
Under review as a conference paper at ICLR 2018

Regularization for Deep Learning:
A Taxonomy

Anonymous authors
Paper under double-blind review

Abstract

Regularization is one of the crucial ingredients of deep learning, yet the term
regularization has various definitions, and regularization methods are often
studied separately from each other. In our work we present a novel, sys-
tematic, unifying taxonomy to categorize existing methods. We distinguish
methods that affect data, network architectures, error terms, regulariza-
tion terms, and optimization procedures. We identify the atomic building
blocks of existing methods, and decouple the assumptions they enforce from
the mathematical tools they rely on. We do not provide all details about
the listed methods; instead, we present an overview of how the methods
can be sorted into meaningful categories and sub-categories. This helps
revealing links and fundamental similarities between them. Finally, we in-
clude practical recommendations both for users and for developers of new
regularization methods.

1 Introduction

Regularization is one of the key elements of machine learning, particularly of deep learn-
ing (Goodfellow et al., 2016), allowing to generalize well to unseen data even when training
on a finite training set or with an imperfect optimization procedure. In the traditional sense
of optimization and also in older neural networks literature, the term “regularization” is
reserved solely for a penalty term in the loss function (Bishop, 1995a). Recently, the term
has adopted a broader meaning: Goodfellow et al. (2016, Chap. 5) loosely define it as “any
modification we make to a learning algorithm that is intended to reduce its test error but
not its training error”. We find this definition slightly restrictive and present our working
definition of regularization, since many techniques considered as regularization do reduce
the training error (e.g. weight decay in AlexNet (Krizhevsky et al., 2012)).
Definition 1. Regularization is any supplementary technique that aims at making the
model generalize better, i.e. produce better results on the test set.

This can include various properties of the loss function, the loss optimization algorithm, or
other techniques. Note that this definition is more in line with machine learning literature
than with inverse problems literature, the latter using a more restrictive definition.

In this work, we create a novel, systematic, unifying taxonomy of regularization methods
for deep learning. We analyze existing methods and identify their atomic building blocks.
This leads to decoupling of two important concepts: Which assumptions the methods rely
on (and try to enforce), and which mathematical and algorithmic tools they use. In turn,
this enables better understanding of existing methods and speeds up development of new
ones: The researchers can focus either on finding new, better ways of enforcing existing
assumptions, or focus on discovery of new assumptions that can be enforced in some existing
way.

Before we proceed to the presentation of our taxonomy, we revisit some basic machine learn-
ing theory in Section 2. This will provide a justification of the top level of the taxonomy.
In Sections 3–7, we continue with a finer division of the individual classes of the regular-
ization techniques, aiming at separating as many clearly separable concepts as possible and
isolating atomic building blocks of individual methods. Finally, in Section 8 we present our

1



Under review as a conference paper at ICLR 2018

practical recommendations for using existing methods and designing new methods. We are
aware that the many research works discussed in this taxonomy cannot be summarized in a
single sentence. For the sake of structuring the multitude of papers, we decided to merely
describe a certain subset of their properties according to the focus of our taxonomy.

2 Theoretical framework

The central task of our interest is model fitting: finding a function 𝑓 that can well approx-
imate a desired mapping from inputs 𝑥 to desired outputs 𝑓(𝑥). A given input 𝑥 can have
an associated target 𝑡 which dictates the desired output 𝑓(𝑥) directly (or in some applica-
tions indirectly (Ulyanov et al., 2016; Johnson et al., 2016)). A typical example of having
available targets 𝑡 is supervised learning. Data samples (𝑥, 𝑡) then follow a ground truth
probability distribution 𝑃 .

In many applications, neural networks have proven to be a good family of functions to choose
𝑓 from. A neural network is a function 𝑓𝑤 : 𝑥 ↦→ 𝑦 with trainable weights 𝑤 ∈ 𝑊 . Training
the network means finding a weight configuration 𝑤*, which is a result of performing a
minimization procedure of a loss function ℒ : 𝑊 → R as follows:

𝑤* = minimize ℒ(𝑤). (1)

Usually the loss function takes the form of expected risk :

ℒ = E(𝑥,𝑡)∼𝑃

[︁
𝐸
(︀
𝑓𝑤(𝑥), 𝑡

)︀
+𝑅(. . .)

]︁
, (2)

where we identify two parts, an error function 𝐸 and a regularization term 𝑅. The error
function depends on the targets and assigns a penalty to model predictions according to
their consistency with the targets. The regularization term assigns a penalty to the model
based on other criteria. It may depend on anything except the targets, for example on the
weights (see Section 6).

The expected risk cannot be minimized directly since the data distribution 𝑃 is unknown.
Instead, a training set 𝒟 sampled from the distribution is given. The minimization of the
expected risk can be then approximated by (approximately) minimizing the empirical risk ℒ̂:

minimize
𝑤

1

|𝒟|
∑︁

(𝑥𝑖,𝑡𝑖)∈𝒟

𝐸
(︀
𝑓𝑤(𝑥𝑖), 𝑡𝑖

)︀
+𝑅(. . .) (3)

where (𝑥𝑖, 𝑡𝑖) are samples from 𝒟.

Now we have the minimal background to formalize the division of regularization methods
into a systematic taxonomy. In the minimization of the empirical risk, Eq. (3), we can
identify the following elements that are responsible for the value of the learned weights, and
thus can contribute to regularization:

∙ 𝒟: The training set, discussed in Section 3
∙ 𝑓 : The selected model family, discussed in Section 4
∙ 𝐸: The error function, briefly discussed in Section 5
∙ 𝑅: The regularization term, discussed in Section 6
∙ The optimization procedure itself, discussed in Section 7

Ambiguity regarding the splitting of methods into these categories and their subcategories
is discussed in Appendix A using notation from Section 3.

3 Regularization via data

The quality of a trained model depends largely on the training data. Apart from acquisi-
tion/selection of appropriate training data, it is possible to employ regularization via data.
This is done by applying some transformation to the training set 𝒟, resulting in a new
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set 𝒟𝑅. Some transformations perform feature extraction or pre-processing, modifying the
feature space or the distribution of the data to some representation simplifying the learning
task. Other methods allow generating new samples to create a larger, possibly infinite,
augmented dataset. These two principles are somewhat independent and may be combined.
The goal of regularization via data is either one of them, or the other, or both. They both
rely on transformations with (stochastic) parameters:
Definition 2. Transformation with stochastic parameters is a function 𝜏𝜃 with pa-
rameters 𝜃 which follow some probability distribution.

In this context we consider 𝜏𝜃 which can operate on network inputs, activations in hid-
den layers, or targets. An example of a transformation with stochastic parameters is the
corruption of inputs by Gaussian noise (Bishop, 1995b; An, 1996):

𝜏𝜃(𝑥) = 𝑥+ 𝜃, 𝜃 ∼ 𝒩 (0,Σ). (4)

The stochasticity of the transformation parameters is responsible for generating new sam-
ples, i.e. data augmentation. Note that the term data augmentation often refers specifically
to transformations of inputs or hidden activations, but here we also list transformations of
targets for completeness. The exception to the stochasticity is when 𝜃 follows a delta distri-
bution, in which case the transformation parameters become deterministic and the dataset
size is not augmented.

