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Ordinal scales are commonly used to measure health status and disease related outcomes

in hospital settings as well as in translational medical research. Notable examples include

cancer staging, which is a five-category ordinal scale indicating tumor size, node involve-

ment, and likelihood of metastasizing. Glasgow Coma Scale (GCS), which gives a reliable

and objective assessment of conscious status of a patient, is an ordinal scaled measure. In

addition, repeated measurements are common in clinical practice for tracking and monitor-

ing the progression of complex diseases. Classical ordinal modeling methods based on the

likelihood approach have contributed to the analysis of data in which the response categories
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are ordered and the number of covariates (p) is smaller than the sample size (n). With the

emergence of genomic technologies being increasingly applied for obtaining a more accurate

diagnosis and prognosis, a novel type of data, known as high-dimensional data where the

number of covariates (p) is much larger than the number of samples (n), are generated. How-

ever, corresponding statistical methodologies as well as computational software are lacking

for analyzing high-dimensional data with an ordinal or a longitudinal ordinal response. In

this thesis, we develop a regularization algorithm to build a parsimonious model for predict-

ing an ordinal response. In addition, we utilize the classical ordinal model with longitudinal

measurements to incorporate the cutting-edge data mining tool for a comprehensive under-

standing of the causes of complex disease on both the molecular level and environmental

level. Moreover, we develop the corresponding R package for general utilization. The algo-

rithm was applied to several real datasets as well as to simulated data to demonstrate the

efficiency in variable selection and precision in prediction and classification. The four real

datasets are from: 1) the National Institute of Mental Health Schizophrenia Collaborative

Study; 2)the San Diego Health Services Research Example; 3) A gene expression experiment

to understand ‘Decreased Expression of Intelectin 1 in The Human Airway Epithelium of

Smokers Compared to Nonsmokers’ by Weill Cornell Medical College; and 4) the National

Institute of General Medical Sciences Inflammation and the Host Response to Burn Injury

Collaborative Study.

This thesis is organized as follows: In Chapter 1 we introduce the concept of ordinal

data and the statistical framework of the ordinal model. In Chapter 2, we review exist-

ing regularization methods for fitting linear and logistic models in a high-dimensional data

xxi



setting. In Chapter 3, we review three statistical models: linear mixed models, nonlinear

mixed models and generalized linear mixed models, which are suitable for different types of

longitudinal data. We derive the random coefficient model which is capable of fitting longi-

tudinal data with an ordinal response in Chapter 4. In Chapter 5, we first state the problem

of interest and introduce the penalized model as a solution for performing feature selection

in high-dimensional data with an ordinal response. We then combine the random coefficient

model proposed in Chapter 4 and the penalized model to solve the dimension reduction and

prediction problem in the longitudinal high-dimensional setting with an ordinal response. In

Chapter 6, we present the results from the proposed methods when applied to several real

as well as simulated datasets. Conclusions and future work are summarized in Chapter 7.

All R, SAS, WinBUGS code and additional tables are provided in the Appendix.
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Chapter 1

Introduction to Ordinal Model

Measuring data on an ordinal scale has been common in health status and disease-associated

outcome measurement for clinical and medical research. The response of interest is repre-

sented as a series of ordered categories with either an increasing or decreasing underlying

trend. A typical example of an ordinal response is to measure pain using four ordered cat-

egories: No Pain, Mild Pain, Moderate Pain and Severe Pain. Previously, there were two

common approaches to analyze an ordinal response. First, treat the ordinal variable as

nominal variable by breaking it into multiple dichotomous outcomes and conduct pairwise

comparisons for all possible combinations. The drawback of this approach is obvious where

information depicted by the underlying trend is totally ignored and not included in the anal-

ysis. Moreover, in the presence of high-dimensional data, this approach is questionable due

to compounding the multiple comparison issue and may tremendously inflate the Type I

error, leading to false positive discoveries. Second, treat the ordinal scale as a continuous

response. This approach does not preserve the ceiling and floor effect [Agresti, 2010] of

an ordinal measurement, that is, the observed and fitted responses may not have the same
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range. Besides, the continuous approach reflects more on individual heterogeneity rather

than ordinal cluster homogeneity.

The ordinal models, which were extended primarily from the logistic and probit regres-

sion models, have been actively used to analyze ordinal response data. In particular, the

ordinal model framework under the proportional odds assumption proposed by McCullagh

[1980] has served as a bedrock for modern ordinal analysis. It provides a flexible structure

to incorporate linear effects, nonlinear effects as well as random effects to construct a more

complex model suitable for modeling different datasets.

This chapter is organized as follows: we start with Section 1.1 by introducing the math-

ematical notations and statistical properties of ordinal responses. In Section 1.2, we briefly

review different types of ordinal models. The maximum likelihood approach and optimization

techniques for ordinal models in traditional data analysis settings where n > p are discussed

in Section 1.3. The example of fitting the ordinal model using data from a Schizophrenia

study is provided in Section 1.4.

1.1 Ordinal Responses

Let Yi be a categorical response for observation i with C categories. We assume the observed

probability Yi falls into the cth category with a probability πic, c = 1, · · · , C. Suppose

Yi follows a multinomial distribution with trial size 1, the corresponding probability mass
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function for Yi can be written as:

f(Yi; π1, · · · , πC) = πyi1
i1 · · · πyic

ic · · · πyiC
iC ,

C∑

c=1

πic = 1 (1.1.1)

where (yi1, · · · , yiC) is an indicator vector with yic = 1 if Yi falls into the cth category and

yic′,c 6=c′ = 0 otherwise. Thus, the probability Yi falls into the cth category can be calcu-

lated as P (Yi = c) = π0
i1 · · · π1

ic · · · π0
iC = πic, which remains consistent with the previous

assumption. Correspondingly, the probability that response Yi falls into lower than or equal

to the cth category can be calculated by summing up c mutually exclusive πic values where

P (Yi ≤ c) = P (Yi = 1) + · · ·+ P (Yi = c) = πi1 + · · ·+ πic.

1.2 Model Framework for Ordinal Responses

To build an ordinal model, it is essential to connect the probabilities (πi1, · · · , πiC) to the

explanatory variables xi. Let γic be a function of probabilities (πi1, · · · , πiC). Suppose a

monotone, differentiable link function g(·) connects γic to the linear component αc + xT
i β

such that:

g(γic) = αc + xT
i β, c = 1, · · · , C − 1 (1.2.1)

where αc denotes the category-specific intercept; β is a p × 1 vector representing the coef-

ficients associated with explanatory variables xi. Under the proportional odds assumption

described by McCullagh [1980], β has the same effects for each g(γc), in other words, the
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explanatory variables do not have category-specific effects. The validity of the proportional

odds assumption can be verified by using a deviance or score test to compare the propor-

tional odds model with the non-proportional odds model [Agresti, 2010]. In total, there

are p + C − 1 unknown parameters that need to be estimated under the proportional odds

assumption in contrast to (p + 1) × (C − 1) if not under proportional odds assumption.

Thus the proportional odds assumption increases the model efficiency and requires a much

smaller sample size. In this thesis, we will only focus on models under the proportional odds

assumption unless stated otherwise.

There are different types of ordinal models depending on the choice of the link function

g(·) as well as the form of probability γic. In this thesis, we will primarily discuss the ordinal

model extended from logistic regression, wherein the link function connecting γic to the linear

component is the logit link g(x) = log

(
x

1−x

)
. The logit link along with the proportional

odds assumption provide a concise method for coefficient interpretation. Here, we briefly

illustrate the general relationship between the log odds ratio and unknown parameters in the

model, and a more detailed interpretation will be discussed for each type of ordinal model.

1) The log odds ratio, which measures the degree of association between two ordinal levels,

can be explained by the difference between the corresponding intercepts only. That is:

logit(γic)− logit(γic′) = log

(
γic/(1− γic)

γic′/(1− γic′)

)
= αc − αc′ (1.2.2)

2) Given a fixed γc, the change of explanatory variable ∆xi will yield to a change of ∆xT
i β
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is the log odds ratio. That is:

logit(γc|xi)− logit(γc|xi′) = ∆xT
i β,where ∆xi = xi − xi′ (1.2.3)

1.2.1 Cumulative Logit Model

We start with the most commonly used type of ordinal model: the cumulative logit model.

Let γic measure the probability of response Yi falling into no greater than the cth category.

Letting γic = P (Yi ≤ c|xi) for observation i, the cumulative logit can be written as:

log

(
γic

1− γic

)
= log

(
P (Yi ≤ c|xi)

P (Yi > c|xi)

)
= αc + xT

i β, c = 1, · · · , C − 1 (1.2.4)

where αc denotes the category-specific intercept; β is a p×1 vector of coefficients associated

with explanatory variables xi. From (1.2.4), we can rewrite γic as a function of the linear

component and each probability πic(xi) can be calculated as the difference between two

adjacent γic values, where

πic(xi) = γic − γi,c−1 = P (Yi ≤ c|xi)− P (Yi ≤ c− 1|xi)

=
exp(αc + xT

i β)

1 + exp(αc + xT
i β)

− exp(αc−1 + xT
i β)

1 + exp(αc−1 + xT
i β)

. (1.2.5)

Since πic has to be nonnegative, given the same xT
i β, it is not hard to show αc ≥ αc−1

from (1.2.5). Thus for equation (1.2.4), we place the following constraint on the intercepts:

−∞ = α0 ≤ α1 ≤ · · · ≤ αC =∞.
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1.2.2 Adjacent Categories Model

The adjacent categories model, as its name suggests, concentrates on the comparisons of

probabilities from two adjacent categories. Let γic be the conditional probability that Yi

falls into the (c + 1)th category given Yi falls into either the cth or the (c + 1)th category.

Mathematically, this conditional probability can be denoted as: γic = P (Yi = c + 1|Yi =

c or c+ 1,xi) =
πi,c+1(xi)

πic(xi)+πi,c+1(xi)
. The adjacent categories ordinal model can be written as:

log

(
γic

1− γic

)
= log

(
πi,c+1(xi)

πic(xi)

)
= αc + xT

i β, c = 1, · · · , C − 1. (1.2.6)

The construction of the adjacent-categories model takes the ordering of the response cat-

egories into consideration. It also has a close connection to the baseline-category model,

which is generally used to model nominal responses. However, rather than model the prob-

abilities from two adjacent categories, the baseline-category model models the log ratio of

the probability from a selected category to that from the baseline category. The choice of

the baseline category can be the first category, the last category, or any category of research

interest. The connections between these two models can be depicted as:

log

(
πic(xi)

πi1(xi)

)
= log

(
πic(xi)

πi,c−1(xi)

)
+ log

(
πi,c−1(xi)

πi,c−2(xi)

)
+ · · ·+ log

(
πi2(xi)

πi1(xi)

)

= (αc−1 + xT
i β) + (αc−2 + xT

i β) + · · ·+ (α1 + xT
i β)

=
c−1∑

c=1

αc + (c− 1)xT
i β.

