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Abstract

Objective—With the emergence of semi- and nonparametric regression the generalized linear
mixed model has been extended to account for additive predictors. However, available fitting
methods fail in high dimensional settings where many explanatory variables are present. We extend
the concept of boosting to generalized additive mixed models and present an appropriate algorithm
that uses two different approaches for the fitting procedure of the variance components of the random
effects.

Methods—The main tool developed is likelihood-based componentwise boosting that enforces
variable selection in generalized additive mixed models. In contrast to common procedures they can
be used in high-dimensional settings where many covariates are available and the form of the
influence is unknown. The complexity of the resulting estimators is determined by information
criteria. The performance of the methods is investigated in simulation studies for binary and Poisson
responses with comparisons to alternative approaches and it is applied to clinical real world data.

Results—Simulations show that the proposed methods are considerably more stable and more
accurate in estimating the regression function than the conventional approach, especially when a
large number of predictors is available. The methods also produce reasonable results in applications
to real data sets, which is illustrated by the Multicenter AIDS Cohort Study.

Conclusions—The boosting algorithm allows to extract relevant predictors in generalized additive
mixed models. It works in high-dimensional settings and is very stable.
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1 Introduction

Generalized additive mixed models (GAMMs) are an extension of generalized additive models
incorporating random effects. They are widely used to model correlated and clustered
responses. For example, the dependence structure of longitudinal data and of designs with
repeated measurements can be captured. Due to heavy computational problems in the
estimation of parameters modeling usually is restricted to a moderate number of predictor
variables. In the present article a boosting approach for the selection of additive predictors is
proposed. Boosting originates in the machine learning community and turned out to be a
successful and practical strategy to improve classification procedures by combining estimates
with re-weighted observations. The idea of boosting has become especially important in the
last decade as the issue of estimating high-dimensional models has become more urgent. Since
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[1] have presented their famous AdaBoost many extensions have been developed (e.g. gradient
boosting by [2], generalized linear and additive regression based on the L2-loss by [3]). In
particular boosting as an optimization technique in function space, investigated for example
by [4], is an attractive method for the modeling of high-dimensional data. An experimental
evaluation of boosting methods for classification is found in [5], who compare the AdaBoost
with gradient boosting ensembles of regression trees both in a simulation study and in a clinical
application on breast tumor diagnosis. A detailed overview of componentwise boosting is given
in [6].

In the following the concept of likelihood-based boosting is extended to GAMMs which are
sketched in Section 2. The fitting procedure is outlined in Section 3 and a simulation study is
reported in Section 4. An application to the Multicenter AIDS Cohort Study (MACS, see [7,
8]) is presented in Section 5, which is based on the CD4 cell data of male American citizens
who are infected with HIV.

2 Generalized Additive Mixed Models - GAMMs

Let yit denote observation t in cluster i, i = 1,…,n, t = 1,…, Ti collected in .

Let  be the covariate vector associated with be the covariate vector

associated with fixed effects and  the covariate vector associated with cluster-
specific random effects bi ~ N(0,Q), where Q is a q × q dimensional known or unknown
covariance matrix. It is assumed that the observations yit are conditionally independent with
means µit = E(yit|bi, xit, zit) and variances var(yit|bi)= ϕv(µit), where v(.) is a known variance
function and ϕ is a scale parameter.

In addition to parametric effects the model that is considered includes an additive term that

depends on covariates . The generalized semiparametric mixed model that
is assumed to hold is given by

(1)

, where g is a monotonic differentiable link function,  is a linear parametric term with

parameter vector βT = (β0, β1,…, βp), including the intercept,  is an

additive term with unspecified influence functions α(1),…,α(m) and finally  contains
the random effects part. An alternative form that we also use in the following is

where h = g−1 is the inverse link function. If the functions α(j)(·) are strictly linear, the model
reduces to the common generalized linear mixed model (GLMM). Versions of the additive
model (1) have been considered by [8–10]. While [9] used natural cubic smoothing splines for
the estimation of the unknown functions α(j)(·), in the following regression splines are used.
In recent years regression splines have been widely used for the estimation of additive
structures, see, for example, [11–14].

