach to the problem. We want to point out the
regularizing effect of the linear stochastic part of the equation on the the non-linear part.
This is linked to some similar remarks of Assing [3,4] and by the approach of Jara and
Gonçalves [15]. Our point of view is motivated also by similar analysis in the PDE and
SPDE context where the noise or a dispersive term provide enough regularization to
treat some non-linear term: there are examples involving the stochastic transport equa-
tion [12], the periodic Korteweg-de Vries equation [5,17] and the fast rotating Navier–
Stokes equation [6]. In particular in the paper [17] it is shown how, in the context of
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the periodic Korteweg-de Vries equation, an appropriate notion of controlled solution
can make sense of the non-linear term in a space of distributions. This point of view
has also links with the approach via controlled paths to the theory of rough paths [16].

With our approach we are not able to obtain uniqueness for the SBE above and we
resort to study the more general equation (SBEθ ):

dut = −Aθut dt + F(ut )dt + Aθ/2dWt (4)

where F(ut )(ξ) = ∂ξ (ut (ξ))
2, −A is the Lapacian with periodic b.c., where θ ≥ 0 and

where the initial condition is taken to be white noise. In the case θ = 1 we essentially
recover the stationary case of the SBE above (modulo a mismatch in the noise term
which do not affect its law).

For any θ ≥ 0 we introduce a class Rθ of distributional processes ”controlled” by
the noise, in the sense that these processes have a small time behaviour similar to that
of the stationary Ornstein–Uhlenbech process X which solves the linear part of the
dynamics:

dXt = −Aθ Xt dt + Aθ/2dWt , (5)

where X0 is white noise. When θ > 1/2 we are able to show that the time integral of
the non-linear term appearing in SBEθ is well defined, namely that for all v ∈ Rθ

Avt =
t∫

0

F(vs)ds (6)

is a well defined process with continous paths in a space of distributions on T of
specific regularity. Note that this process is not necessarily of finite variation with
respect to the time parameter even when tested with smooth test functions.

The existence of the drift process (6) allows to formulate naturally the SBEθ equa-
tion in the space Rθ of controlled processes and gives a notion of solution quite similar
to that of energy solution introduced by Jara and Gonçalves [15]. Existence of (proba-
bilistically) weak solutions will be established for any θ > 1/2, that is well below the
KPZ regime. The precise notion of solution will be described below. We are also able
to show easily pathwise uniqueness when θ > 5/4 but the case θ = 1 seems still (way)
out of range for this technique. In particular the question of pathwise uniqueness is
tightly linked with that of existence of strong solutions and the key estimates which will
allow us to handle the drift (6) are not strong enough to give a control on the difference
of two solutions (with the same noise) or on the sequence of Galerkin approximations.

Similar regularization phenomena for stochastic transport equations are studied
in [12] and in [10] for infinite dimensional SDEs. This is also linked to the fundamental
paper of Kipnis and Varadhan [21] on CLT for additive functionals and to the Lyons–
Zheng representation for diffusions with singular drifts [13,14,23].

Plan In Sect. 1 we define the class of controlled paths and we recall some results of
the stochastic calculus via regularization which are needed to handle the Itô formula
for the controlled processes. Section 2 is devoted to introduce our main tool which is a
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moment estimate of an additive functional of a stationary Dirichlet process in terms of
the quadratic variation of suitable forward and backward martingales. In Sect. 3 we use
this estimate to provide uniform bounds for the drift of any stationary solution. These
bounds are used in Sect. 4 to prove tightness of the approximations when θ > 1/2
and to show existence of controlled solution of the SBE via Galerkin approximations.
Finally in Sect. 5 we prove our pathwise uniqueness result in the case θ > 5/4. In
Sect. 6 we discuss related results for the model introduced in [9].

Notations We write X �a,b,... Y if there exists a positive constant C depending
only on a, b, . . . such that X ≤ CY . We write X ∼a,b,... Y iff X �a,b,... Y �a,b,... X .

We let S be the space of smooth test functions on T, S ′ the space of distributions
and 〈·, ·〉 the corresponding duality.

On the Hilbert space H = L2
0(T) the family {ek}k∈Z0 is a complete orthonormal

basis. On H we consider the space of smooth cylinder functions Cyl which depends
only on finitely many coordinates on the basis {ek}k∈Z0 and for ϕ ∈ Cyl we consider
the gradient Dϕ : H → H defined as Dϕ(x) = ∑k∈Z0

Dkϕ(x)ek where Dk = ∂xk

and xk = 〈ek, x〉 are the coordinates of x .
For any α ∈ R define the space F L p,α of functions on the torus for which

|x |F L p,α =
⎡

⎣
∑

k∈Z0

(|k|α |xk |)p

⎤

⎦

1/p

< +∞ if p < ∞ and |x |F L∞,α = sup
k∈Z0

|k|α |xk | < +∞.

We will use the notation Hα = F L2,α for the usual Sobolev spaces of periodic
functions on T. We let A = −∂2

ξ and B = ∂ξ as unbounded operators acting on H

with domains respectively H2 and H1. Note that {ek}k∈Z0 is a basis of eigenvectors of
A for which we denote {λk = |k|2}k∈Z0 the associated eigenvalues. The operator Aθ

will then be defined on H θ by Aθek = |k|2θek with domain H2θ . The linear operator

N : H → H is the projection on the subspace generated by {ek}k∈Z0,|k|≤N .

Denote CT V = C([0, T ], V ) the space of continuous functions from [0, T ] to the
Banach space V endowed with the supremum norm and with CγT V = Cγ ([0, T ], V )
the subspace of γ -Hölder continuous functions in CT V with the γ -Hölder norm.

1 Controlled processes

We introduce a space of stationary processes which “looks like” an Ornstein–
Uhlenbeck process. The invariant law at fixed time of these processes will be given by
the canonical Gaussian cylindrical measure μ on H which we consider as a Gaussian
measure on Hα for any α < −1/2. This measure is fully characterized by the equation

∫

ei〈ψ,x〉μ(dx) = e−〈ψ,ψ〉/2, ∀ψ ∈ H ;

or alternatively by the integration by parts formula

∫

Dkϕ(x)μ(dx) =
∫

x−kϕ(x)μ(dx), ∀k ∈ Z0, ϕ ∈ Cyl.
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Definition 1 (Controlled process) For any θ ≥ 0 let Rθ be the space of stationary
stochastic processes (ut )0≤t≤T with continuous paths in S ′ such that

i) the law of ut is the white noise μ for all t ∈ [0, T ];
ii) there exists a process A ∈ C([0, T ],S ′) of zero quadratic variation such that

A0 = 0 and satisfying the equation

ut (ϕ) = u0(ϕ)+
t∫

0

us(−Aθϕ)ds + At (ϕ)+ Mt (ϕ) (7)

for any test function ϕ ∈ S, where Mt (ϕ) is a martingale with respect to the
filtration generated by u with quadratic variation [M(ϕ)]t = 2t‖Aθ/2ϕ‖2

L2
0(T)

;

iii) the reversed processes ût = uT −t , Ât = −AT −t satisfies the same equation with
respect to its own filtration (the backward filtration of u).

