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Abstract

Under mild assumptions on the kernel, we obtain the best known
error rates in a regularized learning scenario taking place in the cor-
responding reproducing kernel Hilbert space. The main novelty in the
analysis is a proof that one can use a regularization term that grows
significantly slower than the standard quadratic growth in the RKHS
norm.

1 Introduction

Let F be a family of functions from a probability space (Ω, µ) to R. A
classical problem of Learning Theory is the following: we set ν to be an
(unknown) probability measure on Ω×R whose marginal distribution on Ω
is µ. Given n independent samples (X1, Y1) . . . (Xn, Yn) ∈ Ω×R distributed
according to ν, our task is to find a function f̂ ∈ F such that

E(f̂(X1)− Y1)2 − inf
f∈F

E(f(X1)− Y1)2 (1.1)

is very small. In other words, we want to approximate the distribution ν
by a function from F as closely as possible. Specifically, we want to find a
method of choosing f̂ as a function of the sample (Xi, Yi)n

i=1 such that, with
high probability, (1.1) is smaller than a function of n that tends to zero as
n grows.
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A widely-used approach for solving this problem is to consider a function
f̂ ∈ F that minimizes the functional

n∑

i=1

(f(Xi)− Yi)2.

over all f ∈ F . Such a function is called an empirical minimizer and its
properties have been widely studied (see, for example [3]). It turns out
that the complexity and geometry of F play a large part in determining
whether (1.1) is small. Roughly speaking, if F is a small family of functions,
then (1.1) will be, with high probability, a rapidly decreasing function of n.

Of course, there is a disadvantage to having a small family of functions,
namely that inff∈F E(f(X1) − Y1)2 becomes larger as F becomes smaller.
This trade-off is known as the bias-variance problem. The expression (1.1)
is known as the sample error and inff∈F E(f(X1) − Y1)2 is called the ap-
proximation error.

One major issue that needs to be addressed when using the empirical
minimization algorithm is overfitting. Since all the information that one
has is on the behavior of the minimizer on the sample, there is no way
of distinguishing a “simple” minimizer from a more complicated one. The
regularized learning model is a method of solving the bias-variance problem
while addressing the overfitting problem. We take F to be a very large
function class (so that the approximation error is small) and consider a
function f̂ that minimizes the functional

n∑

i=1

(f(Xi)− Yi)2 + γn(f)

where γn(f) measures, in some sense, the “complexity” of the function of
f and, for a fixed f , γn → 0 as n → ∞. Thus, if two functions have the
same empirical behavior, the algorithm will choose the simpler function of
the two.

A common example of the regularized learning problem, and the situ-
ation we will be considering in this article is the case where the class of
functions is a Reproducing Kernel Hilbert Space (RKHS), defined below
- and which will be denoted throughout this article by H. All the error
bounds in this situation were restricted to a regularization term of the form
γn(f) = ηn‖f‖2

H , and typically the aim was to make ηn as small as pos-
sible. It was not believed that one can improve the power of ‖f‖H in the
regularization process. Doing just that is the main goal of this article.
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One can motivate the regularized learning model by looking at it as a
collection of empirical minimization problems. Indeed, let BH be the unit
ball of the space H and consider the empirical minimization problem in rBH

for some r > 0. As r increases, the approximation error for rBH decreases
and its sample error increases. We could achieve a small total error by
choosing the right value of r and performing empirical minimization in rBH .
The role of the regularization term γn(f) is to force the algorithm to choose
the right value of r for empirical minimization. We will explain later why
this motivation can be made rigorous, and that the regularization problem
may be solved by a solution to a hierarchy of minimization problems.

It should be clear from this motivation that the choice of γn is critical for
the success of the regularized learning model. There has been some signifi-
cant work done recently on finding explicit formulas for γn that provide low
error rates with high probability. Of particular importance are the results of
Caponetto and De Vito [6]; and Smale and Zhou [26], which use operator-
theoretic techniques to bound the error rate. The point of comparison for
our result will be that of Smale and Zhou: let TK : L2(Ω, µ) → L2(Ω, µ) be
the integral operator associated with the kernel K : Ω×Ω → R, defined by

(TKf)(x) =
∫

K(x, y)f(y) dy.

where Ω is a compact subset of Rd. It is well known that this is a compact,
positive, trace-class operator and that the RKHS is H = T

1/2
K L2 with the

inner product 〈
f, g

〉
H

=
〈
T
−1/2
K f, T

−1/2
K g

〉
2
.

Theorem 1.1 Fix θ > 0 and assume that the regression function E(Y |X)
belongs to the range of T θ

K . For any x > 0, define the regularization param-
eter by

γn(f) =





cx

(
‖T−θ

K E(Y |X)‖2
n

)1/(1+2θ)

‖f‖2
H , θ ≥ 1

2

cx√
n
‖f‖2

H , θ < 1
2 .

Then, with probability at least 1− exp(−x), the regularized minimizer satis-
fies

E(f̂(X)−Y )2− inf
f∈F

E(f(X)−Y 2) ≤





cx

(
‖T−θ

K E(Y |X)‖1/θ

n

)θ/(1+2θ)

, θ ≥ 1
2

cx

(
1+‖T−θ

K E(Y |X)‖
n

)θ/2

, θ < 1
2 .
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The approach we take is significantly different to that which has been
used before in this context. As we mentioned, our goal is to not only improve
the way the regularization term depends on the sample size n, but to explain
why a quadratic dependence on ‖f‖H is pessimistic and can be improved
considerably. The starting point of our analysis is the notion of isomorphic
coordinate projections, introduced in the context of Learning Theory in [3].

Suppose F is a family of functions for which the infimum inff∈F E(f(X)−
Y )2 is achieved; call the minimizer f∗ and define the excess loss function to
be, for any f ∈ F ,

Lf (X, Y ) = (f(X)− Y )2 − (f∗(X)− Y )2.

Denote by P the conditional expectation with respect to the sample:

PLf = E(Lf |X1, Y1, . . . , Xn, Yn)

and let PnLf =
∑n

i=1 Lf (Xi, Yi). One can show that there is some (small)
number ρn such that, with probability at least 1− e−x, every f ∈ F satisfies

1
2
PnLf − ρn ≤ PLf ≤ 2PnLf + ρn. (1.2)

This is a useful approach for bounding the error of the empirical minimizer.
Indeed, it is not hard to see that it implies

E(f̂(X)− Y )2 − inf
f∈F

E(f(X)− Y )2 = PLf̂ ≤ ρn.

It turns out that this “isomorphic coordinate projection” approach ap-
plies to regularized learning as well as to empirical minimization. The main
result in this direction is due to Bartlett [1] and implies that if every ball
rBH satisfies an almost-isomorphic condition then it is possible to establish
a regularized learning bound.

Theorem 1.2 [1] For each f ∈ H, denote by Lf the loss of f relative to
the ball ‖f‖BH :

Lf (X,Y ) = (f(X)− Y )2 − (f∗(X)− Y )2

where f∗ = argmin‖g‖≤‖f‖ E(g(X) − Y )2. Under some conditions on γn(·),
if for every f ∈ F ,

1
2
PnLf − γn(f) ≤ PLf ≤ 2PnLf + γn(f)
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then the regularized minimizer satisfies

E(f̂(X)− Y )2 ≤ inf
f∈F

(
(f(X)− Y )2 + cγn(c′f)

)
,

where c and c′ are absolute constants.

Thus, if one can establish sharp “isomorphic coordinate projections”
type estimates for every excess loss class {Lf : f ∈ rBH} this would yield
regularization bounds.

It is important to emphasize that although at first glance, the problem
of obtaining isomorphic bounds for kernel classes has been solved in the past
(based, for example, on estimates from [18, 2]), this is far from being the
case. The isomorphic bounds for kernel classes have been studied for the
base class F = BH (i.e. r = 1), while the essential ingredient required for
our analysis (and which determines the regularization parameter) is the way
in which these bounds scale with the radius r. In all the previous isomorphic
results obtained in the context of kernel classes this was not important and
thus never addressed. Moreover, the analysis used to obtain those results
would give a suboptimal estimate as a function of r, and as we will explain
later, will be of no help to us in an attempt to improve the way γn(f)
depends on ‖f‖H .

Our analysis will show that the standard regularization bounds, that
grow like r2 where r = ‖f‖H , are very pessimistic and may be improved
considerably. Moreover, if we set the regularization term as ηnν(‖f‖H), we
will establish the best known bounds on ηn as well (both results will require
mild assumptions on the kernel).

There are two reasons for the improved bounds. First of all, the ability
to employ the “isomorphic” approach allows one to use localization tech-
niques. Thus, the effective complexity of the excess loss class is caused only
from excess loss functions with a relatively small variance. Thanks to the
geometry of rBH , that happens to be a rather small subset of the excess
loss class. This approach, presented in Section 3, is enough to give improved
estimates on ηn, but still leaves one with a regularization term that grows
like r2.

To remove the r2 regularization term one has to use a more sophisticated
analysis (and additional assumptions on the kernel). As a starting point,
one has to understand the source of the r2 term. The “trivial” reason for
this term is the quadratic loss function. Indeed, to obtain isomorphic type
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estimates one has to analyze the localized empirical process

sup
{f∈rBH : ELf≤λ}

∣∣∣∣∣
1
n

n∑

i=1

Lf (Xi)− ELf

∣∣∣∣∣ ,

and standard methods of analyzing this quantity involve contraction inequal-
ities. Since the only a-priori L∞ estimate on Lf is ‖f‖2∞, one will suffer one
factor of r as a consequence of the contraction inequality and another one
from the “complexity” of rBH . In Section 4 we will present a way of bypass-
ing this loose method of analysis. To that end, we shall present a general
bound on the empirical process indexed by the localized square excess loss
class associated with a base class consisting of linear functionals on `2 of
norm at most r. We will use this result to show that if the eigenvalue vec-
tor of the integral operator TK belongs to a weak `p space `p,∞ for some
0 < p < 1, then one can obtain an isomorphic bound with ρn that scales like

max
{

θ2/1+p, θ2/p
}

,

for θ ∼ rpn−1/2 log n. This translates to a regularization term of

max

{
r2p/1+p

(
log2 n

n

)1/1+p

,
r2

n

}
,

where again, r = ‖f‖H .
Although with this result one still has a regularization term that grows

like r2, this is a considerable improvement to the previous result. Because
it decays faster as a function of the sample size n, the r2/n term seems
superfluous – because one would expect it to be dominated by the first
term. And indeed, in Section 5 we will show that it can be removed: under
the same assumption on the decay of the eigenvalues of TK as above one
may use a regularization term (up to logarithmic term) of

r2p/1+p

n1/1+p
,

which is the best known dependency on r and n.
We will end this introduction with the formulation of this, our main

result.