(1.2.7)
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Following the framework of the baseline-category model, we can derive an expression for the

probability for each category. For an adjacent-categories model with C ordered categories,

we need C − 1 baseline-category models to specify the relation between any category to the

baseline category, where we set the 1st category as the baseline category to exemplify. Thus,

we can obtain the following set of equations:

log

(
πi2(xi)
πi1(xi)

)
= α1 + xT

i β = η1(xi)

log

(
πi3(xi)
πi1(xi)

)
= (α1 + α2) + 2xT

i β = η2(xi)

· · · (1.2.8)

log

(
πiC(xi)
πi1(xi)

)
=

∑C−1
c=1 αc + (C − 1)xT

i β = ηC−1(xi).

By summing the equations in (1.2.8) and using the properties of logarithms as well as the

constraint
∑C

c=1 πic(xi) = 1, we obtain an additional equation:

log

(
1− πi1(xi)

πi1(xi)

)
=

C−1∑

c=1

ηc(xi). (1.2.9)

From (1.2.9), we can obtain the expression of πi1(xi) as a function of ηc(xi), where πi1(xi) =

exp(
∑C−1

c=1 ηc(xi))

1+exp(
∑C−1

c=1 ηc(xi))
. Sequentially, putting πi1(xi) back in equations (1.2.8) and solving, we can

write the other probabilities as functions of the unknown parameters and the explanatory

variables.
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1.2.3 Continuation Ratio Model

The continuation ratio logit model measures the probability of a given category versus prob-

abilities from lower or higher order categories. Correspondingly, let γic be the conditional

probability that Yi falls into the cth category given that Yi falls into any category lower than

or equal to the cth category. Mathematically, this conditional probability can be illustrated

as: γic = P (Yi = c|Yi ≤ c,xi). Conversely, we can redefine γic as γic = P (Yi = c|Yi ≥ c,xi).

Therefore, there are two types of continuation ratio models depending on the direction: the

backward continuation ratio (1.2.10) and the forward continuation ratio (1.2.11) as shown

below.

log

(
γic

1− γic

)
= log

(
P (Yi = c|xi)

P (Yi < c|xi)

)
= αc + xT

i β, c = 2, · · · , C (1.2.10)

log

(
γic

1− γic

)
= log

(
P (Yi = c|xi)

P (Yi > c|xi)

)
= αc + xT

i β, c = 1, · · · , C − 1 (1.2.11)

Unlike the cumulative logit model, the continuation ratio model is affected by the forward

versus backward direction since each logit is making use of partial information available, with

the exception that the last logit in backward continuation ratio model and the first logit in

forward continuation ratio model. As discussed in [Agresti, 2010], the forward continuation

ratio model is often implemented to describe a sequential process with the outcome being

determined afterwards, such as the survival years after interventions of tumor growth size.

In contrast, the backward continuation ratio model describes the progress of an event to a

specific stage given it has passed all previous stages. Often, the backward continuation ratio
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model is used to describe an irreversible disease process.

To obtain the probability of each category from backward continuation ratio model, we

again assume there are C ordered categories in the response and we need C − 1 models to

specify each πic. Thus, we can obtain the following set of equations:

log

(
πi2(xi)
πi1(xi)

)
= α2 + xT

i β = η2(xi)

log

(
πi3(xi)

πi1(xi)+πi2(xi)

)
= α3 + xT

i β = η3(xi)

· · · (1.2.12)

log

(
πi,C−1(xi)

1−πiC(xi)−πi,C−1(xi)

)
= αC−1 + xT

i β = ηC−1(xi)

log

(
πiC(xi)

1−πiC(xi)

)
= αC + xT

i β = ηC(xi).

Solving the last equation (1.2.12), we can obtain the expression of πiC(xi) as a function of

ηC(xi). Sequentially, we can write πi,C−1(xi) as a function of ηC(xi), ηC−1(xi) and so on and

so forth. Following the same logic, in the forward continuation ratio model, we start with

the first category and write πi1(xi) as a function of η1(xi). Then the probability from the

second category πi2(xi) can be written as a function of η1(xi), η2(xi). The other probabilities

can be solved successively.
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1.3 Estimation of the Coefficients

To estimate the unknown parameters in an ordinal model, a maximum likelihood approach

is used. We first construct the likelihood function for the four different ordinal models. Since

generally, there is no closed-form of the MLE for the ordinal model. An iterative optimization

method is required to obtain the MLE. We then introduce several general-purpose iterative

optimization methods as well as the R functions and SAS procedures for fitting the ordinal

models.

1.3.1 Maximum Likelihood Estimate

Since the ordinal response Yi follows a multinomial distribution with trial size 1, the likelihood

function for n observation is

L(α,β;x) =
n∏

i=1

f(xi;α,β) =
n∏

i=1

( C∏

c=1

πc(xi)
yic
)
. (1.3.1)

As discussed in Section 1.2, πc(xi) is a function of unknown parameters α, β and xi where xi

are the independent covariates. πc(xi) has a specified form determined by the ordinal model

type. Here, we illustrate the maximum likelihood estimate approach using cumulative logit

ordinal model, where (1.3.1) can be further written as:

L(α,β;x) =
n∏

i=1

( C∏

c=1

πc(xi)
yic
)

=
n∏

i=1

[ C∏

c=1

(
exp(αc + xT

i β)

1 + exp(αc + xT
i β)

− exp(αc−1 + xT
i β)

1 + exp(αc−1 + xT
i β)

)yic]
. (1.3.2)
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Since the unknown parameters αc and β are nonlinear in the likelihood function (as well

as the log likelihood function) to be optimized, an iterative method is required to suc-

cessively find optimum roots for the function. McCullagh [1980] and Walker and Dun-

can [1967] proposed Fisher’s scoring to obtain the maximum likelihood estimate. Notice

there is an inequality constraint on the intercept for the cumulative logit model where

−∞ ≤ α0 ≤ α1 ≤ · · ·αC =∞ as discuss in Section 1.2.1. We used the constrained nonlinear

optimization algorithm Augmented Lagrangian Adaptive Barrier Minimization proposed by

Varadhan [2011] to obtain the maximum likelihood estimate of the cumulative logit model.

For other types of ordinal models, the iterative algorithm for solving unconstrained nonlinear

optimization problem would be appropriate.

1.3.2 Optimization Technique

There are a variety of algorithms suitable for solving unconstrained nonlinear optimization

problems. The three commonly used algorithms based on the second-order Taylor series

expansion of the likelihood function are: Newton-Raphson, Fisher’s Scoring, and Iteratively

Reweighted Least Squares (IRLS). Here, we introduce the Newton-Raphson and Fisher’s

Scoring algorithms and leave the IRLS to be introduced in Chapter 3.

We first briefly explain the mechanics of the Newton-Raphson algorithm, which got its

name from the two inventors: Isaac Newton and Joseph Raphson. Let L(β) be the log-

likelihood where β = (β1, · · · , βp) is a vector of p unknown parameters that needs to be

estimated. We denote vector uT as the first-order partial derivatives of L(β) with respect to
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each βj, j = 1, · · · , p where uT = ∂L(β)
∂β

=
(
∂L(β)
∂β1

, · · · , ∂L(β)
∂βp

)
. We also denote H as a p × p

Hessian matrix consisting of second-order partial derivatives of L(β) where each entry has

the form hij = ∂2L(β)
∂βi∂βj

, i = 1, · · · , p, j = 1, · · · , p. According to second-order Taylor series

expansion, L(β) can be approximated as:

L(β) ≈ L(β(s)) + uT(s)
(β − β(s)) +

1

2
(β − β(s))′H(s)(β − β(s)) (1.3.3)

where β(s+1) = β(s)− (H(s))−1u(s) is the approximation to the root evaluated at the (s+1)th

iteration by solving the first order partial derivative of second-order Taylor series expansion of

L(β), that is, ∂L(β)
∂β
≈ u(s)+H(s)(β−β(s)) = 0. This iteration is repeated until the difference

between L(βs) and L(βs−1) is negligible, that is where the optimum value of L(β) is reached.

Analogous to the Newton-Raphson algorithm, Fisher’s Scoring is also based on the sec-

ond order Taylor series expansion of the likelihood function. Instead of using the Hessian

matrix directly in the approximation, it uses the p× p Fisher’s information matrix which is

the negative expectation of the second-order partial derivatives of L(β) where we denote it

as ι and ιij = −E
(∂2L(β)
∂βi∂βj

)
, i = 1, · · · , p, j = 1, · · · , p. By substituting H(s) with −ι(s) in

(1.3.3), β(s+1) at the (s+ 1)th iteration can be evaluated as β(s+1) = β(s) + (ι(s))−1u(s)

The two optimization algorithms discussed above require calculation of the second order

derivatives of L(β) which can be tremendously computationally expensive when L(β) has

a complex form. Alternatively, algorithms based on the approximation of the second-order

partial derivative such as quasi-Newton BFGS [Broyden, 1970, Fletcher, 1970], L-BFGS-B

[RH. Byrd and Zhu, 1995], Dual quasi-Newton with dogleg strategy [Dennis and Mei, 1979]
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and BHHH [E. Berndt and Hausman, 1974] are actively involved to solve the unconstrained

nonlinear optimization problems. Other algorithms based on a different mechanism, such as

Nelder-Mead method [Nelder and Mead, 1965], which is a heuristic search method to mini-

mize an objective function in a multi-dimensional space, and the conjugate gradient method

[Fletcher and Reeves, 1964], which provides numerical solution in a sparse system, are also

implemented to optimize the likelihood function.

