
Citation: Long, L.; Lang, J.

Regularization for Unsupervised

Learning of Optical Flow. Sensors

2023, 23, 4080. https://doi.org/

10.3390/s23084080

Academic Editors: Dongsheng Zhang

and Zhilong Su

Received: 10 March 2023

Revised: 13 April 2023

Accepted: 14 April 2023

Published: 18 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Regularization for Unsupervised Learning of Optical Flow
Libo Long * and Jochen Lang *

Faculty of Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
* Correspondence: llong014@uottawa.ca (L.L.); jlang@uottawa.ca (J.L.)

Abstract: Regularization is an important technique for training deep neural networks. In this paper,
we propose a novel shared-weight teacher–student strategy and a content-aware regularization
(CAR) module. Based on a tiny, learnable, content-aware mask, CAR is randomly applied to some
channels in the convolutional layers during training to be able to guide predictions in a shared-weight
teacher–student strategy. CAR prevents motion estimation methods in unsupervised learning from
co-adaptation. Extensive experiments on optical flow and scene flow estimation show that our
method significantly improves on the performance of the original networks and surpasses other
popular regularization methods. The method also surpasses all variants with similar architectures
and the supervised PWC-Net on MPI-Sintel and on KITTI. Our method shows strong cross-dataset
generalization, i.e., our method solely trained on MPI-Sintel outperforms a similarly trained super-
vised PWC-Net by 27.9% and 32.9% on KITTI, respectively. Our method uses fewer parameters and
less computation, and has faster inference times than the original PWC-Net.
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1. Introduction

Estimating optical flow, which is the apparent motion of objects in a scene, is a basic
task in computer vision that has many applications [1–7]. In recent years, convolutional
neural networks (CNNs) [8–10] have been used to learn optical flow from data, and they
have shown better performance and efficiency than traditional methods based on varia-
tional models [11–14]. However, learning optical flow from data poses some challenges,
depending on the type of data and the learning paradigm. In this paper, we focus on the
unsupervised learning of optical flow from real images without ground-truth annotations.
We review the existing methods and challenges in this area, and propose a novel approach
to improve the accuracy and robustness of optical flow estimation.

To cope with the difficulties of the unsupervised learning of optical flow, previous
methods have proposed various techniques to reduce the errors caused by occlusion,
illumination changes, textureless regions, and motion boundaries [15–21]. However, these
techniques are often specific to certain types of errors and may introduce noise or complexity
to the network. In this paper, we propose a different approach that does not rely on these
error-specific techniques, but instead uses a general regularization strategy in a novel
teacher–student framework.

The teacher–student framework is a common strategy for unsupervised learning,
where a teacher network provides guidance to a student network based on some learned
representation. However, a limitation of this strategy is that the teacher and student
networks do not improve together during the training process. If the student network
learns a better representation than the teacher network, the guidance from the teacher
network becomes less effective. Some methods have tried to address this issue by using a
co-teaching strategy [22,23], where two networks teach each other iteratively, but this comes
at the cost of training two separate networks. In this paper, we introduce a novel shared-
weight teacher–student strategy, where the teacher and student networks share the same
network weights but differ in the use of an additional regularization module. The network
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with regularization acts as the teacher, and the network without regularization acts as the
student. In this way, both networks are updated simultaneously via backpropagation and
they benefit from each other’s improvements.

Another aspect that we investigate in this paper is the generalization ability of optical
flow networks, which is often limited in unsupervised learning methods. We hypothe-
size that regularization methods can enhance the generalization ability of unsupervised
optical flow networks, as they do for image classification and semantic segmentation
networks [24,25]. We test different regularization methods in our teacher–student learning
strategy and show that they have some positive effects on the performance. However, we
also discover that our novel content-aware regularization (CAR) module improves the
generalization ability more than existing methods.

The CAR module is a simple but effective way to enhance and diminish the features
of the network randomly during training in the teacher model, and then remove it during
testing. The CAR module works as follows: given an input feature x, it splits x into
k subsets, randomly selects one subset, and computes residuals only from that subset.
The CAR module is content-aware because it learns a convolutional layer based on the
features without regularization. We argue that this idea can prevent the co-adaptation of
channels and help the network learn more discriminative features in each channel. As a
result, the shared-weight network improves for both the teacher and student models.

The proposed CAR module has several advantages: it has a low memory footprint, it
supports real-time computation and end-to-end training, and it can be easily integrated into
different tasks and networks. We implement CAR in a modified version of PWC-Net [26],
called PWC-Lite [27], which is a small unsupervised optical flow network. We also extend
our method to scene flow estimation, which is a more challenging task that involves the
estimation of both optical flow and depth. The experimental results show that our method
significantly improves on the original PWC-Net model without any additional space
and time costs during inference. Our method solely trained on MPI-Sintel outperforms
supervised PWC-Net by 27.9% and 32.9% on KITTI, respectively. To summarize, our main
contributions are as follows:

• We propose a novel and effective teacher–student unsupervised learning strategy for
optical flow and scene flow estimation, where the teacher and student networks share
the same weights but differ in the use of a content-aware regularization module.