Assumption. Assume that the eigenvalues of the integral operator TK

satisfy that (λn)∞n=1 ∈ `p,∞ for some 0 < p < 1 and that ‖K(x, x)‖∞ ≤ 1.
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Assume further that there is a constant A for which the eigenfunctions
(ϕn)n≥1 of TK satisfy that supn ‖ϕn‖∞ ≤ A < ∞.

Theorem A. Under the assumption above, there exist constants c1, c2 and
c3 that depend only on A, p and ‖(λi)‖p,∞ and a constant cY that depends
only on ‖Y ‖∞ for which the following holds. Let

Ṽ (f, u) = c3(1+u+ cY lnn+ln log(‖f‖H + e))
(

(‖f‖H + 1)p log n√
n

)2/(1+p)

.

If n ≥ N0 = N0(‖Y ‖∞, p) and c1 log log n ≤ u ≤ c2(log n)2/(1−p), then with
probability at least 1− exp(−u/2), every minimizer f̂ of

Pn`f + κ1Ṽ (f, u)

satisfies that
P`f̂ ≤ inf

f∈H
P`f + κ2Ṽ (f, u),

where κ1 and κ2 are absolute constants and `f = (f − Y )2 is the squared
loss function.

2 Preliminaries

We begin with a word about notation. We will denote absolute constants
(that is, fixed, positive numbers) by c, c1, ... etc. Their value may change
from line to line. Absolute constants whose value will remain unchanged are
denoted by κ1, κ2, .... By c(a) we mean that the constant c depends only on
the parameter a. We denote a ∼ b if there exist absolute constants c1 and
c2 such that c1a ≤ b ≤ c2b, and a ∼p b if the equivalence constants depend
on the parameter p.

Arguably the most important tool in modern empirical processes theory
is Talagrand’s concentration inequality for an empirical process indexed by
a class of uniformly bounded functions [28, 15]. The version of this concen-
tration results we shall use here is due to Massart [17].

Theorem 2.1 There exists an absolute constant C for which the following
holds. Let F be a class of functions defined on (Ω, µ) such that for every
f ∈ F , ‖f‖∞ ≤ b and Ef = 0. Let X1, ..., Xn be independent random
variables distributed according to µ and set σ2 = n supf∈F Ef2. Define

Z = sup
f∈F

n∑

i=1

f(Xi) and Z̄ = sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Xi)

∣∣∣∣∣ .
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Then, for every x > 0 and every ρ > 0,

Pr
({

Z ≥ (1 + ρ)EZ + σ
√

Cx + C(1 + ρ−1)bx
})

≤ e−x,

P r
({

Z ≤ (1− ρ)EZ − σ
√

Cx− C(1 + ρ−1)bx
})

≤ e−x,

and the same inequalities hold for Z̄.

Throughout this article we denote by `(x, y) = (x − y)2 the squared
loss function. When f is a function Ω → R and Y is some target random
variable, we denote `f = (f − Y )2. If F is a class of functions let Lf =
(f −Y )2− (f∗−Y )2, where f∗ = argminf∈FE`(f, Y ). Of course, we assume
that this minimizer exists and is unique, which is the case, for example, if
F is compact and convex.

For a class of functions F on a probability space (Ω, µ) we set

‖Pn − P‖F = sup
f∈F

∣∣∣∣∣
1
n

n∑

i=1

f(Xi)− Ef

∣∣∣∣∣ ,

where (Xi)i=1 are independent, distributed according to µ.
Define for any λ ≥ 0 the localized excess loss class

Lλ = {Lf : ELf ≤ λ},
and set

V = star(LF , 0) = {θLf : 0 ≤ θ ≤ 1, f ∈ F},
Vλ = {θLf : 0 ≤ θ ≤ 1, E(θLf ) ≤ λ} = {h ∈ star(LF , 0) : Eh ≤ λ}

(where for a set T , star(T, 0) = {θt : 0 ≤ θ ≤ 1, t ∈ T} is the star-shaped
hull of T and 0).

The following “isomorphic” result is similar in nature to the one proved
in [3]. The bound from Theorem 2.2 normally leads to an estimate on the
error of the empirical minimizer, but in [4] and here it will serve a different
goal. This isomorphic result will enable us to control the solution of the
regularized learning problem in the context of kernel learning.

Theorem 2.2 There exists an absolute constant c for which the following
holds. Let LF be a squared loss class associated with a convex class F and a
random variable Y . If b = max{supf∈F ‖f‖∞, ‖Y ‖∞} and E‖Pn − P‖Vλ

≤
λ/8, then with probability 1− exp(−u), for every f ∈ F

1
2
PnLf − λ

2
− c(1 + b2)

u

n
≤ PLf ≤ 2PnLf +

λ

2
+ c(1 + b2)

u

n
(2.1)
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Proof. By Talagrand’s inequality, there exists an absolute constant C such
that, with probability at least 1− e−u,

‖Pn − P‖Vλ
≤ 2E‖Pn − P‖Vλ

+
(

Cu

n

)1/2

sup
g∈Vλ

√
Var g +

Cbu

n
.

It is standard to verify (see, for example, [16]), that there exists an
absolute constant C such that, for a convex class F , every Lf ∈ LF satisfies
EL2

f ≤ Cb2ELf . Thus, every g ∈ Vλ satisfies Var g ≤ Cb2λ. Set

α = max
{

λ, 25C
(1 + b2)u

n

}

and note that, because V is star-shaped and α ≥ λ, E‖Pn − P‖Vα ≤ α/8.
Therefore, with probability at least 1− e−u,

‖Pn − P‖Vα ≤
α

4
+

(
C

b2αu

n

)1/2

+
Cbu

n

≤ α

4
+

α

5
+

α

25
≤ α

2
. (2.2)

Consider the event in which (2.2) holds. Fix some Lf ∈ LF . If PLf ≤ α
then Lf ∈ Vα and so

PnLf − α

2
≤ PLf ≤ PnLf +

α

2

and (2.1) holds. If, on the other hand, PLf = β > α then let g = α
βLf and

note that g ∈ Vα. Thus, by (2.2),

1
2
Pg = Pg − α

2
≤ Png ≤ Pg +

α

2
≤ 2Pg.

Since Lf is a constant multiple of g,

1
2
PLf ≤ PnLf ≤ 2PLf

and so (2.1) holds once again.
To conclude, (2.2) implies that (2.1) holds for all Lf ∈ LF . Thus (2.1)

holds with probability at least 1− e−u.

9



Remark 2.3 The claim of Theorem 2.2 holds under milder assumptions.
Note that the assumption that F is convex is there to ensure that P`f attains
a unique minimum in F , and that the excess loss class satisfies a Bernstein
type condition: that for every f ∈ F , EL2

f ≤ CELf . One can show that if
F is convex then for any function f ∈ F , EL2

f ≤ c‖f‖2∞ELf . Hence, if F
is convex and G ⊂ F that contains the minimizer in F of P`f , the analog
of Theorem 2.2 will be true for {Lg : g ∈ G}.

The first part in our analysis will be to show that this isomorphic infor-
mation can be used to derive estimates in regularized learning.

2.1 From Isomorphic information to Regularized Learning

The regularized learning model provides a method for learning in a very
large class of functions without suffering a large statistical error. As we
mentioned in the introduction, obtaining an “isomorphic” result for a hi-
erarchy of classes can lead to estimates in the regularized learning model.
This approach was introduced in [1] and was formulated in the way we will
use here in [4]. Since this last article has not yet appeared, we present a
proof of the result we need in an appendix.

Let F be a class of functions and suppose there is a collection of subsets
{Fr; r ≥ 1} with the following properties:

1. {Fr : r ≥ 1} is monotone (that is, whenever r ≤ s, Fr ⊆ Fs);

2. for every r ≥ 1, there exists a unique element f∗r ∈ Fr such that
P`f∗r = inff∈Fr P`f ;

3. the map r → P`f∗r is continuous;

4. for every r0 ≥ 1,
⋂

r>r0
Fr = Fr0 ; and

5.
⋃

r≥1 Fr = F .

Definition 2.4 Given a class of functions F , we say that {Fr; r ≥ 0} is an
ordered, parameterized hierarchy of F if conditions 1-5 are satisfied. Define,
for f ∈ F ,

r(f) = inf{r ≥ 1; f ∈ Fr}.
Note that from the semi-continuity property of an ordered, parameterized
hierarchy (property 4), it follows that f ∈ Fr(f) for all f ∈ F .

From the second property of an ordered, parameterized hierarchy, we
can define, for r ≥ 1 and f ∈ Fr, Lr,f = (f − Y )2− (f∗r − Y )2. That is, Lr,f

is the excess loss function with respect to the class Fr.
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Theorem 2.5 There exist absolute constants κ1 and κ2 such that the follow-
ing holds. Suppose that {Fr; r ≥ 1} is an ordered, parameterized hierarchy
and that ρn(r, u) is a continuous function (possibly depending on the sample)
that is increasing in both r and u. Suppose also that for every r ≥ 1 and
every u > 0, with probability at least 1− exp(−u),

1
2
PnLr,f − ρn(r, u) ≤ PLr,f ≤ 2PnLr,f + ρn(r, u)

for all f ∈ Fr.
Then for every u > 0, with probability at least 1−exp(−u), any function

f̂ ∈ F that minimizes the functional

Pn`f + κ1ρn(2r(f), θ(r(f), u))

also satisfies

P`f̂ ≤ inf
f∈F

(
P`f + κ2ρn(2r(f), θ(r(f), u))

)

where

θ(r, x) = x + ln
π2

6
+ 2 ln

(
1 +

P`f∗1
ρn(1, x + log(π2/6))

+ log r

)
.

Remark 2.6 In fact, the proof of Theorem 2.5 reveals something slightly
stronger: if ρ̃n(r, u) is a continuous, increasing function in both variables
such that

ρ̃n(r, u) ≥ ρn(2r, θ(r, u))

for every r, u and n then every function f̂ that minimizes the functional

Pn`f + κ1ρ̃n(r, u)

satisfies
P`f̂ ≤ inf

f∈F

(
P`f + κ2ρ̃n(r, u)

)
.

In other words, we can always regularize with a larger regularization
term; we will obtain a correspondingly larger error bound. We will use this
fact later on.