1.3.3 Software Implementation

Currently, there are several software packages capable of fitting ordinal models. In SAS ver-

sion 9.2, PROC LOGISTIC procedure is capable of fitting the cumulative logit model and PROC

NLMIXED procedure provides the flexibility to fit all types of ordinal models. It is worth

mentioning that the optimization techniques in these two procedures are different, which

may yield slightly different results under certain situations. The PROC LOGISTIC procedure

implements the Newton-Raphson algorithm and Fisher’s Scoring algorithm (default) while

PROC NLMIXED has a larger selection of optimization methods including Dual Quasi-Newton

(default), Conjugate Gradient methods and Nelder-Mead simplex method, etc. For R ver-

sion 2.13.1, the package VGAM [T.W.Yee, 2013] is capable of fitting different types of ordinal

models by creating the class of Vector Generalized Linear Models (VGLMs) using the vglm

function. The default and currently the only optimization method implemented in the vglm

function is Iteratively Reweighted Least Squares (IRLS). In addition, we also wrote our own

code for fitting different types of ordinal models. For the cumulative logit model, we optimize

the model using the nonlinear constrained optimization method incorporated in the R pack-
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age alabama [Varadhan, 2011]. For other types of ordinal models, the parameter estimates

are obtained using the Newton-Raphson algorithm in the universal nonlinear optimization

function nlm.

1.4 NIMH Schizophrenia Example

The Schizophrenia data described in [Hedeker and Gibbons, 2006] is from a collaborative

study conducted at the National Institute of Mental Health. In this longitudinal study, a

total of 1603 observations were obtained from 437 patients. For now, we tentatively ignore

the correlations between multiple measurements from the same patient and assume the

independence of observations. The outcome was measured as the Inpatient Multidimensional

Psychiatric Scale (IMPS)[Lorr and Klett, 1966], which was a eight-category scale ranging

from normal (0) to extremely ill (7) that assessed the severity of illness. Hedeker and Gibbons

[2006] modified the original scale by aggregating several categories and summarizing it into

a four-category measurement ranging from 1 to 4 with 1) normal or borderline mentally ill,

2) mildly or moderately ill, 3) markedly ill, and 4) severely and most extremely ill. Table 1.1

summarizes the distribution of the modified IMPS score. It is of interest to study whether

the intervention and time of measurements have a significant impact on the change of IMPS

score. To explore this, we fit cumulative logit, adjacent-category, backward continuation ratio

and forward continuation ratio ordinal models. To evaluate the concordance of parameter

estimates from different computational tools, we wrote our own R code and compared our

results to the results from the R package VGAM and to SAS. Tables 1.2, 1.5, 1.8 and 1.11

present the parameter estimates from our code. Tables 1.3, 1.6, 1.9 and 1.12 present the
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parameter estimates from the R package VGAM. Tables 1.4, 1.7, 1.10 and 1.13 present the

parameter estimates from SAS. The parameter estimates from the three approaches achieve

good concordance, from which we can draw conclusions that the drug and time interaction

is significant with an extremely small p-value, which can be interpreted as the distribution

of the IMPS score changes more dramatically in intervention group compared to that in

the control group. As the interaction is significant, the main effects can not be interpreted

according to p-value directly. Instead, we interpret the drug and time main effects based

on contrasts. The drug effect βdrug represents the difference of IMPS score distributions

between two groups at baseline (week 0) where the proportion of normal, mildly, markedly

and severely ill subjects are similar in two groups. The time effect βtime describes the

significant change of IMPS score distribution as the study continuous. As the drug effect

βdrug = 0 illustrates the changes are the same for the intervention and control groups.
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Table 1.1: Summary of IMPS score(modified) in the NIMH Schizophrenia data

IMPS Score 1 2 3 4 Total
190 474 412 527 1603

Table 1.2: R code for fitting the cumulative logit ordinal model using NIMH Schizophrenia
data

Parameter Estimate SE DF t-value P-value
(Intercept):1 -3.81 0.189 1597 -20.10 <0.001*
(Intercept):2 -1.76 0.170 1597 -10.37 <0.001*
(Intercept):3 -0.42 0.163 1597 -2.59 0.010*

tx 0.00 0.188 1597 0.00 1.00
sweek 0.54 0.111 1597 4.85 <0.001*

tx×sweek 0.75 0.127 1597 5.89 <0.001*
-2logL 3756.20

Table 1.3: R package VGAM for fitting the cumulative logit ordinal model using NIMH
Schizophrenia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 -3.81 0.193 1597 -19.77 <0.001*
(Intercept):2 -1.76 0.174 1597 -10.12 <0.001*
(Intercept):3 -0.42 0.167 1597 -2.53 0.012*

tx 0.00 0.192 1597 0.00 1.00
sweek 0.54 0.111 1597 4.84 <0.001*

tx×sweek 0.75 0.128 1597 5.87 <0.001*
-2logL 3756.20

Table 1.4: SAS output for fitting the cumulative logit ordinal model using NIMH Schizophre-
nia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 -3.81 0.190 1597 -20.05 <0.001*
(Intercept):2 -1.76 0.170 1597 -10.34 <0.001*
(Intercept):3 -0.42 0.164 1597 -2.58 0.010*

tx 0.00 0.188 1597 0.00 1.00
sweek 0.54 0.111 1597 4.84 <0.001*

tx×sweek 0.75 0.128 1597 5.88 <0.001*
-2logL 3756.20
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Table 1.5: R code for fitting the adjacent categories ordinal model using NIMH Schizophrenia
data

Parameter Estimate SE DF t-value P-value
(Intercept):1 2.23 0.154 1597 14.50 <0.001*
(Intercept):2 0.81 0.133 1597 6.14 <0.001*
(Intercept):3 0.85 0.120 1597 7.06 <0.001*

tx -0.05 0.126 1597 -0.40 0.692
sweek -0.36 0.070 1597 -5.18 <0.001*

tx×sweek -0.40 0.081 1597 -4.97 <0.001*
-2logL 3748.63

Table 1.6: R package VGAM for fitting the adjacent categories ordinal model using NIMH
Schizophrenia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 2.23 0.154 1597 14.50 <0.001*
(Intercept):2 0.81 0.133 1597 6.14 <0.001*
(Intercept):3 0.85 0.120 1597 7.06 <0.001*

tx -0.05 0.126 1597 -0.40 0.692
sweek -0.36 0.070 1597 -5.18 <0.001*

tx×sweek -0.40 0.081 1597 -4.97 <0.001*
-2logL 3748.63

Table 1.7: SAS output for fitting the adjacent categories ordinal model using NIMH
Schizophrenia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 2.23 0.154 1597 14.50 <0.001*
(Intercept):2 0.81 0.133 1597 6.14 <0.001*
(Intercept):3 0.85 0.120 1597 7.06 <0.001*

tx -0.05 0.126 1597 -0.40 0.692
sweek -0.36 0.070 1597 -5.18 <0.001*

tx×sweek -0.40 0.081 1597 -4.97 <0.001*
-2logL 3748.63
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Table 1.8: R code for fitting the backward continuation ratio ordinal model using NIMH
Schizophrenia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 2.85 0.184 1597 15.49 <0.001*
(Intercept):2 0.96 0.160 1597 5.97 <0.001*
(Intercept):3 0.38 0.147 1597 2.59 0.010

tx -0.09 0.166 1597 -0.56 0.574
sweek -0.55 0.095 1597 -5.73 <0.001*

tx ×sweek -0.54 0.110 1597 -4.95 <0.001*
-2logL 3745.77

Table 1.9: R package VGAM for fitting the backward continuation ratio ordinal model using
NIMH Schizophrenia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 2.85 0.184 1597 15.49 <0.001*
(Intercept):2 0.96 0.160 1597 5.97 <0.001*
(Intercept):3 0.38 0.147 1597 2.59 0.010

tx -0.09 0.166 1597 -0.56 0.574
sweek -0.55 0.095 1597 -5.73 <0.001*

tx ×sweek -0.54 0.110 1597 -4.95 <0.001*
-2logL 3745.77

Table 1.10: SAS output for fitting the backward continuation ratio ordinal model using
NIMH Schizophrenia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 2.85 0.184 1597 15.55 <0.001*
(Intercept):2 0.96 0.160 1597 6.00 <0.001*
(Intercept):3 0.38 0.147 1597 2.60 0.010

tx -0.09 0.166 1597 -0.56 0.574
sweek -0.55 0.095 1597 -5.74 <0.001*

tx ×sweek -0.54 0.110 1597 -4.95 <0.001*
-2logL 3745.77
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Table 1.11: R code for fitting the forward continuation ratio ordinal model using NIMH
Schizophrenia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 -3.42 0.173 1597 -19.80 <0.001*
(Intercept):2 -1.76 0.156 1597 -11.35 <0.001*
(Intercept):3 -0.99 0.152 1597 -6.55 <0.001*

tx -0.02 0.168 1597 -0.12 0.906
sweek 0.42 0.096 1597 4.34 <0.001*

tx×sweek 0.64 0.111 1597 5.81 <0.001*
-2logL 3785.04

Table 1.12: R package VGAM for fitting the forward continuation ratio ordinal model using
NIMH Schizophrenia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 -3.42 0.175 1597 -19.60 <0.001*
(Intercept):2 -1.76 0.158 1597 -11.18 <0.001*
(Intercept):3 -0.99 0.155 1597 -6.42 <0.001*

tx -0.02 0.170 1597 -0.12 0.907
sweek 0.42 0.096 1597 4.33 <0.001*

tx×sweek 0.64 0.111 1597 5.79 <0.001*
-2logL 3785.04

Table 1.13: SAS for fitting the forward continuation ratio ordinal model using NIMH
Schizophrenia data

Parameter Estimate SE DF t-value P-value
(Intercept):1 -3.42 0.173 1597 -19.80 <0.001*
(Intercept):2 -1.76 0.156 1597 -11.35 <0.001*
(Intercept):3 -0.99 0.152 1597 -6.55 <0.001*

tx -0.02 0.167 1597 -0.12 0.906
sweek 0.42 0.096 1597 4.34 <0.001*

tx×sweek 0.64 0.111 1597 5.81 <0.001*
-2logL 3785.00
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Chapter 2

Regularization Methods for

High-dimensional Data

In this chapter, we introduce statistical learning algorithms that are useful for prediction

and feature selection problems for high-dimensional data where the number of covariates p

is much larger than the number of samples n. This type of data is particularly prevalent

in computational biology where high-throughput genomic technologies plays an increasingly

important role in medical research and clinical practice. The statistical learning algorithms

produce penalized estimates of coefficients for ‘important’ covariates while shrinking the rest

to be exactly zero. This approach has been demonstrated to have superior performance over

the traditional hypothesis-based variable selection methods such as Best subsets, Forward

Selection and Backward Elimination, etc. It also has better performance in aspects of predic-

tion and classification accuracy, stability and consistency for feature selection in data with

complex patterns.
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The rest of Chapter 2 is organized as follows: In Section 2.1, we briefly review several

existing regularization methods that are applicable for continuous responses. In Section 2.2,

we present regularization methods that are suitable for dichotomous responses. In Section

2.3, we discuss the optimization algorithm to solve the regularization path in LASSO. Some

comparisons between the LASSO and Forward Stagewise methods are discussed in Section

2.4.