We can categorize the data-based methods according to the properties of the used trans-
formation and of the distribution of its parameters. We identify the following criteria for
categorization (some of them later serve as columns in Tables 1–2):

Stochasticity of the transformation parameters 𝜃

∙ Deterministic parameters: Parameters 𝜃 follow a delta distribution, size of the
dataset remains unchanged

∙ Stochastic parameters: Allow generation of a larger, possibly infinite, dataset. Var-
ious strategies for sampling of 𝜃 exist:

– Random: Draw a random 𝜃 from the specified distribution
– Adaptive: Value of 𝜃 is the result of an optimization procedure, usually with

the objective of maximizing the network error on the transformed sample (such
“challenging” sample is considered to be the most informative one at current
training stage), or minimizing the difference between the network prediction
and a predefined fake target 𝑡′

* Constrained optimization: 𝜃 found by maximizing error under hard con-
straints (support of the distribution of 𝜃 controls the strongest allowed
transformation)

* Unconstrained optimization: 𝜃 found by maximizing modified error func-
tion, using the distribution of 𝜃 as weighting (proposed herein for complete-
ness, not yet tested)

* Stochastic: 𝜃 found by taking a fixed number of samples of 𝜃 and using the
one yielding the highest error

Effect on the data representation

∙ Representation-preserving transformations: Preserve the feature space and attempt
to preserve the data distribution

∙ Representation-modifying transformations: Map the data to a different represen-
tation (different distribution or even new feature space) that may disentangle the
underlying factors of the original representation and make the learning problem
easier

Transformation space

∙ Input: Transformation is applied to 𝑥
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∙ Hidden-feature space: Transformation is applied to some deep-layer representation
of samples (this also uses parts of 𝑓 and 𝑤 to map the input into the hidden-feature
space; such transformations act inside the network 𝑓𝑤 and thus can be considered
part of the architecture, additionally fitting Section 4)

∙ Target: Transformation is applied to 𝑡 (can only be used during the training phase
since labels are not shown to the model at test time)

Universality

∙ Generic: Applicable to all data domains
∙ Domain-specific: Specific (handcrafted) for the problem at hand, for example image

rotations

Dependence of the distribution of 𝜃

∙ 𝑝(𝜃): distribution of 𝜃 is the same for all samples
∙ 𝑝(𝜃|𝑡): distribution of 𝜃 can be different for each target (class)
∙ 𝑝(𝜃|𝑡′): distribution of 𝜃 depends on desired (fake) target 𝑡′

∙ 𝑝(𝜃|𝑥): distribution of 𝜃 can be different for each input vector (with implicit depen-
dence on 𝑓 and 𝑤 if the transformation is in hidden-feature space)

∙ 𝑝(𝜃|𝒟): distribution of 𝜃 depends on the whole training dataset
∙ 𝑝(𝜃|x): distribution of 𝜃 depends on a batch of training inputs (for example

(parts of) the current mini-batch, or also previous mini-batches)
∙ 𝑝(𝜃|time): distribution of 𝜃 depends on time (current training iteration)
∙ 𝑝(𝜃|𝜋): distribution of 𝜃 depends on some trainable parameters 𝜋 subject to loss

minimization (i.e. the parameters 𝜋 evolve during training along with the network
weights 𝑤)

∙ Combinations of the above, e.g. 𝑝(𝜃|𝑥, 𝑡), 𝑝(𝜃|𝑥, 𝜋), 𝑝(𝜃|𝑥, 𝑡′), 𝑝(𝜃|𝑥,𝒟), 𝑝(𝜃|𝑡,𝒟),
𝑝(𝜃|𝑥, 𝑡,𝒟)

Phase

∙ Training: Transformation of training samples
∙ Test: Transformation of test samples, for example multiple augmented variants of

a sample are classified and the result is aggregated over them

A review of existing methods that use generic transformations can be found in Table 1.
Dropout in its original form (Hinton et al., 2012; Srivastava et al., 2014) is one of the
most popular methods from the generic group, but also several variants of Dropout have
been proposed that provide additional theoretical motivation and improved empirical results
(Standout (Ba and Frey, 2013), Random dropout probability (Bouthillier et al., 2015),
Bayesian dropout (Maeda, 2014), Test-time dropout (Gal and Ghahramani, 2016)).

Table 2 contains a list of some domain-specific methods focused especially on the image
domain. Here the most used method is rigid and elastic image deformation.

Target-preserving data augmentation In the following, we discuss an important group
of methods: target-preserving data augmentation. These methods use stochastic transfor-
mations in input and hidden-feature spaces, while preserving the original target 𝑡. As can
be seen in the respective two columns in Tables 1–2, most of the listed methods have exactly
these properties. These methods transform the training set to a distribution 𝑄, which is
used for training instead. In other words, the training samples (𝑥𝑖, 𝑡𝑖) ∈ 𝒟 are replaced in
the empirical risk loss function (Eq. (3)) by augmented training samples (𝜏𝜃(𝑥𝑖), 𝑡𝑖) ∼ 𝑄.
By randomly sampling the transformation parameters 𝜃 and thus creating many new sam-
ples (𝜏𝜃(𝑥𝑖), 𝑡𝑖) from each original training sample (𝑥𝑖, 𝑡𝑖), data augmentation attempts to
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Method Dependence Transformation
space

Stochasticity
(𝜃 sampling)

Phase

Gaussian noise on input
(Bishop, 1995a; An, 1996)

𝑝(𝜃) Input Random Training

Gaussian noise on hidden units
(DeVries and Taylor, 2017)

𝑝(𝜃) Hidden features Random Training

Dropout (Hinton et al., 2012; Srivastava
et al., 2014)

𝑝(𝜃) Input and
hidden features

Random Training

Random dropout probability
(Bouthillier et al., 2015, Sec. 4)

𝑝(𝜃) Input and
hidden features

Random Training

Curriculum dropout
(Morerio et al., 2017)

𝑝(𝜃|time) Input and
hidden features

Random Training

Bayesian dropout
(Maeda, 2014)

𝑝(𝜃|𝜋) Input and
hidden features

Random Training

Standout (adaptive dropout)
(Ba and Frey, 2013)

𝑝(𝜃|𝑥, 𝜋) Input and
hidden features

Random Training

“Projection” of dropout noise into input
space (Bouthillier et al., 2015, Sec. 3)

𝑝(𝜃|𝑥, 𝑓, 𝑤) Input
Uses auxiliary 𝜏

in hidden-feature
space.

Random Training

Approximation of Gaussian process by
test-time dropout
(Gal and Ghahramani, 2016)

𝑝(𝜃) Input and
hidden features

Random Test

Stochastic depth (Huang et al., 2016b) 𝑝(𝜃) Hidden features Random Training
Noisy activation functions
(Nair and Hinton, 2010; Xu et al., 2015;
Gülçehre et al., 2016a)

𝑝(𝜃|𝑥) Hidden features Random Training

Training with adversarial examples
(Szegedy et al., 2014)

𝑝(𝜃|𝑥, 𝑡′) Input Adaptive
Constrained

Training

Network fooling (adversarial examples)
(Szegedy et al., 2014)
(Not for regularization)

𝑝(𝜃|𝑥, 𝑡′) Input Adaptive
Constrained

Test

Synthetic minority oversampling in
hidden-feature space (Wong et al., 2016)

𝑝(𝜃|𝑥, 𝑡,𝒟) Hidden features Random Training

Inter- and extrapolation in hidden-feature
space (DeVries and Taylor, 2017)

𝑝(𝜃|𝑥, 𝑡,𝒟) Hidden features Random Training

Batch normalization (Ioffe and Szegedy,
2015), Ghost batch normalization (Hoffer
et al., 2017)

𝑝(𝜃|x) Hidden features Deterministic Training
and test

Layer normalization
(Ba et al., 2016)