In regression spline methodology the unknown functions α(j)(·) are approximated by basis
functions. A simple basis is known as the B-spline basis of degree d, yielding
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where  denotes the i-th basis function for variable j. For an extensive discussion of
smoothing by using splines, see for example [15]. More detailed information about the B-spline

basis can be found for example in [16]. In the following let  denote the
unknown parameter vector of the j-th smooth function and let

 represent the vector-valued evaluations of the k basis
functions. Then the parameterized model for (1) has the form

By collecting observations within one cluster one obtains the design matrix

 for the i-th covariate, and analogously we set , so that the
model has the simpler form

Where  denotes the transposed B-spline design matrix of the i-th
cluster and variable j and g is understood componentwise. Furthermore, let

, let Z = diag(Z1,…,Zn) be a block-diagonal matrix and let

 be the vector collecting all random effects. Then one obtains the model in the
matrix form

(2)

With  representing the transposed B-spline design matrix of the j-th smooth
function as in equation (C.6) in Web Appendix C. The model can be further reduced to

where and  and B = [B1,…Bm].

The Penalized Likelihood Approach

Focusing on generalized mixed models we assume that the conditional density of yit, given
explanatory variables and the random effect bi, is of exponential family type

(3)

where θit = θ(µit) denotes the natural parameter, κ(θit) is a specific function corresponding to
the type of exponential family, c(.) the log normalization constant and ϕ the dispersion
parameter (for example [17]).
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A popular method to maximize generalized mixed models is penalized quasi-likelihood (PQL),
which has been suggested by [18–20]. In the following we briefly sketch the PQL approach
for the semipara-metric model. As common in mixed models, we assume that the covariance
matrix Q(ϱ) of the random effects bi may depend on an unknown parameter vector ϱ which
specifies the correlation. We specify the joint likelihood-function by the parameters of the
covariance structure ϱ together with the dispersion parameter ϕ, which are collected in νT =
(ϕ, ϱT) and define the parameter vector δT = (βT, αT, bT). The corresponding log-likelihood
is

To avoid too severe restrictions on the form of the functions α(j)(·), we use many basis
functions, say about 20 for each function α(j)(.), and add a penalty term to the log-likelihood.
Then one obtains the penalized log-likelihood

(4)

where Kj penalizes the parameters αj and λj are smoothing parameters which control the
influence of the j-th penalty term. When using P-splines one penalizes the difference between

adjacent coefficients in the form , where Δd denotes the difference
operator matrix of degree d, for details see, for example, [16]. The log-likelihood (4) has also
been considered by [9] but with Kj referring to smoothing splines. For smoothing splines the
dimension of αj increases with sample size whereas for the low rank smoother used here the
dimension does not depend on n.

By approximating the likelihood in (4) along the lines of [18] one obtains the double penalized
log-likelihood:

(5)

where the first penalty term  is due to the approximation based on the Laplace

method and the second penalty term  determines the smoothness of the
functions α(j)(.), depending on the chosen smoothing parameter λj. The boosting algorithm
proposed in the following aims at maximizing the penalized log-likelihood (5).

PQL usually works within the profile likelihood concept. It is distinguished between the
estimation of δ, given the plug-in estimate ν̂, resulting in the profile-likelihood lpen(δ, ν̂), and
the estimation of ν. The PQL method for generalized additive mixed models is implemented
in the gamm function of the R-package mgcv [13]. Further aspects were discussed by [21–23].

Note that the double penalized log-likelihood from equation (5) can also be derived by an EM-
type algorithm, using posterior modes and curvatures instead of posterior means and
covariances (see, for example, [17]).
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3 Boosted GAMMs - bGAMM

According to [24], boosting is one of the most powerful learning ideas introduced in the last
20 years. Though it was originally designed for classification problems, it can be also applied
to regression. In the form of componentwise boosting, where in each fitting step only one
parameter or a group of parameters is refitted, the method allows to select relevant terms of
the predictor. The methods vary with the criterion that is minimized and the learner that is used.
A widely used criterion is L2-loss and componentwise least-squares estimate as learner ([25]).
It applies in particular in the linear model but can also be used in generalized linear models as
an approximate learner that maximizes the log-likelihood ([6]). Likelihood-based methods that
use Fisher scoring or variants thereof were considered by [2] for logit type models and for
generalized additive models by [26]. An overview on available boosting methods is given in
[6], see also [24].

In the following we will use likelihood-based boosting methods. The essential difference to
the methods mentioned previously is that the data generating model is a mixed model. As a
consequence, the likelihood has a quite different form and includes, in particular, parameters
that specify the distribution of random effects. Therefore alternative algorithms have to be
used. First steps to boosting in mixed models, but restricted to linear predictors, are found in
[27]. It works by iterative fitting of residuals using ``weak learners". The boosting algorithm
that is presented in the following extends the method to additive mixed models.