2.1 Regularization Methods for Continuous Response

In high-dimensional data, the explosion of dimensionality allows much more information

to be examined simultaneously. In the meantime, the curse of dimensionality raises chal-

lenges rarely occurred in low-dimensional settings, such as: data sparsity, high-volatility,

and nonlinearity. Variable selection and assessment is an important first step to reduce

dimensionality such that fewer important factors can be implemented in a general statis-

tical framework. Some traditional variable selection methodologies including Best subsets,

Forward Selection and Backward Elimination etc. often fail to provide feasible and stable

results due to strong assumptions on covariate independence as well as problematic discrete

procedures which yield high variability. The regularization methods, also known as penal-

ized models which trade off unbiasedness for lower variability, have demonstrated superior

performance in analyzing high-dimensional data. We first review the regularization model

framework in the linear model setting.
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Consider a linear model of the form (2.1.1)

yi = xi
Tβ + ǫi (2.1.1)

where yi is the response for the ith observation, xi
T = (1, xi1, · · · , xip) is a vector of the

intercept and p covariates, β = (β0, β1, · · · , βp) is the vector of coefficients associated with

the intercept and covariates, and ǫi is the error term assumed to follow a normal distribution

with mean 0 and variance σ2. The residual sum of square (RSS) in a linear model is defined as

(2.1.2). It can be shown that the ordinary least squares (OLS) estimator of β is the solution

that minimizes the RSS. The ordinary least squares estimator has some appealing statistical

properties. First, it is also the maximum likelihood estimator for a linear regression model.

Second, it is an unbiased estimator where E(β̂) = β.

RSS(β) =
n∑

i=1

(yi − xi
Tβ)2 (2.1.2)

In a high-dimensional setting or when data are highly correlated, retaining the unbiased-

ness of the estimator is either infeasible or could result in very high variability. Fan and Li

[2001] proposed penalized least squares as shown in (2.1.3)

Q(β) =
n∑

i=1

(yi − xi
Tβ)2 + pλ(β) (2.1.3)

where pλ(·) is the penalty function and λ is a tuning parameter that regulates the amount

of shrinkage. Different penalty functions lead to different penalized models. The well known

shrinkage procedure ridge regression [Hoerl and Kennard, 1970], which is also known as
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L2−norm penalized regression model, has a penalty function pλ(β) = λ
∑

j β
2
j . The ridge

regression produces the penalized estimates for all coefficients by sacrificing a little bit un-

biasedness in return for smaller variance. As pointed out by Myers [1990], ridge regression

is particularly useful for solving the multicollinearity problem in linear regression. However,

ridge regression neither performs variable selection nor builds a parsimonious model since it

cannot shrink the coefficient estimates to be exactly zero. Alternatively, Tibshirani [1996]

proposed the famous Least Absolute Shrinkage and Selection Operator (LASSO) method

which sets the penalty function to be the L1 norm of the coefficients where pλ(β) = λ
∑

j |βj|.

LASSO has been demonstrated to be useful in variable selection since it can shrink the coeffi-

cient estimates associated with unimportant covariates to be exactly zero while producing pe-

nalized estimates for the few important covariates. The penalized estimates also yield better

prediction accuracy in terms of smaller prediction error. In addition, Zou and Hastie [2005]

introduced the elastic net penalty pλ(β) = λ[(1− α)
∑

j |βj|+ α
∑

j β
2
j ] which improves the

stability of the LASSO when exposed to a group of strongly correlated predictors. Moreover,

Fan and Li [2001] advocated a penalty function from a different mechanism called smoothly

clipped absolute deviation (SCAD) with a form p
′

λ(β) = λ
(
I(β ≤ λ) + (αλ−β)+

(α−1)λ
I(β > λ)

)

where α and λ are the unknown parameters determined by cross-validation. This method

is shown to be effective without creating excessive biases especially in situations where the

noise to signal ratio is low.

In this Section we concentrate on the L1 penalized regression model LASSO and two other

popular algorithms: Least Angle Regression [Efron et al., 2004] (better known as ‘LAR’) and

incremental forward stagewise regression [Hastie et al., 2007] which were also proposed for
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solving the penalized least squares problem when the response is continuous.

2.1.1 LASSO

The LASSO, also known as the L1 penalized regression model proposed by Tibshirani [1996],

is a widely used smooth optimization technique for building a parsimonious model from high-

dimensional data. It produces penalized estimates for the unknown parameters β as shown

in (2.1.4)

β̂LASSO = argmin{
n∑

i=1

(yi − β0 − xi
Tβ)2 + λ

p∑

j=1

|βj|} (2.1.4)

where the tuning parameter λ controls the amount of shrinkage. The penalized estimates

are equivalent to the ordinary least squares estimates if λ = 0 and the penalized estimates

are all 0 if λ → ∞. Therefore, the choice of the turning parameter λ can be thought of as

a way to determine the number of important predictors. As there is no standard criteria

associated with the choice of λ, λ can be the one associated with optimum model fitting

criteria (AIC, BIC) or that leads to the smallest cross-validation error decrease.

The rationale behind the LASSO can be illustrated by Figure 2.1 reproduced from [Tib-

shirani, 1996] which also helps explain the mechanism of variable selection. Figure 2.1

illustrates a situation when there are two covariates x1,x2 in the linear regression model.

The blue diamond area is defined by the penalty function |β1|+ |β2| ≤ t, where t is a scale de-

termined by the turning parameter λ. The red contours represent the squared error between
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the penalized estimate and the ordinary least squares estimate. To illustrate, we assume the

data is normalized so that x1
Tx2 = 0. We define the squared error as follows (2.1.5)

n∑

i=1

(xiβ̂
PLS − xiβ̂

OLS)2

=
n∑

i=1

(β̂PLS − β̂OLS)Txi
Txi(β̂

PLS − β̂OLS)

= (β̂PLS
1 − β̂OLS

1 , β̂PLS
2 − β̂OLS

2 )



x1

Tx1 0

0 x2
Tx2






β̂PLS
1 − β̂OLS

1

β̂PLS
2 − β̂OLS

2




= (β̂PLS
1 − β̂OLS

1 )2x1
Tx1 + (β̂PLS

2 − β̂OLS
2 )2x2

Tx2 = k (2.1.5)

where x1
Tx1 =

∑n
i=1 x

2
i1,x2

Tx2 =
∑n

i=1 x
2
i2 and k is a constant. The last line of equation

(2.1.5) defines several ellipses that are centered at β̂ = (β̂OLS
1 , β̂OLS

2 ). As the penalized

estimates have to satisfy both equation (2.1.5) and the penalty function, a possible situation

is when the contour hits the corner of the diamond which yields an exact zero estimate for

one coefficient. From here, it is not difficult to generalize to a higher dimensional scenario

when multiple coefficients are shrunk to be exactly zero.

Figure 2.1: Estimation picture for the LASSO
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2.1.2 Forward Stagewise Method

The forward stagewise method is a greedy procedure similar to forward stepwise but more

cautious. It was historically known as an ‘inefficient’ procedure since the model is updated

by a very small incremental step at each iteration. Recently, it is gained enormous atten-

tion when Hastie et al. [2007] linked forward stagewise to a version of boosting proposed

by Schapire et al. [1998] for linear models. This ‘slow fitting’ turns out to be quite com-

petitive in terms of variable selection stability and prediction accuracy. In fact, Efron et al.

[2004] showed the forward stagewise profile can be similar or even identical to the LASSO

path under certain conditions and thus can be used to solve the penalized regression problem.

The forward stagewise method for linear regression is as follows:

1. Standardize the covariates so that each has mean 0 and unit norm. At the initial step,

set the residual vector r to y and β = (β1, · · · , βp) = 0.

2. Calculate the correlation between xj for j = 1, · · · , p and the current residual r. Select

the xj most correlated with r.

3. Update the corresponding coefficient βj with βj ← βj + ǫ · sign < xj, r > where ǫ is a

small amount, e.g. ǫ = 10−4 and < xj, r > represents the correlation between xj and

r.

Update the residual to r← r− ǫ · sign < xj, r > xj.

4. Repeat steps 2 and 3 many times until r is uncorrelated or at least not highly correlated

with any of the covariates.
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The mechanism of forward stagewise can be explained by Figure 2.2 reproduced from Hastie

et al. [2009]. Recall in the linear regression model, the OLS estimator β̂ is the estimate

associated with minimal residual sum-of-squares (RSS)(2.1.2). In projection presentation,

suppose response y is projected onto the space spanned by covariates x1 and x2. The residual

r = y − ŷ measures the distance between y and the predictor space. The RSS is achieved

when the residual r is orthogonal to both x1 and x2, in other words, r is uncorrelated with

all the covariates in model. The mechanism can be easily generalized to a high-dimensional

scenario. In the forward stagewise procedure discussed above, the update of coefficients

β and residual r stops when r is uncorrelated, or at least not highly correlated with any

of the covariates in the model, and can be interpreted as when the minimum RSS is reached.

Figure 2.2: Least square projection in linear regression model

2.1.3 LAR

LAR, which stand for ‘Least Angle Regression’ proposed by Efron et al. [2004], is considered

as a more ‘democratic’ version of the forward stagewise method. After selecting the predic-

tor that is most correlated with the residual, rather than taking the full step towards that

direction, LAR takes the largest step possible in that direction until some other predictor has
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reached the correlation with the current residual. Then the two predictors are moved in the

joint least squares direction until the third predictor achieves the amount of correlation with

the current residual and joins the selected group. This procedure is repeated many times

until the correlation of each predictor to the current residual is smaller than a threshold.

This new comer is known to be closely connected to LASSO and provides a more efficient

solution to the penalized least squares problem.