𝑝(𝜃|𝑥) Hidden features Deterministic Training
and test

Annealed noise on targets
(Wang and Principe, 1999)

𝑝(𝜃|time) Target Random Training

Label smoothing (Szegedy et al., 2016,
Sec. 7; Goodfellow et al., 2016, Chap. 7)

𝑝(𝜃) Target Deterministic Training

Model compression (mimic models,
distilled models) (Bucilă et al., 2006; Ba
and Caruana, 2014; Hinton et al., 2015)

𝑝(𝜃|𝑥,𝒟) Target Deterministic Training

Table 1: Existing generic data-based methods classified according to our taxonomy. Table
columns are described in Section 3.
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Method Dependence Transformation
space

Stochasticity
(𝜃 sampling)

Phase

Rigid and elastic image transformation
(Baird, 1990; Yaegger et al., 1996; Simard
et al., 2003; Ciresan et al., 2010)

𝑝(𝜃) Input Random Training

Test-time image transformations
(Simonyan and Zisserman, 2015; Dieleman
et al., 2015)

𝑝(𝜃) Input Random Test

Sound transformations
(Salamon and Bello, 2017)

𝑝(𝜃) Input Random Training

Error-maximizing rigid image
transformations
(Loosli et al., 2007; Fawzi et al., 2016)

𝑝(𝜃) Input Adaptive
stochastic &
constrained,
respectively

Training

Learning class-specific elastic
image-deformation fields
(Hauberg et al., 2016)

𝑝(𝜃|𝑡,𝒟) Input Random Training

Any handcrafted data preprocessing, for
example scale-invariant feature transform
(SIFT) for images (Lowe, 1999)

𝑝(𝜃) Input Deterministic Training
and test

Overfeat (Sermanet et al., 2013) 𝑝(𝜃) Input Deterministic Training
and test

Table 2: Existing domain-specific data-based methods classified according to our taxonomy.
Table columns are described in Section 3. Note that these methods are never applied on
the hidden features, because domain knowledge cannot be applied on them.

bridge the limited-data gap between the expected and the empirical risk, Eqs. (2)–(3). While
unlimited sampling from 𝑄 provides more data than the original dataset 𝒟, both of them
usually are merely approximations of the ground truth data distribution or of an ideal train-
ing dataset; both 𝒟 and 𝑄 have their own distinct biases, advantages and disadvantages.
For example, elastic image deformations result in images that are not perfectly realistic;
this is not necessarily a disadvantage, but it is a bias compared to the ground truth data
distribution; in any case, the advantages (having more training data) often prevail. In some
cases, it may be even desired for 𝑄 to be deliberately different from the ground truth data
distribution. For example, in case of class imbalance (unbalanced abundance or importance
of classes), a common regularization strategy is to undersample or oversample the data,
sometimes leading to a less realistic 𝑄 but better models. This is how an ideal training
dataset may be different from the ground truth data distribution.

If the transformation is additionally representation-preserving, then the distribution 𝑄
created by the transformation 𝜏𝜃 attempts to mimic the ground truth data distribution 𝑃 .
Otherwise, the notion of a “ground truth data distribution” in the modified representation
may be vague. We provide more details about the transition from 𝒟 to 𝑄 in Appendix B.

Summary of data-based methods Data-based regularization is a popular and very
useful way to improve the results of deep learning. In this section we formalized this group
of methods and showed that seemingly unrelated techniques such as Target-preserving data
augmentation, Dropout, or Batch normalization are methodologically surprisingly close to
each other. In Section 8 we discuss future directions that we find promising.

4 Regularization via the network architecture

A network architecture 𝑓 can be selected to have certain properties or match certain as-
sumptions in order to have a regularizing effect.1

1The network architecture is represented by a function 𝑓 : (𝑤, 𝑥) ↦→ 𝑦, and together with
the set 𝑊 of all its possible weight configurations defines a set of mappings that this particular
architecture can realize: {𝑓𝑤 : 𝑥 ↦→ 𝑦 | ∀𝑤 ∈ 𝑊}.
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Method Method class Assumptions about an appropriate learnable input-output mapping

Any chosen (not overly
complex) architecture

* Mapping can be well approximated by functions from the chosen family
which are easily accessible by optimization.

Small network * Mapping is simple (complexity of the mapping depends on the number of
network units and layers).

Deep network * The mapping is complex, but can be decomposed into a composition (or
generally into a directed acyclic graph) of simple nonlinear transformations,
e.g. affine transformation followed by simple nonlinearity (fully-connected
layer), “multi-channel convolution” followed by simple nonlinearity (convo-
lutional layer), etc.

Hard bottleneck (layer with
few neurons); soft bottleneck
(e.g. Jacobian penalty (Rifai
et al., 2011c), see Section 6)

Layer operation Data concentrates around a lower-dimensional manifold; has few factors of
variation.

Convolutional networks
(Fukushima and Miyake, 1982;
Rumelhart et al., 1986,
pp. 348-352; LeCun et al.,
1989; Simard et al., 2003)

Layer operation Spatially local and shift-equivariant feature extraction is all we need.

Dilated convolutions
(Yu and Koltun, 2015)

Layer operation Like convolutional networks. Additionally: Sparse sampling of wide local
neighborhoods provides relevant information, and better preserves rele-
vant high-resolution information than architectures with downscaling and
upsampling.

Strided convolutions (see
Dumoulin and Visin, 2016)

Layer operation The mapping is reliable at reacting to features that do not vary too
abruptly in space, i.e. which are present in several neighboring pixels and
can be detected even if the filter center skips some of the pixels. The out-
put is robust towards slight changes of the location of features, and changes
of strength/presence of spatially strongly varying features.

Pooling Layer operation The output is invariant to slight spatial distortions of the input (slight
changes of the location of (deep) features). Features that are sensitive to
such distortions can be discarded.

Stochastic pooling
(Zeiler and Fergus, 2013)

Layer operation The output is robust towards slight changes of the location (like pooling)
but also of the strength/presence of (deep) features.

Training with different kinds
of noise (including Dropout;
see Section 3)

Noise The mapping is robust to noise: the given class of perturbations of the
input or deep features should not affect the output too much.

Dropout (Hinton et al., 2012;
Srivastava et al., 2014),
DropConnect (Wan et al.,
2013), and related methods

Noise Extracting complementary (non-coadapted) features is helpful. Non-
coadapted features are more informative, better disentangle factors of vari-
ation. (We want to disentangle factors of variation because they are en-
tangled in different ways in inputs vs. in outputs.)
When interpreted as ensemble learning: usual assumptions of ensemble
learning (predictions of weak learners have complementary info and can be
combined to strong prediction).

Maxout units
(Goodfellow et al., 2013)

Layer operation Assumptions similar to Dropout, with more accurate approximation of
model averaging (when interpreted as ensemble learning)

Skip-connections (Long et al.,
2015; Huang et al., 2016a)

Connections be-
tween layers

Certain lower-level features can directly be reused in a meaningful way at
(several) higher levels of abstraction

Linearly augmented
feed-forward network (van der
Smagt and Hirzinger, 1998)

Connections be-
tween layers

Skip-connections that share weights with the non-skip-connections. Helps
against vanishing gradients. Rather changes the learning algorithm than
the network mapping.

Residual learning
(He et al., 2016)

Connections be-
tween layers

Learning additive difference of a mapping 𝑓 (or its compositional parts)
from the identity mapping is easier than learning 𝑓 itself. Meaningful deep
features can be composed as a sum of lower-level and intermediate-level
features.

