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Regularization for Uniform Spatial Resolution
Properties in Penalized-Likelihood Image

Reconstruction
J. Webster Stayman*, Student Member, IEEE, and Jeffrey A. Fessler, Member, IEEE

Abstract—Traditional space-invariant regularization methods
in tomographic image reconstruction using penalized-likelihood
estimators produce images with nonuniform spatial resolution
properties. The local point spread functions that quantify the
smoothing properties of such estimators are space-variant, asym-
metric, and object-dependent even for space-invariant imaging
systems. We propose a new quadratic regularization scheme
for tomographic imaging systems that yields increased spatial
uniformity and is motivated by the least-squares fitting of a
parameterized local impulse response to a desired global response.
We have developed computationally efficient methods for PET
systems with shift-invariant geometric responses. We demonstrate
the increased spatial uniformity of this new method versus
conventional quadratic regularization schemes in simulated PET
thorax scans.

Index Terms—Gauss–Markov prior, PET, tomography.

I. INTRODUCTION

S
TATISTICAL image reconstruction methods provide im-

proved noise and resolution properties over conventional

nonstatistical methods such as filtered backprojection (FBP).

However, methods based purely on the maximum-likelihood

estimate produce overly noisy images. This noise may be re-

duced by stopping the iterative procedure used to find the max-

imum-likelihood estimate before convergence [1], by iterating

until convergence followed by post-smoothing [2], or by in-

cluding a roughness penalty term in the objective function [3].

It is difficult to control resolution properties with stopping cri-

teria. Post-smoothing methods allow for better resolution con-

trol but require iteration until convergence. Since unregularized

algorithms converge slowly, penalized-likelihood methods are

desirable.

However, there are disadvantages with penalized-likeli-

hood methods that use conventional regularization schemes.

Space-invariant penalties lead to object-dependent nonuniform

resolution properties [4], [5]. For emission tomography, such

estimators tend to smooth the image more in high-count regions

than in low-count regions. The local point spread functions

[4], [6] that quantify this space-variant smoothing can also be

highly asymmetric, indicating anisotropic smoothing. These
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asymmetric point spread functions mean that objects within an

image are distorted nonuniformly. For example, circular objects

will appear elliptical due to anisotropic blurring (see Fig. 15).

These distortions have been noted by clinical colleagues

in positron emission tomography (PET) scans. Lymph nodes

are often found near the edge of an anatomical slice where

the point spread functions are particularly asymmetric. Lymph

nodes, which appeared essentially radially symmetric in FBP

reconstructions (due to the isotropic smoothing of FBP), ap-

peared elliptical in penalized-likelihood image reconstructions

using traditional regularization methods.

Since conventional regularization produces images with

nonuniform resolution properties, one also cannot select the

regularization parameter intuitively. With FBP the noise-res-

olution tradeoff is controlled through the cutoff frequency

of the filter. There is a direct relationship between and

the global full-width half-maximum (FWHM) resolution of

the reconstructed image. Such a direct relation does not exist

with penalized-likelihood reconstructions with conventional

regularizations.

One attempt to analyze and reduce the resolution nonuni-

formity was presented in [4]. The shift-variant regularization

method proposed in [4], which is based on the aggregate cer-

tainty of measurement rays intersecting each pixel, provides

increased spatial uniformity over conventional space-invariant

regularization. However, the local point spread functions are

still highly asymmetric.

In this paper we present a parameterization of the quadratic

roughness penalty function, which in turn parameterizes the

local impulse response functions. We then propose a novel

method for determining the penalty function coefficients

motivated by a least-squares fitting of the parameterized local

impulse response to a desired shift-invariant response (Sec-

tion III). We describe a computationally efficient noniterative

method for computing the coefficients for an idealized PET

system (Section VI). This new method provides increased spa-

tial uniformity compared to the certainty-based method of [4]

and to conventional regularization techniques. We demonstrate

this increased uniformity through an investigation of the local

point spread functions (Section V). In addition, we perform a

noise investigation on simulated data as well as a qualitative

investigation using digital thorax phantom data (Section VI).

Since the proposed quadratic regularization method provides

nearly global resolution uniformity, one can use the direct re-

lationship between the regularization parameter and the global
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FWHM resolution to specify a desired resolution for reconstruc-

tion. Therefore, the proposed regularization possesses the intu-

ition of FBP with respect to resolution and performs better than

FBP in terms of variance.

Whether uniform spatial resolution is essential is an open

question. Uniform resolution properties may, in fact, be un-

desirable for certain tasks. One could use statistical criteria

to choose the regularization parameter [7] and accept the

anisotropic smoothing properties of the estimator. Alterna-

tively, one may desire specific nonuniform resolution properties

through modification of the penalty (e.g., incorporation of

anatomical side and boundary information [8], [9]). Qi and

Leahy have investigated a shift-variant regularization method

that optimizes the local contrast to noise ratio in an attempt to

improve lesion detectability [10], [11].

However, for high-resolution PET images, the geometric dis-

tortions due to conventional regularizations may be undesir-

able for tasks requiring shape preservation. Therefore, resolu-

tion uniformity would be important. For cross-patient studies or

single-patient studies taken over a period of time, one would

presumably desire the same resolution properties across im-

ages for comparison. Similarly, for full-body PET scans with

multiple table positions and cross-modality image registration,

these space-variant resolution properties and geometric distor-

tions can contribute to registration errors. As mentioned above,

in some cases one may desire nonuniform resolution proper-

ties. The methods described in this paper can also be applied

to user-specified nonuniform resolution criteria (e.g., regions of

isotropic smoothing with sharp boundaries) using space-varying

regularization methods as in [12] and [13].

In this paper we focus on the resolution properties of penal-

ized-likelihood estimators that are iterated until convergence.

Other studies have investigated resolution properties of unreg-

ularized maximum-likelihood expectation-maximization algo-

rithms as a function of iteration [6], [14].

Real imaging systems usually have intrinsically nonuniform

resolution properties. Single-photon-emission computed to-

mography (SPECT) systems have depth-dependent resolution

[15], and PET systems often have resolution nonuniformity due

to crystal penetration effects [16]. While the analysis presented

here applies generally, the resulting design can be computa-

tionally expensive. We have developed a computationally fast

practical method for an idealized PET imaging system with a

shift-invariant geometric response, but including ray-dependent

attenuation and detector effects. The central region in the field

of view of many PET systems tends to be nearly shift-invariant

and can be accurately modeled in this way.