2.2 Regularization Methods for Dichotomous Responses

In this section, we move on to discuss regularization methods implemented for the logistic

regression model with high-dimensional predictors by first providing the statistical framework

for logistic regression in the traditional setting. Consider a logistic regression of the form

(2.2.1)

log
P (Yi = 1|x)
P (Yi = 0|xi)

= log
π(xi)

1− π(xi)
= α + xi

Tβ (2.2.1)

where yi = 1 indicates 1 success and yi = 0 indicates failure. For each observation i,

we denote Yi being the total number of successes and 1 − Yi being the total number of

failures. Therefore, Yi follows a binomial distribution with mass function f(Yi; 1, πi) =
(
1
Yi

)
πYi

i (1−πi)
1−Yi . xi

T = (xi1, · · · , xip) is a vector of p covariates, α represents the intercept,

and β = (β1, · · · , βp) is a vector of coefficients associated with the covariates. The maximum

likelihood approach is implemented to obtain the estimates of the unknown parameters in
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the model. The likelihood function for the logistic regression model can be written as:

L(α,β|xi) =
N∏

i=1

π(xi)
Yi(1− π(xi))

1−Yi

=
N∏

i=1

(
exp(α + xi

Tβ)

1 + exp(α + xi
Tβ)

)Yi
(

1

1 + exp(α + xi
Tβ)

)1−Yi

. (2.2.2)

Correspondingly, the log-likelihood can be written as:

logL(α,β|xi) =
N∑

i=1

Yi log π(xi) + (1− Yi) log(1− π(xi)). (2.2.3)

It is not hard to show that logL(α,β|xi) in (2.2.3) is a concave function and its negative,

− logL(α,β|xi) is a convex function.

2.2.1 LASSO for Logistic Regression

In a high-dimensional setting where N ≪ p, maximum likelihood estimation is no longer

feasible due to singularities in the Hessian matrix. The penalized model is again proposed

and demonstrated to be useful in this case. Recall for the linear regression model with

high-dimensional covariates the penalized estimator is the one associated with the optimum

value of the penalized least squares (2.1.3), which consists of the residual sum of squares

and the penalty function. Notice the residual sum of squares is the kernel of the likelihood

in the linear model case. When the response is discrete, minimizing the residual sum of

square is not reasonable, so a modified penalized model that maximizes the penalized log-

likelihood function was proposed [Wu et al., 2009]. The penalized log-likelihood consists of
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the log-likelihood and the penalty function

logQ(α,β|xi) =
N∑

i=1

Yi log πi(xi) + (1− Yi) log(1− πi(xi))− λ

p∑

j=1

|βj| (2.2.4)

2.2.2 Forward Stagewise for Logistic Regression

The forward stagewise method for logistic regression inherits the mechanism from the linear

model to update one coefficient at a time using a small incremental amount and thus obtains

the penalized estimate. Recall for the forward stagewise algorithm implemented for the linear

regression model, the coefficient to be updated at each iteration is selected based on the cor-

relation between the covariates and the current residual. As mentioned previously, since the

residual is no longer an appropriate measurement for a discrete variable, a modified forward

stagewise method where the coefficient to be updated is selected based on the gradient of the

likelihood function is therefore proposed for models having a discrete response. In addition,

to determine the direction for updating the coefficient requires calculation of the second-order

derivatives of the likelihood function at every step, which is computationally expensive given

hundreds of thousands iterations needed before the likelihood function reaches the optimum.

Hastie et al. [2007] showed the expanded representation of the LASSO problem produces an

efficient version of forward stagewise which is able to avoid the cumbersome computation of

second-order derivatives of the likelihood function. In the expanded setting, a negative copy

of the covariates is created, thus the new predictor space is X̃ = (X,−X). Correspondingly,

the coefficients are expanded to β = (β1, · · · , βp, βp+1, · · · , β2p). For each iteration, only

one βj is updated with a small incremental amount and the Karush-Kuhn-Tucker condition

(proof can be found in Appendix of [Hastie et al., 2007]) ensures βj and βj+p representing the
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same covariate xj cannot be selected simultaneously in the regularization path. Therefore,

the penalized estimate of β is obtained by subtracting the βj associated with −xj from that

associated with xj, that is β = (β1 − βp+1, β2 − βp+2, · · · , βp − β2p) is the final solution.

The forward stagewise regression for logistic model works as follows:

1. Let X̃ = (X,−X) and standardize the covariates so that each has mean 0 and unit

norm. In initial step, set β = (β1, · · · , βp, βp+1, · · · , β2p) = 0.

2. Calculate the first-order derivative of − logL(α,β|xi) with respect to βj evaluated at

current estimate β = β(s). Find the predictor xj with the largest negative gradient

element.

3. Update the corresponding coefficient βj with βj ← βj + ǫ to yield the new estimate

β = β(s+1) where ǫ is a small amount, e.g. ǫ = 10−4.

4. Repeat steps 2 and 3 many times.

There is no standard stopping criteria in the forward stagewise method for logistic regression.

We implemented the criteria to stop the iteration if the difference between the adjacent log-

likelihood is smaller than a given value, that is | logL(α,β|xi)|β=β(s)−logL(α,β|xi)|β=β(s+1) | <

δ. The forward stagewise method stops if δ is smaller than a certain value.
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2.3 Coordinate Descent for LASSO Regularization Paths

It is challenging to solve the convex optimization problem with an inequality constraint to

obtain the penalized estimates in LASSO. In the past, quadratic programming was often

conducted for such a scenario. Friedman et al. [2007] demonstrated the ‘one-at-a-time’ co-

ordinate descent algorithm, which was mistakenly considered to be too simple for convex

problems, had competitive and efficient performance for certain types of penalty functions

including the LASSO and elastic net. Here, we briefly discuss this algorithm which has been

implemented in the R package glmnet [Friedman et al., 2013].

In the linear model, the ‘Lagrange’ version of penalized least squares for LASSO can be

written as (2.3.1) which is equivalent to (2.1.4)

Q(β) =
1

2

n∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2
+ λ

p∑

j=1

|βj|. (2.3.1)

If we assume the pairwise independence of each covariate, by standardizing the covariates,

the LASSO estimate can be simplified to a soft thresholded version of the least squares

estimate proposed by Donoho and Johnstone [1995]. Under the independence assumption,

(2.3.1) can be further re-expressed as:

Q(β) =
1

2

p∑

j=0

n∑

i=1

x2
ij

(
β̂LASSO
j − β̂OLS

j

)2
+ λ

p∑

j=0

|β̂LASSO
j |

=
1

2

p∑

j=0

(
β̂LASSO
j − β̂OLS

j

)2
+ λ

p∑

j=0

|β̂LASSO
j |,

n∑

i=1

x2
ij = 1

(2.3.2)
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To minimize the penalized least squares with a form of (2.3.2), the first step is to take

the first-order derivative of Q(β) with respect to each βj and this gradient can be written

as:

∂Q(β)

∂βj

= β̂LASSO
j − β̂OLS

j ± λ = 0. (2.3.3)

From there the penalized estimate can be written as a function of the least squares estimate

and the tuning parameter. As discussed in Friedman et al. [2007], this soft threshold can be

depicted as

β̂LASSO
j =





β̂OLS
j − λ if β̂OLS

j > 0 and λ < |β̂OLS
j |

β̂OLS
j + λ if β̂OLS

j < 0 and λ < |β̂OLS
j |

0 if β̂OLS
j ≥ 0

(2.3.4)

for the general case where correlation is allowed between covariates. Suppose βk(λ), k 6= j

is a set of correlated covariates with their estimates associated with λ. Then the penalized

least squares (2.3.1) can be modified correspondingly as

Q(β) =
1

2

n∑

i=1

(
yi −

∑

k 6=j

xikβk(λ)−
∑

j

xijβj

)2
+ λ

∑

j

|βj|+ λ
∑

k 6=j

|βk|. (2.3.5)

Again, to minimize (2.3.5), we take the first-order derivative with respect to βj and the
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gradient can be written as:

∂Q(β)

∂βj

=
n∑

i=1

(yi −
∑

k 6=j

xikβk(λ))xij − βj ± λ = 0. (2.3.6)

Solving (2.3.6), βj can be written as a function of βk(λ), wherein we denote λ as the soft

threshold function S(·). Therefore, for each tuning parameter λ, βj can be updated as:

βj ← S

( n∑

i=1

(yi −
∑

k 6=j

xikβk(λ))xij, λ

)
. (2.3.7)

In logistic regression, an efficient way to find the penalized estimate is to use the combi-

nation of second-order Taylor series approximations (quadratic programming) and the cyclic

coordinate descent algorithm. The tremendous value of the cyclic coordinate descent algo-

rithm has been recognized by Friedman et al. [2010] and Wu et al. [2009]. Here, we briefly

describe the optimization process and more technical details can be found in the correspond-

ing papers.

1. Start with a large initial λ so that all coefficients are shrunk to zero, β̂ = 0.

2. Decrease λ by a small amount to loose the constraint. For each fixed λ, approximate the

unpenalized log-likelihood (2.2.3) using a second-order Taylor series (1.3.3) discussed

in Section 1.3.2 with current penalized estimate β(s).

3. Apply the coordinate descent algorithm to solve the penalized negative log-likelihood

(2.2.4) for an updated penalized estimate β(s+1).
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4. Repeat steps 1, 2, 3 until convergence.

2.4 Some Discussion

It is of interest to explore the connections among LASSO, LAR, and forward stagewise. We

have briefly mentioned the relation between LAR and forward stagewise where LAR is a more

‘democratic’ version of forward stagewise. Here, we provide deep analytics to discuss the

relationship between LASSO and forward stagewise for solving penalized problems. First,

we represent the LASSO (2.1.4) using the expanded predictor space X̃ = (X,−X), that is:

β̂+, β̂− = argmin{
n∑

i=1

(yi − xi
Tβ+ + xi

Tβ−)2 + λ

p∑

j=0

|β+
j + β−

j |} β+,β− ≥ 0. (2.4.1)

Because of the non-negative constraint imposed on the positive version of β+ as well as the

negative version of β−, it can be shown each version of coefficients compose a monotone

regularization path with β+ creating a non-decreasing regularization path and β− following

a non-increasing regularization path. More interesting, these monotone LASSO paths are

exactly matched with the forward stagewise path but sometimes strikingly different from the

LASSO path.