Stochastic depth
(Huang et al., 2016b),
DropIn
(Smith et al., 2015)

Connections
between layers;
noise

Similar to Dropout: extracting complementary (non-coadapted) features
across different levels of abstraction is helpful; implicit model ensem-
ble. Similar to Residual learning: meaningful deep features can be com-
posed as a sum of lower-level and intermediate-level features, with the
intermediate-level ones being optional, and leaving them out being
meaningful data augmentation. Similar to Mollifying networks: simpli-
fying random parts of the mapping improves training.

Mollifying networks
(Gülçehre et al., 2016b)

Connections
between layers;
noise

The mapping can be easier approximated by estimating its decreasingly
linear simplified version

Network information criterion
(Murata et al., 1994), Network
growing and network pruning
(see Bishop, 1995a, Sec. 9.5)

Model selection Optimal generalization is reached by a network that has the right number
of units (not too few, not too many)

Multi-task learning (see
Caruana, 1998; Ruder, 2017)

* Several tasks can help each other to learn mutually useful feature extrac-
tors, as long as the tasks do not compete for resources (network capacity)

Table 3: Methods based on network architecture, and rough description of assumptions that
they encode. There are partial overlaps between some listed methods. For example, Residual
learning uses Skip-connections. Many noise-based methods also fit Table 1 (cf. Appendix A).
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Assumptions about the mapping An input-output mapping 𝑓𝑤 must have certain
properties in order to fit the data 𝑃 well. Although it may be intractable to enforce the
precise properties of an ideal mapping, it may be possible to approximate them by simplified
assumptions about the mapping. These properties and assumptions can then be imposed
upon model fitting in a hard or soft manner. This limits the search space of models and
allows finding better solutions. An example is the decision about the number of layers and
units, which allows the mapping to be neither too simple nor too complex (thus avoiding
underfitting and overfitting). Another example are certain invariances of the mapping, such
as locality and shift-equivariance of feature extraction hardwired in convolutional layers.
Overall, the approach of imposing assumptions about the input-output mapping discussed
in this section is the selection of the network architecture 𝑓 . The choice of architecture 𝑓
on the one hand hardwires certain properties of the mapping; additionally, in an interplay
between 𝑓 and the optimization algorithm (Section 7), certain weight configurations are
more likely accessible by optimization than others, further limiting the likely search space
in a soft way. A complementary way of imposing certain assumptions about the mapping
are regularization terms (Section 6), as well as invariances present in the (augmented) data
set (Section 3).

Assumptions can be hardwired into the definition of the operation performed by certain
layers, and/or into the connections between layers. This distinction is made in Table 3,
where these and other methods are listed.

In Section 3 about data, we mentioned regularization methods that transform data in the
hidden-feature space. They can be considered part of the architecture. In other words, they
fit both Sections 3 (data) and 4 (architecture). These methods are listed in Table 1 with
hidden features as their transformation space.

Weight sharing Reusing a certain trainable parameter in several parts of the network
is referred to as weight sharing. This usually makes the model less complex than using
separately trainable parameters. An example are convolutional networks (LeCun et al.,
1989). Here the weight sharing does not merely reduce the number of weights that need to
be learned; it also encodes the prior knowledge about the shift-equivariance and locality of
feature extraction. Another example is weight sharing in autoencoders.

Activation functions Choosing the right activation function is quite important; for ex-
ample, using Rectified linear units (ReLUs) improved the performance of many deep archi-
tectures both in the sense of training times and accuracy as well as overcoming the need for
greedy layer-wise pre-training (Hahnloser et al., 2000; Jarrett et al., 2009; Nair and Hinton,
2010; Glorot et al., 2011). The success of ReLUs can be partially attributed to the fact
that they provide more expressive families of mappings compared to sigmoid activations
(in the sense that the classical sigmoid nonlinearity can be approximated very well2 with
only two ReLUs, but it takes an infinite number of sigmoid units to approximate a ReLU)
and their affine extrapolation to unknown regions of data space seems to provide better
generalization in practice than the “stagnating” extrapolation of sigmoid units. However,
their hard negative cut-off and unbounded positive part are not always desired properties.
Some activation functions were designed explicitly for regularization. For Dropout, Maxout
units (Goodfellow et al., 2013) allow a more precise approximation of the geometric mean of
the model ensemble predictions at test time. Stochastic pooling (Zeiler and Fergus, 2013),
on the other hand, is a noisy version of max-pooling. The authors claim that this allows
modelling distributions of activations instead of taking just the maximum.

Noisy models Stochastic pooling was one example of a stochastic generalization of a
deterministic model. Some models are stochastic by injecting random noise into various
parts of the model. The most frequently used noisy model is Dropout (Hinton et al., 2012;
Srivastava et al., 2014).

2Small integrated squared error, small integrated absolute error. A simple example is sigm(𝑥) ≈
ReLU(𝑥+ 0.5)− ReLU(𝑥− 0.5).
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Multi-task learning A special type of regularization is multi-task learning (see Caruana,
1998; Ruder, 2017), where the network is modified to predict targets for several tasks at
once. It can be combined with semi-supervised learning to utilize unlabeled data on an
auxiliary task (Rasmus et al., 2015). A similar concept of sharing knowledge between tasks
is also utilized in meta-learning, where multiple tasks from the same domain are learned
sequentially, using previously gained knowledge as bias for new tasks (Baxter, 2000); and
transfer learning, where knowledge from one domain is transferred into another domain (Pan
and Yang, 2010). These approaches differ from other methods in the sense that they require
some additional target data, which are not always available.

Model selection The best among several trained models (e.g. with different architec-
tures) can be selected by evaluating the predictions on a validation set. It should be noted
that this holds for selecting the best combination of all techniques (Sections 3–7), not just
architecture; and that the validation set used for model selection in the “outer loop” should
be different from the validation set used e.g. for Early stopping (Section 7), and differ-
ent from the test set (Cawley and Talbot, 2010). However, there are also model selection
methods that specifically target the selection of the number of units in a specific network ar-
chitecture, e.g. using network growing and network pruning (see Bishop, 1995a, Sec. 9.5), or
additionally do not require a validation set, e.g. the Network information criterion to com-
pare models based on the training error and second derivatives of the loss function (Murata
et al., 1994).

5 Regularization via the error function

Ideally, the error function 𝐸 reflects an appropriate notion of quality, and in some cases
some assumptions about the data distribution. Typical examples are mean squared error
or cross-entropy. The error function 𝐸 can also have a regularizing effect. An example
is Dice coefficient optimization (Milletari et al., 2016) which is robust to class imbalance.
Moreover, the overall form of the loss function can be different than Eq. (3). For example,
in certain loss functions that are robust to class imbalance, the sum is taken over pairwise
combinations 𝒟×𝒟 of training samples (Yan et al., 2003), rather than over training samples.
But such alternatives to Eq. (3) are rather rare, and similar principles apply. If additional
tasks are added for a regularizing effect (multi-task learning (see Caruana, 1998; Ruder,
2017)), then targets 𝑡 are modified to consist of several tasks, the mapping 𝑓𝑤 is modified
to produce an according output 𝑦, and 𝐸 is modified to account for the modified 𝑡 and 𝑦.
Besides, there are regularization terms that depend on 𝜕𝐸/𝜕𝑥. They depend on 𝑡 and thus
in our definition are considered part of 𝐸 rather than of 𝑅, but they are listed in Section 6
among 𝑅 (rather than here) for a better overview.