For controlled processes we will prove that if θ > 1/2 the Burgers drift is well
defined by approximating it and passing to the limit. Let ρ : R → R be a positive
smooth test function with unit integral and ρε(ξ) = ρ(ξ/ε)/ε for all ε > 0. For
simplicity in the proofs we require that the function ρ has a Fourier transform ρ̂

supported in some ball and such that ρ̂ = 1 in a smaller ball. This is a technical
condition which is easy to remove but we refrain to do so here not to obscure the main
line of the arguments.

Lemma 1 If u ∈ Rθ and if θ > 1/2 then almost surely

lim
ε→0

t∫

0

F(ρε ∗ us)ds

exists in the space C([0, T ],F Lζ,∞) for some ζ < 0. We denote with
∫ t

0 F(us)ds the
resulting process with values in C([0, T ],F Lζ,∞).
Proof We postpone the proof in Sect. 3. ��

It will turn out that for this process we have a good control of its space and time
regularity and also some exponential moment estimates. Then it is relatively natural
to define solutions of Eq. (4) by the following self-consistency condition.

Definition 2 (Controlled solution) Let θ > 1/2, then a process u ∈ Rθ is a controlled
solution of SBEθ if almost surely

At (ϕ) = 〈ϕ,
t∫

0

F(us)ds〉 (8)

for any test function ϕ ∈ S and any t ∈ [0, T ].
Note that these controlled solutions are a generalization of the notion of proba-

bilistically weak solutions of SBEθ . The key point is that the drift term is not given
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explicitly as a function of the solution itself but characterized by the self-consistency
relation (8). In this sense controlled solutions are to be understood as a couple (u,A)
of processes satisfying compatibility relations.

An analogy which could be familiar to the reader is that with a diffusion on a
bounded domain with reflected boundary where the solution is described by a couple
of processes (X, L) representing the position of the diffusing particle and its local
time at the boundary [22].

Note also that there is no requirement on A to be adapted to u. Our analysis below
cannot exclude the possibility that A contains some further randomness and that the
solutions are strictly weak, that is not adapted to the filtration generated by the mar-
tingale term and the initial condition.

2 The Itô trick

In order to prove the regularization properties of controlled processes we will need
some stochastic calculus and in particular an Itô formula and some estimates for
martingales. Let us recall here some basic elements here. In this section u will be always
a controlled process in Rθ . For any test function ϕ ∈ S the processes (ut (ϕ))t and
(ût (ϕ))t are Dirichlet processes: sums of a martingale and a zero quadratic variation
process. Note that we do not want to assume controlled processes to be semimartingales
(even when tested with smooth functions). This is compatible with the regularity of our
solutions and there is no clue that solutions of SBEθ even with θ = 1 are distributional
semimartingales. A suitable notion of stochastic calculus which is valid for a large
class of processes and in particular for Dirichlet processes is the stochastic calculus via
regularization developed by Russo and Vallois [24]. In this approach the Itô formula
can be extended to Dirichlet processes. In particular if (Xi )i=1,...,k is an R

k valued
Dirichlet process and g is a C2(Rk; R) function then

g(Xt ) = g(X0)+
k∑

i=1

t∫

0

∂i g(Xs)d
− Xi

s + 1

2

k∑

i, j=1

t∫

0

∂2
i, j g(Xs)d

−[Xi , X j ]s

where d− denotes the forward integral and [X, X ] the quadratic covariation of the
vector process X . Decomposing X = M + N as the sum of a martingale M and a zero
quadratic variation process N we have [X, X ] = [M,M] and

g(Xt ) = g(X0)+
k∑

i=1

t∫

0

∂i g(Xs)d
−Mi

s +
k∑

i=1

t∫

0

∂i g(Xs)d
−N i

s

+
k∑

i, j=1

1

2

t∫

0

∂2
i, j g(Xs)d

−[Mi ,M j ]s

where now d−M coincide with the usual Itô integral and [M,M] is the usual quadratic
variation of the martingale M . The integral

∫ t
0 ∂i g(Xs)d−N i

s is well-defined due to the
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fact that all the other terms in this formula are well defined. The case the function g
depends explicitly on time can be handled by the above formula by considering time as
an additional (0-th) component of the process X and using the fact that [Xi , X0] = 0
for all i = 1, . . . , k. In the computations which follows we will only need to apply
the Itô formula to smooth functions.

Let us denote by L0 the generator of the Ornstein–Uhlenbeck process associated
to the operator Aθ :

L0ϕ(x) =
∑

k∈Z0

|k|2θ (− xk Dkϕ(x)+ 1
2 D−k Dkϕ(x)

)
. (9)

Consider now a smooth cylinder function h : [0, T ]×
N H → R. The Itô formula
for the finite quadratic variation process (uN

t = 
N ut )t gives

h(t, uN
t ) = h(0, uN

0 )+
t∫

0

(∂s + L N
0 )h(s, uN

s )ds +
t∫

0

Dh(s, uN
s )d
N As + M+

t

where

L N
0 h(s, x) =

∑

k∈Z0:|k|≤N

|k|2θ (xk Dkh(s, x)+ Dk D−kh(s, x))

is the restriction of the operator L0 to 
N H and where the martingale part denoted
M+ has quadratic variation given by [M+]t = ∫ t

0 EθN (h(s, ·))(uN
s )ds, where

EθN (ϕ)(x) = 1

2

∑

k∈Z0:|k|≤N

|k|2θ |Dkϕ(x)|2,

Similarly the Itô formula on the backward process reads

h(T − t, uN
T −t ) = h(T, uN

T )+
t∫

0

(−∂s + L N
0 )h(T − s, uN

T −s)ds

−
t∫

0

Dh(T − s, uN
T −s)d
N AT −s + M−

t

with [M−]t =
t∫

0
EθN (h(T − s, ·))(uN

T −s)ds so we have the key equality

t∫

0

2L N
0 h(s, uN

s )ds = −M+
t + M−

T −t − M−
T . (10)
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which allows us to represent the time integral of h as a sum of martingales which allows
better control. On this martingale representation result we can use the Burkholder–
Davis–Gundy inequalities to prove the following bound.