The differences in regularization paths are defined by a different sequence of move direc-

tions. For each move, both forward stagewise and LASSO are moving towards the direction

associated with the maximum decrease in the residual sum of square (negative log-likelihood,

if discrete response). This optimum direction is a function of the L1 norm of the coefficients

βj in LASSO and it is a function of the L1 arc-length in forward stagewise which explains the
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distinct regularization paths produced by each method under most cases. The L1 arc-length

of β is defined as:

L1 arc-length =

∫ t

0

∣∣∣∣
∂β(t)

∂t

∣∣∣∣dt (2.4.2)

where L1 arc-length is equivalent to L1 norm when β(t) is monotone and piecewise differen-

tiable and that is where the forward stagewise and LASSO have the same regularization path.
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Chapter 3

Statistical Models for Longitudinal

Data

Longitudinal data analysis has gained remarkable attention in the past 30 years. It has

played a prominent role in areas such as translational medicine, clinical practice, sociology,

psychology as well as behavior sciences. The longitudinal study design involves repeated mea-

surements on the same object over a given period of time which is capable to address the

complex error structure. There are different types of parametric models as well as nonpara-

metric methods to depict the intra-cluster homogeneities and inter-cluster heterogeneities in

the repeated measurements based on the distribution of the response, covariance structure,

as well as the research question of interest. Here, we concentrate on parametric models for

longitudinal data analysis where the models with a complex random error structure stem

from the fundamental linear regression model. A parametric statistical model, which depicts

the relation between response and covariates in a simplified statistical system, relies on a

variety of assumptions. In the simple linear regression model, the error is assumed to be in-
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dependent and identically distributed with a standard normal distribution. Correspondingly,

the response is also assumed to be independent and follow a normal distribution. In addition,

the covariate is assumed to have a linear relationship with the response. The generalized

linear model assumes independence of the response but does not restrict its distribution to

be normal. Although in the generalized linear model, the covariate is nonlinear in the re-

sponse, it can be transformed using a link function to be linearly linked to the response. In

longitudinal analysis, the linear mixed model allows the observations to be correlated while

still retaining the normality assumption. The generalized linear mixed model relaxes both

the independence and the normality assumption, allowing the observations to be correlated

and permits a non-normal distribution. The nonlinear mixed model also relaxes both the

independence and normality assumptions. In addition, it allows the covariates to have a true

nonlinear relationship with the response.

There are several advantages of using mixed models to take the correlation between

measurements into consideration as summarized by Brown and Prescott [2006a] as well as

Hedeker and Gibbons [2006]. First, the mixed model leads to a more appropriate estimate

of the fixed effects and standard errors when the correlations between observations are not

negligible. Second, the estimate of random effects tend to be closer to their population mean

compared to if they are treated as fixed effects, which is more robust to the extreme values

in the data. Third, as each subject serves as its own control, it can achieve the amount of

information as desired with a lower level of statistical power. Fourth, it permits the explo-

ration at the individual level for more precise evaluation of time-dependent effects. Fifth

and the most innovative one, the mixed model provides solutions to the challenges posed by
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missing data by assuming the data is missing at random.

The rest of Chapter 3 is organized as follows: In Section 3.1, we review approaches for

measuring correlations between measurements in a normally distributed response, such as

repeated ANOVA and MANOVA. We then introduce different types of linear mixed models

suitable for longitudinal and hierarchical data. The model fitting strategies are briefly dis-

cussed after that. In Section 3.2, we introduce the framework and fitting strategy for the

nonlinear mixed model when the response is correlated and follows a non-normal distribu-

tion. An example of fitting a nonlinear mixed model using a small dataset is provided as

well. In Section 3.4, we introduce the framework of the generalized linear model and its

usage for fitting a response having a discrete distribution. We then move to the generalized

linear mixed model where a more complex data structure is permitted. Different methods

for generalized linear mixed model are also included.
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3.1 Linear Mixed Model

3.1.1 Linear Regression Model

We have briefly mentioned the simple linear regression model (2.1.1) in Chapter 2 when

introducing the regularization model. Here, we formally introduce this fundamental yet

important model using a matrix notation as depicted in (3.1.1):

y = Xβ + ǫ (3.1.1)

where y is a n × 1 response vector containing all n observations; X is a design matrix of

n × p dimension; β is a p × 1 vector containing p coefficients where the magnitude of each

βj reflects the influence of the corresponding xj to the response y; and ǫ is the error, which

reflects the non-negligible systematic noise in the model and its elements are assumed to

be independent and identically distributed following a normal distribution, ǫ ∼ N(0, σ2).

Correspondingly, the response y is also assumed to be independent and follows a normal

distribution y ∼ N(Xβ, σ2).

It is of interest to estimate the coefficients β, which describe the relation between the

covariates and the response. We mentioned briefly in Chapter 2 the ordinary least squares

estimator of β is obtained by minimizing the residual sum of square (RSS) (2.1.2). Here, we

derive the equation for the ordinary least squares estimator β̂ using matrix notation. Similar

to (2.1.2), we denote the RSS in matrix notation as:

RSS(β) = (y −Xβ)T (y −Xβ) (3.1.2)
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Using knowledge from calculus, the β which minimizes the RSS (3.1.2) can be obtained by

solving the first-order derivative of RSS, which can be written as

∂RSS(β)

∂β
= −2XTy + 2(XTX)β (3.1.3)

Setting (3.1.3) to be zero and solving the equation, we can obtain the ordinary least squares

estimator of β as:

β̂ = (XTX)−1XTy (3.1.4)

This OLS estimator β̂ has some appealing statistical properties which provides great accu-

racy and precision. First, β̂ is an unbiased estimator, that is E(β̂) = β. Second, β̂ has

minimum variance in the class of all linear unbiased estimators. The proofs of these proper-

ties can be found in [Myers, 1990]. Given these two properties, the OLS estimator β̂ is often

referred to as the Best Linear Unbiased Estimator (BLUE). The term ‘best’ indicates the

minimum variance among the class of unbiased estimators. In addition, the BLUE attribute

does not depend on the normality assumption of the response.

3.1.2 ANOVA and MANOVA Approaches for Repeated Measure-

ment

We emphasize again in the simple linear regression model, one of the important assump-

tions is the observations are independent. In reality, it is not uncommon to collect multiple

measurements on each subject such that the independence assumption of the observations is
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violated. Examples of collecting multiple measurements per subject include regular clinical

visits of a patient to monitor and control his or her disease progression; measurements of the

price of one stock in a given time period; and measurements of tree circumference to infer

their growth. Under this scenario, a simple linear regression model is inadequate to capture

the correlation among observations and may yield inaccurate estimates regarding the model

coefficients. Therefore, a more advanced and comprehensive statistical model is needed.

For now, we assume the observations still follow a normal distribution but the magnitude

of correlations among them is not negligible. The first attempt to analyze the hierarchical or

longitudinal data is through the ‘ANalysis Of VAriance’, abbreviated as ANOVA. ANOVA

is a statistical procedure used to compare different group means in order to detect certain

explanatory variable that contribute significantly to the mean differences, which was first

proposed by the famous statistician Ronald Fisher and developed by British astronomer

George Biddel Airy. Winer [1971] extended the framework to allow repeated measurements

in observations and proposed the mixed-effects ANOVA, or repeated-measure ANOVA. We

illustrate the simple but restrictive repeated-measures ANOVA using a simple example.

Suppose in a small pilot clinical trial, three participating centers were recruiting patients

according to a specific protocol. Two interventions, A and B, were randomly assigned to

patients in each center. Due to standards of practice being consistent within a center, it

is safe to assume there are correlations between clinical outcomes of patients recruited in

the same centers. We let yij denote the clinical outcome for the patient recruited at the ith

center and receiving the jth treatment, a repeated-measure ANOVA can be illustrated as a
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linear model,

yij = µ+ βj + bi + ǫij, i = 1, 2, 3 and j = 1, 2. (3.1.5)

where µ is the grand mean; bi and βj are quantitative explanatory variables measuring the

center effect and the treatment effect, respectively. We further assume the center effect bi

follows a normal distribution bi ∼ N(0, σ2
b ), which allows the center-specific variations. The

error ǫ also follows a normal distribution where ǫij ∼ N(0, σ2). Here, the treatment effect

is a non-random quantity or fixed effect measuring the magnitude of the independent effect

on the dependent variable. In contrast, the center effect is a random effect depicting the

variabilities among different individuals. It has a subject-specific estimate and allows corre-

lation among observations within each subject which provides a better way to measure and

track individual behavior.

To compare the difference between groups and make inference about the explanatory

variables, two statistical hypothesis tests are constructed using F-statistics. First, the test

for center heterogeneities are constructed as:

H0,bi : σ
2
b = 0;HA,bi : σ

2
b 6= 0

F =
MScenter

MSresidual

∼ Fdfcenter,dfresidual

Second, the test for mean difference in groups receiving different treatments, in other words,
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the test for treatment effect is constructed as:

H0,β : βA = βB;HA,β : βA 6= βB

F =
MStrmt

MSresidual

∼ Fdftrmt,dfresidual

where the mean squares(MS) and the degree of freedom(df) can be found in the ANOVA

table presented in Table 3.1.

For a more sophisticated ANOVA model, it is possible to extend the one-way ANOVA

model to a two-way ANOVA model by adding the center × treatment random-effect inter-

action. Correspondingly, the linear model (3.1.5) can be revised as

yij = µ+ βj + bi + (bβ)ij + ǫij, i = 1, 2, 3; j = 1, 2. (3.1.6)

where we still assume bi ∼ N(0, σ2
b ), ǫij ∼ N(0, σ2). In addition, we assume the two-way in-

teraction follows a normal distribution (bβ)ij ∼ N(0, σ2
bβ) where σ

2
bβ accounts for variabilities

in two treatment groups from multiple centers. Correspondingly, a modified ANOVA table

can be generated and three hypothesis tests will be needed for explore the effects in model.

More details can be found in [Hedeker and Gibbons, 2006].

Another historically prevalent method for analyzing nested data is through the ‘Mul-

tivariate ANalysis Of Variance’, commonly known as MANOVA proposed by Bock [1975].

MANOVA is the multi-dimensional form of the univariate ANOVA where the observations

from a given group are assumed to follow a multivariate normal distribution, which is more
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Table 3.1: One-way random effect ANOVA table

Source d.f. Sum of Squares Mean Squares E(Mean Squares)

Center (3-1)=2 SSp = 2
∑3

i=1(ȳi. − ȳ..)
2 SSp

2
σ2 + 2σ2

b

Treatment (2-1)=1 SSt = 3
∑2

i=1(ȳ.j − ȳ..)
2 SSt

1
σ2 + 6

∑
(τj − τ.)