II. BACKGROUND

We focus on emission tomography, although the method

applies generally. Let represent the non-

negative emission rates for an object discretized into pixels,

where denotes the Hermitian transpose. Detectors surrounding

the object count photons (SPECT) or photon pairs (PET) that

are emitted from the object. Measurements are denoted by the

random vector . These measurements are

Poisson with means given by

where the ’s represent nonnegative constants that charac-

terize the tomographic system, and the ’s are nonnegative

constants that specify the contribution due to background

events (background radiation, random coincidences, scatter,

etc.). Given measurements , we would like to reconstruct ,

assuming the ’s and ’s are known.

We will focus on penalized-likelihood estimators (PLE’s) of

the form

where

set of feasible images;

log-likelihood;

roughness penalty.

For the Poisson model, the log-likelihood is

We focus on pairwise roughness penalties of the following form

(1)

where is a symmetric convex function.

In the case of a quadratic penalty, and

the roughness penalty may be written in matrix form:

, where the matrix has elements

defined by

(2)

For a space-invariant penalty using a first-order neighborhood,

the conventional choice is for the horizontal and ver-

tical neighbors, and zero otherwise. The regularization param-

eter controls the noise-resolution tradeoff. Large values in-

duce smoother reconstructions, hence lower noise. For a second-

order penalty, one often includes for the diagonal

neighbors in addition to the first-order neighbors.

The mean of an estimator is given by

where is the Poisson measurement distribution. The local im-

pulse response [4] at the th pixel is defined as

where represents the th unit vector.1 The local impulse re-

sponse depends on the estimator , the object , and the pixel

1Throughout the paper, the superscript j represents an index, not an exponent.
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position . From [4], for PLE’s with quadratic penalties,2 the

local impulse response may be well approximated by

(3)

where is a matrix of the elements, for emis-

sion tomography,3 is a diagonal matrix with

elements , and is the sym-

metric component of . When is unknown, one can es-

timate the local impulse response by using a simple plug-in

technique where the observed measurements replace .

Since is sandwiched between the projection and back-

projection operators, there is an implicit smoothing and even

noisy tend to produce relatively accurate estimates of .

The approximation (3) for the local impulse response is the

tool we use below for the design and evaluation of different

quadratic regularization methods.

III. PENALTY DESIGN METHODS

Our goal is to find a penalty function that yields recon-

structed images with some arbitrary desired space-invariant re-

sponse. For example, we may desire penalty functions that pro-

duce a global impulse response with a Gaussian shape and some

specified FWHM resolution. If we restrict ourselves to quadratic

penalty functions, we can formulate such problems in terms of

the design of the penalty matrix . Equivalently, we may de-

sign , since only the symmetric component of affects

the objective function for quadratic penalties. We restrict to

be nonnegative definite to maintain the concavity of the penal-

ized-likelihood objective function.

Therefore, we would like to find a nonnegative definite

according to an optimization criterion such as the following:4

(4)

where is some measure of disparity between the local

impulse response, and a desired space-invariant response,5

. Solving (4) by plugging in (3) appears to be computationally

intractable.

Practical penalties use only a small neighborhood of pixels

for the penalty support (e.g., first- and second-order neighbor-

hoods). Therefore we reformulate the penalty design problem in

2In [4], an approximation for the local impulse response was derived for sym-
metricRRR. For an asymmetricRRR, the scalar � RRR� = (� RRR�) = � RRR �. There-
fore, R(�) = (1=2)[(1=2)� RRR� + (1=2)� RRR �] = (1=2)� [(1=2)(RRR +
RRR )]� = (1=2)� RRR �. If an asymmetricRRR matrix were used, only the sym-
metric component of RRR would influence the objective function.

3The formulation given in (3) also holds for transmission tomography with
DDD = D[Y (�) � r ) =Y (�)].

4The notation RRR � 0 indicates that this minimization is over nonnegative
definite RRR.

5One might choose a space-variant l for user-specified nonuniform resolu-
tion properties. A space-invariant l is required only for the practical imple-
mentation discussed in Section IV. For a desired space-invariant response l is
a function of the pixel position j only in that the desired response must be cen-
tered at pixel j. That is, since the local impulse response at pixel j is centered at
pixel j, we must shift the desired response to that location for comparison using
d(�; �).

terms of these small support neighborhoods by parameterizing

the penalty matrix.

A. Penalty Matrix Parameterization

For a shift-invariant quadratic penalty, one can treat the

penalty matrix as a space-invariant filtering operator. There-

fore multiplying by the image is equivalent to convolving

the image with a kernel,6

For example, the conventional first-order penalty described

below (2) has the following kernel

(5)

The design of a space-invariant is like a filter design problem

with constraints on the kernel . Since should yield a

zero penalty for uniform regions, the filter represented by

should have zero DC gain. (The kernel elements must sum to

zero.) Since only the symmetric portion of influences the

penalized-likelihood objective function and the local impulse

response in (3), we need only to consider symmetric kernels7

for representing the action of a space-invariant .

Last, we choose to require that be nonnegative definite

to guarantee concavity of the penalized-likelihood objective

function. Therefore, for the space-invariant penalty, we restrict

kernels to those whose Fourier transform is nonnegative, so

that the eigenvalues of are nonnegative.

To achieve these goals, we parameterize the kernel in

terms of a small number of bases such as those having the fol-

lowing form

where represents a 2-D discrete impulse function, and

and represent spatial coordinates. A collection of such

functions for various pairs forms a basis for

valid kernels of space-invariant matrices. For example,

for a first-order neighborhood

is a basis for valid kernels of . For a second-order neigh-

borhood, forms a valid basis set,

where

6We use � since the left-hand side (LHS) is a vector, but the right-hand side
(RHS) is a 2-D image. The two sides are equivalent in that the vector is a lexi-
cographic reordering of the 2-D image.

7Consider a horizontal penalty and two neighboring pixels; one on the left
and one on the right. For a symmetric RRR , the penalty applied on the right
pixel from the left pixel is the same as the penalty applied on the left from the
right. Therefore, the left and right sides of the kernel must be the same for the
same penalty to be applied in both directions.
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In general, any valid kernel for a space-invariant penalty matrix

may be specified by a linear combination of such basis

functions:

(6)

where represent the basis coefficients. Let represent the

vector of all for a given neighborhood of support. Define

to be the number of pairs (the number of basis functions)

and define the matrix with column vectors of lexico-

graphically ordered basis functions, .