Lemma 2 ( Itô trick) Let h : [0, T ] ×
N H → R be a cylinder function. Then for
any p ≥ 1,

∥
∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣
∣
∣
∣

t∫

0

L0h(s,
N us)ds

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

L p(Pμ)

�p T 1/2 sup
s∈[0,T ]

∥
∥Eθ (h(s, ·))∥∥1/2

L p/2(μ)
(11)

where Eθ (ϕ)(x) = 1
2

∑
k∈Z0

|k|2θ |Dkϕ(x)|2. In the particular case h(s, x) =
ea(T −s)h̃(x) for some a ∈ R we have the improved estimate

∥
∥
∥
∥
∥
∥

T∫

0

ea(T −s)L0h̃(
N us)ds

∥
∥
∥
∥
∥
∥

L p(Pμ)

�p

(
1 − e2aT

2a

)1/2 ∥
∥
∥Eθ (h̃)

∥
∥
∥

1/2

L p/2(μ)
. (12)

Proof

∥
∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣
∣
∣
∣

t∫

0

2L N
0 h(s, us)ds

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

L p(Pμ)

≤
∥
∥
∥
∥
∥

sup
t∈[0,T ]

|M+
t |
∥
∥
∥
∥
∥

L p(Pμ)

+2

∥
∥
∥
∥
∥

sup
t∈[0,T ]

|M−
t |
∥
∥
∥
∥
∥

L p(Pμ)

�p
∥
∥〈M+〉T

∥
∥1/2

L p/2(Pμ)
+ ∥∥〈M−〉T

∥
∥1/2

L p/2(Pμ)
�p

∥
∥
∥
∥
∥
∥

T∫

0

Eθ (h(s, ·))(us)ds

∥
∥
∥
∥
∥
∥

1/2

L p/2(Pμ)

�p

⎛

⎝

T∫

0

∥
∥Eθ (h(s, ·))(us)

∥
∥

L p/2(Pμ)
ds

⎞

⎠

1/2

�p T 1/2 sup
s∈[0,T ]

∥
∥Eθ (h(s, ·))∥∥1/2

L p/2(μ)
.

For the convolution we bound as follows

∥
∥
∥
∥
∥
∥

T∫

0

ea(T −s)2L N
0 h̃(us)ds

∥
∥
∥
∥
∥
∥

L p(Pμ)

�p

⎛

⎝

T∫

0

e2a(T −s)ds

⎞

⎠

1/2
∥
∥
∥Eθ (h̃)(u0)

∥
∥
∥

1/2

L p/2(Pμ)

�p

(
1 − e2aT

2a

)1/2 ∥
∥
∥Eθ (h̃)

∥
∥
∥

1/2

L p/2(μ)

��
The bound (11) in the present form (with the use of the backward martingale to remove
the drift part) has been inspired by [[8], Lemma 4.4].
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Lemma 3 (Exponential integrability) Let h : [0, T ] × 
N H → R be a cylinder
function. Then

E sup
t∈[0,T ]

e2
∫ t

0 L N
0 h(s,
N us )ds � Ee8

∫ T
0 Eθ (h(s,us ))ds (13)

Proof Let as above M± be the (Brownian) martingales in the representation of the
integral

∫ t
0 L N

0 h(s,
N us)ds. By Cauchy–Schwartz

E sup
t∈[0,T ]

e2
∫ t

0 L N
0 h(s,
N us )ds ≤

[

E sup
t∈[0,T ]

e2M+
t

]1/2 [

E sup
t∈[0,T ]

e2(M−
T −M−

T −t )

]1/2

.

By Novikov’s criterion e4M+
t −8〈M+〉t is a martingale for t ∈ [0, T ] if Ee8〈M+〉T < ∞.

In this case

E sup
t∈[0,T ]

e2M+
t ≤ E sup

t∈[0,T ]
(e2M+

t −4〈M+〉t sup
t∈[0,T ]

e4〈M+〉t )

≤
[

E sup
t∈[0,T ]

e4M+
t −8〈M+〉t

]1/2 [
Ee8〈M+〉T

]1/2

and by Doob’s inequality we get that the previous expression is bounded by

[
Ee4M+

T −8〈M+〉T
]1/2 [

Ee8〈M+〉T
]1/2 ≤

[
Ee8〈M+〉T

]1/2
.

Reasoning similarly for M− we obtain that

E sup
t∈[0,T ]

e2
∫ t

0 L N
0 h(s,
N us )ds ≤ Ee8〈M+〉T = Ee8

∫ T
0 Eθ (h(s,us ))ds .

��

3 Estimates on the Burgers drift

In this section we provide the key estimates on the Burgers drift via the quadratic vari-
ations of the forward and backward martingales in its decomposition. Let F(x)(ξ) =
B(x(ξ))2 and FN (x) = F(
N x). Define

HN (x) = −
∞∫

0

FN (e
−Aθ t x)dt
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and consider L0 HN (x) as acting on each Fourier coordinate of HN (x). Remark that
the second order part of L0 does not appear in the computation of L0 FN since

Dk D−k F(
N e−Aθ t x) = 0

for each k ∈ Z0. Indeed

D−k Dk F(
N e−Aθ t x)= B[D−k Dk(
N e−Aθ t x)2]=2B D−k [(
N e−Aθ t x)(
N e−Aθ t ek)]
= 2[B(
N e−Aθ t e−k)(
N e−Aθ t ek)+ (
N e−Aθ t e−k)B(
N e−Aθ t ek)] = 0

Then it is easy to check that

L0 HN (
N x) = 〈Aθ x, DHN (
N x)〉 = −2

∞∫

0

B[(e−Aθ t
N x)(Aθe−Aθ t
N x)]dt

= −
∞∫

0

d

dt
B[(e−Aθ t
N x)2] = B(
N x)2 = F(
N x)

since limt→∞ B[(e−Aθ t
N x)2] = 0. Denote by (xk)k∈Z and (HN (x)k)k∈Z0 the coor-
dinates of x = ∑k∈Z0

xkek and HN (x) = ∑k∈Z0
HN (x)kek in the canonical basis

(ek)k∈Z0 . Then a direct computation gives an explicit formula for HN (x):

(HN (x))k = 2ik
∑

k1,k2:k=k1+k2

I|k|,|k1|,|k2|≤N

|k1|2θ + |k2|2θ xk1 xk2 .

Let us denote with (HN (x))
±
k respectively the real and imaginary parts of this quantity:

(HN (x))
±
k = ((HN (x))k ± (HN (x))−k)/(2i±) where i+ = 1 and i− = i . Now

(HN (x))
±
k = i∓k

∑

k1,k2:k=k1+k2

I|k|,|k1|,|k2|≤N

k2θ
1 + k2θ

2

(xk1 xk2 ∓ x−k1 x−k2)

and recall that Eθ ((HN )
±
k )(x) =∑q∈Z0

|q|2θ |Dq H±
N ,k(x)|2.