• We experimentally show that a PWC-Net model trained with our unsupervised frame-
work outperforms all other unsupervised PWC-Net variants on standard benchmarks.
The multi-frame version surpasses supervised PWC-Net with lower computational
costs and using a smaller model.

• A PWC-Net model trained with our method shows superior cross-dataset generaliza-
tion compared to supervised PWC-Net and unsupervised ARFlow.

2. Related Work
2.1. Supervised Optical Flow Methods

Supervised methods learn optical flow based on ground-truth. FlowNet [28] is the
first end-to-end convolutional optical flow network. Large displacements are estimated
in a coarse-to-fine process by SpyNet [9]. PWC-Net [26] and LiteFlowNet [10] proposed
a feature pyramid, warping, and cost volume architecture with many follow-ups [29–34].
RAFT [35] improved the estimation of flow using a 4D pixel-to-pixel correlation volume
and an iterative refinement network, achieving state-of-the-art performance. However,
these methods heavily rely on large scale synthetic datasets such as FlyingThings3D and
expensive ground-truth labels. In this paper, we focus on unsupervised learning, which
does not require ground-truth labels.

2.2. Unsupervised Optical Flow Methods

Learning optical flow without ground-truth labels makes basic assumptions regarding
brightness constancy and spatial smoothness [36]. In unsupervised learning, the photo-
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metric loss calculates the difference between the first image and the warped second image
based on the predicted flow. Different strategies were proposed to improve accuracy, e.g.,
via occlusion handling [15,16], a multi-frame formulation [37], data distillation [38–40], the
use of the epipolar constraint [41], depth constraints [19–21,42], and data augmentation [27].
UFlow [43] evaluates and integrates multiple constraints into a framework. In UPFlow [18]
a pyramid distillation loss is proposed for unsupervised learning achieving state-of-the-art
performance. MDFlow [44] uses PWC-Net and RAFT in a student–teacher configuration.
Marsal et al. [45] propose a brightness correction network that calculates a correction map
based on the reference image, the flow-warped second image, the current flow estimate,
and an occlusion map, demonstrating an improvement in the unsupervised training of
various networks including RAFT. SMURF [46] has used RAFT as a backbone network
and guides the network using full-resolution multi-frame self-supervision, which offers
impressive accuracy. However, this framework is extremely expensive. For each dataset,
SMURF pre-training takes 1 day to converge on 8 GPUs. Then, Stone et al. generate labels
by training separate tiny models for all images (i.e., ≈2000 models for MPI-Sintel). The tiny
models are trained with full-resolution images, which takes an extremely long time if
trained on a single machine. Finally, the network is fine-tuned with a combination of an
unsupervised and a self-supervised loss. Because an optical flow network acts typically
as a fundamental building block in high-level applications, our goal is to support low
memory, real-time computing and end-to-end training. We conduct experiments on a small
PWC-Net variant, PWC-Lite [27], and we do not require an elaborate and resource-intensive
training strategy.

2.3. Regularization in CNNs

To increase the generalization and to prevent the CNN layers from co-adapting,
many regularization techniques have been proposed, such as data augmentation [47]
and dropout [48,49].

Dropout is a popular regularization technique in deep neural networks. Many re-
searchers have proposed variants of dropout for CNNs. SpatialDropout [50] uses dropout
across entire features maps. DropBlock [24] removes part of the semantic information by
randomly dropping a square region of the feature map. StochasticDepth [51] randomly
drops a subset of layers during training while employing the full network when testing.
Recently, DropCluster [52] finds clusters of correlated features in outputs of convolutional
layers, then it randomly drops the clusters during training. However, in experimental
evaluations, those methods are shown to be effective for the classification problem. In our
observation, in optical flow, and indeed, in most pixel matching tasks, dropout seems to be
avoided; at least, we are not aware of its successful application.

Data augmentation is widely used in CNN methods [53,54] to improve training.
FlowNet2 [55] proposed the first systematic data augmentation scheme for an end-to-
end optical flow network. ScopeFlow [56] put forward effective data augmentation by
dynamically increasing the cropping rate during training. Recently, ARFlow [27] has used
the prediction of flow for the original images to guide the flow for augmented images by
transforming the original prediction.