The conclusion of Theorem 2.5 can be reformulated in a way that makes
the traditional distinction between the approximation and sample errors
more explicit. We begin by defining an approximation error term by

A(r) = inf
f∈Fr

P`f .
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Then A(r)− inff∈F P`f tends to zero as r →∞ and the rate of this conver-
gence measures how well the ordered, parameterized hierarchy approximates
Y . Smale and Zhou [25] study this approximation error in a variety of con-
texts, including the case in which we are interested: when Fr is the ball of
radius r − 1 in a reproducing kernel Hilbert space.

Corollary 2.7 Under the assumptions of Theorem 2.5, with probability at
least 1− exp(−u),

P`f̂ ≤ inf
r≥1

(
A(r) + κ2ρn(2r, θ(r, u))

)
.

Proof. Let u > 0, fix ε > 0 and choose an s ≥ 1 such that

A(s) + κ2ρn(2s, θ(s, u)) ≤ inf
r≥1

(
A(r) + κ2ρn(2r, θ(r, u))

)
+

ε

2
.

Consider g ∈ Fs such that PLg ≤ A(s) + ε/2. Since ρn is increasing in both
its arguments,

PLg + κ2ρn(2r(g), θ(r(g), u)) ≤ inf
r≥1

(
A(r) + κ2ρn(2r, θ(r, u))

)
+ ε.

But we can find such a function g for every ε > 0. Therefore

inf
f∈F

(
PLf + κ2ρn(2r(f), θ(r(f), u))

)
≤ inf

r≥1

(
A(r) + κ2ρn(2r, θ(r, u))

)

and the conclusion follows from Theorem 2.5.

3 Regularization in Kernel classes

The case that we will be interested in is when Fr is a multiple of the unit
ball of a reproducing kernel Hilbert space (RKHS). For more details on
properties of a RKHS that are relevant in the context of Learning Theory
we refer the reader, for example, to [7].

Let Ω be a compact set, consider K : Ω × Ω → R, a positive defi-
nite, continuous function and without loss of generality, we will assume that
‖K‖∞ ≤ 1. Let TK be the corresponding integral operator, TK : L2(µ) →
L2(µ), defined by

(TKf)(x) =
∫

Ω
K(x, y)f(y)dµ(y).
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By Mercer’s Theorem [7], there is an orthonormal basis of eigenfunctions
(ϕi)∞i=1 of TK , corresponding to the eigenvalues (λi)∞i=1 arranged in a non
increasing order, such that

K(x, y) =
∞∑

i=1

λiϕi(x)ϕi(y),

both in L2 and µ× µ-almost surely.
The RKHS, which will be denoted throughout by H, can be identified

with linear functionals in `2. Indeed, consider Φ(x) =
∑∞

i=1

√
λiϕi(x)ei :

Ω → `2. For every t ∈ `2, ft(x) =
〈
Φ(x), t

〉
, and ‖ft‖H = ‖t‖`2 . In the

reverse direction, from the definition of the RKHS one can verify that each
h ∈ H is of the form ft for some t ∈ `2. Hence, to study properties of a
subset of H it is enough to study the corresponding set of linear functionals,
as a set T ⊂ `2 uniquely determines FT = {ft : t ∈ T}. Here, we will be
mostly concerned with T = rB2, corresponding to F = rBH , where BH is
the unit ball of the RKHS. In this case, the measure endowed on `2 is given
by Φ(Z), where Z is distributed in Ω according to µ.

3.1 Classes of linear functionals — the L∞ approach

Our first approach to the problem of regularized learning in an RKHS will
lead to a regularization term of ‖f‖2

H . As we said in the introduction, this is
over-regularization, which is an artifact of the analysis of the learning prob-
lem. It stems from the way the L∞ bound on functions in LF is used, and
since the only way to bound ‖Lf‖L∞ is by ‖Lf‖L∞ ≤ c‖f‖2

H . In this section
we will use this (loose) approach, but still obtain better error estimates than
those previously known — though still using a regularization term of ‖f‖2

H .
We will obtain considerably better results in the following sections.

The idea we will use is to obtain an isomorphic result for the hierarchy
Fr = rBH (in our `2 representation, Fr corresponds to rB2). We then use
Corollary 2.7 for the function ρn given by the isomorphic analysis.

In our presentation, we will study the following, more general, situation.
Let T ⊂ `2 be a compact, convex, symmetric set and consider a random
vector X on `2. Denote by ft =

〈
t, ·〉 the linear functional defined by t and

put
D = {t : Ef2

t ≤ 1} = {t : E
〈
t,X

〉2 ≤ 1}.
Thus, D represents the L2 unit ball in the parameter space `2.

Our first, L∞-based approach to the problem of learning in an RKHS
relies on the following bound, which was implicit in [18].
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Theorem 3.1 There exist constants c and c′ depending only on ‖Y ‖∞ for
which the following holds. Let Vr,λ = {αLf ; 0 ≤ α ≤ 1, f ∈ rBH ,ELf ≤ λ}.
Then for every r ≥ 1 and every λ > 0,

E‖P − Pn‖Vr,λ
≤ crE sup

{t∈rB2∩
√

λD}

∣∣∣∣∣
1
n

n∑

i=1

gift(Xi)

∣∣∣∣∣

where the gi are independent standard Gaussian variables. In the case where
r = 1,

E sup
{t∈B2∩

√
λD}

∣∣∣∣∣
n∑

i=1

gift(Xi)

∣∣∣∣∣ ≤ c′
(

1
n

∞∑

i=1

min{λ, λi}
)1/2

.

The proof of the first part of Theorem 3.1 uses a comparison theo-
rem, relating the Gaussian process t → ∑n

i=1 giLft(Xi, Yi), conditioned on
(Xi, Yi)n

i=1, to the conditioned Gaussian process t → ∑n
i=1 gift(Xi). This is

done using an L∞ bound, since

n∑

i=1

(Lft − Lfs)
2 (Xi, Yi) =

n∑

i=1

(ft − fs)2(Xi) · ((ft + fs) (Xi)− 2Yi)
2

≤ 4(r + ‖Y ‖∞)2
n∑

i=1

(ft − fs)2(Xi),

which will turn out to be the main source of the quadratic regularization
term ‖f‖2

H .
From Theorem 3.1 one obtains

Corollary 3.2 There exists a constant c, depending only on ‖Y ‖∞ such
that, if x > 0 satisfies that

x ≥ c

(
1
n

∞∑

i=1

min{x, λi}
)1/2

then, for all r ≥ 1,
λ

8
≥ E‖P − Pn‖Vr,λ

where λ = r2x.
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Proof. Define

ψr(x) = rE sup
{t∈rB2∩

√
xD}

∣∣∣∣∣
n∑

i=1

gift(Xi)

∣∣∣∣∣ .

Then ψ1(x) ≤ c′x by the second part of Theorem 3.1 and it is easy to check
that ψr(x) = r2ψ1(xr−2) for any x and r. That is, ψr(r2x) = r2ψ1(x) ≤
c′r2x. The claim now follows from the first part of Theorem 3.1.

With this Corollary and Theorem 2.2, we can obtain an isomorphic con-
dition on the unit ball of an RKHS using information on the decay of the
eigenvalues. For the sake of concreteness, we will make the following as-
sumption on this rate of decay; this assumption will allow us to compute an
error bound explicitly.

Definition 3.3 For 0 < p < 1 define

‖(λi)‖p,∞ = sup
x>0

xp|{λi ≥ x}|.

Hence, for any x > 0,

|{λi ≥ x}| ≤ ‖(λi)‖p,∞x−p. (3.1)

Assumption 3.1 Let K be a kernel on a compact probability space (Ω ×
Ω, µ × µ) where µ is a Borel measure and Ω ⊂ Rd. Assume that the eigen-
values of the kernel satisfy that (λn)∞n=1 ∈ `p,∞ for some 0 < p < 1 and that
‖K(x, x)‖∞ ≤ 1.

Since
∫

K(x, x)dµ(x) =
∑∞

i=1 λi, then (λi) ∈ `1,∞ when K(x, x) ∈ L1(µ).
The stronger Assumption 3.1 is satisfied under some smoothness condition
on the kernel. For example, if the kernel K belongs to some Besov space
Bα

2,∞ (in particular, this is the case if α ∈ N and K ∈ Cα(Ω× Ω)) then, by
Theorem 4.1 of [5] (see also [14]), the sequence (λi) belongs to `p,∞ for

p =
1

α/d + 1/2
.

In fact, the result of [5] is slightly stronger — the sequence λnn−1/p tends to
0 with n — but we will not need this strengthening. The L∞ assumption on
K(x, x) is only to simplify the presentation and any uniform bound instead
of 1 would do.

The assumption on the rate of decay of the eigenvalues allows us to
obtain the following bound:
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Lemma 3.4 For 0 < p ≤ 1 there is a constant cp depending only on p such
that for all x > 0 and all r > 0,

∞∑

i=1

min{x, r2λi} ≤ cp‖(λi)‖p,∞x1−pr2p.

Proof. It suffices to prove the lemma for r = 1 and the result will follow for
all r by homogeneity. Set Nx = |{λi ≥ x}| and observe that for all x > 0,

∞∑

i=1

min{x, λi} = xNx +
∞∑

i=Nx+1

λi ≤ ‖(λi)‖p,∞x1−p +
∞∑

i=Nx+1

λi.

To estimate the second term, let {aj}∞j=0 be any decreasing sequence with
a0 = x. Then

∞∑

i=Nx+1

λi =
∑

λi<x

λi

≤
∞∑

j=0

aj |{λi ≥ aj+1}|

≤ ‖(λi)‖p,∞
∞∑

j=0

aja
−p
j+1.

Now set aj = x2−j and note that

∞∑

i=Nx+1

λi ≤ 2‖(λi)‖p,∞
∞∑

j=1

a1−p
j ≤ cpx

1−p‖(λi)‖p,∞,

as required.

Corollary 3.5 Let K be a kernel that satisfies Assumption 3.1 for some
0 < p ≤ 1. There exists a constant cp depending only on p such that if

z = cp

(‖(λi)‖p,∞
n

)1/(1+p)
then, for all r > 1,

λ

8
≥ E‖P − Pn‖Vr,λ

where λ = r2z.
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Lemma 3.6 Let H be the reproducing kernel Hilbert space associated to a
kernel K, set F = H, and define, for every r ≥ 1, Fr = (r − 1)BH where
BH is the unit ball of H. Then {Fr; r ≥ 1} is an ordered, parameterized
hierarchy and r(f) = ‖f‖+ 1.