Lemma 4 For λ > 0 small enough we have

sup
k∈Z0

E exp
[
λ|k|2θ−3Eθ ((HN )

±
k )(u0)

]
� 1 (14)

and

sup
1≤M≤N

sup
k∈Z0

E exp
[
λ|k|−2 M2θ−1Eθ ((HN − HM )

±
k )(u0)

]
� 1. (15)
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Proof We start by computing E((HN )
±
k ): noting that

Dq(HN )
±
k (x) = i∓k

[
I|k|,|q|,|k−q|≤N

|q|2θ + |k − q|2θ xk−q ∓ I|k|,|q|,|k+q|≤N

|q|2θ + |k + q|2θ x−k−q

]

we have

Eθ ((HN )
±
k )(x) =

∑

q∈Z0

|k|2|q|2θ
[

2
I|k|,|q|,|k−q|≤N

(|q|2θ + |k − q|2θ )2 |xk−q |2

∓ I|k|,|q|,|k−q|≤N

|q|2θ + |k − q|2θ
I|k|,|q|,|k+q|≤N

|q|2θ + |k + q|2θ (xk−q xk+q + x−k+q x−k−q)

]

which gives the bound

Eθ ((HN )
±
k )(x) � |k|2

∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

|k1|2θ I|k|,|k1|,|k2|≤N

(|k1|2θ + |k2|2θ )2 |xk2 |2

� |k|2
∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

I|k|,|k1|,|k2|≤N

|k1|2θ + |k2|2θ |xk2 |2 =
∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

c(k, k1, k2)|xk2 |2 = hN (x)

where c(k, k1, k2) = |k|2/(|k1|2θ + |k2|2θ ). Let

IN (k) =
∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

c(k, k1, k2)

and note that the sum in IN (k) can be bounded by the equivalent integral giving
(uniformly in N )

IN (k) � |k|2
∫

R

dq

|q|2θ + |k − q|2θ = |k|3−2θ
∫

R

dq

|q|2θ + |1 − q|2θ � |k|3−2θ

since that the last integral is finite for θ > 1/2. Then

Eeλ|k|2θ−3Eθ ((HN )
±
k )(u0) ≤ EeλC|k|2θ−3hN (u0)

≤
∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

c(k, k1, k2)E
eλC|k|2θ−3 IN (k)|(u0)k2 |2

IN (k)
≤

∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

c(k, k1, k2)E
eλC ′|(u0)k2 |2

IN (k)

where we used the previous bound to say that C |k|2θ−3 IN (k) ≤ C ′ uniformly in
k. Remind that (u0)k has a Gaussian distribution of mean zero and unit variance.
Therefore for λ small enough EeλC ′|(u0)k2 |2 � 1 uniformly in k2 so that

Eeλ|k|2θ−3Eθ ((HN )
±
k )(u0) � 1.

123



336 Stoch PDE: Anal Comp (2013) 1:325–350

This establishes the claimed exponential bound for Eθ ((HN (x))
±
k ). Similarly we have

Eθ ((HN −HM )
±
k )(x)�

∑

k1,k2:k1+k2=k

(I|k|,|k1|,|k2|≤N −I|k|,|k1|,|k2|≤M )
2c(k, k1, k2)|xk2 |2.

Let

IN ,M (k) =
∑

k1,k2:k1+k2=k

(I|k|,|k1|,|k2|≤N − I|k|,|k1|,|k2|≤M )
2c(k, k1, k2)

and note that, for N ≥ M ,

(I|k|,|k1|,|k2|≤N − I|k|,|k1|,|k2|≤M ) � I|k|,|k1|,|k2|≤N (I|k|>M + I|k1|>M + I|k2|>M ).

Then, by estimating the sums with the corresponding integrals and after easy simpli-
fications we remain with the following bound

IN ,M (k) � |k|2I|k|>M

∫

R

dq

|q|2θ + |k − q|2θ + |k|2
∫

R

I|q|>M dq

|q|2θ + |k − q|2θ

The first integral in the r.h.s. is easily handled by

|k|2I|k|>M

∫

R

dq

|q|2θ + |k − q|2θ � |k|3−2θ
I|k|>M � |k|2 M1−2θ

since θ > 1/2. For the second we have the analogous bound

|k|2
∫

R

I|q|>M dq

|q|2θ + |k − q|2θ � |k|2
∫

R

I|q|>M dq

|q|2θ � |k|2 M1−2θ

which concludes the proof. ��
Using Lemma 2 and the estimates contained in Lemma 4 we are led to the next set

of more refined estimates for the drift and his small scale contributions.

Lemma 5 Let G M
t = ∫ t

0 FM (us)ds. For any M ≤ N we have

‖ sup
t∈[0,T ]

∣
∣
∣(G M

t )k

∣
∣
∣ ‖L p(Pμ) �p |k|MT, (16)

‖ sup
t∈[0,T ]

∣
∣
∣(G M

t )k

∣
∣
∣ ‖L p(Pμ) �p |k|3/2−θT 1/2, (17)

‖ sup
t∈[0,T ]

∣
∣
∣(G M

t )k − (G N
t )k

∣
∣
∣ ‖L p(Pμ) �p |k|T 1/2 M1/2−θ , (18)

sup
M≥0

‖ sup
t∈[0,T ]

∣
∣
∣(G M

t )k

∣
∣
∣ ‖L p(Pμ) �p |k|T 2θ/(1+2θ). (19)
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Proof The Gaussian measureμ satisfies the hypercontractivity estimate (see for exam-
ple [19]): for any complex-valued finite order polynomial P(x) ∈ Cyl we have

‖P(x)‖L p(μ) �p ‖P(x)‖L2(μ) . (20)

Then we have (FM (x))k = ik
∑

k1+k2=k xk1 xk2 and for all k �= 0

∫

|(FM (x))k |2μ(dx) = |k|2
∑

k1+k2=k

∑

k′
1+k′

2=k

I|k1|,|k2|,|k′
1|,|k′

2|≤M

∫

xk1 xk2 x∗
k′

1
x∗

k′
2
μ(dx)

= 4|k|2 M2

This allows us to obtain the bound (16). Indeed

‖ sup
t∈[0,T ]

∣
∣
∣(G M

t )k

∣
∣
∣ ‖L p(Pμ) �

T∫

0

‖(FM (us))k‖L p(Pμ) ds

� T ‖(FM (·))k‖L p(μ) �p T ‖(FM (·))k‖L2(μ) �p |k|MT .

For the bound (17) we use the fact that L0 HN = FN and Lemma 2 to get

‖ sup
t∈[0,T ]

∣
∣
∣(G M

t )k

∣
∣
∣ ‖L p(Pμ) �p T 1/2 sup

t∈[0,T ]
‖Eθ (HN (·))‖1/2

L p/2(μ)
� |k|3/2−θT 1/2

where we used the first energy estimate (14) of Lemma 4 and the fact that ‖Q‖p
L p(μ) �p

∫ [eQ(x)+ + eQ(x)−]μ(dx) where again Q± are the real and imaginary parts of Q.
The bound (18) is obtained in the same way using the second energy estimate (15).
Finally the last bound (19) is obtained from the previous two by taking 0 ≤ N ≤ M ,
decomposing FM (x) = FN (x)− FN ,M (x):

‖ sup
t∈[0,T ]

∣
∣
∣(G M

t )k

∣
∣
∣ ‖L p(Pμ) ≤ ‖ sup

t∈[0,T ]

∣
∣
∣(G N

t )k

∣
∣
∣ ‖L p(Pμ)+‖ sup

t∈[0,T ]

∣
∣
∣(G M

t )k − (G N
t )k

∣
∣
∣ ‖L p(Pμ)

�p |k|(N T + N 1/2−θT 1/2)

and performing the optimal choice N ∼ T −1/(1+2θ). ��
Analogous estimates go through also for the functions obtained via convolution

with the e−Aθ t semi-group.