2.4. Teaching Strategy

The unsupervised learning of optical flow has been an active research area in re-
cent years. Many methods have adopted the teacher–student strategy to improve the
performance and generalization of unsupervised networks. SelFlow [39] proposed a self-
supervised learning framework that alternates between a teacher model and a student
model. The teacher model is trained with a self-consistency loss that measures the con-
sistency between the forward and backward flows. The student model is trained with a
self-distillation loss that minimizes the difference between the teacher and student predic-
tions. ARFlow [27] introduced an adaptive robust loss function that adapts to different
regions of the image based on the teacher’s confidence. The teacher model is trained
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with a photometric loss and a smoothness loss, while the student model is trained with an
adaptive robust loss and a distillation loss. MDFlow [44] used multiple teacher models with
different levels of difficulty to guide the student model. The difficulty level is determined
by the image quality and the motion magnitude. The student model is trained with a
weighted combination of losses from different teachers. Self-Guidance [57] improved the
generalization of deep neural networks via knowledge distillation. The teacher model is
trained with a self-guidance loss that encourages the network to learn from its own predic-
tions on unlabeled data. The student model is trained with a distillation loss that transfers
the knowledge from the teacher to the student. Our method differs from these methods in
several aspects. First, we use a shared-weight network for both the teacher and student
models, which reduces the memory and computational costs and enables the simultaneous
improvement of both models. Second, we propose a content-aware regularization module
that randomly enhances and diminishes partial features during training in the teacher
model. This module helps to break the co-adaptation between channels and to learn more
discriminative features for optical flow estimation. Third, we demonstrate that our method
can be easily extended to scene flow estimation by adding a depth estimation branch and
applying our regularization module to both branches.

3. Methods
3.1. Network Structure

Given a pair of RGB images It,It+1, the estimation of optical flow can be formulated as:

f (p) = A(It, It+1, θ), (1)

where f (p) is the resulting flow per pixel p, A is the estimation network, and θ are the
learnable parameters of the network.

Flow estimation networks commonly use an encoder–decoder structure. We use a
PWC-Net variant (unsupervised) as the backbone [27,39]. The optical flow is estimated in
a coarse-to-fine manner. The network contains a shared-weight Siamese feature pyramid
which extracts feature maps at different scales from images. At level l, the feature map of the
second image It+1 is warped by the predicted flow f (p)l+1 of the (previous) coarser level.
Then, the cost volume V l is calculated using correlation, which represents the matching
costs of pixels between images. The decoder module with shared weights at all levels
takes the feature map of It, the upsampled flow f (p)l+1

↑ , and the cost volume V l as inputs

and predicts the optical flow f (p)l of level l. Finally, the upsampled optical flow f (p)l
↑

is input to the next finer level. Figure 1 shows the architecture of our method. We use
PWC-Lite [27,39] as a backbone, with some modifications.

Previous works [58–60] use deformable convolution to deal with the problem of small
objects disappearing in low-resolution feature maps. Inspired by that, we use a deformable
modulation cost volume (DMCV) to recover the distortion and artifacts of small objects
using a dense connectivity motion extractor based on deformable convolution (see Figure 1):

yl
t = Concat([x, DC(x)]) (2)

V l = DC(C(yl
t, W(yl

t+1))), (3)

where x and y indicate the feature and dense feature map, DC is the deformable convo-
lutional layer, and C is the correlation operation. The output flow can be formulated as:

cvl = Concat([conv(xl
t), f (p)l+1

↑ , V l ]), (4)

f (p)l = E(cvl), (5)

where E presents the optical flow decoder module and conv is a convolution layer.
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We optionally extend our method into a three frames network by adding the extra
backwards flow from the next frame and its corresponding cost volume as sketched in
Figure 2. We follow the same multi-frame architecture as ARflow [27], except we added
our DMCV and CAR module.

Figure 1. Overview of our unsupervised optical flow method with content-aware regularization
(CAR). We present two levels of the pipeline (DMCV is deformable modulation cost volume;
see Section 3.1).

Figure 2. Level l of our multi-frame network (see Figure 1 for definitions).

3.2. Content-Aware Regularization Module

The main idea of our method is to use only one network, but to use it twice, once
as the teacher network with the CAR module and once without the CAR module as the
student network in our shared-weight teacher–student strategy. Only the teacher network
uses our CAR module, which we introduce next. Given a feature map, e ∈ RN×D, where
N = W × H. W and H refer to the width and height of the feature map, respectively, and D
indicates the depth of the feature map. We first split e into k subsets v1, . . . , vk by its depth
dimension, where vi ∈ RN×D/k is the i-th subset of the feature map. Then, we select a
subset j randomly and compute the new feature map via:

v1, . . . , vk = Split(e) (6)

j = Random(1, k), (7)

M = Conv(vj) (8)

ṽj = vj(1 + M), (9)

ẽ = concat([v1, . . . , ṽj, . . . , vk]) (10)

where M is a learnable content-mask which is applied to the j-th subset of the feature
map x. Since M is randomly applied to only a subset of e, it stops the channels from
co-adapting. Random(1, k) in Equation (7) produces a uniform random number in the
range [1, k] (see Figure 3).
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Figure 3. CAR block. The feature map is split into the k subset. We randomly choose one subset (red
in the graph) to enhance using a residual convolutional module.