6 Regularization via the regularization term

Regularization can be achieved by adding a regularizer 𝑅 into the loss function. Unlike the
error function 𝐸 (which expresses consistency of outputs with targets), the regularization
term is independent of the targets. Instead, it is used to encode other properties of the
desired model, to provide inductive bias (i.e. assumptions about the mapping other than
consistency of outputs with targets). The value of 𝑅 can thus be computed for an unlabeled
test sample, whereas the value of 𝐸 cannot.

The independence of 𝑅 from 𝑡 has an important implication: it allows additionally using
unlabeled samples (semi-supervised learning) to improve the learned model based on its
compliance with some desired properties (Sajjadi et al., 2016). For example, semi-supervised
learning with ladder networks (Rasmus et al., 2015) combines a supervised task with an
unsupervised auxiliary denoising task in a “multi-task” learning fashion. (For alternative
interpretations, see Appendix A.) Unlabeled samples are extremely useful when labeled
samples are scarce. A Bayesian perspective on the combination of labeled and unlabeled
data in a semi-supervised manner is offered by Lasserre et al. (2006).
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A classical regularizer is weight decay (see Plaut et al., 1986; Lang and Hinton, 1990; Good-
fellow et al., 2016, Chap. 7):

𝑅(𝑤) = 𝜆
1

2
‖𝑤‖22 , (5)

where 𝜆 is a weighting term controlling the importance of the regularization over the con-
sistency. From the Bayesian perspective, weight decay corresponds to using a symmetric
multivariate normal distribution as prior for the weights: 𝑝(𝑤) = 𝒩 (𝑤|0, 𝜆−1I) (Nowlan
and Hinton, 1992). Indeed, − log𝒩 (𝑤|0, 𝜆−1I) ∝ − log exp

(︀
−𝜆

2 ‖𝑤‖
2
2

)︀
= 𝜆

2 ‖𝑤‖
2
2 = 𝑅(𝑤).

Weight decay has gained big popularity, and it is being successfully used; Krizhevsky et al.
(2012) even observe reduction of the error on the training set.

Another common prior assumption that can be expressed via the regularization term is
“smoothness” of the learned mapping (see Bengio et al., 2013, Section 3.2): if 𝑥1 ≈ 𝑥2, then
𝑓𝑤(𝑥1) ≈ 𝑓𝑤(𝑥2). It can be expressed by the following loss term:

𝑅(𝑓𝑤, 𝑥) = ‖𝐽𝑓𝑤(𝑥)‖
2
𝐹 , (6)

where ‖·‖𝐹 denotes the Frobenius norm, and 𝐽𝑓𝑤(𝑥) is the Jacobian of the neural network
input-to-output mapping 𝑓𝑤 for some fixed network weights 𝑤. This term penalizes map-
pings with large derivatives, and is used in contractive autoencoders (Rifai et al., 2011c).

The domain of loss regularizers is very heterogeneous. We propose a natural way to cat-
egorize them by their dependence. We saw in Eq. (5) that weight decay depends on 𝑤
only, whereas the Jacobian penalty in Eq. (6) depends on 𝑤, 𝑓 , and 𝑥. More precisely, the
Jacobian penalty uses the derivative 𝜕𝑦/𝜕𝑥 of output 𝑦 = 𝑓𝑤(𝑥) w.r.t. input 𝑥. (We use
vector-by-vector derivative notation from matrix calculus, i.e. 𝜕𝑦/𝜕𝑥 = 𝜕𝑓𝑤(𝑥)/𝜕𝑥 = 𝐽𝑓𝑤 is
the Jacobian of 𝑓𝑤 with fixed weights 𝑤.) We identify the following dependencies of 𝑅:

∙ Dependence on the weights 𝑤

∙ Dependence on the network output 𝑦 = 𝑓𝑤(𝑥)

∙ Dependence on the derivative 𝜕𝑦/𝜕𝑤 of the output 𝑦 = 𝑓𝑤(𝑥) w.r.t. the weights 𝑤

∙ Dependence on the derivative 𝜕𝑦/𝜕𝑥 of the output 𝑦 = 𝑓𝑤(𝑥) w.r.t. the input 𝑥

∙ Dependence on the derivative 𝜕𝐸/𝜕𝑥 of the error term 𝐸 w.r.t. the input 𝑥 (𝐸 de-
pends on 𝑡, and according to our definition such methods belong to Section 5, but
they are listed here for overview)

A review of existing methods can be found in Table 4. Weight decay seems to be still the
most popular of the regularization terms. Some of the methods are equivalent or nearly
equivalent to other methods from different taxonomy branches. For example, Tangent prop
simulates minimal data augmentation (Simard et al., 1992); Injection of small-variance
Gaussian noise (Bishop, 1995b; An, 1996) is an approximation of Jacobian penalty (Rifai
et al., 2011c); and Fast dropout (Wang and Manning, 2013) is (in shallow networks) a
deterministic approximation of Dropout. This is indicated in the Equivalence column in
Table 4.

7 Regularization via optimization

The last class of the regularization methods according to our taxonomy is the regulariza-
tion through optimization. While this may sound unusual, optimization and regularization
cannot be clearly separated in the context of deep learning where it is not so crucial what
the optimum of the empirical risk is (because it cannot be found exactly, and the ultimate
goal is minimizing the expected risk anyway). Instead, the shape of the loss function and
the optimization procedure play together to dictate how the training proceeds in the weight
space and where it ends up. To demonstrate the overlap of regularization and optimization,
we show in Figure 1 how one of the most prominent regularization methods, Dropout, can
be seen as a modification of the optimization procedure.

Stochastic gradient descent (SGD) (see Bottou, 1998) (along with its derivations) is the
most frequently used optimization algorithm in the context of deep neural networks and is
the center of our attention. We also list some alternative methods below.
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Dependency
Method Description

𝑤 𝑦 𝜕𝑦
𝜕𝑤

𝜕𝑦
𝜕𝑥

𝜕𝐸
𝜕𝑥

Equivalence

Weight decay (see Plaut et al.,
1986; Lang and Hinton, 1990;
Goodfellow et al., 2016, Chap. 7)

𝐿2 norm on network weights (not
biases). Favors smaller weights,
thus for usual architectures tends
to make the mapping less “extreme”,
more robust to noise in the input.

6

Early stopping (see
Collobert and Bengio, 2004;
Goodfellow et al., 2016,
Chap. 7)

Weight smoothing
(Lang and Hinton, 1990)

Penalizes 𝐿2 norm of gradients
of learned filters, making them
smooth. Not beneficial in practice.

6

Weight elimination
(Weigend et al., 1991)

Similar to weight decay but favors
few stronger connections over many
weak ones.

6
Goal similar to Narrow and
broad Gaussians

Soft weight-sharing
(Nowlan and Hinton, 1992)

Mixture-of-Gaussians prior on
weights. Generalization of weight
decay. Weights are pushed to form
a predefined number of groups with
similar values.

6

Narrow and broad Gaussians
(Nowlan and Hinton, 1992;
Blundell et al., 2015)

Weights come from two Gaussians,
a narrow and a broad one. Special
case of Soft weight-sharing.

6
Goal similar to Weight
elimination

Fast dropout approximation
(Wang and Manning, 2013)

Approximates the loss that dropout
minimizes. Weighted 𝐿2 weight
penalty. Only for shallow networks.

6 6 Dropout

Mutual exclusivity
(Sajjadi et al., 2016)

Unlabeled samples push decision
boundaries to low-density regions in
input space, promoting sharp (con-
fident) predictions.