For uniform resolution properties, we require a space-variant

regularization matrix . Therefore, we extend the kernel repre-

sentation (6) and let be parameterized by a space-variant set

of coefficients , where represents the th pixel.

Let denote the spatial coordinates of the th pixel

and define to be a matrix of shifted basis functions,

with each column having elements defined by the lexicograph-

ically ordered bases, . In the case of a

space-invariant matrix, . (With the choice of sym-

metric bases described previously, .) To parameterize

space-variant , we define the th column of by

(7)

In this case, no longer equals in general. However, we

may form by , as stated previously in foot-

note 2. The parameterization (7) allows for the specification of

valid shift-variant by the set of coefficients . To

guarantee the nonnegative definiteness of it is sufficient

to restrict to be nonnegative. A nonnegative definite means

that the penalty is always nonnegative. If we re-

strict to be nonnegative, the local penalty at any pixel will be

nonnegative due to our selection of bases. Therefore, the penalty

on the entire image will be nonnegative as well.

Using the parameterization described in (7), the problem

of determining the matrix in (4) is simplified to

the problem of determining the coefficients .

The penalty design problem thus reduces to the following

optimization problem

(8)

Although this minimization requires less computation than (4),

it still appears to be impractical since all of the vectors

would need to be found simultaneously.

B. Circulant Simplifications

When the operator is approximately shift-invariant, we

may approximate by , where is a 2-D discrete

Fourier matrix operator and is a diagonal matrix representing

a frequency domain filtering operator.8 However, even if

8For an ideal tomographic system, the diagonal elements of 
 are approxi-
mately the well-known 1=� frequency response of the back-projected projection
operator. When AAA AAA is nearly shift-invariant, we may compute the elements of

 by taking the 2-D discrete Fourier transform of AAA AAAe , where j is a fixed
pixel in the image (usually the center pixel, in practice). When j is not the
center pixel we must include appropriate complex exponentials to account for
the shifting property of Fourier transforms.

is a shift-invariant operator, will be shift-variant because

of the nonuniform diagonal weighting. Although is not

globally shift-invariant, it is approximately locally shift-in-

variant and we make the following approximation [17] to (3)

(9)

where the division is an element-by-element division,

, and . (

represents the discrete 2-D Fourier transform operator.)

Since local impulse response functions usually vary smoothly

with position, we expect that the coefficients of our penalty

design will also be smoothly varying. This is also implied by

the above locally shift-invariant approximation. For this reason

we use the approximation . To illustrate this

approximation, consider a simple 1-dimensional example with

a single basis. For a single basis function there is

a single coefficient for each position . In terms of (2), this

means and . If is smoothly

varying (i.e., ), then and is nearly

symmetric. Substituting into (9) yields

(10)

Combining (8) and (10) yields a separable minimization

problem, i.e., depends only on and not for .

Therefore we may determine each separately by

(11)

If , then (11) is a set of constrained

nonlinear least-squares (CNLLS) problems, since the depen-

dence on is in the denominator of (10). We have implemented

this method using a BFGS quasi-Newton method, but it is still

computationally expensive. Thus, we further simplify this non-

linear optimization problem into a linear least-squares problem.

Working in the frequency domain simplifies the design problem,

as described next.

C. Linearized Penalty Design

Define to be the local frequency re-

sponse and let be the desired frequency response.

To solve (11), we want to choose so that , i.e.,

from (10)

(12)

Rearranging (12) by cross multiplying and simplifying yields

(13)
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where represents element-by-element multiplication. We can

now design the penalty coefficients as a weighted least-squares

solution to (13). Specifically, we choose such that

(14)

with

(15)

(16)

(For matrices, operates on each column.) The matrix

is a (possibly shift-variant) least-squares weighting,9 where

is a symmetric positive definite matrix.

After one chooses a desired frequency response , or equiv-

alently a desired impulse response , one can use the NNLS

(nonnegative least-squares) algorithm in [18] to perform the

minimization (14) for each pixel position to obtain the coef-

ficients . This provides nearly uniform resolution prop-

erties matching a specified response.

One possible practical inconvenience of the proposed method

(14) is that must be recalculated for every desired response .

We describe a method in the Appendix that yields a convenient

class of penalty matrices that span a range of spatial resolu-

tions for a specific class of desired impulse responses.

IV. PRACTICAL IMPLEMENTATION

While the penalty design method (14) gives a simple form

for the calculation of , in the form described above it still re-

quires more computation than we would like for routine use.

In this section, we outline a computationally efficient method

for closely approximating the parameterized penalty with coef-

ficients given by (14).

Consider each of the terms in (15) and (16). Determination

of requires a single calculation of the 2-D-FFT (fast

Fourier transform) of each of the 2-D basis functions.

(Different only shift the bases. One could incorporate these

shifts with relatively little computational overhead by multi-

plying by appropriate complex exponentials.) For a

shift-invariant , the remaining portion of (15) may also be

computed once with simple matrix multiplications. Therefore,

we can precompute , and determine from by

complex phase shifts. (This step is eliminated below.) For ,

the matrix multiplications including and may be

precalculated as well. However, for a direct implementation of

(14), one would have to compute the 2-D-FFT of for

every pixel , which would be computationally expensive.

Therefore, the key to a practical implementation of (14) is

the efficient calculation of for . In

general this term would need to be calculated explicitly, which

would be quite time consuming because of the size of and

the number of pixels . However, consider a system matrix that

9An equivalent weighted least-squares problem may be stated using a
weighted norm kxk = kVVV xk in (14) and eliminating VVV from (15) and
(16).

has the factorable form , where is an approx-

imately shift-invariant operator and represents the geometric

system response. The diagonal matrix contains known

ray-dependent effects such as detector efficiency and attenua-

tion factors, where is a multiplicative factor for the th mea-

surement, . In this case, we may write

(17)

where for emission tomography . Such

a system model is appropriate for modeling an idealized PET

system, where the geometric response is shift-invariant. This is

a relatively good approximation for real PET systems near the

center of the field of view.

One can show that in an idealized continuous system, if the

continuous equivalent of is a radially constant10 sinogram

scaling operator, then the continuous equivalent of can

be expressed as a position-independent blurring operation [19].

This property should be approximately true in the discrete case.

If were radially constant, we would only need one computa-

tion of .

In practice, the elements of are not globally radially con-

stant. However, since the projection of a single pixel forms a

relatively narrow trace in sinogram space (only a few radial bins

in width), we can approximate locally by a position-depen-

dent radially constant matrix . This property is illustrated in

Fig. 1.