3.3. Shared-Weight Teacher–Student Strategy

During training, we feed each image pair It, It+1 through the network twice, once for
teaching by invoking the CAR module, and once without, for the student. The decoder
for the student is shown in the upper part of Figure 4. Given an input cvl as defined in
Equation (4), the optical flow decoder module generates features ei (i is the index of the
hidden layer) using densely connected convolutions in each decoder layer i, which can be
formulated (dropping the layer superscript l for clarity) as

e′i = CR(ei−1) (11)

ei = Concat(e′i , ei−1), (12)

where CR is a convolutional layer, followed by a LeakyReLu activation function. This
decoder structure is shown in the upper part of Figure 4. The lower part of Figure 4 shows
the structure of the decoder for teaching.

ei = Concat(CAR(e′i), ei−1) (13)

where function CAR( ) indicates Equations (6)–(10). The architecture allows us to choose
the number of affected channels by selecting k.

Figure 4. Flow decoder during prediction (top) and with CAR during training (bottom).

The CAR module is randomly applied to a subset of features, breaking the co-adaption
between channels. In this strategy, the networks for student and teacher are the same except
for the CAR module as they share weights, and the common network is trained together
instead of sequentially. During the training, if the student learns a better representation
guided by the teacher, the teacher can also benefit because of shared-weight parameters.

We conduct an informal study on the generalization abilities of a PWC-Lite model
trained with CAR on Vimeo-90K [61]. To show how CAR improves on the performance,
we use a heatmap to visualize what regions CAR enhances and diminishes (see Figure 5).
The first column shows an overlay of the input images. The input images only contain
one moving object, which is the worker with a static background. The second column in
Figure 5 shows regions that are emphasized by the projection in CAR, and the third column
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shows regions that are diminished.The fourth column shows the estimated flow. We can
see that the projection in CAR emphasizes some dark background areas. On the other
hand, CAR diminishes some areas with large motions, preventing co-adaption for large
displacement. Co-adaption could otherwise potentially lead to incorrect results for regions
with small motions.

Figure 5. Visualization of CAR. The second column shows regions that are emphasized by the
projection in CAR (large positive values of M, see Equation (9)). The third column shows regions that
are diminished (large negative values of M), respectively. The fourth column shows the estimated
flow via our method. The result is from a generalization study on Vimeo-90K [61].

3.4. Regularization and Unsupervised Loss
3.4.1. Content-Aware Regularization

During training, the shared-weight teacher–student strategy forwards data through the
network twice, with and without invoking the CAR module. Then, we obtain two different
predicted flows, f r(p) (with CAR module) and f o(p) (without CAR module). As shown
in Figure 4, the flow decoders with and without the CAR module share the same layers,
except for the CAR module, which is turned on and off. Therefore, f r is different from f o.
We regularize the predicted flow by minimizing the difference of two forward passes, i.e.,

Lca = ∑
p

ψ( f r(p)− f o(p)), (14)

where ψ = (|x|+ ε)q is a robust function proposed in DDflow [38] with ε = 0.01 and q = 1.

3.4.2. Level Dropout as Regularization

In general, at each level l, our method predicts the flow f l based on the coarser-level
flow f l+1, but we also propose to use level dropout as regularization. We use the finest
flow as pseudo labels and supervise a level dropped flow. A similar idea can be found in
Uflow [43] but with the main difference being that we propose to also use a corresponding
extra regularization loss. Specifically, we predict the flow with the same data twice: First,
we randomly drop the calculation of an intermediate flow at pyramid level i, and instead
pass the resized flow f i+1 to the level i− 1. The resulting flow calculated with a dropped
level is written as f drop in the following. Second, we predict the flow f o by going through
all the levels of the pyramid from Levels 6 to 2. Let S( ) be the stop-gradient, and then the
loss function Lld can be written as

Lld = ∑
p

ψ(S( f o(p))− f drop(p)). (15)

In practice, we also use f r, i.e., the flow calculated with the CAR module turned on,
to guide f drop as a challenging case with a small probability, which is

Lrd = ∑
p

ψ(S( f r(p))− f drop(p)). (16)

The overall regularization loss is a combination of the above three loss functions
in Equations (14)–(16). Thus, our shared-weight teacher–student framework will have
multiple forward passes in one training step (see Figure 6). The overall loss is

Lcr = α(Lca, µ1, δ1) + α(Lld, µ2, δ2) + α(Lrd, µ3, δ3), (17)
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where α( ) randomly uses the loss in a training step with a fixed probability µi. In each
training step, we generate a uniform random number δi in [0,1].