6

Segmentation with binary
potentials (BenTaieb and
Hamarneh, 2016)

Penalty on anatomically implausi-
ble image segmentations. 6

Flat minima search
(Hochreiter and Schmidhuber,
1995)

Penalty for sharp minima, i.e. for
weight configurations where small
weight perturbation leads to high
error increase. Flat minima have
low Minimum description length
(i.e. exhibit ideal balance between
training error and model complex-
ity) and thus should generalize bet-
ter (Rissanen, 1986).

6 6

Tangent prop
(Simard et al., 1992)

𝐿2 penalty on directional derivative
of mapping in the predefined tan-
gent directions that correspond to
known input-space transformations.

6 Simple data augmentation

Jacobian penalty
(Rifai et al., 2011c)

𝐿2 penalty on the Jacobian of
(parts of) the network mapping—
smoothness prior.

6
Noise on inputs injection
(not exact (see An, 1996))

Manifold tangent classifier
(Rifai et al., 2011a)

Like tangent prop, but the input
“tangent” directions are extracted
from manifold learned by a stack of
contractive autoencoders and then
performing SVD of the Jacobian at
each input sample.

6

Hessian penalty
(Rifai et al., 2011b)

Fast way to approximate 𝐿2

penalty of the Hessian of 𝑓 by
penalizing Jacobian with noisy
input.

6

Tikhonov regularizers
(Bishop, 1995b)

𝐿2 penalty on (up to) 𝑛-th deriva-
tive of the learned mapping w.r.t.
input.

6

For penalty on first
derivative: noise on inputs
injection (not exact (see An,
1996))

Loss-invariant backpropagation
(Demyanov et al., 2015, Sec. 3.1;
Lyu et al., 2015)

(𝐿2) norm of gradient of loss w.r.t.
input. Changes the mapping such
that the loss becomes rather invari-
ant to changes of the input.

6 Adversarial training

Prediction-invariant
backpropagation
(Demyanov et al., 2015, Sec. 3.2)

(𝐿2) norm of directional derivative
of mapping w.r.t. input in the di-
rection of 𝑥 causing the largest in-
crease in loss.

6 6 Adversarial training

Table 4: Regularization terms, with dependencies marked by 6. Methods that depend
on 𝜕𝐸/𝜕𝑥 implicitly depend on targets 𝑡 and thus can be considered part of the error
function (Section 5) rather than regularization term (Section 6).
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Stochastic gradient descent is an iterative optimization algorithm using the following update
rule:

𝑤𝑡+1 = 𝑤𝑡 − 𝜂𝑡∇𝑤ℒ(𝑤𝑡, 𝑑𝑡), (7)

where ∇ℒ(𝑤𝑡, 𝑑𝑡) is the gradient of the loss ℒ evaluated on a mini-batch 𝑑𝑡 from the training
set 𝒟. It is frequently used in combination with momentum and other tweaks improving
the convergence speed (see Wilson et al., 2017). Moreover, the noise induced by the varying
mini-batches helps the algorithm escape saddle points (Ge et al., 2015); this can be further
reinforced by adding supplementary gradient noise (Neelakantan et al., 2015; Chaudhari and
Soatto, 2015).

If the algorithm reaches a low training error in a reasonable time (linear in the size of the
training set, allowing multiple passes through 𝒟), the solution generalizes well under certain
mild assumptions; in that sense SGD works as an implicit regularizer : a short training time
prevents overfitting even without any additional regularizer used (Hardt et al., 2016). This
is in line with (Zhang et al., 2017) who find in a series of experiments that regularization
(such as Dropout, data augmentation, and weight decay) is by itself neither necessary nor
sufficient for good generalization.

We divide the methods into three groups: initialization/warm-start methods, update meth-
ods, and termination methods, discussed in the following.

Initialization and warm-start methods These methods affect the initial selection of
the model weights. Currently the most frequently used method is sampling the initial
weights from a carefully tuned distribution. There are multiple strategies based on the
architecture choice, aiming at keeping the variance of activations in all layers around 1, thus
preventing vanishing or exploding activations (and gradients) in deeper layers (Glorot and
Bengio, 2010, Sec. 4.2; He et al., 2015).

Another (complementary) option is pre-training on different data, or with a different objec-
tive, or with partially different architecture. This can prime the learning algorithm towards
a good solution before the fine-tuning on the actual objective starts. Pre-training the model
on a different task in the same domain may lead to learning useful features, making the pri-
mary task easier. However, pre-trained models are also often misused as a lazy approach to
problems where training from scratch or using thorough domain adaptation, transfer learn-
ing, or multi-task learning methods would be worth trying. On the other hand, pre-training
or similar techniques may be a useful part of such methods.

Finally, with some methods such as Curriculum learning (Bengio et al., 2009), the transition
between pre-training and fine-tuning is smooth. We refer to them as warm-start methods.

∙ Initialization without pre-training

– Random weight initialization (Rumelhart et al., 1986, p. 330; Glorot and Ben-
gio, 2010; He et al., 2015; Hendrycks and Gimpel, 2016)

– Orthogonal weight matrices (Saxe et al., 2013)
– Data-dependent weight initialization (Krähenbühl et al., 2015)

∙ Initialization with pre-training

– Greedy layer-wise pre-training (Hinton et al., 2006; Bengio et al., 2007; Er-
han et al., 2010) (has become less important due to advances (e.g. ReLUs) in
effective end-to-end training that optimizes all parameters simultaneously)

– Curriculum learning (Bengio et al., 2009)
– Spatial contrasting (Hoffer et al., 2016)
– Subtask splitting (Gülçehre and Bengio, 2016)

Update methods This class of methods affects individual weight updates. There are two
complementary subgroups: Update rules modify the form of the update formula; Weight and
gradient filters are methods that affect the value of the gradient or weights, which are used
in the update formula, e.g. by injecting noise into the gradient (Neelakantan et al., 2015).
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w1

w2

Figure 1: Effect of Dropout on
weight optimization. Starting
from the current weight config-
uration (red dot), all weights of
certain neurons are set to zero
(black arrow), descent step is
performed in that subspace (teal
arrow), and then the discarded
weight-space coordinates are re-
stored (blue arrow).

Again, it is not entirely clear which of the methods only speed up the optimization and
which actually help the generalization. Wilson et al. (2017) show that some of the methods
such as AdaGrad or Adam even lose the regularization abilities of SGD.

∙ Update rules
– Momentum, Nesterov’s accelerated gradient method, AdaGrad, AdaDelta,

RMSProp, Adam—overview in (Wilson et al., 2017)
– Learning rate schedules (Girosi et al., 1995; Hoffer et al., 2017)
– Online batch selection (Loshchilov and Hutter, 2015)
– SGD alternatives: L-BFGS (Liu and Nocedal, 1989; Le et al., 2011), Hessian-

free methods (Martens, 2010), Sum-of-functions optimizer (Sohl-Dickstein
et al., 2014), ProxProp (Frerix et al., 2017)

∙ Gradient and weight filters
– Annealed Langevin noise (Neelakantan et al., 2015)
– AnnealSGD (Chaudhari and Soatto, 2015)
– Dropout (Hinton et al., 2012; Srivastava et al., 2014) corresponds to optimiza-

tion steps in subspaces of weight space, see Figure 1
– Annealed noise on targets (Wang and Principe, 1999) (works as noise on gra-

dient, but belongs rather to data-based methods, Section 3)

Termination methods There are numerous possible stopping criteria and selecting the
right moment to stop the optimization procedure may improve the generalization by reducing
the error caused by the discrepancy between the minimizers of expected and empirical risk:
The network first learns general concepts that work for all samples from the ground truth
distribution 𝑃 before fitting the specific sample 𝒟 and its noise (Krueger et al., 2017).