Lemma 6 Let

G̃ M
t =

t∫

0

e−Aθ (t−s)FM (us)ds
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then for any M ≤ N we have

‖(G̃ M
t )k‖L p(Pμ) �p |k|M

(
1 − e−2k2θ t/2

2k2θ

)

(21)

‖(G̃ M
t )k‖L p(Pμ) �p |k|3/2−θ

(
1 − e−2k2θ t/2

2k2θ

)1/2

(22)

‖(G̃ M
t )k − (G̃ N

t )k‖L p(Pμ) �p |k|M1/2−θ
(

1 − e−2k2θ t/2

2k2θ

)1/2

(23)

Proof The proof follows the line of Lemma 5 using Eq. (12) instead of Eq. (11). ��

Corollary 1 For all sufficiently small ε > 0

sup
N≥0

‖(G̃ N
t )k − (G̃ N

s )k‖L p(Pμ) �p |k|3/2−2θ+2εθ (t − s)ε (24)

Proof To control the time regularity of the drift convolution we consider 0 ≤ s ≤ t
and decompose

‖(G̃ N
t )k − (G̃ N

s )k‖L p(Pμ)

≤ ‖
t∫

s

(e−Aθ (t−r)FN (ur ))kdr‖L p(Pμ) + (e−k2θ (t−s) − 1)‖(G̃ N
s )k‖L p(Pμ)

� |k|3/2−θ (t − s)1/2 + |k|3/2−2θ (e−k2θ (t−s) − 1) � |k|3/2−θ (t − s)1/2

Moreover a direct consequence of Eq. (22) is

sup
t∈[0,T ]

‖(G̃ N
t )k‖L p(Pμ) �p |k|3/2−2θ .

which give us a uniform estimate in the form

‖(G̃ N
t )k − (G̃ N

s )k‖L p(Pμ) ≤ ‖(G̃ N
t )k‖L p(Pμ) + ‖(G̃ N

s )k‖L p(Pμ) �p |k|3/2−2θ

By interpolation we get the claimed bound. ��
Remark 1 All these L p estimates can be replaced with equivalent exponential esti-
mates. For example it is not difficult to prove that for small λ we have

sup
t∈[0,T ]

sup
k∈Z0

E exp
(
λ|k|2θ−3/2(G̃ N

t )
±
k

)
� 1

where (·)± denote, as before, the real and imaginary parts, respectively.

123



Stoch PDE: Anal Comp (2013) 1:325–350 339

At this point we are in position to prove Lemma 1 on the existence of the Burgers’
drift for controlled processes.

Proof (of Lemma 1) Let Bεt = ∫ t
0 F(ρε ∗ us)ds. We start by noting that since ρ̂ has a

bounded support we have ρε ∗ (
N us) = ρε ∗ us for all N ≥ C/ε for some constant
C and ε small enough. Moreover all the computation we made for FN remains true
for the functions Fε,N (x) = F(ρε ∗
N x) so we have estimates analogous to that in
Lemma 5 for Gε,M

t = ∫ t
0

∫ t
0 F(ρε ∗
M us)ds. In taking ε > ε′ > 0 and N ≥ C/ε,

M ≥ C/ε′ and M ≥ N we have

∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣(Bεt )k − (Bε′t )k

∣
∣
∣

∥
∥
∥
∥
∥

L p(Pμ)

=
∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣(Gε,N

t )k − (Gε′,M
t )k

∣
∣
∣

∥
∥
∥
∥
∥

L p(Pμ)

�p |k|T 1/2 M1/2−θ �p |k|T 1/2(ε′)θ−1/2

uniformly in ε, ε′, N ,M . This easily implies that the sequence of processes (Bε)ε
converges almost surely to a limit in C(R+,F L−1−ε,∞) if θ > 1/2. By similar
arguments it can be shown that the limit does not depend on the function ρ. ��

4 Existence of controlled solutions

Fix α < 1/2 and consider the SDE on Hα given by

duN
t = −AθuN

t dt + FN (u
N
t )dt + Aθ/2dWt , (25)

where FN : H → H is defined by FN (x) = 1
2
N B(
N x)2. Global solution of this

equation starting from any uN
0 ∈ Hα can be constructed as follows. Let (Zt )t≥0 the

unique OU process on Hα which satisfies the SDE

dZt = −Aθ Zt dt + Aθ/2dWt . (26)

with initial condition Z0 = uN
0 . Let (vN

t )t≥0 the unique solution taking values in the
finite dimensional vector space 
N H of the following SDE

dvN
t = −Aθ vN

t dt + FN (v
N
t )dt + Aθ/2d
N Wt ,

with initial condition vN
0 = 
N uN

0 . Note that this SDE has global solutions despite
of the quadratic non-linearity. Indeed the vector field FN preserves the H norm:

〈vN
t , FN (v

N
t )〉 = 〈vN

t , B(vN
t )

2〉 = 1

3

∫

T

∂ξ (v
N
t (ξ))dξ = 0
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and by Itô formula we have

d‖vN
t ‖2

H = 2〈vN
t ,−Aθ vN

t dt + FN (v
N
t )dt + Aθ/2d
N Wt 〉 + CN dt

= −2‖Aθ/2vN
t ‖2

H dt + 2〈vN
t , Aθ/2d
N Wt 〉 + CN dt

where CN = [Aθ/2
N W ]t = ∑0<|k|≤N |k|2θ . From this equation we easily obtain

that for any initial condition vN
0 the process (‖vN

t ‖H )t∈[0,T ] is almost surely finite for
any T ≥ 0 which implies that the unique solution (vN

t )t≥0 can be extended to arbitrary
intervals of time. Setting uN

t = vN
t + (1 − 
N )Zt we obtain a global solution of

Eq. (25). Moreover the diffusion (uN
t )t≥0 has generator

L Nϕ(x) = L0ϕ(x)+
∑

k∈Z0,|k|≤N

(FN (x))k Dkϕ(x)

where L0 is the generator of the Ornstein–Uhlenbeck defined in Eq. (9) and which
satisfies the integration by parts formula μ[ϕL0ϕ] = μ[E(ϕ)] for ϕ ∈ Cyl. This
diffusion preserves the Gaussian measureμ. Indeed if we take uN

0 distributed according
to the white noiseμwe have that ((1−
N )Zt )t≥0 is independent of (vN

t )t≥0. Moreover
Zt has law μ of any t ≥ 0 and an easy argument for the finite dimensional diffusion
(vN

t )t≥0 shows that for any t ≥ 0 the random variable vN
t is distributed according to

μN = (
N )∗μ: the push forward of the measure μwith respect to the projection
N .
We will use the fact that uN satisfy the mild equation [11]

uN
t = e−Aθ t u0 +

t∫

0

e−Aθ (t−s)FN (u
N
s )ds + Aθ/2

t∫

0

e−Aθ (t−s)dWs (27)

where the stochastic convolution in the r.h.s is given by

Aθ/2
t∫

0

e−Aθ (t−s)dWs =
∑

k∈Z0

|k|θek

t∫

0

e−|k|2θ (t−s)dβk
s .