α(Li, µi, δi) =

{
Li, if δi ≤ µi
0, Otherwise

}
(18)

3.4.3. Overall Unsupervised Loss

The overall unsupervised loss is then formulated as

Lall = Lph + wsm ∗ Lsm + wau ∗ Lau + wcr ∗ Lcr (19)

where Lph is the photometric loss, Lsm is the smoothness regularization loss [62], and Lau
is the augmentation regularization loss [27].(We use the same augmentation setting as
ARFlow.) In practice, we set wsm = 1, wau = 0.01, and wcr = 0.01.

Figure 6. Flow chart illustrating the teacher–student configurations used in our method (see
Section 3.4 for details).

4. Experiments
4.1. Implementation Details and the Use of Datasets

We conduct experiments on two commonly used optical flow benchmarks: MPI-
Sintel [63] and KITTI (including KITTI 2012 [64] and KITTI 2015 [3]). We follow the same
augmentation setting as in previous methods [27,38,39].

Our results on the MPI-Sintel benchmark protocol are obtained via pretraining on
KITTI and then fine-tuning on Sintel. We do not pretrain on Sintel raw. Sintel raw contains
the raw scenes for the benchmark, and hence, pretraining on Sintel raw may cause data
leakage into the test set. For the KITTI benchmark, we pretrain our network with the KITTI
raw dataset (we discard all scenes that contain images that appear in the optical flow KITTI
benchmarks) and finetune the network on the KITTI multi-view training dataset. This is
the same dataset configuration for KITTI, as used by previous works [27,38,39]. We also
implement our method in the related dense pixel matching task of unsupervised scene
flow estimation.

We implement our method with PyTorch [65]. For all training, we use the Adam
optimizer [66] with β1 = 0.9, β2 = 0.99. We first train our method for 1000 k : please check
if k is unit, if so, please add space before. iterations with a learning rate of 0.001 and a
batch size of 4, followed by a 400 k iteration with a learning rate of 0.005 and a batch size
of 1. We increase the crop resolution in the second stage for KITTI from (256, 832) in the
first 1000 k to (320, 1216) in the following 400 k. The total numbers of our model parameters
are 2.78 M (for two-frame) and 2.97 M (for multi-frame) during training. Since the CAR
module (0.12 M) is dropped after training, the final model in predicting the optical flow for
a pair of images with a resolution of (448, 1024) is even smaller than during training.
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4.2. Regularization Analysis

We have conducted experiments on the following popular regularization methods:
Dropout [50], SpatialDropout [50], and Dropblock [24], as well as our CAR module. We
train the network multiple times but change only the regularization method. We set the
dropout rate = 0.5, and add regularization into the flow decoder of the network. The results
are summarized in Table 1.

Table 1. End Point Errors (EPEs) of different regularization methods. bs indicates the block size
for Dropblock.

Experiment Sintel Clean Sintel Final

None 2.79 3.72
Dropout 2.83 3.77
DropBlock, bs = 1 2.81 3.73
DropBlock, bs = 3 2.77 3.75
DropBlock, bs = 7 2.76 3.72
SpatialDropout 2.74 3.69
CAR 2.70 3.63

We observe that Dropout and Dropblock with a small block size hurt the performance
of the network. We think the main reason for this is that the input of the network is a pair
of images and the random dropout of pixels misleads the network to mismatch dropout
pixels between the images (i.e., pixels with their features set to 0). SpatialDropout improves
the error. Different from these methods, our method learns the adaptive content mask for
both images and improves the error further.

4.3. Comparison to the State-of-the-Art

We first compare our method with PWC-Net variants reported on the MPI-Sintel
and KITTI benchmarks. Table 2 shows that our method improves on the performance,
and that it has lower errors than all other unsupervised PWC-Net methods. On MPI-
Sintel, we achieve an AEPE = 4.95 on the final pass which is a 6.9% improvement, and an
AEPE = 3.46 on the clean pass which is a 11.3% improvement. We achieve an AEPE = 1.2,
which is a 14.2% improvement on KITTI 2012, and Fl-all = 8.40%, which corresponds to a
5.7% improvement on KITTI 2015. We also report supervised methods based on PWC-Net
for comparison. Our method with 3 M parameters surpasses classic supervised methods,
e.g., PWC-Net with 8.7 M parameters and LiteFlowNet with 5.37 M parameters on the
benchmarks. Especially, our method is also comparable with some novel supervised meth-
ods such as IRR-PWC [30]. Our method even surpasses some of these supervised methods
on KITTI 2012 and on the Sintel Clean pass. Figure 7 shows some qualitative comparisons
between our method and previous state-of-the-art methods (For more comparisons, please
see Appendix A.3). Our method reduces errors in visual comparison to earlier methods.