The most successful and popular termination methods put a portion of the labeled data
aside as a validation set and use it to evaluate performance (validation error). The most
prominent example is Early stopping (see Prechelt, 1998). Collobert and Bengio (2004)
show that Early stopping has the same effect as Weight decay regularization penalty term
in multi-layered perceptrons with linear output units; however, its hyperparameters are
easier to tune.

In scenarios where the training data are scarce it is possible to resort to termination methods
that do not use a validation set. The simplest case is fixing the number of passes through
the training set.

∙ Termination using a validation set
– Early stopping (see Morgan and Bourlard, 1990; Prechelt, 1998)
– Choice of validation set size based on test set size (Amari et al., 1997)

∙ Termination without using a validation set
– Fixed number of iterations
– Optimized approximation algorithm (Liu et al., 2008)
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8 Recommendations, discussion, conclusions

We see the main benefits of our taxonomy to be two-fold: Firstly, it provides an overview
of the existing techniques to the users of regularization methods and gives them a better
idea of how to choose the ideal combination of regularization techniques for their problem.
Secondly, it is useful for development of new methods, as it gives a comprehensive overview
of the main principles that can be exploited to regularize the models. We summarize our
recommendations3 in the following paragraphs:

Recommendations for users of existing regularization methods Overall, using the
information contained in data as well as prior knowledge as much as possible, and primarily
starting with popular methods, the following procedure can be helpful:

∙ Common recommendations for the first steps:
– Deep learning is about disentangling the factors of variation. An appropriate

data representation should be chosen; known meaningful data transformations
should not be outsourced to the learning. Redundantly providing the same
information in several representations is okay.

– Output nonlinearity and error function should reflect the learning goals.
– A good starting point are techniques that usually work well (e.g. ReLU, success-

ful architectures). Hyperparameters (and architecture) can be tuned jointly,
but “lazily” (interpolating/extrapolating from experience instead of trying too
many combinations).

– Often it is helpful to start with a simplified dataset (e.g. fewer and/or easier
samples) and a simple network, and after obtaining promising results gradually
increasing the complexity of both data and network while tuning hyperparam-
eters and trying regularization methods.

∙ Regularization via data:
– When not working with nearly infinite/abundant data:

* Gathering more real data (and using methods that take its properties into
account) is advisable if possible:
· Labeled samples are best, but unlabeled ones can also be helpful (com-

patible with semi-supervised learning).
· Samples from the same domain are best, but samples from similar do-

mains can also be helpful (compatible with domain adaptation and trans-
fer learning).

· Reliable high-quality samples are best, but lower-quality ones can also be
helpful (their confidence/importance can be adjusted accordingly).

· Labels for an additional task can be helpful (compatible with multi-task
learning).

· Additional input features (from additional information sources) and/or
data preprocessing (i.e. domain-specific data transformations) can be
helpful (the network architecture needs to be adjusted accordingly).

* Data augmentation (e.g. target-preserving handcrafted domain-specific
transformations) can well compensate for limited data. If natural ways
to augment data (to mimic natural transformations sufficiently well) are
known, they can be tried (and combined).

* If natural ways to augment data are unknown or turn out to be insufficient,
it may be possible to infer the transformation from data (e.g. learning image-
deformation fields) if a sufficient amount of data is available for that.

– Popular generic methods (e.g. advanced variants of Dropout) often also help.
∙ Architecture and regularization terms:

3Note that these recommendations are neither the only nor the best way; every dataset may
require a slightly different approach. Our recommendations are a summary of what we found to
work well, and what seems to be common themes and “written between the lines” in many state-
of-the-art works.
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– Knowledge about possible meaningful properties of the mapping can be used
to e.g. hardwire invariances (to certain transformations) into the architecture,
or be formulated as regularization terms.

– Popular methods may help as well (see Tables 3–4), but should be chosen to
match the assumptions about the mapping (e.g. convolutional layers are fully
appropriate only if local and shift-equivariant feature extraction on regular-grid
data is desired).

∙ Optimization:
– Initialization: Even though pre-trained ready-made models greatly speed up

prototyping, training from a good random initialization should also be consid-
ered.

– Optimizers: Trying a few different ones, including advanced ones (e.g. Nesterov
momentum, Adam, ProxProp), may lead to improved results. Correctly chosen
parameters, such as learning rate, usually make a big difference.

Recommendations for developers of novel regularization methods Getting an
overview and understanding the reasons for the success of the best methods is a great
foundation. Promising empty niches (certain combinations of taxonomy properties) exist
that can be addressed. The assumptions to be imposed upon the model can have a strong
impact on most elements of the taxonomy. Data augmentation is more expressive than
loss terms (loss terms enforce properties only in infinitesimally small neighborhood of the
training samples; data augmentation can use rich transformation parameter distributions).
Data and loss terms impose assumptions and invariances in a rather soft manner, and
their influence can be tuned, whereas hardwiring the network architecture is a harsher way
to impose assumptions. Different assumptions and options to impose them have different
advantages and disadvantages.

Future directions for data-based methods There are several promising directions
that in our opinion require more investigation: Adaptive sampling of 𝜃 might lead to lower
errors and shorter training times (Fawzi et al., 2016) (in turn, shorter training times may
additionally work as implicit regularization (Hardt et al., 2016), see also Section 7). Sec-
ondly, learning class-dependent transformations (i.e. 𝑝(𝜃|𝑡)) in our opinion might lead to
more plausible samples. Furthermore, the field of adversarial examples (and network ro-
bustness to them) is gaining increased attention after the recently sparked discussion on
real-world adversarial examples and their robustness/invariance to transformations such as
the change of camera position (Lu et al., 2017; Athalye and Sutskever, 2017). Countering
strong adversarial examples may require better regularization techniques.

Summary In this work we proposed a broad definition of regularization for deep learn-
ing, identified five main elements of neural network training (data, architecture, error term,
regularization term, optimization procedure), described regularization via each of them,
including a further, finer taxonomy for each, and presented example methods from these
subcategories. Instead of attempting to explain referenced works in detail, we merely pin-
pointed their properties relevant to our categorization. Our work demonstrates some links
between existing methods. Moreover, our systematic approach enables the discovery of new,
improved regularization methods by combining the best properties of the existing ones.
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A Ambiguities in the taxonomy

Although our proposed taxonomy seems intuitive, there are some ambiguities: Certain meth-
ods have multiple interpretations matching various categories. Viewed from the exterior, a
neural network maps inputs 𝑥 to outputs 𝑦. We formulate this as 𝑦 = 𝑓𝑤(𝜏𝜃(𝑥)) for trans-
formations 𝜏𝜃 in input space (and similarly for hidden-feature space, where 𝜏𝜃 is applied
in between layers of the network 𝑓𝑤). However, how to split this 𝑥-to-𝑦 mapping into “the
𝜏𝜃 part” and “the 𝑓𝑤 part”, and thus into Section 3 vs. Section 4, is ambiguous and up to
one’s taste and goals. In our choices (marked with “V” below), we attempt to use common
notions and Occam’s razor.