Lemma 7 Let

AN
t =

t∫

0

FN (u
N
s )ds, ÃN

t =
t∫

0

e−Aθ (t−s)FN (u
N
s )ds.

and set σ = (3/2 − 2θ)+. The family of laws of the processes {(uN ,AN , ÃN ,W )}N

is tight in the space of continuous functions with values in X = F L∞,σ−ε ×
F L∞,3/2−θ−ε × F L∞,3/2−2θ−ε × F L∞,−ε for all small ε > 0.

Proof The estimate (24) in the previous section readily gives that for any small ε > 0
and sufficienly large p
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Eμ

⎡

⎣
∑

k∈Z0

|k|−(3/2−2θ+3θε)p
(
|(ÃN

t −ÃN
s )k |
)p

⎤

⎦ �p,ε

∑

k∈Z0

|k|−θεp|t − s|pε � |t−s|pε

This estimates show that the family of processes {ÃN }N is tight in C([0, T ],F L∞,α)

for α = 3/2−2θ+3θε and sufficiently small ε > 0. An analogous argument using the
estimate (17) shows that the family of processes {AN }N is tight in Cγ ([0, T ],F L∞,β)

for any γ < 1/2 and β < 3/2 − θ . It is not difficult to show that the stochastic
convolution

∫ t
0 e−Aθ (t−s)Aθ/2dWs belongs to C([0, T ],F L∞,1−θ−ε) for all small ε >

0. Taking into account the mild equation (27) we find that the processes {(uN
t )t∈[0,T ]}N

are tight in C([0, T ],F L∞,σ−ε). ��

We are now ready to prove our main theorem on existence of (probabilistically
weak) controlled solutions to the generalized SBE.

Theorem 1 There exists a probability space and a quadruple of processes (u,A, Ã,
W ) with continuous trajectories in X such that W is a cylindrical Brownian motion
in H, u is a controlled process and they satisfy

ut = u0 + At −
t∫

0

Aθusds + BWt = e−Aθ t u0 + Ãt +
t∫

0

e−Aθ (t−s)BdWs (28)

where, as space distributions,

At = lim
M→∞

t∫

0

FM (us)ds and Ãt =
t∫

0

e−Aθ (t−s)dAs . (29)

this last integral being defined as a Young integral.

Proof Let us first prove (29). By tightness of the laws of {(uN ,AN , ÃN ,W )}N in
C(R;X ) we can extract a subsequence which converges weakly (in the probabilistic
sense) to a limit point in C(R;X ). By Skhorohod embedding theorem, up to a change
of the probability space, we can assume that this subsequence which we call {Nn}n≥1
converges almost surely to a limit u = limn uNn ∈ C(R;X ). Then

t∫

0

FM (us)ds =
t∫

0

(FM (us)− FM (u
Nn
s ))ds

+
t∫

0

(FM (u
Nn
s )− FNn (u

Nn
s ))ds +

t∫

0

FNn (u
Nn
s )ds.
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But now, in C(R+,F L∞,3/2−θ−ε) we have the almost sure limit

lim
n

·∫

0

FNn (u
Nn
s )ds = lim

n
ANn· = A·

and, always almost surely in C(R+,F L∞,3/2−θ−ε), we have also

lim
n

·∫

0

(FM (us)− FM (u
Nn
s ))ds = 0,

since the functional FM depends only of a finite number of components of u and uNn

and that we have the convergence of uNn to u in C(R;F L∞,σ−ε) and thus distribu-
tionally uniformly in time. Moreover, for all k ∈ Z0,

lim
M

sup
Nn :M<Nn

∥
∥
∥
∥
∥
∥

sup
t∈[0,T ]

∣
∣
∣
∣
∣
∣

t∫

0

(FM (u
Nn
s )− FNn (u

Nn
s ))kds

∣
∣
∣
∣
∣
∣

∥
∥
∥
∥
∥
∥

L p(Pμ)

= 0.

By the apriori estimates, ANn converges to A in Cγ (F L∞,3/2−θ−ε) for all γ < 1/2
and ε > 0 so that we can use Young integration to define

∫ t
0 e−Aθ (t−s)dANn

s as a
space distribution and to obtain its distributional convergence (for example for each
of its Fourier components) to

∫ t
0 e−Aθ (t−s)dANn

s . At this point Eq. (28) is a simple

consequence. The backward processes ûNn
t = uNn

T −t and ÂNn
t = −ANn

T −t converge to

ût = uT −t and Ât = −AT −t respectively and moreover note that A as a distributional
process has trajectories which are Hölder continuous for any exponent smaller than
2θ/(1 + 2θ) > 1/2 as a consequence of the estimate (19) and this directly implies
that A has zero quadratic variation. So u is a controlled process in the sense of our
definition. ��

5 Uniqueness for θ > 5/4

In this section we prove a simple pathwise uniqueness result for controlled solutions
which is valid when θ > 5/4. Note that to each controlled solution u is naturally
associated a cylindrical Brownian motion W on H given by the martingale part of the
controlled decomposition (7). Pathwise uniqueness is then understood in the following
sense.

Definition 3 SBEθ has pathwise uniqueness if given two controlled processes u, ũ ∈
Rθ on the same probability space which generate the same Brownian motion W and
such that ũ0 = u0 amost surely then there exists a negligible set N such that for all
ϕ ∈ S and t ≥ 0 {ut (ϕ) �= ũt (ϕ)} ⊆ N .

Theorem 2 The generalized SBE has pathwise uniqueness when θ > 5/4.
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Proof Let u be a controlled solution to the equation and let uN be the Galerkin approx-
imations defined above with respect to the cylindrical Brownian motion W obtained
from the martingale part of the decomposition of u as a controlled process. We will
prove that uN → u almost surely in C(R+;F L2θ−3/2−2ε,∞) for any small ε > 0.
Since Galerkin approximations have unique strong solutions we have ũN = uN almost
surely and in the limit ũ = u in C(R+;F L2θ−3/2−2ε,∞) almost surely. This will imply
the claim by taking as negligible set in the definition of pathwise uniqueness the set
N = {supt≥0 ‖ut − ũt‖F L2θ−3/2−2ε,∞ > 0}. Let us proceed to prove that uN → u. By
bilinearity,

FN (u)− FN

(
uN
)

= FN (
N us + uN
s ,�

N
s )

and the difference �N = 
N (u − uN ) satisfies the equation

�N
t = 
N

t∫

0

e−Aθ (t−s)FN (us + uN
s ,�

N
s )ds + ϕN

t

where

ϕN
t =

t∫

0

e−Aθ (t−s) (F (u)− FN (u)) ds.