We analyze the reasons for the performance improvements, using our method over
the comparators. First, our content-aware regularization module helps to break the co-
adaptation between channels and learns more discriminative features for optical flow and
scene flow estimation. Second, our shared-weight teacher–student strategy enables the
simultaneous improvement of both teacher and student models by sharing weights and
transferring knowledge. Third, our method benefits from a simple and efficient design that
does not require any extra parameters or computation during inference. Our method has
fewer parameters, less computation, and a faster inference time than the original PWC-
Net. However, as we have chosen to integrate our method into PWC-Lite, we also inherit
possible disadvantages, including failures to handle large motions well or errors close to
motion boundaries. In future work, we would like to see our method integrated in more
powerful optical flow networks, e.g., RAFT [35], but we also note that this can be expected
to lead to an increase in model size and computation time.
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Figure 7. Qualitative visual comparison of our method with UFlow [43] in KITTI 2015. (We did not
find the results of UPFlow on the KITTI website.) Red pixels indicate higher errors while blue pixels
indicate less errors. Our result is visually improved over the previous state-of-the-art. The green
rectangles highlight some obvious areas.

Table 2. MPI Sintel and KITTI official optical flow benchmark results with PWC-Net variants. We
report the EPE error (lower is better) to compare the performances for Sintel and KITTI 2012, and
the percentage of erroneous pixels F1 (%) error for KITTI 2015. We report on both supervised and
unsupervised methods. Missing entries (-) are for values that are not reported for the specific method
by the authors. ‡ MDFlow uses RAFT [35] as the student model. The results show that the two frames
and the multi-frame versions of our method outperform all unsupervised and even the original
supervised PWC-Net, and some other supervised variants.

Method Sintel Clean Sintel Final KITTI-12 KITTI-15
Train Test Train Test Train Test Train Test

PWC-Net [26] (1.70) 3.86 (2.21) 5.13 (1.45) 1.7 (2.16) 9.60%
IRR-PWC [30] (1.92) 3.84 (2.51) 4.58 – – (1.63) 7.65%
ScopeFlow [56] - 3.59 - 4.10 – - - 6.82%
VCN [34] (1.66) 2.81 (2.24) 4.40 – - (4.1) 6.30%
DICL [33] (1.11) 2.12 (1.60) 3.44 – - (3.6) 6.31%
MaskFlownet [32] (2.25) 2.52 (3.61) 4.17 (2.94) 1.1 - 6.11%

UnFlow-CSS [67] – – (7.91) 10.22 3.29 – 8.10 23.30%
OccAwareFlow † [15] (4.03) 7.95 (5.95) 9.15 3.55 4.2 8.88 31.2%
UnFlow [67] – 9.38 (7.91) 10.22 3.29 – 8.10 23.3%
DDFlow [38] (2.92) 6.18 (3.98) 7.40 2.35 3.0 5.72 14.29%
EpiFlow [41] (3.54) 7.00 (4.99) 8.51 (2.51) 3.4 (5.55) 16.95%
SelFlow † [39] (2.88) 6.56 (3.87) 6.57 1.69 2.2 4.84 14.19%
ARFlow [27] (2.79) 4.78 (3.87) 5.89 1.44 1.8 2.85 11.80%
ARFlow-MV † [27] (2.73) 4.49 (3.69) 5.67 1.26 1.5 3.46 11.79%
UFlow [43] (2.50) 5.21 (3.39) 6.50 1.68 1.9 2.71 11.13%
MDFlow ‡ [44] (2.17) 4.16 (3.14) 5.46 - - 2.45 8.91%
UPFlow [18] (2.33) 4.68 (2.67) 5.32 1.27 1.4 2.45 9.38%
CAR-Flow (our) (2.36) 3.69 (3.28) 5.21 1.16 1.3 2.34 9.09%
CAR-Flow-MV (our) † (2.25) 3.46 (3.23) 4.95 1.02 1.2 2.11 8.40%

† indicates that the method uses multiple (3) frames.

As can be seen from Table 3, we achieve better a performance than UPflow approx-
imately 8× faster, with about 4× less computation, because we apply our method to a
lightweight PWC-Net backbone. Our multi-frame version further improves the accuracy
in all benchmarks with less cost than UPFlow. Although the errors of our method are
higher than the ones of SMURF, our method leads to a much smaller model and far less
computation, and remarkably, is real-time on high-resolution images with competitive
accuracy. As discussed in Section 2.2, SMURF also has the serious drawback of being
extremely time- and memory-expensive in training, and hence, it is difficult to adapt to
new datasets.
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Table 3. Evaluation with state-of-the-art methods on MPI Sintel and the KITTI benchmark. Compu-
tational cost (FLOPs) and inference time are measured for Sintel images with 448 × 1024 resolution
(We tested the inference time on a single Tesla P100 GPU).