3.1 The Boosting Algorithm

The following algorithm uses componentwise boosting, that is, only one component of the
additive predictor, in our case one weight vector αj, is fitted at a time. That means that a model
containing the linear term and only one smooth component is fitted in one iteration step, by
componentwise ascent of the penalized log-likelihood from (5). We use a reparametrization
technique explained in more detail in Appendix C. The B-spline design matrices Bj from
equation (2), corresponding to the difference penalty matrices Kj and spline coefficients αj,
can be transformed to new design matrices Φj with spline coefficients α̃j, which consist of an
unpenalized and a penalized part and correspond to diagonal penalty matrices K ̃≔ K̃j = diag
(0,…,0, 1,…,1), which are equal for all j = 1,…, m. We drop the first column of each matrix
Φj, because we are in the semiparametric model context (see Appendix D).

Moreover, we define Φ≔ [Φ1,…,Φm] and introduce the new parameter vector γT≔ (βT, α̃T,
bT). The following boosting algorithm uses the EM-type algorithm given in [17]. We further

want to introduce the vector , containing only the spline coefficients of the
r-th smooth component. A detailed description of the single steps of the bGAMM algorithm can
be found in Web Appendix A.

Algorithm bGAMM

1 Initialization

Compute starting values and set .

2 Iteration

For l = 1, 2, …

a. Refitting of residuals

i. Computation of parameters

For r ∈ {1,…,m} the model
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g(μ) = η̂(l−1)
+ Xβ + Φrα̃r + Zb

is fitted, where

η̂(l−1)
= X β̂(l−1)

+ Φα̃
^ (l−1)

+ Zb̂(l−1)

is considered a known off-set.

Estimation refers to γr
T

= (β T
, α̃r

T
, b T ). In order to

obtain an additive correction of the already fitted terms, we
use one-step Fisher scoring with starting value γr = 0.

Therefore Fisher scoring for the r-th component takes the
simple form

γ̂r
(l)

= (Fr
pen(γ̂(l−1)

))
−1sr(γ̂(l−1)

) (6)

with penalized pseudo Fisher matrix  and using the
unpenalized version of the penalized score function

 (see Web Appendix A.1). The
variance-covariance components are replaced by their current
estimates Q ̂(l-1).

ii. Selection step

Select from r ∈ {1,…, m} the component j that leads to the

smallest  or  as given in Web Appendix A.3
and select the corresponding vector

(γ̂ j
(l)

)
T

= ((β̂*
)
T

, (α̃
^

j
*

)
T

, (b̂*)
T ).

iii. Update

Set

β̂(l)
= β̂(l−1)

+ β̂*
, b̂(l)

= b̂(l−1)
+ b̂*

and for r = 1,…,m set

α̃
^

r
(l)

= {α̃
^

r
(l−1)

if r ≠j

α̃
^

r
(l−1)

+ α̃
^

r
* if r ≠j,

(γ̂(l)
)
T

= ((β̂(l)
)
T

, (α̃
^

1
(l)

)
T

, … , (α̃
^

m
(l)

)
T

, (b̂(l)
)
T ).

With A≔ [X, Φ, Z] update

η̂(l)
= Aγ̂(1)

b. Computation of variance-covariance components
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Estimates of Q̂(l) are obtained as approximate REML-type estimates or alternative
methods (see Web Appendix A.2).

Note that the EM-type algorithm may be viewed as an approximate EM algorithm, where the
posterior of bi is approximated by a normal distribution. In the case of linear random effects
models, the EM-type algorithm corresponds to an exact EM algorithm since the posterior of
bi is normal, and so posterior mode and mean coincide, as do posterior covariance and
curvature.

4 Simulation study

In the following we present two simulation studies to investigate the performance of the
bGAMM algorithm, one with Bernoulli data and one with Poisson data (see Web Appendix B).
We also compare the algorithm to alternative approaches. The optimal smoothing parameter
λ chosen as the value λopt which leads to the smallest AIC or BIC from (A.2) and (A.3), which
are computed on a fine grid. Also general cross validation could be used, with the negative
effect of expanding computational time.

Bernoulli Data with Logit-Link

The underlying model is the random intercept additive Bernoulli model

with smooth effects given by

f1(u) = 6 sin(u) with u ∈ [−π, π]

f2(u) = 6 cos(u) with u ∈ [−π, 2 π]

f3(u) = u2 with u ∈ [−π, π]

f4(u) = 0.4u3 with u ∈ [−π, π]

f5(u) = −u2 with u ∈ [−π, π]

fj(u) = 0 with u ∈ [−π, π] for j = 6,…,50.