∙ Ambiguity of attributing noise to 𝑓 , or to 𝑤, or to data transformations 𝜏𝜃:
– Stochastic methods such as Stochastic depth (Huang et al., 2016b) can have

several interpretations if stochastic transformations are allowed for 𝑓 or 𝑤:
V Stochastic transformation of the architecture 𝑓 (randomly dropping some

connections), Table 3
O Stochastic transformation of the weights 𝑤 (setting some weights to 0 in a

certain random pattern)
O Stochastic transformation 𝜏𝜃 of data in hidden-feature space; dependence

is 𝑝(𝜃), described in Table 1 for completeness
∙ Ambiguity of splitting 𝜏𝜃 into 𝜏 and 𝜃:

– Dropout:
V Parameters 𝜃 are the dropout mask; dependence is 𝑝(𝜃); transformation 𝜏

applies the dropout mask to the hidden features
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O Parameters 𝜃 are the seed state of a pseudorandom number generator; de-
pendence is 𝑝(𝜃); transformation 𝜏 internally generates the random dropout
mask from the random seed and applies it to the hidden features

– Projecting dropout noise into input space (Bouthillier et al., 2015, Sec. 3) can
fit our taxonomy in different ways by defining 𝜏 and 𝜃 accordingly. It can
have similar interpretations as Dropout above (if 𝜏 is generalized to allow for
dependence on 𝑥, 𝑓, 𝑤), but we prefer the third interpretation without such
generalizations:

O Parameters 𝜃 are the dropout mask (to be applied in a hidden layer); de-
pendence is 𝑝(𝜃); transformation 𝜏 transforms the input to mimic the effect
of the mask

O Parameters 𝜃 are the seed state of a pseudorandom number generator; de-
pendence is 𝑝(𝜃); transformation 𝜏 internally generates the random dropout
mask from the random seed and transforms the input to mimic the effect
of the mask

V Parameters 𝜃 describe the transformation of the input in any formulation;
dependence is 𝑝(𝜃|𝑥, 𝑓, 𝑤); transformation 𝜏 merely applies the transforma-
tion in input space

∙ Ambiguity of splitting the network operation 𝑓𝑤 into layers: There are several
possibilities to represent a function (neural network) as a composition (or directed
acyclic graph) of functions (layers).

∙ Many of the input and hidden-feature transformations (Section 3) can be considered
layers of the network (Section 4). In fact, the term “layer” is not uncommon for
Dropout or Batch normalization.

∙ The usage of a trainable parameter in several parts of the network is called weight
sharing. However, some mappings can be expressed with two equivalent formulas
such that a parameter appears only once in one formulation, and several times in
the other.

∙ Ambiguity of 𝐸 vs. 𝑅: Auxiliary denoising task in ladder networks (Rasmus et al.,
2015) and similar autoencoder-style loss terms can be interpreted in different ways:

V Regularization term 𝑅 without given auxiliary targets 𝑡

O The ideal reconstructions can be considered as targets 𝑡 (if the definition of
“targets” is slightly modified) and thus the denoising task becomes part of the
error term 𝐸

B Data-augmented loss function

To understand the success of target-preserving data augmentation methods, we consider the
data-augmented loss function, which we obtain by replacing the training samples (𝑥𝑖, 𝑡𝑖) ∈ 𝒟
in the empirical risk loss function (Eq. (3)) by augmented training samples (𝜏𝜃(𝑥𝑖), 𝑡𝑖):

ℒ̂𝐴 =
1

|𝒟|
∑︁

(𝑥𝑖,𝑡𝑖)∈𝒟

E𝜃

[︁
ℓ
(︀
𝜏𝜃(𝑥𝑖), 𝑡𝑖

)︀]︁
=

1

|𝒟|
∑︁

(𝑥𝑖,𝑡𝑖)∈𝒟

∫︁
Θ

(︁
ℓ
(︀
𝜏𝜃(𝑥𝑖), 𝑡𝑖

)︀)︁
𝑝(𝜃) d𝜃,

(8)
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where we have replaced the inner part (𝐸 and 𝑅) of the loss function by ℓ to simplify the
notation. Moreover, ℒ̂𝐴 can be rewritten as

ℒ̂𝐴 =

∫︁∫︁
𝑋,𝑇

1

|𝒟|
∑︁

(𝑥𝑖,𝑡𝑖)∈𝒟

∫︁
Θ

ℓ(𝑥, 𝑡) 𝑝(𝜃) 𝛿
(︀
𝑥− 𝜏𝜃(𝑥𝑖)

)︀
𝛿(𝑡− 𝑡𝑖) d𝜃 d𝑡d𝑥

=

∫︁∫︁
𝑋,𝑇

ℓ(𝑥, 𝑡)

[︃
1

|𝒟|
∑︁

(𝑥𝑖,𝑡𝑖)∈𝒟

∫︁
Θ

𝛿
(︀
𝑥− 𝜏𝜃(𝑥𝑖)

)︀
𝛿(𝑡− 𝑡𝑖) 𝑝(𝜃) d𝜃

]︃
d𝑡d𝑥

=

∫︁∫︁
𝑋,𝑇

ℓ(𝑥, 𝑡) 𝑞(𝑥, 𝑡) d𝑡d𝑥,

(9)

where 𝛿(𝑥) is the Dirac delta function: 𝛿(𝑥) = 0 ∀𝑥 ̸= 0 and
∫︀
𝛿(𝑥) d𝑥 = 1; and 𝑞(𝑥, 𝑡) is

defined as
𝑞(𝑥, 𝑡) =

1

|𝒟|
∑︁

(𝑥𝑖,𝑡𝑖)∈𝒟

∫︁
Θ

𝛿
(︀
𝑥− 𝜏𝜃(𝑥𝑖)

)︀
𝛿(𝑡− 𝑡𝑖) 𝑝(𝜃) d𝜃. (10)

Since 𝑞 is non-negative and
∫︀∫︀

𝑞(𝑥, 𝑡) d𝑥d𝑡 = 1, it is a valid probability density function
inducing the distribution 𝑄 of augmented data. Therefore,

ℒ̂𝐴 = E(𝑥,𝑡)∼𝑄

[︀
ℓ(𝑥, 𝑡)

]︀
. (11)

When 𝑄 = 𝑃 , Eq. (11) becomes the expected risk (2). We can show how this is related to
importance sampling :

ℒ = E(𝑥,𝑡)∼𝑃

[︀
ℓ(𝑥, 𝑡)

]︀
=

∫︁∫︁
𝑋,𝑇

ℓ(𝑥, 𝑡)𝑝(𝑥, 𝑡) d𝑡d𝑥

=

∫︁∫︁
𝑋,𝑇

ℓ(𝑥, 𝑡)
𝑝(𝑥, 𝑡)

𝑞(𝑥, 𝑡)
𝑞(𝑥, 𝑡) d𝑡d𝑥

= E(𝑥,𝑡)∼𝑄

[︂
ℓ(𝑥, 𝑡)

𝑝(𝑥, 𝑡)

𝑞(𝑥, 𝑡)

]︂
̸= E(𝑥,𝑡)∼𝑄

[︀
ℓ(𝑥, 𝑡)

]︀
= ℒ̂𝐴.

(12)

The difference between ℒ and ℒ̂𝐴 is the re-weighting term 𝑝(𝑥, 𝑡)/𝑞(𝑥, 𝑡) identical to the one
known from importance sampling (see Bishop, 1995a). The more similar 𝑄 is to 𝑃 (i.e. the
closer 𝑄 models the ground truth distribution 𝑃 ), the more similar the augmented-data
loss ℒ̂𝐴 is to the expected loss ℒ. We see that data augmentation tries to simulate the real
distribution 𝑃 by creating new samples from the training set 𝒟, bridging the gap between
the expected and the empirical risk.
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