2

Residual (3-1)(2-1)=2 SSr =
∑3

i=1

∑2
j=1(yij−ȳi.−

ȳ.j + ȳ..)
2

SSr

(3−1)(2−1)
σ2

Total 6× 2− 1 = 11 SS =
∑3

i=1

∑2
j=1(yij − ȳ..)

2

Table 3.2: Data Structure for ANOVA and MANOVA

Center i Treatment j Response
1 A y11
1 B y12
2 A y21
2 B y22
3 A y31
3 B y32

Center Treatment Response
1 A, B y11 = (y11, y12)

T

2 A, B y21 = (y21, y22)
T

3 A, B y31 = (y31, y32)
T

reflective of the clustered structure of the response. The MANOVA is broadly used to com-

pare multivariate means of several groups with taking the covariance structure from each

group into consideration. In MANOVA, all observations from the same subject are eval-

uated simultaneously. Table 3.2 distinguishes the different structures in data for ANOVA

(left) and MANOVA (right), respectively. To illustrate, we still use the pilot clinical trial

example discussed previously. Suppose yik = (yi1, yi2) is a vector of length ni containing the

clinical outcome of 2 patients recruited at the ith center. Therefore, the MANOVA model

has a general form of

yik = µ+ τi + ǫik, i = 1, 2, 3; k = 2 (3.1.7)
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where i represents the number of groups or clusters and k represents the number of obser-

vations in each group. µ is the grand mean. τi = ȳi − ȳ is the difference between outcome

from the ith center versus the overall mean. ǫik = yik − ȳi measures the residual. Thus,

equation (3.1.7) can be rewritten as:

yik = ȳ + (ȳi − ȳ) + (yik − ȳi) (3.1.8)

We denote the total sum of squares and cross products as T = (yik − ȳ)(yik − ȳ)T , the

between group sum of squares B = (ȳi − ȳ)(ȳi − ȳ)T and the within group sum of squares

W = (yik − ȳi)(yik − ȳi)
T . To evaluate the center homogeneities, a hypothesis test is con-

structed as H0 : τ1 = τ2 = τ3 = 0. As discussed in Johnson and Wichern [2007], the null

hypothesis is rejected if the Wilk’s lambda Λ∗ = |W|
|W+B| is smaller than a threshold.

Although ANOVA and MANOVA have a long history in modeling longitudinal data,

neither of them have demonstrated widespread usage. The major drawbacks prevented both

methods from being broadly implemented are the restriction on assumptions and lack of

flexibility. The ANOVA model is heavily dependent on a balanced study design, where the

number of observations are required to be the same in each experimental group. There are

certain modified ANOVA methods suitable for the specific unbalanced or irregular designs,

however, it is difficult to generalize for all scenarios. Second, the ANOVA model assumes

a compound symmetric covariance structure (See discussion in Section 3.1.3), of which the

covariance between any two measurements from one subject is homogeneous. This assump-

tion is somewhat implausible and can be easily violated as the covariance generally increases

as time between measurements increases. Third, ANOVA model does not allow for missing
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data. When missing data occurs, it may be either removed or imputed using group mean

or median prior to performing the analysis. However, both approaches will inevitably in-

troduce bias. The MANOVA model permits a more flexible covariance structure with no

explicit structure to be assumed. However, it forces each subject to have a homogeneous

type of covariance structure. In addition, the MANOVA model does not allow different

number of measurements among subjects. It is also inapplicable in situations where some

measurements are disordered or missing, which tremendously restricts its usage.

3.1.3 Linear Mixed Model

A linear mixed model is a direct extension of the repeated-measures ANOVA that allows

more flexible variance structures. Fisher [1918] first introduced the concept and framework

for linear mixed models to study the correlations of trait values between relatives. However,

due to the lack of feasible analytical techniques, this model was inhibited from being widely

used for a long time. A breakthrough came when Henderson et al. [1959] proposed a mixed

model equation by solving which provides a method to estimate the fixed and random effects

in the linear mixed model. These estimators have appealing statistical properties in terms of

accuracy and precision. This equation opened a door for a new research area concentrated on

the techniques to obtain estimates in mixed models where both frequentists and Bayesians

have been vigorously involved.
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The general form of a linear mixed model is

y = Xβ + Zb+ ǫ, (3.1.9)

where y is an n×1 vector representing the observations; X and Z are n×p, n×q dimensional

design matrices for the fixed and random effects, respectively; β is a p × 1 vector of fixed

effects, b is a q × 1 vector of random effects, and ǫ is a n × 1 error vector. In addition, we

assume b follows a multivariate normal distribution with mean 0 and variance D, where 0

is a q × 1 vector and D is a q × q matrix. The error ǫ also follows a multivariate normal

distribution with mean 0 and variance R, where 0 is a n × 1 vector and R is a n × n ma-

trix. ǫ is independent of both the fixed and random effects such that Cov(β, ǫ) = 0 and

Cov(b, ǫ) = 0. y also follows a multivariate normal distribution with mean Xβ and variance

V, where V = Var(Zb) + Var(ǫ) = ZDZT +R.

Suppose yij represents the j
th measurement collected on the ith subject. The linear mixed

model can be written as yij = βj + bi+ ǫij, where βj represents the intercept and coefficients

associated with the fixed effects. bi is the random effect measuring the individual variation.

The general form of the linear mixed model (3.1.9) can be derived to three specific types

of mixed models by specifying different D and R matrices for modeling longitudinal and

hierarchical data.

1) Random Effects Model

The random effects model has its best usage when a clustered structure exists in the

response. We illustrate this model using an example. Suppose it is of interest to

investigate students’ performance on the SAT Exam from i = 3 high schools in a
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region. Given the same educational facilities and teaching resources within one school,

it is reasonable to assume the performance of the ni students within the same school

are correlated while uncorrelated between different schools. To build a linear mixed

model, we assume the random effect b follows a multivariate normal distribution with

mean 0 and variance D where D is a diagonal matrix of the form

D =




σ2
b 0 0

0 σ2
b 0

0 0 σ2
b




3×3

. (3.1.10)

In addition we assume the variance of the error ǫ is also a diagonal matrix of the form

R =




σ2 0 · · · 0

0 σ2 · · · 0

...
...

. . .
...

0 0 · · · σ2




n×n,n=
∑

i ni

. (3.1.11)

Therefore, the variance of response y can be calculated using V = ZDZT +R. The

V matrix is a block diagonal matrix with each block of size ni × ni, which represents

the correlations of SAT Exam score of ni students from the same school. Here, as an

example, the V matrix in (3.1.12) represents the covariance structure where there were

n1 = 3 students from the first school, n2 = 2 students from the second school, and
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n3 = 1 student from the third school.

V =




σ2
b + σ2 σ2

b σ2
b 0 · · · 0

σ2
b σ2

b + σ2 σ2
b 0 · · · 0

σ2
b σ2

b σ2
b + σ2 0 · · · 0

0 0 0 σ2
b + σ2 σ2

b 0

...
...

... σ2
b σ2

b + σ2 0

0 0 0 0 0 σ2
b + σ2




n×n

(3.1.12)

Based on this variance structure, the correlation between observations can be calculated

as

Corr(yij, yi′j′) =





1 i = i′, j = j′

σb√
σ2+σ2

b

i = i′, j 6= j′

0 i 6= i′, j 6= j′

where the SAT scores of different students from the same school are correlated with

correlation coefficient r = σb√
σ2+σ2

b

while the SAT scores of students from different

schools are uncorrelated, which is concordant with the previous assumption.

2) Random Coefficient Model

The random coefficient model is particularly useful in scenarios when time-dependent

repeated measurements are collected or a growth curve is observed for each subject.

The term ‘random coefficient’ reflects the attribute that at the individual level, a

subject-specific intercept as well as slope are fitted to best capture the time trend in
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the response. There are different variations of random coefficient models appropriate

for different types of data , such as the random intercept model where only the inter-

cept is assumed to be subject-specific and random slope model where only the slope

is assumed to be subject-specific. Here, we introduce the random coefficient model by

assuming both the intercept and slope are heterogeneous across subjects.

We let yij denote the jth measurement on the ith observation. The random coefficient

model can be written as

yij = βj + bint,i + bslope,i · timeij + ǫij (3.1.13)

where βj is the coefficient of the fixed effects; bint,i and bslope,i are the coefficients

of the subject-specific intercept and slope, respectively. ǫij is the error term. For

each observation i, we assume bint,i and bslope,i follow a bivariate normal distribution

with mean 0 and variance Gi where Gi =




σ2
int σint,slope

σint,slope σ2
slope


 is an unstructured

variance matrix unless otherwise specified. To illustrate the covariance structure of V

in a random coefficient model, suppose we observed 2 subjects, each with 3 repeated
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measurements. The design matrix Z has a form

Z =




1 t11 0 0

1 t12 0 0

1 t13 0 0

0 0 1 t21

0 0 1 t22

0 0 1 t23




. (3.1.14)

We assume the variance of the error R is a diagonal matrix and has a form the same

as (3.1.11) and D is a block diagonal matrix consisting of submatrices Gi. Recall that

the covariance matrix V for the response y can be calculated using V = ZDZT +R.

By using the Z matrix that has a similar structure as shown in (3.1.14) to calculate V,

it can be shown the covariance matrix V is also a block diagonal matrix that captures

the intra-subject correlations and inter-subject independence, where the elements in

the V matrix can be represented as

Cov(yij, yi′j′) =





σ2 + σ2
int + (tij + tij′)σint,slope + tijtij′σ

2
slope i = i′, j = j′

σ2
int + (tij + tij′)σint,slope + tijtij′σ

2
slope i = i′, j 6= j′

0 i 6= i′, j 6= j′

.

A striking advantage of the random coefficient model that makes it outperform the

ANOVA and MANOVA approaches for longitudinal data analysis is that it permits

extraordinary flexibilities on the time points of the repeated measurements, that is,
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the number of measurements collected on each subject can be different and these

measurements can be collected at unevenly spaced time points.

3) Covariance Pattern Model

Similar to the random coefficient model, this type of linear mixed model is often used

for modeling longitudinal data. Rather than assuming the independence of errors in

the diagonal R matrix and depict the correlations between repeated measurements

by estimating elements in the D matrix, the covariance pattern model characterizes

the correlation by assuming a block diagonal structure in matrix R with individual

sub-block measuring the intra-cluster homogeneities as shown in (3.1.15). It permits

flexible measurements on each subject by allowing distinct matrix dimensions as well

as heterogeneous internal structure of Ri. However, one has to be aware that an overly

complicated heterogeneous structure in R may cause problems in terms of lack of

power, over-fitting, and large bias and variation in the parameter estimates. In the

covariance pattern model, we no longer assume bi as a random effect thus the variance

matrix V of the response y is equal to the variance matrix R from the error.