We choose different settings m = 5, 10, 15, 20, 50. For j = 1,…,50 the vectors

 have been drawn independently with components following a uniform
distribution within the specified interval. The number of observations is fixed as n = 40, Ti≔
T = 10, ∀i = 1,…,n. The random effects are specified by  with three different
scenarios σb ∈ {0.4, 0.8, 1.6}.

The performance of estimators is evaluated separately for the structural components and the
variance. We compare the results of our bGAMM algorithm with the results that one achieves by
using the R function gamm recommended in [13], which is providing a penalized quasi-
likelihood approach for the generalized additive mixed model. It is supplied with the mgcv
library.
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By averaging across 100 data sets we consider mean squared errors for the smooth components
and σb given by

where vtj, t = 1,…,N denote fine and evenly spaced grids on the different predictor spaces for
j = 1,…,m. Additional information on the stability of the algorithms was collected in notconv
(n.c.), which indicates the sum over the datasets, where numerical problems occurred during
estimation. More-over, falseneg (f.n.) reflects the mean over all 100 simulations of the number
of functions fj, j = 1,2,3,4,5, that were not selected while falsepos (f.p.) reflects the mean over
the number of functions fj, j = 6,…, m, that were wrongly selected. As the gamm function is not
able to perform variable selection it always estimates all functions fj, j = 1,…, m.

The results of all quantities for different scenarios of σb and for varying number of noise
variables can be found in Table 1. It should be noted that, in order to obtain a better
comparability, the quantities msef and mseσb are only averaged across those cases, where the
gamm function yields reasonable results, while the quantities notconv, falseneg and falsepos
are averaged across all 100 simulations. Also the following boxplots include only those cases,
where no numerical problems occurred for the gamm function, see Figures 1 and 2. For
completeness we give the results of the bGAMM algorithm averaged over all 100 simulations in
Table 2.

It is seen that the gamm function is very unstable when the number of predictors grows and for
all numbers of predictors estimates are hard to find. The boosting algorithms are much more
stable and msef is even better if evaluated for all simulations instead of the subset favored by
gamm. So for binary data boosting procedures dominate gamm in terms of msef. In terms of
mseσb gamm dominates but the REML version of boosting comes close. For the EM version

there is more variance σ̂b in as well as more bias with the tendency of underestimating the true
standard deviation for σb ∈ {0.4, 0.8} and overestimating it for σ = 1.6, resulting in poorer
estimates in terms of mseσb. It is especially remarkable that the selection of relevant variables
works that well that both msef and mseσb hardly deteriorate with increasing number of noise
variables.

Exemplarily, for the case m = 5 and σb = 0.4 the estimates of the smooth functions are presented
in Figure 3 for those 36 simulations, where the gamm function estimated without numerical
problems. It becomes obvious that the two boosting approaches can reproduce the true feature
of the influence functions much more precisely, with the EM version leading to slightly better
results.

5 Application: The Multicenter AIDS Cohort Study

In this section we apply our boosting method on a real data set and compare the results of our
method with the gamm approach. Standard errors for fixed effects and for σ̂b as well as point-
wise confidence bands have been derived by simulation-based parametric bootstrap
evaluations (see Web Appendix E).

The CD4 cell data were collected within the Multicenter AIDS Cohort Study (MACS), which
has followed nearly 5000 gay or bisexual men from Baltimore, Pittsburgh, Chicago and Los
Angeles since 1984 (see [7, 8]). The study includes 1809 men who were infected with HIV
when the study began and another 371 men who were seronegative at entry and seroconverted
during the followup. In our application 369 seroconverters with 2376 measurements over time
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are used. The interesting response variable is the number of CD4 cells by which progression
of disease may be assessed. Covariates include years since seroconversion, packs of cigarettes
a day, recreational drug use (yes/no), number of sexual partners, age and a mental illness score
(CESD). Note that all variables except of age are time-dependent.

Since the forms of the effects are not known, time since seroconversion, age and the mental
illness score may be considered as unspecified additive effects, compare [28], where a normal
response model (the square root CD4 number) with additive effects has been regarded. We

consider the semi-parametric mixed model with linear predictor , where
µit denotes the expected CD4 number of cells for subject i on measurement t (taken at irregular
time intervals). The parametric and nonparametric terms are

We fit an overdispersed Poisson model with natural link. The overdispersion parameter ϕ is

estimated by use of Pearson residuals  as

where the degrees of freedom (df) correspond to the trace of the hat-matrix. The results for the
estimation of fixed effects, overdispersion parameter ϕ̂ and σ̂b for the gamm function ([13]) and
for the gamm algorithm are given in Table 3.