Note that

‖ sup
t∈[0,T ]

|(ϕN
t )k |‖L p(Pμ) �p max(|k|1−2θN 1/2−θ , |k|3/2−2θ )

which by interpolation gives

‖ sup
t∈[0,T ]

|(ϕN
t )k |‖L p(Pμ) �p |k|3/2−2θ+εN−ε

for any small ε > 0. Now let

�N = sup
k∈Z0

sup
t∈[0,T ]

|k|2θ−3/2−2ε|(ϕN
t )k |

then

E

∑

N>1

N�p
N ≤

∑

N>1

N
∑

k∈Z0

sup
t∈[0,T ]

|k|p(2θ−3/2−2ε)
E|(ϕN

t )k |p

�p

∑

N>1

N 1−εp
∑

k∈Z0

|k|−pε < +∞
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for p large enough, which implies that almost surely �N �p,ω N−1/p. For the other
term we have

sup
t∈[0,T ]

∣
∣
∣
∣
∣
∣

⎛

⎝

t∫

0

e−Aθ (t−s)FN

(

N u + uN ,�N

)
ds

⎞

⎠

k

∣
∣
∣
∣
∣
∣
� AN |k|3/2−2θ+2εQT

where AN = supt∈[0,T ] supk |k|2θ−3/2−2ε
∣
∣
(
�N

t

)
k

∣
∣ and

QT = sup
t∈[0,T ]

|k|2θ−1/2−2ε

t∫

0

e−|k|2θ (t−s)
∑

q∈Z0

|(
N us + uN
s )q ||k − q|3/2−2θ+2εds

This gives

AN � QT AN +�N .

Since 3/2 − 2θ < −1 (that is θ > 5/4), we have the estimate:

QT � sup
t∈[0,T ]

|k|2θ−1/2−2ε

⎡

⎣

t∫

0

e−p′|k|2θ (t−s)ds

⎤

⎦

1/p′ ⎡

⎢
⎣

T∫

0

∑

q∈Z0

|(
N us + uN
s )q |p

|k − q|−3/2+2θ−2ε ds

⎤

⎥
⎦

1/p

valid for some p > 1 (with 1/p′ + 1/p = 1). Then

QT � |k|2θ−1/2−2ε−2θ/p′
⎡

⎣

T∫

0

∑

q∈Z0

|(
N us + uN
s )q |p

|k − q|−3/2+2θ−2ε ds

⎤

⎦

1/p

and taking p large enough such that 2θ − 1/2 − 2ε − 2θ/p′ ≤ 0 we obtain

QT �p

⎡

⎣

T∫

0

∑

q∈Z0

|(
N us + uN
s )q |p

|k − q|−3/2+2θ−2ε ds

⎤

⎦

1/p

By the stationarity of the processes u and uN and the fact that their marginal laws are
the white noise we have

E[Q p
T ] �p

T∫

0

∑

q∈Z0

E|(
N us + uN
s )q |p

|k − q|−3/2+2θ−2ε ds = T
∑

q∈Z0

1

|k − q|−3/2+2θ−2ε �p T

Then by a simple Borel–Cantelli argument, almost surely Q1/n �p,ω n−1+1/p. Putting
together the estimates for�N and that for Q1/n we see that there exists a (random) T
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such that C QT ≤ 1/2 almost surely and that for this T : AN � 2�N , which given the
estimate on �N implies that AN → 0 as N → ∞ almost surely and that the solution
of the equation is unique and is the (almost-sure) limit of the Galerkin approximations.

��

6 Alternative equations

The technique of the present paper extends straighforwardly to some other modifica-
tions of the SBE.

6.1 Regularization of the convective term

Consider for example the equation

dut = −Aut dt + A−σ F(A−σut )dt + BdWt (30)

which is the equation considered by Da Prato, Debbussche and Tubaro in [9]. Letting
Fσ (x) = A−σ F(A−σ x), denoting by Hσ the corresponding solution of the Poisson
equation and following the same strategy as above we obtain the same bounds

E((Hσ,N )±k )(x) �
∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

cσ (k, k1, k2)|xk2 |2

where cσ (k, k1, k2) = |k|2−4σ /[|k1|4σ |k1|4σ (|k1|2 + |k2|2)]. This quantity can then
be bounded in terms of the sum

Iσ,N (k) =
∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

cσ (k, k1, k2) � |k|1−12σ

From which we can reobtain similar bounds to those exploited above. For example

∥
∥
∥
∥
∥
∥

t∫

0

(e−A(t−s)Fσ,M (us))kds

∥
∥
∥
∥
∥
∥

L p(Pμ)

�p |k|−1/2−6σ

And in particular we have existence of weak controlled solutions when 8σ + 2 > 1,
that is σ > −1/8 and pathwise uniqueness when −1/2 − 6σ < −1 that is σ > 1/12.
Which is an improvement over the result in [9] which has uniqueness for σ > 1/8.

6.2 The Sasamoto–Spohn discrete model

Another application of the above techniques is to the analysis of the discrete approx-
imation to the SBE proposed by Spohn and Sasamoto in [25]. Their model is the

123



346 Stoch PDE: Anal Comp (2013) 1:325–350

following:

du j = (2N + 1)(u2
j + u j u j+1 − u j−1u j − u2

j−1)dt (31)

+ (2N + 1)2(u j+1 − 2u j + u j−1)dt + (2N + 1)3/2(dB j − dB j−1)

for j = 1, . . . , 2N + 1 with periodic boundary conditions u0 = u2N+1 and where the
processes (B j ) j=1,...,2N+1 are a family of independents standard Brownian motions
with B0 = B2N+1. This model has to be tought as the discretization of the dynamic
of the periodic velocity field u(x) with x ∈ (−π, π ] sampled on a grid of mesh size
1/(2N + 1), that is u j = u(ξ N

j ) with ξ N
j = −π + 2π( j/(2N + 1)). This fixes also

the scaling factors for the different contributions to the dynamics if we want that, at
least formally, this equation goes to a limit described by a SBE. Passing to Fourier

variables û(k) = (2N + 1)−1∑2N−1
j=0 eiξ N

j ku j for k ∈ Z
N with Z

N = Z ∩ [−N , N ]
and imposing that û(0) = 0, that is, considering the evolution only with zero mean
velocity we get the system of ODEs:

dût (k) = F�N (ût )kdt − |gN (k)|2ût (k)dt + (2N + 1)1/2gN (k)d B̂t (k)

for k ∈ Z
N
0 = Z0 ∩ [−N , N ], where gN (k) = (2N + 1)(1 − eik/(2N+1)),

F�N (ut )k =
∑

k1,k2∈Z
N
0

ût (k1)ût (k2)[gN (k)− gN (k)
∗ + gN (k1)− gN (k2)