Consider a single pixel in the image represented by the unit

vector . The operation of on forms a relatively narrow si-

nusoidal trace in sinogram space. Such a projection is shown in

Fig. 1(a). The backprojection of this sinusoidal trace produces

the familiar response centered at the given pixel. This image

and an enlarged region about the pixel of interest are shown in

Figs. 1(b) and (c). Recall from (17) that the effective sinogram

weighting is . In reconstructions where is unknown,

we choose , where . The

terms are estimates of the detector efficiencies and attenuation

correction factors made from a normalization scan and trans-

mission scan, and are the measurements. The is

included to avoid inordinate ray weighting for low count , by

choosing .

The vector represents a lexicographically

reordered 2-D array of scaling values that is angles by

radial bins in size, where . A typical is presented

in Fig. 1(d). Fig. 1(e) shows the weighted sinogram for

the single pixel’s projection using this particular weighting.

Instead of using , we would like to approximate the

weighting with a local radially constant version . The asso-

ciated diagonal weighting matrix is . To choose

, consider the following. Let , where .

Decompose the system matrix by rows into separate subma-

trices for each projection angle so that

with . Similarly, decompose the weighting vector

into with .

10A “radially constant” WWW scales all of a sinogram’s radial elements for a
particular projection angle by the same scalar value. Such a WWW would have the
block scaled-identity formWWW = D[w III; w III; . . . ; w III], where n is
the number of angles.
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Fig. 1. Approximation ofGGG WWWGGGwith local radially constant weightings (see text). (a) shows the unweighted projection of a single pixel in the sinogram domain.
(b) and (c) show the backprojection of this unweighted sinogram where (c) is an enlarged portion of (b). Variables n andm index image coordinates, and variables
� and r index the sinogram measurements. (d)–(g) show the weighted projection (e) and backprojection (f) and (g) for a typical weighting (d). (h)–(k) show the
weighted projection-backprojection using an approximate radially constant weighting (h). (l)–(o) show the weighted projection-backprojection for a fixed central
pixel j . Note that (g), (k), and (o) are nearly identical. (d), (e), (h), (i), (l), and m) have a logarithmic color scale.

Due to the response in tomography, is concentrated

about its diagonal. Therefore,

(18)

where the th element of is

(19)

This is the unique choice of that makes with

equality along diagonals for each of the terms in the

summations in (18) (i.e., the diagonal elements of

and are identical for each ).

The approximation would be exact if the ’s were all equal.

However, since the local impulse response at pixel relies

predominantly on the ’s that intersect pixel , and will

be nearly equal. This approximation is reasonable even for very

nonuniform since tend to vary slowly as a function of

because of the implicit smoothing in (19). Similarly, since

concentrates around (cf. [4]),

We choose to form a radially con-

stant, position-dependent weighting , where is a column

vector of ones of length .

Fig. 1(h) shows the radially constant weighting using this

technique on the weights in Fig. 1(d) for pixel . When applied

to the projection of , the result is very close to the weighting

using . The close agreement between the and weight-

ings can be seen by comparing weighted sinograms in Fig. 1(e)

and (i). Similarly, the agreement is very close for the backpro-

jected weighted sinograms, and , shown in

Fig. 1(f) and (j), respectively. Zoomed versions of the backpro-

jected weighted sinogram for regular and local radially constant

weightings are shown in Fig. 1(g) and (k). Note the close agree-

ment in the image domain as well as the sinogram domain.

Since is an approximately shift-invariant operator for

radially constant , approximately equals a shifted

for an arbitrary fixed pixel (e.g., the center pixel
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in the image). Plots of for equal to the center

pixel are shown in Fig. 1(n) and (o). Note the close agreement

between and . Therefore, we need only to

calculate once, rather than for every .

In terms of in (14), under the radially constant approx-

imation and a shift-invariant weighting , we need only

and may replace (14) with

(20)

where is a “centered” version of . This step eliminates the

need for complex phase shifts. Nevertheless, direct implemen-

tation of (20) would still require 2-D-FFT’s.

To simplify further, define . The

vector contains all of the distinct angular weighting values

in the radially constant . Since is linear in the elements

of , we may write , where is a

matrix. We find by superposition as follows.

Define to be the weighting matrix with radially constant

values having unit values at angle , and zero otherwise. (i.e.,

, where the vector ap-

pears in the th block and and are column vectors of length

.) For each angle define

(21)

Then by superposition .

For the unconstrained case, (20) has the closed form linear

solution . Let

be the combined matrix operator. Therefore we may

determine unconstrained solution of (20) by .

However, for the matrix to be nonnegative definite, we need

to solve the constrained optimization problem (20). It is straight-

forward to modify the NNLS algorithm of [18] using and

to provide the constrained solution.

For simplicity in our implementation, we have used the sub-

optimal greedy approach presented in Table I, which yields non-

negative and nearly the same results as NNLS but with a

slight computational speedup and simpler implementation. This

procedure takes one step for each negative element in and

will complete in at most steps. For small , one could pre-

compute the possible reduced matrices for further

speedup.

As described in the beginning of this section, direct imple-

mentation of the design given by (14)–(16) requires backpro-

jections, 2-D FFT’s, and applications of the NNLS

algorithm. Using the simplifications described in this section,

we perform the one-time precomputation of and for a

given system geometry using backprojections and

2-D FFT’s. The coefficients may be determined with cal-

culations of (19), which is on the order of one backprojection,

and applications of the algorithm in Table I (or the NNLS al-

gorithm).

TABLE I
ROUTINE USED TO CONSTRAIN KERNEL COEFFICIENTS r̂

Computing (19) requires floating point operations

(flops), where and is the fraction of nonzero

elements of (or ). Assuming the are precomputed,

the algorithm in Table I requires at most flops per pixel.

Therefore, calculation of all coefficients using the method

summarized in Table I requires at most

flops. Since the precalculation of using (21) requires approx-

imately flops and flops for

, the entire precalculation is .

This precalculation need only be performed once for a specific

system geometry and choice of .

In contrast, computation of the design given by (14)–(16) is

dominated by the calculation of in (16). This term requires

flops for a single pixel location .

Therefore, even without calculating (14) and (15) we require at

least flops to evaluate for all . Clearly,

much of the computational advantage of the proposed method

is due to the order reduction of to .