The main interest is in the typical time course of CD4 cell decay and the variability across
subjects (see also[8]). Figure 4 shows the data together with an estimated overall smooth effect
of time on CD4 cell decay derived by the gamm function. In Figure 5 the smooth effects of
time, the mental illness score and age are given for both gamm function and bgamm algorithm.
It is seen that there is a decease in CD4 cells with time and with higher values of the mental
illness score. The gamm function estimates a very slight increase for age, but the corresponding
point-wise confidence interval indicates that the variable is not significant. For the bGAMM
algorithm age is not selected and therefore has no effect at all.

For numerical comparison of gamm function and bGAMM algorithm in real data applications, we
use the mean squared prediction error. We repeatedly split the data randomly into training and

test data, fit the model on the training data and use the fitted parameters  for the
prediction of the response in the test data. With ntest denoting the size of the test data we can
derive the following prediction error on every random split:

As we include the fitted random effects b ̂
1,…,b ̂

n for prediction, we restrict the random splitting
of the data by constraining the test data to contain only observations of clusters with at least
nmin replications, say for example nmin = 5. In this way we want to ensure to use reasonable
random effects estimates for prediction. Note, that instead of random splits also cross-
validation could be used.
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Figure 6 shows boxplots of the prediction error differences with the gamm function as the
reference. The bGAMM algorithm clearly outperforms the gamm function in each random split.

6 Concluding Remarks

Variable selection methods have been proposed that allow to extract the relevant predictors in
generalized additive mixed models. The methods are shown to work in high-dimensional
settings and turn out to be very stable. Performance suffers hardly when the number of noise
variables grows.

As clustered data often occur in clinical or biological contexts, where different individuals are
observed over a period of time, the proposed methods are highly relevant in such applications.
The application on the CD4 data has shown that variables that may be not significant (for
example in terms of point-wise confidence intervals) can be excluded from the model and thus
the accuracy of the regression model can be improved. This implicit selection of relevant
variables is especially useful in clinical and biological trials where often many possibly relevant
covariates are present.

For example in dealing with gene-expression data usually thousands of genes are available and
one needs models that can handle and analyze such large systems. This creates keen challenges
with respect to data analysis and data management and the existing software programs and
analysis methods are still in the beginning (for overviews see for example [29] or [30]).
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Figure 1.
Boxplots of msef for gamm* (left), bGAMM EM (middle) and bGAMM REML (right) for m = 5,

10, 15, 20, 50 and σb = 0.4 (* only those cases, where gamm did converge).
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Figure 2.
Boxplots of mseσ for gamm* (left), bGAMM EM (middle) and bGAMM REML (right) for and m
= 5, 10, 15, 20, 50 and σb = 0.4(* only those cases, where gamm did converge).

Groll and Tutz Page 13

Methods Inf Med. Author manuscript; available in PMC 2013 May 05.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Groll and Tutz Page 14

Methods Inf Med. Author manuscript; available in PMC 2013 May 05.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 3.
Smooth functions computed with the gamm model (left), the bGAMM EM model (middle) and

bGAMM the REML model (right) for m = 5, σb = 0.4.

Groll and Tutz Page 15

Methods Inf Med. Author manuscript; available in PMC 2013 May 05.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 4.
Smoothed time effect (CD4 number of cells versus time) from MACS for gamm (solid line)
and bGAMM (dashed line, EM version).
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Figure 4.
Estimated smooth effect of time, CESD and age computed with the gamm model (left), the
bGAMM EM model (middle) and the bGAMM REML model (right) for CD4 data.
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Figure 5.
Boxplots of msepred (gamm)-msepred(·); 50 random splits with ntest = 50, nmin = 5.
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Table 3

Estimates for the AIDS Cohort Study MACS with gamm function (standard deviations in brackets) and bGAMM
algorithm

gamm bGAMM (EM) bGAMM (REML)

intercept 6.485 (0.026) 6.470 6.470

drugs 0.034 (0.023) 0.010 0.010

partners 0.003 (0.003) 0.006 0.006

packs of cigarettes 0.040 (0.009) 0.005 0.005

σ̂b
0.299 0.345 0.344

ϕ̂ 69.929 69.378 69.378
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