Proof. The first, fourth and fifth properties of an ordered, parameterized
hierarchy are immediate. The second property follows from the fact that BH

is convex and compact with respect to the L2 norm. For the third property,
fix 1 ≤ q < r < s and let β = r−1

q−1 and α = r−1
s−1 . Note that αf∗q ∈ Fr and

βf∗s ∈ Fr. Thus,

0 ≤ P`f∗r − P`f∗s ≤ P`αf∗s − P`f∗s = (α2 − 1)P (f∗s )2 + 2(1− α)Pf∗s Y.

As s → r, the right hand side tends to zero (because the candidates for f∗s
are uniformly bounded in L2) and so r → P`f∗r is upper semi-continuous
(the same argument works for r = 1). In the other direction,

0 ≤ P`f∗q − P`f∗r ≤ (β2 − 1)P (f∗r )2 + 2(1− β)Pf∗r Y

and the right hand side tends to zero for the same reason as before.

Combining Theorem 2.2 with Corollaries 3.2 and 2.7, we obtain the
following error bound for regularized learning in an RKHS.

Theorem 3.7 There exist absolute constants κ1 and κ2, constants cY and
c′Y depending only on ‖Y ‖∞ and a constant cp depending only on p such
that the following holds. Let K be a kernel satisfying Assumption 3.1 and
define

ρn(r, u) = cpr
2

(‖(λi)‖p,∞
n

)1/(1+p)

+ cY (1 + r2)
u

n
.

Then for every u > 0, with probability at least 1 − exp(−u), any function
f̂ ∈ F that minimizes the functional

Pn`f + κ1ρ̃n(r(f), u)

also satisfies
P`f̂ ≤ inf

r≥1
(A(r) + κ2ρ̃n(r, u))

where

ρ̃n(r, u) = ρn

(
2r, u + ln

π2

6
+ 2 ln(1 + c′Y n + log r)

)
.
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In particular,

P`f̂ ≤ inf
r≥1

(
A(r) + c

(
r2

n1+1/p
+

1 + r2

n
(u + log n + log log(r + e))

))
,

where c = c(p, ‖Y ‖∞, ‖(λi)‖p,∞).

Proof. By Theorem 2.2 and Corollary 3.2, the function ρn(r, x) satisfies
the condition of Theorem 2.5 (where we set cY = c‖Y ‖∞). Then we can
apply Corollary 2.7 to obtain the result. Since 0 ∈ Fr for any r > 0 then
P`f∗1 ≤ P`0 = ‖Y ‖2

L2(µ) and ρn(1, u + ln(π2/6)) ≥ c′′Y /n so that

P`f∗1
ρn(1, x + ln(π2/6))

≤ c′Y n,

to which we apply Remark 2.6.

Let us compare the estimate on the regularization term and the resulting
error rate that follows from this theorem to previously obtained bounds on
regularized learning in an RKHS. Since all of the results we consider have
exponentially good confidence, we will simplify this comparison by ignoring
the confidence term and focusing on the decay of the error bound as the
sample size increases.

In 2002, Cucker and Smale [7] used covering numbers to bound the sam-
ple error of the regularized minimizer by

cY

√
ln n(γ + c)
γ2
√

n

where γ is the regularization parameter. Noting that the optimal γ tends to
zero as the sample size increases, we will ignore the γ term in the numerator.
By Lemma 2 of [8], the approximation error with a regularization term of
γ is at least A(c/γ + 1) (Cucker and Smale give a more detailed analysis of
the approximation error, which we will not use for the sake of simplicity. In
order to prevent this simplification from biasing our comparison, note that
we are using a lower bound on the approximation error in the result of [8]).

With the substitution r = c/γ + 1, the total error bound of [8] becomes

P`f̂ ≤ inf
r≥1

(
A(r) + cr2

(
lnn

n

)1/2
)

.

On the other hand, our bound is

P`f̂ ≤ inf
r≥1

(
A(r) + cr2

(
1
n

)1/(1+p)

+ c′(1 + r2)
ln n + ln(1 + log r)

n

)
.
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Note that the n−1r2 ln log r term is asymptotically insignificant. Indeed,
for the optimal r = r(n), our bound tends to limr→∞A(r) with n. In
particular, n−1/(1+p)r2(n) → 0 and so ln log r(n) ¿ ln n. By eliminating the
ln log r term, our result is directly comparable to that of [8]. In the (worst
possible) case where p = 1, we gain by removing a relatively insignificant
factor of

√
log n. For smaller p, however, we improve Cucker and Smale’s

result by a polynomial factor of n. Given that it is common in Machine
Learning for the kernel associated to an RKHS to have some smoothness
properties, this is a significant improvement.

It is well known that by making an assumption on the regression function
E(Y |X), it is possible to bound the approximation error and thereby obtain
to bound the total error in terms of the sample size. A result of this sort was
first obtained in [8] and improved in [26]. In particular, Corollary 5 of [26]
gives the following bound: suppose that E(Y |X) is in the range of T σ

K for
some 0 < σ < 1. Then for sufficiently large n,

P`f̂ − inf
f∈F

P`f .
{ (

1
n

)σ/(1+2σ)
, if σ ≥ 1

2(
1
n

)σ/2
, if σ < 1

2 ,
(3.2)

(where the regularization term used to obtain this result is ∼ r2(1/n)1/(1+2σ)

if σ ≥ 1/2 and ∼ r2(1/n)1/2 otherwise).
In comparison, our regularization term is of the order of ∼ r2/n1/1+p.

To obtain the resulting error bound we first consider the case where σ ≥ 1
2 .

Then E(Y |X) ∈ F and so A(r)− inff∈F P`f is zero for sufficiently large r.
Then we have shown that, for sufficiently large n,

P`f̂ − inf
f∈F

P`f .
(

1
n

)1/(1+p)

which is a significant improvement on (3.2) even in the case p = 1.
To deal with the case σ < 1

2 , we will use the following theorem of [25]:

Theorem 3.8 Let A be a compact, symmetric and strictly positive operator
on a separable Hilbert space H. Then, for any 0 < σ < s, any r > 0 and
any a in the range of Aσ,

inf
‖A−sb‖≤r

‖a− b‖ ≤
(

1
r

)σ/(s−σ)

‖A−σa‖s/(s−σ).
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In particular, we can apply this with H = L2, A = TK , s = 1
2 and

a = E(Y |X) to obtain

A(r − 1)− inf
f∈F

P`f = inf
‖f‖F≤r

‖E(Y |X)− f‖2
2

≤
(

1
r

)4σ/(1−2σ)

‖L−σ
K E(Y |X)‖2/(1−2σ).

Set k = 4σ/(1 − 2σ). Then we can choose r = n
1

(1+p)(2+k) and our error
bound becomes

P`f̂ − inf
f∈F

P`f . A
(
n

1
(1+p)(2+k)

)
+ n

2
(1+p)(2+k)

(
1
n

)1/(p+1)

.
(

1
n

) k
(1+p)(2+k)

=
(

1
n

)2σ/(1+p)

. (3.3)

Once again, this is an improvement over (3.2) even in the case p = 1.

4 Towards a smaller regularization parameter

The bound (3.3) would be substantially improved if we could remove the
r2 term and replace it by a smaller power of r — which is the main nov-
elty in this article. As we mentioned before, the most significant source
for this improvement comes from bypassing L∞-based bounds. In recent
years there has been considerable progress made on bounding various em-
pirical processes that are indexed by sets that are either not bounded or very
weakly bounded in L∞. Most of these results were motivated by questions in
Asymptotic Geometric Analysis, most notably, sampling from an isotropic,
log-concave measure (e.g. [24, 13, 21]) and the approximate reconstruction
problem [19, 12]. The fact that such an approach is called for here seems
strange because we are dealing with a learning problem relative to a class
of uniformly bounded functions, so it would seem that there is no reason to
employ techniques designed to handle an unbounded situation. Even more
so, because in a standard learning analysis the way the error bounds depend
on the L∞ diameter of the class is usually of no real importance. In contrast,
here, the way the isomorphic results scale with the L∞ bound is extremely
important because one is trying to obtain a result for the entire hierarchy,
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and the L∞ diameter of Fr is directly linked to the hierarchy parameter r.
Thus, the standard, and very loose approach which is commonly used in a
single class situation can cause real damage in our case because the regular-
ization term will be strongly influenced by the way the L∞ diameter enters
into the bounds.

To see where one can improve upon the standard L∞ analysis (in a very
“hand waving” way), let us return to the localized Gaussian process indexed
by {t : ELft ≤ λ} ∩ rB2, conditioned on the data (Xi, Yi), that is,

t →
n∑

i=1

giLft(Xi, Yi) =
n∑

i=1

gi

〈
t− β∗, Xi

〉 (〈
t + β∗, Xi

〉− 2Yi

)
,

where fβ∗ minimizes the loss in rB2. For every t the variance of each con-
ditioned Gaussian variable satisfies

σ2(
n∑

i=1

giLft(Xi, Yi)) =
n∑

i=1

〈
t− β∗, Xi

〉2 (〈
t + β∗, Xi

〉− 2Yi

)2
.

Consider some t for which ELft ≤ λ. One can show that in this case,
‖t − β∗‖ ≤

√
λ (see Lemma 4.1 below). Now, if one has a very strong

concentration phenomenon and if D = B2 then
(〈 t + β∗

2
, Xi

〉− Yi

)2

=
(〈 t− β∗

2
, Xi

〉
+

(〈
β∗, Xi

〉− Yi

))2

≈c λ + E`fβ∗ .

Since the expected loss of the best in the class only decreases with r, this
term is of the order of λ, rather than a factor that grows quadratically in r,
which is the estimate that results from the L∞ approach. This at least hints
to the fact that the L∞ approach is likely to lead to very loose estimates.

Despite the fact that above paragraph is totally unjustified as stated and
very optimistic, it turns out that this scenario is very close to the actual
situation (although the proof requires a rather delicate analysis).

4.1 Further preliminaries

For technical reasons, we will make an additional assumption on the eigen-
functions of the kernel. We should emphasize that it is possible that this
assumption may not be necessary to obtain the improved regularization
term, though we were not able to remove it here and it has a crucial role in
our analysis.
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Assumption 4.1 Let K be a kernel on a compact probability space (Ω ×
Ω, µ × µ) with Ω ⊂ Rd. Assume that there is a constant A for which the
eigenfunctions of K satisfy that supn ‖ϕn‖∞ ≤ A < ∞.