For 2-D reconstructions performed in the following section,

30 iterations of the SAGE algorithm [20] on a 266 MHz Pentium

II processor took 18.5 s for the conventional space-invariant

first-order penalty given by the kernel in (5), and 20.1 s for the

proposed penalty with precomputed and . The precalcu-

lation of and took 23.1 s.11 Thus, the method is very

practical. (We performed the reconstructions using the ASPIRE

iterative reconstruction libraries[21].)

V. SIMULATION RESULTS

A. Resolution Uniformity

This section provides simulation results comparing the rela-

tive resolution uniformity of different regularization schemes.

Fig. 2 shows the emission image (with 3-mm square

pixels) used for the investigation as in [4]. The image has a warm

background ellipse, a cold left disk, and hot right disk with rel-

ative emission intensities of 2, 1, and 3, and attenuation coeffi-

cients of 0.0096, 0.003, and 0.013/mm, respectively. The PET

system model included projection data with 128 radial bins and

110 angles uniformly spread over 180 with 6-mm-wide strip

integrals (3-mm center-to-center spacing), and detector efficien-

cies with a pseudorandom log-normal variance with to

model detector efficiency effects.

11The constrained nonlinear least-squares penalty given in (11) took about 2
h.
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Fig. 2. Digital phantom used for investigation of resolution properties of
different regularizations, with four pixels of interest marked.

Fig. 3. Local PSF’s for space-invariant penalty.

Fig. 4. Local PSF’s for certainty-based penalty.

To compare the relative spatial uniformity of these regulariza-

tion methods we used (3) to calculate local point spread func-

tions (PSF’s). We approximated the solution of (3) using 100

iterations of a coordinate ascent algorithm initialized with a

Fourier approximation of the target response given in (23). Since

the responses are space-variant, we investigated four different

locations in the object, represented by the white “ ” marks in

Fig. 2. We systematically examined numerous additional spatial

locations which yielded similar conclusions (i.e., these are rep-

resentative results).

Results of this impulse response survey are presented in

Figs. 3–8. For each penalty, PSF contours at 25%, 50%,

75%, and 99% of peak value are shown. These contours were

generating using the command in Matlab 5.3. The

pixel boundaries are represented by the dotted grid in each

plot. Above each set of contours are estimates of the mean ( )

and standard deviation ( ) of the FWHM resolution in pixels,

which quantify the mean resolution and radial variation at that

location.

All reconstruction methods and penalties were designed with

a target resolution of 4.0 pixels (1.2 cm) FWHM resolution.

(The relationship between global FWHM resolution and , and

how to calculate is discussed in [5].) For the estimation of

(3) for penalized-likelihood methods, where in (17) must be

computed, we used the noiseless measurements with a mean

of 1 million counts and we chose with

.

Fig. 5. Local PSF’s for CNLLS penalty.

Fig. 6. Local PSF’s for proposed penalty.

Fig. 7. Local PSF’s for FBP.

Fig. 8. Local PSF’s for penalized unweighted least squares.

PSF’s for penalized-likelihood with the conventional space-

invariant penalty are shown in Fig. 3. This penalty has the first-

order kernel given in (5). These local PSF’s are highly asym-

metric and space-variant, blurring more in high-count regions

(85, 33) than in low-count regions. The certainty-based penalty

of [4] shown in Fig. 4 provides some improvement by making

the mean FWHM close to 4.0 pixels. However, the responses

are still quite asymmetric.

PSF’s for the constrained nonlinear least-squares (CNLLS)

penalty given by (11) are shown in Fig. 5. For this design, four

basis functions and second-order neighborhood were used. We

used a target response equal to the response of a penalized

unweighted least-squares (PULS) estimator with a conventional

first-order penalty [see (23)]. The contours for these PSF’s are

nearly radially symmetric and near the 4.0 pixel FWHM target

resolution. The PSF’s of the proposed regularization method

(20) are presented in Fig. 6. We used the same basis set and

target response as the CNLLS penalty design. This penalty was

designed using the computational simplifications in Section IV

and the simplifications presented in the Appendix. The PSF con-

tours are also quite symmetric and the average FWHM resolu-

tion is within 5% of the target resolution of 4.0 pixels.

In addition to the penalized-likelihood methods, we present

results for filtered backprojection (FBP) and a PULS estimator

with a conventional first-order shift-invariant penalty. Both
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TABLE II
SUMMARY OF MEAN ABSOLUTE RADIAL DEVIATION RESULTS

of these methods should produce shift-invariant and isotropic

smoothing properties since we are considering a tomographic

systems whose intrinsic response is shift-invariant. [The

impulse response for a PULS estimator is given by (23) in

the Appendix.] In a real PET (SPECT) system, FBP will have

nonuniform resolution due to the detector response. We chose

a constrained least-squares filter for FBP, which essentially

matches the smoothing properties of FBP and PULS (see [5]).

The local PSF’s for FBP are shown in Fig. 7, and for PULS

in Fig. 8. These responses are nearly perfectly symmetric. Re-

call, our proposed penalty is designed with a target PSF given

by the PULS response (23). Note the similarity between these

method’s responses as shown in Figs. 6 and 8.

As a quantitative assessment of the resolution uniformity, we

calculated the mean absolute radial deviation of the 50% contour

from the 2.0 pixel half-maximum target radius. Then we calcu-

lated the average value of this deviation over a set of sample

locations within the phantom. We performed these calculations

over four pixel sets: Set A consists of all pixels within the dig-

ital phantom object; Set B contains roughly 80% of the interior

pixels of the phantom excluding the outer edge pixels; Set C

contains all pixels in the cold disc; and Set D contains all pixels

in the hot disc. These results are summarized in Table II. All

values are in pixels. The certainty-based penalty and the con-

ventional penalty have the greatest deviation, while the CNLLS

penalty and the proposed penalty are more uniform. The im-

provement in uniformity with these penalties is more dramatic

for the interior pixels (Sets B, C, and D), indicating that these

penalties provide less uniform resolution at the edges of the

phantom. FBP and PULS have the lowest deviations with no

variation between sets.

The calculated coefficients for the CNLLS penalty and the

proposed method are presented in Fig. 9. The coefficient values

are presented as four images (since we used four basis func-

tions) for both methods, separated by dotted lines. Each image

pixel corresponds to the coefficient of a given basis function at

that pixel location. The scale is logarithmic, except for the value

zero, which is represented in white. The largest discrepancies

between the coefficients appear at the edge or outside the object

in the digital phantom. Additionally, we see that the nonnega-

tivity constraints are fairly active (as represented by the white

regions). Future designs may be able to obtain increased resolu-

tion uniformity by relaxing the nonnegativity constraints on .