Method # FLOPs # Params
Inference Sintel KITTI

Time Clean Final 2012 2015

UPFlow [18] 198.27 G 3.49 M 271 ms 4.68 5.32 1.4 9.38%
SMURF † [46] 810.14 G 5.26 M 413 ms 3.15 4.18 - 6.38%
CAR-Flow 50.49 G 2.74 M 34 ms 3.69 5.21 1.3 9.09%
CAR-Flow-MV † 108.08 G 2.97 M 59 ms 3.46 4.95 1.2 8.40%

† indicates that the method uses multiple (3) frames.

4.4. Ablation Study

To evaluate the capability of each component of our pipeline, we conducted experi-
ments on the split training datasets of Sintel and KITTI with a small training schedule (300 k
iteration with batch size 4). The endpoint error (EPE) of overall pixels (ALL), non-occluded
pixels (NOC), and occluded pixels (OCC) are reported for evaluation.

Ablation of the main unsupervised components are reported in Table 4. The main
components are: Deformable modulation cost volume (DMCV), level dropout regular-
ization (LDR), and content-aware regularization (CAR). We also include augmentation
regularization loss (ARL) [27] to clarify any possible interactions between the modules in
our framework.

We start by only using the photometric loss and the smoothness loss to train the
network (see Equation (19)). Comparing the first and second row, we can see a significant
improvement with our CAR module. Then, we observe that DMCV, LDR, and ARL all
improve the network compared to the first row. Comparing all the combinations, we find
that all components improve the performance; the combination of ARL and CAR reduces all
errors, the accuracy in the occluded region can be improved by LDR, and the multi-frame
version can further improve the accuracy. We also analyzed the regularization rate of CAR
and LDR, and found that a CAR rate = 0.5 and LDR = 0.9 achieves the highest accuracy
(see the Appendix A.1 for details); we have kept this setting for all other training settings.

Table 4. Ablation study of the main components of our method. EPEs of indicated pixels are
reported. DMCV: deformable modulation cost volume. LDR: level dropout regularization. ARL:
augmentation regularization loss. CAR: content-aware regularization.

DMCV LDR ARL CAR
Sintel Clean Sintel Final

ALL NOC OCC ALL NOC OCC

2.92 1.53 22.14 3.87 2.46 26.24
X 2.74 1.32 20.92 3.75 2.31 23.90

X X 2.58 1.17 18.64 3.43 2.14 22.52
X X 2.53 1.15 18.46 3.51 2.03 22.43

X X 2.57 1.21 18.72 3.47 1.91 22.16
X X X 2.36 1.04 18.14 3.24 1.77 21.22

X X X 2.42 1.16 17.54 3.31 1.84 20.83
X X X 2.33 1.11 17.31 3.26 1.81 21.36
X X X X 2.25 1.01 16.27 3.07 1.62 20.12

X X X X † 2.13 0.99 16.12 2.83 1.55 19.70
† indicates that the method uses multiple (3) frames.

4.5. Cross-Dataset Generalization

To test the generalization ability of a model, we train it only on Sintel raw and final,
but evaluate it on the noisy real-world KITTI dataset. Table 5 reports the results of the
fully supervised PWC-Net, the unsupervised method ARFlow, and our method. PWC-Net
outperforms our method and ARFlow in Sintel which the model is trained on, but this
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performance does not generalize well to KITTI. Because of the CAR module, the model
trained with our unsupervised method generalizes much better. Note that neither of these
models have seen real-world images during training.

Table 5. Cross-dataset generalization. All methods are trained on Sintel, and they are evaluated on
KITTI 2012/2015 training data.

Method Sintel Clean Sintel Final KITTI 2012 KITTI 2015

PWC-Net (1.86) (2.31) 3.68 10.52%
ARFlow (2.79) (3.73) 3.06 9.04%
CAR-Flow (2.81) (3.73) 2.65 7.06%
CAR-Flow-MV † (2.22) (3.26) 2.23 5.97%

† indicates that the method uses multiple (3) frames.

4.6. CAR in Unsupervised Scene Flow Estimation

We extend our method to unsupervised scene flow estimation and implement our
CAR module and shared-weight teacher–student strategy in Self-Mono-SF. Self-Mono-
SF [68] is an unsupervised Scene Flow method which uses PWC-Net as a backbone. Table 6
reports the results of state-of-the-art unsupervised monocular scene flow methods on the
KITTI dataset. We follow the evaluation metric of the KITTI Scene Flow benchmark. D1-all
and D2-all are the percentages of stereo disparity outliers in the first frame and in the
second frame, respectively. F1-all is the percentage of optical flow outliers. SF1-all is the
percentage of scene flow outliers. Our method not only improves on the performance,
but also surpasses other unsupervised multi-task methods. We conclude that our method
helps with performance in the scene flow estimation task. We suspect that our method is
also likely to improve the accuracy in other related dense pixel matching tasks, but leaves
further investigations as future work.