One case is which this assumption is satisfied is when K is a translation
invariant kernel (i.e. K(x, y) = k(x−y) for some function k), Ω is a compact
group and µ is the Haar measure on Ω. In this case all the eigenfunctions
are characters of the group, and thus uniformly bounded in L∞.

Recall that the feature map Φ defines an isometry between an RKHS and
`2. Let T ⊂ `2 be a centrally symmetric, convex, compact subset of `2. The
first step in our analysis is to relate the localized sets Lλ (corresponding to
the class {ft : t ∈ T}) to subsets of T . Since this fact appeared implicitly in
several places (see, for example [20], Cor. 3.4) and in more general situations
- for example, loss functions that are uniformly convex rather than the
squared loss, we omit its proof.

Lemma 4.1 Let β∗ = argmint∈T E`ft. For every λ > 0,

{t− β∗ : t ∈ T,Lft ∈ Lλ} ⊂ 2
√

λD ∩ 2T.

Lemma 4.1 shows that it is sufficient to consider the complexity of the
sets

√
λD∩T . The complexity parameters we shall use come from a generic

chaining argument (defined below), and thus a significant part of our analysis
will be based on covering numbers.

Definition 4.2 Let A,B ⊂ `2. Denote by N(A,B) the smallest number of
translates of B needed to cover A. If εB is a ball of radius ε with respect to
some norm then N(A, εB) is the minimal cardinality of an ε-cover of A with
respect to the that norm. If (A, d) is a metric space (rather than a normed
one), we denote the cardinality of a minimal ε-cover of A by N(A, ε, d).

The generic chaining mechanism (see [29] for the most recent survey
on this topic) is used to relate probabilistic properties of a random process
indexed by a metric space to the metric structure of the underlying space.
This mechanism originated in the study of Gaussian processes t → Xt where
it was proved that E supt∈T Xt is equivalent to a metric invariant of (T, d),
for d(s, t) = (E|Xs −Xt|2)1/2. This so-called majorizing measures Theorem
(in which the upper bound of the equivalence was proved by Fernique [10]
and the lower by Talagrand [27]) was later developed to a more general
theory with many interesting applications [29]. The metric invariant that is
at the heart of this theory is the γ2 functional.
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Let (T, d) be a metric space. An admissible sequence of T is a collection
of subsets of T , {Ts : s ≥ 0}, such that for every s ≥ 1, |Ts| = 22s

and
|T0| = 1.

Definition 4.3 For a metric space (T, d) define

γ2(T, d) = inf sup
t∈T

∞∑

s=0

2s/2d(t, Ts),

where the infimum is taken with respect to all admissible sequences of T .

Definition 4.4 A random process t → Xt indexed by a metric space (T, d)
is subgaussian relative to d if for every s, t ∈ T and every u ≥ 1,

Pr (|Xs −Xt| ≥ ud(s, t)) ≤ 2 exp
(
−u2

2

)
.

The generic chaining mechanism can be used to show that if {Xt : t ∈
(T, d)} is subgaussian then there is an absolute constant c such that for
every t0 ∈ T ,

E sup
t∈T

|Xt −Xt0 | ≤ cγ2(T, d),

and similar bounds hold with high probability.
Note that one choice for sets Ts that constitute a potential (yet, usually

suboptimal) admissible sequence are εs-covers of T , where each εs is selected
in a way that ensures that N(T, εs, d) ≤ 22s

. Then, an easy computation
[29] shows that

γ2(T, d) ≤ c

∫ diam(T,d)

0

√
log N(T, ε, d)dε, (4.1)

where c is an absolute constant. This is a generalization of Dudley’s entropy
integral (see for example [9, 29]), used in the study of Gaussian processes.
As will be explained later, this integral bound can be improved under certain
assumptions on geometry of T if d is endowed by a norm.

The metric d we will focus on here is a random one and depends on the
sample X1, ..., Xn ⊂ `2. For every X1, ..., Xn set

d∞,n(f, g) = max
1≤i≤n

|f(Xi)− g(Xi)|.
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In our case, f = fs and g = gt, and thus d∞,n defines a random norm on a
projection of `2 — since max1≤i≤n |fs(Xi)−gt(Xi)| = max1≤i≤n |

〈
Xi, s−t

〉|.
Next, let Un(T ) = (Eγ2

2(T, d∞,n))1/2 and for every x > 0 set

φn(x) =
Un(Kx)√

n
·max

(√
x,

√
ELβ∗ ,

Un(Kx)√
n

)
,

where Kx = T∩√xD ⊂ `2 and β∗ is the parameter in T for which inft∈T ELft

is attained.
Recall that

Lλ = {Lf : ELf ≤ λ},
and that

Vλ = {θLf : 0 ≤ θ ≤ 1, E(θLf ) ≤ λ} = {h ∈ star(LF , 0) : Eh ≤ λ}.
From Theorem 2.2 it is clear that in order to obtain a useful “isomorphic”

result one has to bound E‖Pn − P‖Vλ
as a function of λ; this is done in the

following theorem. Since it is a modification of a result that was proved in
[4] we will only present an outline of its proof.

Theorem 4.5 There exists an absolute constant c for which the following
holds. If T and X are as above then for every λ > 0,

E‖Pn − P‖Vλ
≤ c

∞∑

i=0

2−iφn(2i+1λ).

Lemma 4.6 For every λ > 0,

E‖Pn − P‖Vλ
≤ 2

∞∑

i=0

2−iE‖Pn − P‖L2i+1λ
.

Proof. Note that for every λ > 0,

Wλ = {θLf : 0 ≤ θ ≤ 1, E(θLf ) ≤ λ, ELf ≥ λ}

=
{

tLf

ELf
: ELf ≥ λ, 0 ≤ t ≤ λ

}

=
∞⋃

i=0

{
tLf

ELf
: 2iλ ≤ ELf ≤ 2i+1λ, 0 ≤ t ≤ λ

}
≡

∞⋃

i=0

Wi,λ.

If tLf/ELf ∈ Wi,λ then t/ELf ≤ 2−i and Lf ∈ L2i+1λ. Thus, ‖Pn−P‖Wi,λ
≤

2−i‖Pn − P‖L2i+1λ
.

Finally, let W0,λ = star(Lλ, 0). Note that ‖Pn − P‖W0,λ
≤ ‖Pn − P‖Lλ

,
and that Vλ ⊂ W0 ∪W0,λ, from which our claim follows.
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Outline of the proof of Theorem 4.5. Fix λ > 0. First of all, one can
verify that the Bernoulli process indexed by Lλ, given by t → ∑n

i=1 εiLft(Xi, Yi)
conditioned on (Xi, Yi)n

i=1 is subgaussian with respect to the metric

d(ft1 , ft2) = d∞,n(ft1 , ft2)

(
sup

v∈
√

λD∩T

n∑

i=1

〈
Xi, v

〉2 +
n∑

i=1

Lβ∗(Xi, Yi)

)1/2

Hence, if we set K =
√

λD ∩ T , then by the Giné-Zinn symmetrization
method [11] followed by a generic chaining argument,

E‖Pn−P‖Lλ
≤ c1

n
E


γ2(K, d∞,n)

(
sup
t∈K

n∑

i=1

〈
t,Xi

〉2 +
n∑

i=1

Lβ∗(Xi, Yi)

)1/2

 .

Moreover, one can show (see, for example, [12]) that if H is a class of
functions then

E sup
h∈H

∣∣∣∣∣
n∑

i=1

h2(Xi)− Eh2

∣∣∣∣∣ ≤ c2 max
{√

nσHUn(H), U2
n(H)

}
,

where σ2
H = suph∈H Eh2. In particular, for H = {〈t, ·〉 : t ∈ K},

E sup
t∈K

n∑

i=1

〈
t,Xi

〉2 ≤ nλ + c2 max{
√

nλUn(K), U2
n(K)},

because E
〈
t, ·〉2 ≤ λ. Now, a straightforward computation shows that

E‖Pn − P‖Lλ
≤ φn(λ).

To conclude the proof, note that by Lemma 4.6 it is possible to estimate
E‖Pn − P‖Vλ

using E‖Pn − P‖L2iλ
.

Observe that the sets T we will be interested in are rB2 since they are
the images of rBH in `2. The rest of this section will be devoted to finding
a bound on φn(x) for these sets T .

4.2 Controlling φn for T = rB2

It is clear that φn is determined by the structure of the sets Kx,r =
√

xD ∩
2rB2 ⊂ `2. To study the metric properties of these sets we first have to
identify D.
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Consider the random variable Z on Ω distributed according to µ and let
X = Φ(Z) =

∑∞
i=1

√
λiϕi(Z)ei ∈ `2 be the random feature map. Clearly,

D = {β ∈ `2 : E
〈
β,X

〉2 ≤ 1} = {β ∈ `2 : E
〈
β, Φ(Z)

〉2 ≤ 1}.

Since (ϕi)∞i=1 is an orthonormal system in L2(µ) then

E
〈
β, Φ(Z)

〉2 = E
∑

i,j

βiβj

√
λiλjϕi(Z)ϕj(Z) =

∞∑

i=1

λiβ
2
i .

Hence, D is an ellipsoid in `2 with the standard basis (ei)∞i=1 as principal
directions, and lengths 1/

√
λi.

It is straightforward to verify that for every x, r > 0 there is an ellipsoid
Ex,r, such that Kx,r = 2rB2 ∩

√
xD satisfies 1

2Ex,r ⊂ Kx,r ⊂ Ex,r. The
principal directions of Kx,r and Ex,r coincide and the principal lengths of
Ex,r are

cmin
{√

x

λi
, r

}
,

where c is an absolute constant.
The structure of the ellipsoids Ex,r indicates that it should be possible

to obtain a sub-linear dependency on the radius r and the fact that we were
not able to do so in Section 3.1 is an artifact of the suboptimal analysis that
was used there. The sub-linearity occurs because for α > 1, Ex,αr is much
smaller than αEx,r; since it is an intersection body, it only grows in some
directions, and the number of directions in which it grows decreases quickly
with r.

Now that we have identified the intersection body we are ready to esti-
mate

Un =
(
Eγ2

2(Ex,r, d∞,n)
)1/2

.

Theorem 4.7 There exists an absolute constant c for which the following
holds. Suppose supn ‖ϕn‖∞ ≤ A and set

Q(x, r) = A

( ∞∑

i=1

min{x, r2λi}
)1/2

.

Then (
Eγ2

2(Ex,r, d∞,n)
)1/2 ≤ cQ log n.