Fig. 9. Comparison of calculated r̂ values for the CNLLS penalty and the
proposed penalty. Note the logarithmic color scale. White regions indicate a
value of zero.

The CNLLS penalty and the proposed penalty yield similar

coefficients and produce similar local impulse responses.

Hence, we conclude that the computational simplifications pro-

posed in Section IV do not change the calculated values of

significantly and that such simplifications are appropriate for

providing a computationally efficient algorithm for calculating

our proposed penalty for uniform resolution properties.

B. Noise Properties

The results presented above describe the resolution properties

of the estimators. As in [4], we also investigated the noise prop-

erties. To form sample standard deviation images, we simulated

400 noisy measurement realizations for the digital phantom in

Fig. 2. The PET model included 10% random coincidences and

averaged 1 million counts per realization.

We reconstructed each of these 400 realizations using 30 iter-

ations of the SAGE algorithm [20] with the same regularization

methods used above in the resolution properties investigation.

For all of the statistical methods except the CNLLS penalty,

we use the measurements for calculation of . Because of

the extensive computation time associated with calculation of

the CNLLS penalty, the noiseless, were used, i.e., the same

penalty based on the noiseless measurements was used for all

realizations.

The results of this noise investigation are presented in Fig.

10. The sample standard deviation images are shown on the

LHS of the figure. Horizontal and vertical profiles of these im-

ages are shown in the remaining plots. The horizontal profile is

taken through the image center and the vertical profile is taken

through the center of the cold disk. These profiles are repre-

sented by dotted lines in the images. Pixel standard deviations

in these plots are expressed in terms of a percentage of the back-

ground ellipse intensity. If one included error bars on these plots,

the error bars would be smaller than the plot markers. There-

fore we have eliminated the error bars for clarity. For conven-

tional regularization, the standard deviation estimate is nearly

uniform. FBP and PULS generally have the highest standard
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Fig. 10. Sample standard deviation images and profiles. (a) Filtered backprojection (+). (b) Penalized unweighted least-squares PULS (r). (c) PLE with
conventional regularization (�). (d) PLE with certainty-based penalty (�). (e) PLE with proposed penalty (}). (f) PLE with CNLLS penalty ( ).

deviation and the certainty-based penalty have the lowest stan-

dard deviation. Not only do FBP and PULS share similar res-

olution properties, but also similar noise properties. The close

agreement in standard deviation between the proposed method

and the CNLLS penalty further justifies our computationally ef-

ficient design technique.

At first glance, it appears that uniform resolution properties

come at the price of a variance increase as compared with the

certainty-based penalty. However, the certainty-based penalty

and the proposed penalty have different resolution properties.

The certainty-based reconstruction often has a greater max-

imum diameter of the local PSF’s (compare Figs. 4 and 6). This

causes increased smoothing, yielding a reconstruction with

lower variance.

We would like to produce a resolution-noise curve comparing

the relative performance of these two methods over a range of

target resolutions, but this is difficult because they have different

resolution properties. Using the angularly averaged FWHM as

a resolution metric (cf. [4]) unfairly handicaps estimators with

isotropic resolution properties. Estimators with anisotropic re-

sponses can reduce noise by smoothing “optimally” in each di-

rection while maintaining the same average FWHM as an es-

timator with isotropic responses. Rather than creating resolu-

tion-noise curves where each point on the curve corresponds

to a single resolution value and a single standard deviation, we

created banded “curves” as follows. For the ordinate, we used

the sample standard deviations of pixel values in images recon-

structed from 400 noisy sinogram realizations, for each of sev-

eral target spatial resolutions. For each target resolution we also

computed the local PSF and found the smallest and largest diam-

eters of its half-maximum contour. We specified the abscissae in

the banded plot as the interval between the minimum and max-

imum diameters. For each pixel location and target resolution,

these plots describe the (single) pixel standard deviation value as

well as the range of spatial resolutions spanned by the local PSF.

A method with isotropic resolution properties would appear as

a single line in such plots, whereas a method with a highly

anisotropic response appears as a thick band. These tradeoff

curves were calculated for the four pixels positions shown in

Fig. 2.

Curves for the conventional and proposed penalties are shown

in Fig. 11. The lighter band with “ ” symbols on the border

represents the resolution/noise tradeoff curve for the proposed

regularization, while the darker band with “ ” symbols on the

border is the curve for reconstruction with conventional regular-

ization. (The light band partially obscures the dark band, how-

ever the borders are marked by symbols and lines so that the

degree of overlap is visible.)

We also produced a banded resolution/noise tradeoff plot

using the certainty-based regularization of [4]. Since the

certainty-based technique produced a curve nearly identical

to the conventional regularization, we have omitted the plot.

Similar behavior was observed in [4] using a mean FWHM

resolution criterion. Essentially this means each pixel simply

moves up or down its resolution/noise curve to the specified

resolution. This is another indication that the certainty-based

method does not yield isotropic resolution properties. While

the average FWHM resolution may be improved, the PSF’s are

still anisotropic yielding a wide resolution band in our banded

resolution/noise tradeoff curves.

In Fig. 11 the banded curves for the proposed penalty span a

small resolution range (i.e., the curve is thin horizontally), in-
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Fig. 11. Resolution/noise tradeoff for penalized-likelihood emission image
reconstruction with conventional (�/dark) and proposed penalties (+/light).

dicating isotropic smoothing properties relative to the conven-

tional penalty. If our design were ideal, minimum and maximum

FWHM resolution would be identical and we would have a line

instead of a band. Note that the proposed penalty band lies inside

the conventional penalty band. If the proposed penalty band laid

above the conventional penalty band over the same resolution

interval, then the proposed penalty would arguably have worse

noise properties. The proposed penalty band generally lies in the

center of the conventional penalty band. However, this is not the

case for the pixel (45, 33) in the cold disk. Note that the PSF for

the conventional penalty at this pixel is especially asymmetric

(see Fig. 3) having the largest difference between the min and

max FWHM resolutions. If this PSF yields an “optimal” kind

of smoothing (with its predominantly vertical orientation), it is

logical that an isotropic response would decrease the variance

little with additional horizontal smoothing (note that max reso-

lution for the conventional PSF is very close to the 4.0 target).

Using this rationale the proposed penalty bands for the other

pixel locations lie roughly in the middle of the conventional

penalty’s band since the PSF’s for these points are less asym-

metric (with the max resolution greater than 4.0 and min less

than 4.0 pixels). The isotropic response reduces the max res-

olution and increases the min resolution as compared with the

conventional PSF. The “optimal” smoothing of the conventional

PSF is arguably not so directionally dependent in this case and

an isotropic response can provide roughly the same variance.