Table 6. Evaluation on KITTI Scene Flow training. Our regularization method clearly reduces the
percentage of stereo disparity (D1-all and D2-all), optical flow (F1-all), and sceneflow (SF1-all) outliers
compared to its baseline, Self-Mono [68]. Other state-of-the-art multi-task approaches are listed
for comparison.

Method D1-all D2-all F1-all SF1-all

GeoNet [20] 49.54 58.17 37.83 71.32
EPC [69] 26.81 60.97 25.74 (>60.97)
EPC++ [70] 23.84 60.32 19.64 (>60.32)
Self-Mono-SF [68] 31.25 34.86 23.49 47.0
Self-Mono-SF-CAR (our) 29.24 32.49 21.34 43.57

5. Conclusions

In this paper, we have proposed a novel and effective teacher–student unsupervised
learning method for optical flow and scene flow networks. We introduced a content-aware
regularization module that randomly enhances and diminishes partial features during
training in the teacher model. We showed that our method significantly improves on the
performance and generalization of the original networks, and outperforms other popular
regularization methods. We also demonstrated that our method can be easily extended to
scene flow estimation by adding a depth estimation branch and applying our regularization
module to both branches. Our method achieves state-of-the-art results on optical flow
and scene flow benchmarks, and shows superior cross-dataset generalization compared to
supervised and unsupervised methods. Our method benefits from a simple and efficient
design that does not require any extra parameters or computations during inference. Our
method has implications for various applications that rely on accurate and robust optical
flow and scene flow estimation, such as video analysis, 3D reconstruction, autonomous
driving, and robotics.
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Appendix A

In Appendix A.1, we report an ablation study regarding the probability of invoking
the CAR module and LDR during training. In Appendix A.2, we provide the details
of the CAR module structure used during the ablation study of CAR. We also present
additional examples of the flow results of our method on KITTI-2015 [3] and Sintel [63]
in Appendix A.3.

Appendix A.1. Comparison of the Regularization Rate

We analyze the regularization rates of CAR and LDR. Table A1 shows the probability
for invoking CAR or LDR, i.e., a CAR rate = 0.1 means that in each training step, we have
a 10% chance to use CAR. Comparing all of the results, we observe that CAR and LDR
always help the performance. A CAR rate = 0.5 and LDR = 0.9 achieve the highest accuracy,
and we keep this setting for all other training.

Table A1. Different rates of CAR and LDR. Rate is the probability that CAR and LDR are invoked in
each training step.

Rate Sintel Clean Sintel Final KITTI-12 KITTI-15

C
A

R

0.2 2.31 3.24 1.24 2.42
0.5 2.23 3.09 1.17 2.24
0.7 2.25 3.04 1.16 2.28
0.9 2.29 3.13 1.21 2.37

LD
R

0.2 2.33 3.17 1.26 2.32
0.5 2.21 3.07 1.17 2.21
0.8 2.19 3.01 1.13 2.18
0.9 2.19 2.98 1.12 2.16

Appendix A.2. CAR Module Structure

Figure A1a,b shows the detailed implementation of the optical flow decoder network
with our CAR module (a two-frame network). In the figures, each layer shows first the
numbers of input channels, and last, the numbers of output channels. Our CAR module
randomly works on a subset of features; thus, we can use a smaller channel number and
the other channels of the features are not affected. The kernel size for the convolutional
layers is also given. We uniformly use 3× 3 kernels.
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(a) Flow Decoder in Teaching Mode. (b) Flow Decoder in Student Mode.

Figure A1. The optical flow decoder network. (a) shows flow decoder network in teaching mode with
the CAR module active during training. (b) shows optical flow decoder network in student mode
and during testing (without the CAR module). Except yellow and blue layers, green convolutional
layers are followed by a leaky ReLU activation function.

Appendix A.3. Additional Results

Figure A2 shows a visualization of the results of our CAR in comparison with
two further methods on Sintel and the state-of-the-art UPFlow [18] on KITTI 2015. Please
note that UPFlow on Sintel is compared with our method in the main paper. We can clearly
see that previous methods predict flow with noise around object boundaries while the
predictions of our method have less outliers, and hence, the flow field is smoother.
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Figure A2. Comparison of flow results on images of the Sintel benchmark. Our method leads to noti-
cably lower EPEs than ARFlow [27] and UFlow [43]. This is also visually noticable at flow boundaries.

Figure A3. Comparison of flow results on a KITTI-2015 test scene with previous state-of-the-art
UPFlow [18]. Our results show a reduced number of outliers, and hence, smoother results, which
lead to a large reduction in EPE.
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