Before proving the Theorem we need two additional facts. The first is
an improved “Dudley entropy integral” bound, due to Talagrand.
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Theorem 4.8 [29] There exists an absolute constant c for which the fol-
lowing holds. If E ⊂ `m

2 is an ellipsoid and B is the unit ball of some norm
‖ ‖ on Rm then

γ2(E , ‖ ‖) ≤ c

(∫ ∞

0
ε log N(E , εB)dε

)1/2

.

Another standard fact we need is the dual Sudakov inequality [22].

Lemma 4.9 There exists an absolute constant c for which the following
holds. Let BE be a unit ball of some norm on Rm. Then, for every ε > 0,

log N(Bm
2 , εBE) ≤ c

(
E‖G‖E

ε

)2

,

where G = (g1, ..., gm) is a standard Gaussian vector on Rm.

Proof of Theorem 4.7. Fix X1, ..., Xn and note that in order to bound
γ2(Ex,r, d∞,n) it suffices to consider the projection of the (infinite dimen-
sional) ellipsoid Ex,r onto the subspace spanned by X1, ..., Xn. Hence, one
can apply Lemma 4.9. Set ‖v‖E = max1≤i≤n |

〈
v, Xi

〉| and let BE be the
unit ball {v ∈ `2 : ‖v‖E ≤ 1}. Consider the ellipsoid Ex,r ⊂ `2 with prin-

cipal directions (ei)∞i=1 and lengths θi = c1 min
{√

x/λi, r
}

. Let T be the
operator Tei = θiei. Thus, TB2 = Ex,r, for every ε > 0,

N(TB2, εBE) = N(B2, εT
−1BE),

and v ∈ εT−1BE if and only if max1≤i≤n |
〈
v, T ∗Xi

〉| = max1≤i≤n |
〈
v, TXi

〉| ≤
ε. Hence, if we set Wi = TXi and BĒ = {v : max1≤i≤n |

〈
v,Wi

〉| ≤ 1} then

N(TB2, εBE) = N(B2, εBĒ) = N(Bn
2 , εBĒ),

where here we mean by Bn
2 the unit ball in the subspace of `2 spanned by

(Wi)n
i=1.

Let G be a standard Gaussian vector on Rn. Then, by Slepian’s Lemma
[9, 23],

E‖G‖Ē = E max
1≤i≤n

|〈G,TXi

〉| ≤ c2

√
log n max

1≤i≤n
‖TXi‖2.

Since T is a diagonal operator and Xj =
∑∞

i=1

√
λiϕi(Zj)ei then

‖TXj‖2
2 =

∞∑

i=1

θ2
i λiϕ

2
i (Zj) ≤ A2

∞∑

i=1

θ2
i λi = A2

∞∑

i=1

min
{
x, r2λi

}
.
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Hence, setting

Q(x, r) = A

( ∞∑

i=1

min
{
x, r2λi

}
)1/2

,

it is evident that
E‖G‖Ē ≤ c2

√
log nQ, (4.2)

and by Lemma 4.9, for every ε > 0

log N(Bn
2 , εBĒ) ≤ c3

Q2 log n

ε2
.

In particular, the diameter of Bn
2 with respect to the norm ‖ ‖Ē is at most

cQ
√

log n, and we denote this diameter by D2.
This estimate on the covering numbers will be used for “large” scales of

ε. For smaller scales we need a different argument. Applying a volumetric
estimate (see, e.g. [23]), for every norm ‖ ‖X on Rn and every ε > 0,
N(BX , εBX) ≤ (5/ε)n. Thus, for every 0 < ε < δ,

log N(Bn
2 , εBĒ) ≤ log N(Bn

2 , δBĒ) + log N(δBĒ , εBĒ)

≤ c3
Q2 log n

δ2
+ n log

(
δ

ε

)
.

If we take δ2 = c3Q
2 log n

n it follows that for ε ≤ c4Q
√

log n/n = ε0,

log N(Bn
2 , εBĒ) ≤ n log(ε0/ε).

Now, by Theorem 4.8, for every X1, ..., Xn,

γ2
2(Ex,r, d∞,n) ≤ c5

∫ ∞

0
ε log N(TB2, εBE)dε = c5

∫ ∞

0
ε log N(Bn

2 , εBĒ)dε

≤ c6

∫ ε0

0
nε log

(ε0

ε

)
dε + c6

∫ D2

ε0

Q2 log n

ε
dε.

Using the change of variables η = ε/ε0, the first integral is bounded by
c6nε2

0

∫ 1
0 η log(η−1)dη = c7Q

2 log n. Noting that ε0 = c8D2n
−1/2, the second

integral is just

c7Q
2 log n(log D2 − log ε0) = c7Q

2 log n

(
1
2

log n− log c8

)
= c9Q

2 log2 n.
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Now we will bound φn(x) using a parameter that describes the decay of
the eigenvalues (λi). By Assumption 3.1, the sequence of eigenvalues has a
bounded weak `p norm for some 0 < p < 1, implying that for all x > 0,

|{λi ≥ x}| ≤ ‖(λi)‖p,∞x−p. (4.3)

Set Q̃2(x, r) = cpA
2x1−pr2p‖(λi)‖p,∞ and define the function Ũn(x, r) by

Ũn(x, r) = c′pQ̃(x, r) log n,

where c′p is an appropriate constant that depends only on p. Then, by
Lemma 3.4, Un(Ex,r) ≤ Ũn(x, r) and setting

φ̃n(x, r) =
Ũn(x, r)√

n
·max

(
√

x,
√
ELβ∗ ,

Ũn(x, r)√
n

)
,

it follows that for T = rB2, φn(x) ≤ φ̃n(x, r).

Lemma 4.10 Suppose that K satisfies Assumption 3.1 and Assumption
4.1. Then there exists a constant cp depending only on p for which the
following holds. Let Tr = rB2 and set Vr to be the star-shaped hull of
{Lf : f ∈ Tr}. If Vr,λ = {Lf ∈ Vr : ELf ≤ λ} then

E‖Pn − P‖Vr,λ
≤ cpφ̃n(λ, r).

Proof. In view of Theorem 4.5, it is enough to show that the sum

∞∑

i=0

2−iφ̃n(2i+1λ, r)

is dominated by a multiple of the first term in the sum.
For any α ≥ 1 and any x > 0, it is evident from the definition of Ũn that

Ũn(αx, r) ≤ α1/2−p/2Ũn(x, r);

therefore one can verify that φ̃n(αx, r) ≤ α1−p/2φ̃n(x, r). In particular,

∞∑

i=0

2−iφ̃n(2i+1λ, r) ≤ 21−p/2
∞∑

i=0

2−ip/2φ̃n(λ, r) ≤ cpφ̃n(λ, r).
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Let us pause and explain why this analysis indeed yields a far better
result than the L∞ approach. We will show later that the dominant factor in
E‖Pn−P‖Vr,λ

is Ũn/
√

n, which is, up to a logarithmic term and appropriate
constants,

A

(
1
n

∞∑

i=1

min{x, r2λi}
)1/2

= (∗).

In comparison, the L∞ approach leads to a bound of the order of

r

(
1
n

∞∑

i=1

min{x, r2λi}
)1/2

= (∗∗)

on E‖Pn − P‖Vr,λ
— which is considerably larger as r grows to infinity.

If x is a “fixed point” of (∗∗) (as required in the “isomorphic” result on
Theorem 2.2) then

(
1
n

∞∑

i=1

min
{ x

r2
, λi

})1/2

= c
x

r2
,

and thus x scales quadratically in r. On the other hand, the fixed point of
(∗) satisfies

rA

(
1
n

∞∑

i=1

min
{ x

r2
, λi

})1/2

= cx.

Hence, if (λi) decays quickly, the fixed point will scale like a smaller power
of r — in the worst case, linearly in r.

The estimate on the fixed point in the alternative approach we presented
in this section is the following:

Theorem 4.11 There exists a constant cp,Y depending only on p and ‖Y ‖L2

such that the following holds. If Assumptions 3.1 and 4.1 are satisfied then
for every r > 1, if

Θ =
A‖(λi)‖1/2

p,∞rp log n√
n

and
λ ≥ cp,Y max{Θ2/(1+p), Θ2/p},

then one has
E‖Pn − P‖Vλ,r

≤ λ/8.
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Proof. Fix r > 1. From the definition of φ̃n it suffices to find x for
which Ũn(x, r)/

√
n ≤ cY min{x,

√
x}, where cY ≤ c1 min{1, (ELβ∗)−1/2},

for a suitable absolute constant c1. Note that since β = 0 is a potential
minimizer, c ≤ c1(1 + (EY 2)1/2).

The definition of Θ ensures that Ũn(x, r)/
√

n = c′px1/2−p/2Θ. To have
Ũn(x, r)/

√
n ≤ cx, therefore, it is enough to have x ≥ (cp,Y Θ)2/(1+p). Simi-

larly, to have Ũn(x, r)/
√

n ≤ cx1/2 it is enough that cx ≥ (cp,Y Θ)2/p.

Corollary 4.12 There exist a constant cp,Y depending only on p and ‖Y ‖∞
such that the following holds. Suppose that Assumptions 3.1 and 4.1 hold.
Let

Θ =
A‖(λi)‖1/2

p,∞rp log n√
n

and

ρn(r, u) = cp,Y (1 + u)max
{

Θ2/(1+p),
r2

n

}
.

Then the function ρn is a legal function in the sense of Theorem 2.5.
In particular, for every u > 0, with probability at least 1− exp(−u), any

function f̂ ∈ F that minimizes the functional

Pn`f + κ1ρ̃n(r(f), u)

also satisfies
P`f̂ ≤ inf

r≥1
(A(r) + κ2ρ̃n(r, u))

where

ρ̃n(r, u) = ρn

(
2r, u + ln

π2

6
+ 2 ln(1 + c′Y n + log r)

)
.

Let us examine the sample error term in order to compare it with our
previous result and with the result of [8]. For a fixed u and r, the dependency
on n is similar to our previous result; the worst term is ∼ (log2 n/n)1/(1+p).
The dependency on r is more interesting: there is one term that grows like
r2, while other grows polynomially in r with an exponent between zero and
one.

The feature of this new bound that makes it better than our previous one
is the fact that the term with the worst asymptotic behavior in n has the best
asymptotic behavior in r. Indeed, the r2 term in ρn(r, u) has a dependence
in n that scales like 1/n, a much better rate than in the previous section.
The significance of this is the suggestion that a regularization term of ‖f‖2

H
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will result in over-regularization when n is large. In fact, a similar study
to the one that leads to the estimate in (3.3) shows that Corollary 4.12 is
indeed far better. In the following section we will show that one can improve
Corollary 4.12 even further by completely removing the r2 term.