While these two methods have different resolution properties, it

appears that our penalty design has not adversely affected the

noise properties of the estimator.

It is difficult to globally compare the proposed penalty with

the conventional and certainty-based methods for an entire

image reconstruction because they possess different resolution

Fig. 12. Histogram showing the distribution of the ratio of the pixel standard
deviation using filtered backprojection (� ) to the pixel standard deviation
using a PLE with the proposed regularization (� ).

properties for every pixel. On the other hand, FBP and the

proposed penalty both yield nearly the same PSF’s, so a

comparison seems more appropriate. Since these methods have

nearly the same resolution properties, we can fairly identify

which provides better global noise properties. Note, particularly

in the vertical profile in Fig. 10, that reconstructions based on

the proposed penalty have lower variance than FBP.

There are a few points in Fig. 10 where the standard deviation

estimate is slightly greater for the proposed penalty. To illustrate

the relative global noise properties of FBP and the PLE with the

proposed regularization, we generated a histogram of the rel-

ative variance. For each pixel in the object, we calculated the

ratio of the sample standard deviation at that pixel using filtered

backprojection ( ) to the sample standard deviation at that

pixel using the PLE with the proposed regularization ( ). For

pixels where is greater than one, filtered backpro-

jection has higher standard deviation. This histogram is shown

in Fig. 12. The vertical dashed line indicates the position where

this ratio equals one. For nearly every pixel the PLE with the

proposed regularization produces lower variance estimates and,

for those pixels that have higher variances the difference is only

slight. More than 50% of the pixels have over a 20% reduction

in reconstructed pixel standard deviation.

In addition to the variance investigation, we present a corre-

lation investigation. By specifying the desired resolution prop-

erties of PULS, do we also inherit the correlation properties? To

address this issue we have included a set of typical correlation

maps in Fig. 13 for FBP, PULS, and the PLE’s with conven-

tional, certainty-based, and proposed penalties. These maps rep-

resent the absolute value of the correlation between each pixel

and pixel (65, 49). FBP and PULS have nearly identical correla-

tion maps (particularly inside the object). The PLE’s with con-

ventional and certainty-based penalties have similar correlation

maps, but are noticeably different due to the different resolu-

tions. The proposed method is shown in Fig. 13(e). The struc-

ture of the correlation immediately surrounding (65, 49) is quite

similar to FBP and PULS, having lost the nearly isotropic effect

of the other PLE’s. This behavior is somewhat counterintuitive

since PLE’s usually have much narrower correlation sidelobes
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Fig. 13. Sample absolute correlation maps shown for pixel (65, 49). (a) Filtered backprojection (FBP). (b) Penalized unweighted least-squares (PULS). (c) PLE
with conventional regularization. (d) PLE with certainty-based penalty. (e) PLE with proposed penalty.

Fig. 14. Digital thorax phantom used for reconstruction of different
regularizations: (a) is the emission image and (b) is the transmission image.

than FBP and PULS. Perhaps such correlation properties are in-

extricably tied to resolution uniformity. Further investigation is

required.

VI. THORAX PHANTOM RESULTS

In the previous section, we investigated our proposed regu-

larization technique using quantitative measures of noise and

resolution. In this section, we demonstrate the qualitative im-

provement using our proposed regularization technique through

reconstruction of a noiseless thorax phantom. Both transmis-

sion and emission images for the digital phantom are shown in

Fig. 14. The phantom is 128 64 and has 0.42 cm square pixels.

Relative emission intensities for the lungs, spine, and heart are

0.4, 0.0, and 3.0, respectively, with the background soft tissue

having a relative intensity of 2. In addition, there are four round

tumors with a relative intensity of 4. These simulated tumors

are radially symmetric, neglecting discretization effects. In the

transmission image, the attenuation coefficient of the lungs is

0.001/mm, the spine is 0.016/mm, and the remaining soft tissue

is 0.0096/mm. The PET system model includes 160 radial bins

and 192 angles space uniformly over 180 , with 3.375-mm strip

integrals and 3.375-mm center-to-center spacing.

We reconstructed the noiseless emission measurements using

FBP, PULS, and penalized weighted least-squares (PWLS) es-

timators with the conventional, certainty-based, and proposed

penalties. All statistical methods enforced nonnegativity of the

image and negatives in the image reconstructed via FBP were

set to zero. All methods used a target FWHM resolution of 3.0

pixels (1.25 cm). For PULS and PWLS with conventional reg-

ularization, the penalties were chosen so that corresponds

to the shift-invariant first-order penalty with kernel as in (5).

The proposed penalty uses the -independent design (26) with

second-order bases, and the same target as PULS.

The reconstructions using these methods are presented in

Fig. 15. The FBP reconstruction in Fig. 15(a) has uniform

resolution properties. This is evident from the uniformly

smooth edges and radially symmetric tumors. Similarly, the

PULS reconstruction in Fig. 15(b) shows the expected nearly

identical results. (Recall the nearly identical PSF’s of FBP and

PULS in Section V.) The reconstruction using conventional

regularization is shown in Fig. 15(c). There are distortions

of the four round tumors (particularly in the lungs) in this

reconstruction. The tumors are stretched vertically and appear

elliptical. Another indication of resolution nonuniformity is

evident at the outer boundaries of the arms. These boundaries

are sharper than those in FBP and PULS. The reconstruc-

tion with certainty-based penalty in Fig. 15(d) shows some

improvement. Most notably, the outer edges of the arms are

smoothed in a more uniform fashion. However, the tumors are

still smoothed preferentially in the vertical direction. Fig. 15(d)

shows the reconstruction with our proposed penalty. The

resolution uniformity appears much improved over the other

PWLS methods. The tumors appear nearly radially symmetric

and the edges appear much more uniformly smoothed.

VII. DISCUSSION

Conventional space-invariant regularization methods for

penalized-likelihood image reconstruction produce images

with space-variant resolution properties. Although the cer-

tainty-based method of [4] attempts to provide more uniform

resolution, as we have seen in our investigations, that method

does not provide truly isotropic resolution properties.