∗]

and (B̂·(k))k∈Z
N
0

is a family of centred complex Brownian motions such that B̂(k)∗

= B̂(−k) and with covariance EB̂t (k)B̂t (−l) = Ik=l t (2N + 1)−1. If we then let
β(k) = (2N + 1)1/2 B̂(k) we obtain a family of complex BM of covariance
Eβt (k)βt (−l) = tIk=l . The generator L�N of this stochastic dynamics is given by

L�Nϕ(x) =
∑

k∈Z
N
0

F�N (x)k Dkϕ(x)+ LgN ,OU
N ϕ(x)

with

LgN
N ϕ(x) =

∑

k∈Z
N
0

|gN (xk)|2(xk Dk + D−k Dk)ϕ(x)

the generator of the OU process corresponding to the linear part associated with the
multiplier gN . It is easy to check that the complete dynamics preserves the (discrete)
white noise measure, indeed

∑

k∈Z
N
0

x−k F�N (x)k =
∑

k,k1,k2∈Z
N
0

k+k1+k2=0

xk xk1 xk2 [gN (k)
∗ − gN (k)+ gN (k1)− gN (k2)

∗] = 0
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since the symmetrization of the r.h.s. with respect to the permutations of the variables
k, k1, k2 yields zero. Then defining suitable controlled process with respect to the
linear part of this equation we can prove our apriori estimates on additive functionals
which are now controlled by the quantity

EgN ((HgN ,N )
±
k )(x) �

∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

cgN (k, k1, k2)|xk2 |2

with cgN (k, k1, k2) = |gN (k)|2/[(|gN (k1)|2 + |gN (k2)|2)]. Moreover noting that

|gN (k)|2 = 2(2N + 1)2(1 − cos(2πk/(2N + 1)) ∼ |k|2

uniformly N , it is possible to estimate this energy in the same way we did before in
the case θ = 1 and obtain that the family of stationary solutions of Eq. (31) is tight
in C([0, T ],F L∞,−ε) for all ε > 0. Moreover using the fact that gN (k) → ik as
N → ∞ uniformly for bounded k and that

πM F�N (πM x)k =
∑

k1,k2∈Z
N
0

I|k|,|k1|,|k2|≤M xk1 xk2 [gN (k)− gN (k)
∗ + gN (k1)−gN (k2)

∗]

→ 3ik
∑

k1,k2∈Z0

I|k|,|k1|,|k2|≤M xk1 xk2 = 3FM (x)k

it is easy to check that any accumulation point is a controlled solution of the
SBEs (4).

7 2D stochastic Navier–Stokes equation

We consider the problem of stationary solutions to the 2d stochastic Navier–Stokes
equation considered in [1] (see also [2]). We would like to deal with invariant mea-
sures obtained by formally taking the kinetic energy of the fluid and considering the
associated Gibbs measure. However this measure is quite singular and we need a bit
of hyperviscosity in the equation to make our estimates work.

7.1 The setting

Fix σ > 0 and consider the following stochastic differential equation

d(ut )k = −|k|2+2σ (ut )kdt + Bk(ut )dt + |k|σdβk
t (32)

where (βk)k∈Z2\{0} is a family of complex BMs for which (βk)∗ = β−k and
E[βkβq ] = Iq+k=0, u is a stochastic process with continuous trajectories in the space
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of distributions on the two dimensional torus T
2,

Bk(x) =
∑

k1+k2=k

b(k, k1, k2)xk1 xk2

where x : Z
2\{0} → C is such that x−k = x∗

k and

b(k, k1, k2) = (k⊥ · k1)(k · k2)

k2

with (ξ, η)⊥ = (η,−ξ) ∈ R
2. Apart from the two-dimensional setting and the dif-

ference covariance structure of the linear part this problem has the same structure as
the one dimensional SBE we considered before. Note that to make sense of it (and in
order to construct controlled solutions) we can consider the Galerkin approximations
constructed as follows. Fix N and solve the problem finite dimensional problem

d(uN
t )k = −|k|2+σ (uN

t )kdt + B N
k (u

N
t )dt + |k|−σdβk

t (33)

for k ∈ Z
2
N = {k ∈ Z

2 : |k| ≤ N }, where

B N
k (x) = I|k|≤N

∑

k1+k2=k
|k1|≤N ,|k2|≤N

b(k, k1, k2)xk1 xk2 (34)

The generator of the process uN is given by L Nϕ(x) = L0ϕ(x) +∑k∈Z2\{0} B N
k

(x)Dkϕ(x) where

L0ϕ(x) = 1

2

∑

k∈Z2\{0}
|k|2σ (D−k Dkϕ(x)− |k|2xk Dkϕ(x))

is the generator of a suitable OU flow. Note moreover that the kinetic energy of u
given by E(x) =∑k |k|2|xk |2 is invariant under the flow generated by B N . Moreover
Dk B N

k (x) = 0 since xk does not enter in the expression of B N
k (x), so the vectorfields

B N leave also the measure
∏

k∈Z
2
N \{0} dxk invariant. Then the (complex) Gaussian

measures

γ (dx) =
∏

k∈Z2\{0}
Zke−|k|2|xk |2 dxk

is invariant under the flow generated by B N . (This measure should be understood
restricted to the set {x ∈ C

Z
2\{0} : x−k = xk}). The measure γ is also invariant for

the uN diffusion since it is invariant for B N and for the OU process generated by L0.
Intoduce standard Sobolev norms ‖x‖2

σ =∑k∈Z2\{0} |k|2σ |xk |2 and denote with Hσ
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the space of elements x with ‖x‖σ < ∞. The measure γ is the Gaussian measure
associated to H1 and is supported on any Hσ with σ < 0

∫

‖x‖2
σ γ (dx) =

∑

k∈Z2\{0}
|k|2σ−2 < ∞

so (γ, H1,∩ε<0 H ε) is an abstract Wiener space in the sense of Gross. Note that
the vectorfield Bk(x) in not defined on the support of γ . To give sense of controlled
solutions to this equation we need to control

E((HN )
±
k )(x) �

∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

cns(k, k1, k2)|xk2 |2

with cns(k, k1, k2) = |k1|2σ |k1|2|k2|2/(|k1|2+2σ + |k2|2+2σ )2 and note that the sta-
tionary expectation of this term can be estimated by

IN (k) =
∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

cns(k, k1, k2)|k2|−2 �
∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

|k1|2+2σ

(|k1|2+2σ + |k2|2+2σ )2
�

�
∑

k1,k2:k1+k2=k
|k|,|k1|,|k2|≤N

1

|k1|2+2σ + |k2|2+2σ � |k|−2σ

for any σ > 0. This estimate allows to apply our machinery and obtain stationary
controlled solutions to this equation.
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