5 Removing the r2 term

The function ρn from Corollary 4.12 is almost the function we would have
liked to have. Its leading term is Θ2/(1+p) ∼ (r2pn−1 log2 n)1/(1+p) while the
other term scales like r2/n and is dominant only for very large values of
r. Here, we will show that the latter does not influence the minimization
problem we are interested in and can be removed. Since some of the technical
details of the proof of that observation are rather tedious and have already
been presented in previous sections, certain parts of the argument will only
be outlined.

Let us return to Theorem 2.2. The isomorphic condition we have estab-
lished there holds in the set F = rBH with the functional

ψ(f, u) = cp,Y

(
max

{
Θ2/(1+p), Θ2/p

}
+ cY (1 + u)

‖f‖2∞
n

)
.

That is, for every u > 0, with probability at least 1 − exp(−u), for every
f ∈ F ,

1
2
PnLf − ψ(f, u) ≤ PLf ≤ 2PnLf + ψ(f, u).

Consider the minimization problem one faces when performing regu-
larized learning. The problem is always to minimize a functional Λ̂ =
Pn`f + κ1Vn, hoping that the minimizer f̂ will satisfy that

P`f̂ ≤ inf
f

Λ(f) = inf
f

(P`f + κ2Vn) ,

where the functional Vn : H × R+ → R+ is nonnegative. In addition, all
of the functionals we are interested in have the property that, for a fixed
f ∈ H and u ∈ R+, Vn(f, u) tends to zero as n →∞.

We will specify our choice for the functional Vn later, but as a starting
point, observe that since f = 0 is a potential minimizer, then (assuming that
‖Y ‖∞ ≤ 1), any minimizer of Λ̂ will satisfy that Λ̂(f̂) ≤ Λ̂(0) ≤ 1 + Vn(0),
and the same will hold for Λ. Since Vn(0) tends to zero as n grows, we can
take n sufficiently large (depending on ‖Y ‖∞) to ensure that vn(0) ≤ 1.
Therefore, for these values of n any minimizer f̂ of Λ̂ satisfies

Λ̂(f̂) ≤ 2
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and any minimizer f∗ of Λ satisfies

Λ(f∗) ≤ 2.

Thus,

{f : f minimizes Λ} ⊂ {f : E(f − Y )2 ≤ 2} ⊂ {f : Ef2 ≤ 9},

and
{f : f minimizes Λ̂} ⊂ {f : Λ̂(f) ≤ 2} ⊂ {f : Pnf2 ≤ 9}.

Having this in mind, we will decompose H into two subsets. The first
one, H1, will contain {f : Ef2 ≤ 9}. In addition, we will show that
F̄r = H1 ∩ rBH is an ordered, parameterized hierarchy of H1 and that the
assumptions of Theorem 2.5 will be satisfied with respect to a functional
V (r, x) for which the dominant term is Θ2/(1+p).

Thus, by Theorem 2.5, with high probability, any minimizer of Λ̂ in H1

will satisfy
P`f̂ ≤ inf

f∈H1

(
P`f + κ2Ṽ (‖f‖H , u)

)
, (5.1)

where Ṽ is defined in a similar way to ρ̃n in Corollary 4.12.
The next step will be to extend the result beyond H1 to H. Indeed,

since {f : Ef2 ≤ 9} ⊂ H1 then the infimum in H of the RHS of (5.1)
is actually attained in H1. Hence, the infimum in (5.1) is really over all
functions in H. To conclude this line of reasoning, we will then show that
with high probability, every empirical minimizer of Λ̂ is in H1, by proving
that if f ∈ H\H1 then Pnf2 ≥ 9.

The correct decomposition of H is attained using the following estimate
on the ratio between the ‖f‖H and ‖f‖∞ for any function in H.

Lemma 5.1 Suppose that Assumptions 3.1 and 4.1 are satisfied. There is
a constant κ3 = κ3(A, p, ‖(λi)‖p,∞) such that, for every f ∈ H

Ef2 ≥ κ3

(‖f‖∞
‖f‖p

H

)2/(1−p)

.

Proof. Recall that ‖K(x, x)‖∞ ≤ 1 and let r > 0. Set f(x) =
∑∞

i=1 ti
√

λiϕi(x)
where ‖t‖2 = r, and observe that since ‖K(x, x)‖∞ ≤ 1 then α = ‖f‖∞ ≤ r.
Also, since ‖(λi)‖p,∞ < ∞ and (λi)∞i=1 is nonnegative and non-increasing
then for every i, λi ≤ (‖(λi)‖p,∞/i)1/p.
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Fix N be named later and observe that

‖f‖∞ ≤ A




N∑

i=1

|ti|
√

λi + r

( ∞∑

N+1

λi

)1/2



≤ A

(
N∑

i=1

|ti|
√

λi + r‖(λi)‖1/2p
p,∞

(
1
N

)(1−p)/2p
)

≤ A

N∑

i=1

|ti|
√

λi +
‖f‖∞

2
,

provided that N (1−p)/2p ≥ 2Ar‖(λi)‖1/2p
p,∞ /α. Hence, A

∑N
i=1 ti

√
λi ≥ α/2.

Note that r/α is bounded below by 1/‖K‖∞ and so we can choose an integer
N such that

2Ar‖(λi)‖1/2p
p,∞

α
≤ N (1−p)/2p ≤ cAr‖(λi)‖1/2p

p,∞
α

for some constant c depending on ‖K‖∞, p and ‖(λi)‖p,∞. Clearly, for any
v ∈ RN , ‖v‖`N

2
≥ ‖v‖`N

1
/
√

N , and thus,

N∑

i=1

t2i λi ≥ c′
α2

N
= c1

( α

rp

)2/(1−p)
,

where c1 is a constant depending on K, A, p and ‖(λi)‖p,∞.
On the other hand, since (ϕi)∞i=1 is an orthonormal family,

Ef2 = E
∑

i,j

titi
√

λiλjϕiϕj ≥
N∑

i=1

t2i λi ≥ c1

( α

rp

)2/(1−p)

= c1

(‖f‖∞
‖f‖p

H

)2/(1−p)

.

Let

H1 = {0} ∪
{

f : κ3

(‖f‖∞
‖f‖p

H

)2/(1−p)

≤ 50

}
.

Since the set of minimizers of any functional Λ we will be interested in is
contained in {f : Ef2 ≤ 9} then by Lemma 5.1, the set of such minimizers
is contained in H1.
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The set H1 has additional properties. There is a constant c, depending
on p and κ3, such that on H1,

‖f‖∞ ≤ c‖f‖p
H . (5.2)

Moreover, for every r > 0, if one considers F̄r = H1∩rBH then the minimizer
of P`f in Fr = rBH actually belongs to F̄r (again, by comparing to f = 0).
Therefore, it is straightforward to show that F̄r is an ordered, parameterized
hierarchy of H1 with r(f) = ‖f‖H + 1, implying that one can obtain the
desired isomorphic result on H1, with the ‖f‖2∞/n term replaced by ‖f‖2p

H /n.
Indeed, we can combine Theorem 2.2 with (5.2) and the fact that the

localized averages E‖Pn−P‖ indexed by {star(LF̄r
, 0) : Eh ≤ λ} are smaller

than the localized averages indexed by the larger set {star(LFr , 0) : Eh ≤ λ}
to show that for every r ≥ 1, with probability at least 1−exp(−u), for every
f ∈ F̄r,

1
2
PnLr,f − λ

2
− c(1 + r2p)

u

n
≤ PLr,f ≤ 2PnLr,f +

λ

2
+ c(1 + r2p)

u

n
,

where Lr,f is the excess loss associated with f relative to F̄r.
Using Theorem 4.11, one obtains the following:

Corollary 5.2 There exists a constant κ′4 that depends on p,A, ‖(λi)‖p,∞
and ‖Y ‖∞ for which the following holds. If Υ = rp/

√
n then the function

V ′(r, u) = κ′4(1 + u)max{(Υ log n)2/(1+p), (Υ log n)2/p, Υ2},
is a legal function in the sense of Theorem 2.5 for the hierarchy {F̄r : r > 0}.

In particular, if we set Λ̂′(f, x) = Pn`f +κ1Ṽ
′(f, u), then with probability

at least 1− exp(−u), every f that minimizes Λ̂′ in H1 also satisfies

P`f̂ ≤ inf
f∈H

(
P`f + κ2Ṽ

′(r(f), u)
)

where Ṽ ′ is defined analogously to ρ̃n in Corollary 4.12.

Next we will show that the (Υ log n)2/p and Υ2 terms are non-essential.
Indeed, for sufficiently large n, the minimal value in H of Λ̂ will be at most
2 (by comparing it to f = 0). Hence, if f ∈ H satisfies that κ′5κ1Υ log n ≥ 2
(i.e., if ‖f‖H ≥ κ5(n/ log2 n)1/2p) then it is not a potential minimizer of Λ̂′

in H. Therefore, on the set of potential minimizers, Υ log n ≤ c, where c
depends on κ1, κ′4 and p. Hence, on this set of minimizers, we can bound

V ′(r, u) ≤ κ4(1 + u)(Υ log n)2/(1+p).

35



Denoting the right hand side by V (r, u), we can invoke Remark 2.6 to show
that V (r, u) is a valid functional.

Note that we can increase H by adding every function f ∈ H for which
‖f‖H ≥ (n/ log2 n)(1/2p); we have already argued that such functions cannot
minimize Λ̂.

To conclude, if

H ′
1 = H1 ∪ {f : ‖f‖H ≥ κ5(n/ log2 n)1/2p}

then with probability at least 1− exp(−u), every f that minimizes

Pn`f + κ1Ṽ (r(f), u),

in H ′
1 also satisfies

P`f̂ ≤ inf
f∈H

(
P`f + κ2Ṽ (r(f), u)

)
.

Next, let us consider the set H2 = H\H ′
1. Clearly, each function in H2

satisfies that ‖f‖H ≤ c1‖f‖1/p
∞ and Ef2 ≥ 50. We will show that with high

probability, any f ∈ H2 satisfies that Pnf2 ≥ 9, and thus it is not a potential
minimizer to Λ̂ in H.

Lemma 5.3 There exist a constant κ6 that depends on A, p, and ‖(λi)‖p,∞
and an absolute constant κ7 for which the following holds. If 0 ∈ F and
F ⊂ κ6(n/ log2 n)1/2pBH then for every u > 0, with probability at least
1− exp(−u), for every f ∈ F ,

Pnf2 ≥ 1
2
Ef2 − 1− κ7(1 + ‖F‖2

∞)
u

n
,

where ‖F‖∞ = supf∈F ‖f‖∞.