We have presented a new method for designing a shift-variant

penalty function that attempts to provide uniform resolution

properties. The proposed method is motivated by a least-squares

fitting of a parameterized local impulse response to a desired

response . We have developed fast methods to calculate this

penalty for an idealized PET system whose geometric response

is shift-invariant (while including ray-dependent attenuation

and detector effects). This method yields nearly space-invariant

and nearly symmetric local point spread functions at FWHM
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Fig. 15. Reconstruction of thorax phantom data using (a) filtered backprojection; (b) penalized unweighted least-squares; (c) PWLS with conventional
regularization; (d) PWLS with certainty-based penalty; and (e) PWLS with the proposed regularization scheme.

resolutions very close to specified target resolutions. Addition-

ally, we applied this novel regularization in the reconstruction

of simulated thorax phantom data and demonstrated increased

resolution uniformity.

Providing a regularization scheme that yields uniform reso-

lution properties makes the selection of the regularization pa-

rameter ( ) more intuitive. One may simply specify the desired

global resolution of the reconstructed image in . Additionally,

creating nearly the same resolution properties in both the sta-

tistical (PLE) and traditional (FBP) reconstruction techniques

provides a fair ground for comparing the noise properties of the

two methods. As expected, we observed that by using a likeli-

hood-based estimator and taking the noise model into account,

one can reduce estimator variance.

While one may arguably desire space-variant resolution prop-

erties, one would most likely want to be able to control regional

resolution properties, while maintaining radially symmetric re-

sponses. Our proposed methods can be modified to provide such

control, allowing for predictable and intuitive specification of

resolution properties in image reconstruction. Recall from (4),

one could choose to be a shift-variant set of desired local im-

pulse responses. Generally, such a choice of , will increase

computation time. (However, one could use the technique pre-

sented in the Appendix and simply specify a shift-variant set of

values.)

As demonstrated in Fig. 6, the proposed second-order

penalty still yields slight asymmetries in the point spread

functions. Similarly, in Fig. 15(e), there are slight resolution

nonuniformities evident in the reconstruction. In particular,

the edges of the phantom have subtle smoothing differences

between PWLS with the proposed penalty, and the FBP and

PULS reconstructions in Fig. 15(a) and (b) (especially near

the arms). The mean absolute deviation study summarized in

Table II also indicates increased nonuniformity at the edges

for the proposed design. There are many possible solutions

that merit future investigation. The nonnegativity constraint

on may be too strong a condition. (Recall this is a suffi-

cient condition for nonnegativity of .) This constraint could

be relaxed providing increase design freedom, yet still main-

taining a nonnegative definite and a concave objective.

One may also achieve slightly better resolution uniformity at

the expense of additional computation by using higher-order

neighborhoods. Additionally, choices of other than (24)

may require larger neighborhoods to obtain good fits to the

desired response.

With additional improvements, the question of noise perfor-

mance may arise. If the resolution properties are truly identical,

does penalized-likelihood still outperform FBP? The variance

improvements we have seen with our proposed method over

FBP are marginal in some regions. As resolution properties are

matched exactly will the advantages disappear? If so, does this

hold for shift-variant systems as well?

The correlation images for our proposed penalty appear very

similar to FBP and PULS. It appears that uniform resolution

may come at the cost of wider correlation sidelobes. Further in-

vestigation of the tradeoffs between resolution, noise, and cor-

relation is required for both space-invariant and space-variant

systems.

The design given in (14) has the advantage of being able

to provide more uniform resolution in systems even when the

inherent system response is shift-variant (e.g., SPECT). How-

ever, there is no computationally efficient method for computing

these roughness penalties yielding uniform resolution properties

for systems where is space-variant. Therefore, the ideas

used in the practical implementation presented here need to be

extended to shift-variant tomographic systems. Additionally, the

methods presented here are for 2-D reconstruction. We also plan

to investigate 3D penalties for resolution uniformity in volu-

metric reconstructions [22].

APPENDIX

SIMPLIFIED PENALTY DESIGN FOR A SPECIFIC CLASS OF

DESIRED RESPONSES

In the design given by (14)–(16), for every desired response

one must recompute a new penalty matrix . For example,

one might want to perform reconstructions with a set of desired

responses with different FWHM resolutions. Each resolution re-

quires a separate calculation, much of which may be precom-

puted as in Section IV. For further simplification, in this Ap-
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pendix we present a specific class of desired impulse responses

that may be specified which require only a single penalty matrix

computation.
As mentioned below (2), for traditional space-invariant penal-

ties, the terms in (2) include the regularization parameter
, which controls the mean global resolution. For shift-invariant

penalties where is a simple multiplicative factor we may write
, where specifies the relative penalty strength be-

tween pixel pairs and controls the mean global resolution.
Therefore it is simple to generate new for different desired
resolutions. (One does not have to recompute .)

Just as the conventional shift-invariant penalty is a simple
function of , we would like to design the penalty matrix
as a product of a user-selected and a -independent , i.e.,

, yet still yields uniform resolution properties. In terms
of our parameterization of , we would like factorable coeffi-
cients such that . Making this substitution into (14)
yields

(22)

The penalty matrix is completely specified by .
However, the minimization in (22) depends on . We eliminate
this dependence by an particular choice of the target frequency
response and the weighting in (15) and (16).

Let us consider the idealized PET system where (17) is an
appropriate system matrix factorization. In this case, the local
impulse response of an unweighted least-squares estimator with
penalty matrix and with ’s are all unity, is

(23)

If is chosen to be a space-invariant penalty, the response
is approximately independent of the choice of since is
a nearly shift-invariant operator. That is, is nearly the same
(with appropriate shifts) for all . This particular choice of
has a form very similar to the local impulse response in (3) and
has resolution controlled by the parameter .

Using the simplifications discussed above (9), we express the
frequency response of (23) as

(24)

Similarly, we may write

(25)

For the particular choice (23) of , the denominators of (24)

and (25) are identical. Additionally, is in the numerator of (25)

and not in the numerator of (24). If we choose a least-squares

weighting of the denominators

of (24) and (25) disappear in (15) and (16), and we can rewrite

the penalty design as

(26)

The design (26) is independent of , as desired.

Once we have calculated the parameters using (26),

we construct the penalty matrix using (7) with .

Since only the symmetric component of affects the penalty,

we use , which requires less memory. This has been

designed to provide global isotropic resolution properties and,

because of the least-squares weighting leading to (26),

is independent of the choice of the regularization parameter .

Therefore, once is calculated one may specify a desired

global resolution through . The penalty matrix is given by the

simple relation . (A method relating to the

FWHM resolution is discussed in [5].)

The computational simplifications discussed in Section IV

can also be applied to (26).
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