Proof. Apply Theorem 4.11 with Y ≡ 0, noting that in this case, Lf = f2.
It follows that we can set

Wx,r = {f2 : ‖f‖H ≤ r, Ef2 ≤ x}
and E‖Pn − P‖Wλ,r

≤ λ/8 provided that

λ ≥ c1 max{(Υ log n)2/(1+p), (Υ log n)2/p},
where c1 depends on A, p and ‖(λi)‖p,∞. We will apply this fact for λ = 2.
That is, we need to ensure that r is chosen in a way such that

c1 max{(Υ log n)2/(1+p), (Υ log n)2/p} ≤ 2,

which is the case, for example, if r ≤ c2(n/ log2 n)1/2p.
The result now follows from Theorem 2.2.
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Set rH = κ6(n/ log2 n)1/2p and observe that we may assume that H2 ⊂
rHBH . Indeed, this could be done by increasing κ5 and noting that H2 ⊂
κ5(n/ log2 n)1/2pBH .

The final preliminary step we take is to decompose H2 into L∞ shells
in the following way. Fix u > 0 and set r0 such that κ7u(1 + r2

0)/n < 9.
Put (ri)m

i=0, ri = 2ir0, and rm is the first that exceeds rH . Thus, m ≤
c1(log n + log u). Let

B =
{

f : ‖f‖∞ ≥ κ8‖f‖H

(u

n

)(1−p)/2p
}

(5.3)

where κ8 is some constant to be named later. We will consider the sets
F0 = H2 ∩ r0B∞ and

Fi = H2 ∩ {f : ri ≤ ‖f‖∞ ≤ ri+1} ∩B.

Since
⋃m

i=0(H2 ∩ {f : ri ≤ ‖f‖∞ ≤ ri+1}) = H2, any f ∈ H2\
⋃m

i=0 Fi

satisfies that
‖f‖∞ ≤ κ8‖f‖H

(u

n

)(1−p)/2p
,

and because ‖f‖H ≤ rH , then

‖f‖∞ ≤ κ6κ8

(
n

log2 n

)1/2p

·
(u

n

)(1−p)/2p
= c1u

(1−p)/2p n1/2

log1/p n
.

Therefore,
‖H2\

⋃m
i=0 Fi‖2∞
n

≤ c2
1

u(1−p)/p

log2/p n
.

Lemma 5.4 There exist constants c1 and c2 depending only on A, p and
‖(λi)‖p,∞ for which the following holds. Fix n and 0 < u < c1n and perform
the above decomposition. For every 0 ≤ i ≤ m, with probability at least 1−
exp(−u), every f ∈ Fi satisfies that Pnf2 ≥ 9. Also, if u ≤ c2(log n)2/(1−p)

then with probability 1− exp(−u), for every f ∈ H2\
⋃m

i=0 Fi, Pnf2 ≥ 9.

Proof. First, fix 1 ≤ i ≤ m and apply Lemma 5.3 to the set Fi. For
every f ∈ Fi, ‖f‖∞ ≤ ‖Fi‖∞ ≤ 2‖f‖∞, and thus, with probability at least
1− exp(−u),

Pnf2 ≥ 1
2
Ef2 − 1− κ7

u(1 + ‖Fi‖2∞)
n

≥ 1
2
Ef2 − 1− 2κ7

u(1 + ‖f‖2∞)
n

.
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On the other hand, for every f ∈ B,

1
4
Ef2 ≥ κ3

4

(‖f‖∞
‖f‖p

H

)2/(1−p)

≥ 2κ7
u‖f‖2∞

n

provided that κ8 ≥ (8κ7/κ3)(1−p)/2p. Therefore, with probability at least
1− exp(−u), for every f ∈ Fi,

Pnf2 ≥ 1
4
Ef2 − 1− 2κ7u

n
≥ 10− 2κ7

c1
≥ 9,

for a suitably large choice of c1.
Turning to F0, since κ7

u(1+‖F0‖2∞)
n ≤ 9 then by Lemma 5.3, with proba-

bility at least 1− exp(−u), for every f ∈ F0,

Pnf2 ≥ 1
2
Ef2 − 1− κ7

u(1 + r2
0)

n
≥ 9.

Finally, since n−1‖H2\
⋃m

i=0 Fi‖2∞ ≤ cu(1−p)/p

log2/p n
, then for our choice of u,

κ7u
‖H2\

⋃m
i=0 Fi‖2∞
n

≤ 9,

from which our claim follows using the same argument as for F0.

Now we can prove our main result, which is the second part of the
following claim, and was formulated as Theorem A in the introduction.

Corollary 5.5 If Assumptions 3.1 and 4.1 are satisfied then there exist
constants c1, c2 and c3 that depend only on A, p and ‖(λi)‖p,∞ a constant
N0 that depends on ‖Y ‖∞ and on p and a constant cY that depends only on
‖Y ‖∞ for which the following holds.

If n ≥ N0, c1 log log n ≤ u ≤ c2(log n)2/(1−p), then with probability at
least 1− exp(−u/2), for every f ∈ H2, Pnf2 ≥ 9. Thus, all the minimizers
in H of

Pn`f + κ1Ṽ (f, u) (5.4)

belong to H1. In particular, for such values of u, with probability at least
1− 2 exp(−u/2), every minimizer f̂ in H of (5.4) satisfies that

P`f̂ ≤ inf
f∈H

P`f + κ2Ṽ (f, u)

where

Ṽ (f, u) = c3(1+u+ cY lnn+ln log(‖f‖H + e))
(

(‖f‖H + 1)p log n√
n

)2/(1+p)

.
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A Proofs

The starting point in the proof of Theorem 2.5 is the following theorem by
Bartlett [1].

Theorem A.1 Suppose that {Fr; r ≥ 1} is an ordered, parameterized hier-
archy and that ρn(r) is a positive, continuous, increasing function. If, for
all r ≥ 1 and all f ∈ Fr,

1
2
PnLr,f − ρn(r) ≤ PLr,f ≤ 2PnLr,f + ρn(r) (A.1)

then
P`f̂ ≤ inf

f∈F
(P`f + c1ρn(r(f)))

where f̂ is any function that minimizes the functional Pn`f + c2ρn(r(f)).

Proof of Theorem 2.5. Let (ri)∞i=1 be an increasing sequence (to be
determined later) such that r1 = 1 and ri →∞ as i →∞. Define, for each
i ≥ 1, ui = u + ln(π2/6) + 2 ln i. Then

∞∑

i=0

e−ui = e−u

and so, by the union bound, with probability at least 1 − e−u, for every
i ≥ 1,

1
2
PnLri,f − ρn(ri, ui) ≤ PLri,f ≤ 2PnLri,f + ρn(ri, uj).

If we only cared about a sequence of ri, this would be enough for our
result. However, we need an almost-isomorphic condition for all r ≥ 1 and
so the next step must be to find an almost-isomorphic condition for Fr when
r ∈ [rj−1, rj ]. In one direction, we have

PLr,f = PLrj ,f − PLrj ,f∗r

≤ 2PnLrj ,f + ρn(rj , uj)− PLrj ,f∗r

= 2PnLr,f + 2PnLrj ,f∗r + ρn(rj , uj)− PLrj ,f∗r

≤ 2PnLr,f + 5ρn(rj , uj) + 3PLrj ,f∗r

≤ 2PnLr,f + 5ρn(rj , uj) + 3PLrj ,f∗rj−1
(A.2)

39



while in the other direction, we get

2PLr,f = 2PLrj ,f − 2PLrj ,f∗r

≥ PnLrj ,f − 2ρn(rj , uj)− 2PLrj ,f∗r

= PnLr,f + PnLrj ,f∗r − 2ρn(rj , uj)− 2PLrj ,f∗r

≥ PnLr,f − 5
2
ρn(rj , uj)− 3

2
PLrj ,f∗r

≥ PnLr,f − 5
2
ρn(rj , uj)− 3

2
PLrj ,f∗rj−1

(A.3)

Now we can choose our sequence ri: recall that r1 = 1 and set ri, for all
i ≥ 2, to be the largest number satisfying both

ri ≤ 2ri−1

PLrj ,f∗ri−1
≤ ρn(ri, ui). (A.4)

Note that choosing the largest number is not a problem because both ρn(r, u)
and PLr,f∗rj−1

are continuous functions of r; that is, the supremum of the
set of r satisfying (A.4) is attained.

Our choice of ri ensures that, for all i ≥ 1,

i ≤ P`(f∗r1
, Y )

ρn(r1, u1)
− P`(f∗ri

, Y )
ρn(ri, ui)

+ log(2ri) ≤
P`(f∗r1

, Y )
ρn(r1, u1)

+ log(2ri). (A.5)

Indeed, for i = 1 this is trivial. For larger i we can proceed by induction: our
definition of ri ensures that either ri = 2ri−1 or P`(f∗ri−1

, Y ) = P`(f∗ri
, Y ) +

ρn(ri, ui). In the first case, log ri = log ri−1 + 1 and the inductive step
follows. In the second case, assuming that

i− 1 ≤ P`(f∗r1
, Y )

ρn(r1, u1)
− P`(f∗ri−1

, Y )
ρn(ri−1, ui−1)

+ log ri−1

then

i ≤ P`(f∗r1
, Y )

ρn(r1, u1)
− P`(f∗ri−1

, Y )
ρn(ri−1, ui−1)

+ 1 + log(2ri)

≤ P`(f∗r1
, Y )

ρn(r1, u1)
− P`(f∗ri−1

, Y )
ρn(ri, ui)

+ 1 + log(2ri)

=
P`(f∗r1

, Y )
ρn(r1, u1)

− P`(f∗ri
, Y )

ρn(ri, ui)
+ log(2ri)
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which proves (A.5) by induction. In particular, for any i ≥ 1 and any r ≥ ri,
ui ≤ θ(r, u). Therefore

ρn(ri, ui) ≤ ρn(2r, θ(r, u))

for any r ∈ [ri−1, ri].
Note that (A.5) implies that the sequence ri tends to infinity with i.

Then by (A.2), (A.3) and (A.4), with probability at least 1 − e−u, for all
r ≥ 1 and all f ∈ Fr,

1
2
PnLr,f − 4ρn(2r, θ(r, u)) ≤ PLr,f ≤ 2PnLr,f + 8ρn(2r, θ(r, u)).

We conclude the proof by applying Theorem A.1.
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