V = R =




R1 0 · · · 0

0 R2 · · · 0

...
...

. . .
...

0 0 · · · Rn




(3.1.15)

The choice of Ri may depend on the patterns and hierarchical structure in data. There

are four commonly used structures for Ri listed as follows:
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General, or Unstructured 


σ2
11 σ12 σ13

σ21 σ2
22 σ23

σ31 σ32 σ2
33




Autoregressive 


σ2 σ2ρ σ2ρ2

σ2ρ σ2 σ2ρ

σ2ρ2 σ2ρ σ2




Compound Symmetry 


σ2 θ θ

θ σ2 θ

θ θ σ2




Toeplitz 


σ2 σ1 σ2

σ1 σ2 σ1

σ2 σ1 σ2




In summary, as stated by Brown and Prescott [2006b], the linear mixed model outperforms

both ANOVA and MANOVA in the following ways: i) More appropriate and accurate es-

timates are obtained for the fixed effects and standard errors; ii) the random effects are

shrunken with less dispersion; iii) the method is more reasonable and reliable for fitting

models having a hierarchical structure; iv) it is better at handling unbalanced and missing

data.
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3.1.4 Estimating Parameters for a Linear Mixed Model

In general, the unknown parameters need to be estimated in a linear mixed model including:

the coefficients for the fixed effects, the coefficients for the random effects and the variance

components. The estimates of these parameters can be obtained through the maximum

likelihood (ML) or the restricted maximum likelihood (REML) approaches. The restricted

likelihood function proposed by Patterson and Thompson [1971] is constructed by marginal-

izing the fixed effects and is generally preferred over the ML approach to obtain the estimates

for the variance component since ML fails to take into account the loss in the degrees of free-

dom due to estimation of the fixed effects, and thus causes downward bias [Harville, 1977].

In most cases, the estimates of the fixed effects and the random effects should not differ sig-

nificantly despite which likelihood is implemented. The estimate of the unknown parameters

in the mixed model are much more challenging than that in the fixed-effects only model for a

few reasons. First, the response in the linear mixed model has a more complex variance struc-

ture that measures both intra-subject homogeneity and inter-subject heterogeneity. Second,

the fixed effects and random effects are dependent on the variance components where the

estimates of the variance components require an effective computational algorithm to iter-

atively optimize the likelihood function. Previously, analytical mean-based methods were

proposed by several researchers to obtain explicit estimates for the variance components in a

specific ANOVA model. Notable works include: Herbach [1959] who derived the estimate for

the variance component under maximum likelihood for the balanced one-way random-effects

model; Thompson [1962] who initiated the estimation using restricted maximum likelihood

for any balanced ANOVA model; Hartley and Rao [1967] who provided the solutions for

the balanced two-way nested ANOVA model. As the general optimization algorithm be-
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came available and accessible, Harville [1977] discussed the implementation of an iterative

numerical algorithm to obtain the estimates of the variance components. In his paper, he

considered two gradient algorithms; the steepest ascent algorithm and the Newton-Raphson

algorithm, which are often used for solving constrained maximization problems. Despite be-

ing prevalently applied to a variety of optimization circumstances, these two methods were

also criticized for their drawbacks. The steepest ascent algorithm was criticized for its intol-

erably slow convergence [Powell, 1970] while the Newton-Raphson algorithm was subject to

the demanding computational effort required for calculating the second-order partial deriva-

tives in the Hessian matrix as well as relying on the cautious choice of the starting value

to guarantee convergence. The breakthrough came when Laird and Ware [1982] provided a

robust and accurate solution by using the ‘Expectation-Maximization’ algorithm. The EM

algorithm [Dempster et al., 1977] is a two-step iterative algorithm that maximizes a pro-

posed function when some piece of information is missing and where maximum likelihood

estimation can not be directly obtained. The EM algorithm was tremendously popular in

obtaining the parameter estimates when some observations in the data were missing and were

often assumed to be missing at random. In the linear mixed model case, the EM algorithm

was used to obtain the estimate of the variance components given that both the fixed ef-

fects and the random effects are unknown but generally not exposed to missing observations.

In the rest of this Section, we first derive the MLE estimator for the fixed effects and

random effects when the variance component is known. We then describe the model fitting

procedure when the variance component is unknown and a detailed description of obtaining

the estimates of the variance component through the EM algorithm.
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Estimating the Fixed Effects

The estimate of the fixed effects β in model (3.1.9) can be obtained directly by solving

the first-order derivative of the likelihood function. From the linear mixed model (3.1.9),

the response y follows a normal distribution with mean Xβ and variance V, where V =

ZDZT + R. To depict the confounding of the variance component to the unknown model

parameters, we denote the unobservable elements in V as θ = (θ1, · · · , θm), which measures

both the intra-subject homogeneity and the inter-subject heterogeneity. Therefore, a joint

likelihood for β and θ can be constructed as:

L(β,θ;y) ∝ |V|−
1
2 exp

(
− 1

2
(y −Xβ)TV−1(y −Xβ)

)
(3.1.16)

The maximum likelihood estimator of β is obtained by taking the first-order derivative of

logL(β,θ;y) with respect to β and setting the equation to 0, which isXTV−1(y −Xβ) = 0.

Solving the equation, we obtain the expression of β̂ where

β̂(θ) = (XTV−1X)−1XTV−1y. (3.1.17)

Correspondingly, the variance of β̂ can be calculated as:

Var(β̂(θ)) = (XTV−1X)−1XTV−1Var(y)V−1X(XTV−1X)−1 = (XTV−1X)−1.(3.1.18)
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We now formally introduce the restricted maximum likelihood and show the estimates of the

fixed effects remain consistent under both ML and REML. The REML, also referred to as

the residual maximum likelihood, was introduced by Patterson and Thompson [1971]. This

likelihood was constructed based on the full residual defined as y −Xβ̂, which captures all

source of random variation from both the R-side and D-side. It can be shown the maximum

likelihood (3.1.16) can be represented as the product of two likelihoods L(θ;y − Xβ̂) and

L(β; β̂,θ) [Diggle et al., 1994] and the REML can be constructed correspondingly. From

equations (3.1.17) and (3.1.18), we assume the posterior distribution of β̂(θ) is β̂(θ) ∼

N(β(θ), (XTV−1X)−1) thus the likelihood L(β; β̂,θ) can be written as:

L(β; β̂,θ) ∝ |XTV−1X|−
1
2 exp

(
1

2
(β̂ − β)TXTV−1X(β̂ − β)

)
. (3.1.19)

By calculating the ratio of L(β,θ;y) over L(β; β̂,θ), we can obtain the REML as:

L(θ;y −Xβ̂) ∝ |XTV−1X|−
1
2 |V|−

1
2 exp

(
− 1

2
(y −Xβ̂)TV−1(y −Xβ̂)

)
(3.1.20)

where we can show the estimate of β̂ in (3.1.17) also maximizes the REML (3.1.20). Another

way to understand the REML is from the Bayesian perspective discussed by Harville [1974].

He proved the REML in (3.1.20) can be obtained by marginalizing the ML (3.1.16) with

respect to the fixed effects, assuming the fixed effects have a flat prior.
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Estimating of the Random Effects

The estimates of the random effects b can also be obtained through maximizing the likelihood

function. We define a likelihood using the property of conditional probability to distinguish

the random variation from different resources. We let θR represent the random variation from

the systematic error and θD represent the subject heterogeneity. The likelihood function

L(β,b,θ;y) can be written as the product of two likelihoods L(β,y,θR|b) and L(θD;b).

From previous discussion and the knowledge of conditional probability, we can show the

probability of y given the random effects b follows a normal density with mean Xβ + Zb

and variance R and the random effect b follows a normal distribution with mean 0 and

variance D. Therefore, the likelihoods for L(β,y,θR|b) and L(θD;b) can be constructed as

follows, respectively:

L(β,y,θR|b) ∝ |R|− 1
2 exp

(
− 1

2
(y −Xβ − Zb)TR−1(y −Xβ − Zb)

)
(3.1.21)

and

L(θD;b) ∝ |D|−
1
2 exp

(
− 1

2
bTD−1b

)
. (3.1.22)

By multiplying the two likelihood functions and taking the log-transformation, the log-

likelihood of L(β,b,θ;y) can be depicted as:

logL(β,b,θ;y) = −1

2

(
log |R|+ (y −Xβ − Zb)TR−1(y −Xβ − Zb)

+ log |D|+ bTD−1b

)
+ C (3.1.23)
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where C is a constant. The maximum likelihood estimator of b is obtained by taking the

first-order derivative of (3.1.23) with respect to b. By setting the first-order derivative of

equation (3.1.23) to 0 and solving, we obtain the expression of b̂ to be:

b̂(θ) = (ZTR−1Z+D−1)−1ZTR−1(y −Xβ̂(θ)) (3.1.24)

where the expression of β̂(θ) can be obtained in (3.1.17). From previous discussion we know

that V = ZDZT +R and the inverse of V can be calculated as V−1 = (ZT )−1D−1Z−1+R−1.

By plugging in this expression, equation (3.1.24) can be further simplified as:

b̂(θ) = DZTV−1(y −Xβ(θ)) (3.1.25)

The variance of b̂(θ) can be calculated as:

Var(b̂(θ)) = DZTV−1ZD−DZTV−1X(XTV−1X)−1XTV−1ZD (3.1.26)

Another way to obtain the estimates of the random effects is through the Bayesian ap-

proach. In fact, A.P. Dempster and Tsutakawa [1981] showed by assuming bprior ∼ N(0,D)

and deriving the conditional probability

b|y ∼ N(DXT(XDXT +R)−1Y,D−DXT(XDXT +R)−1XD)), the posterior mean of b,

which minimized the quadratic loss under the Bayesian framework, had the identical expres-

sion as (3.1.25). Therefore, this expression is well interpreted by both the frequentists and

Bayesians. In addition, from (3.1.25) we can see the estimate of b is shrunk compared to if

it were treated as a fixed effect where D−1 tends to be a zero matrix.

60



The estimators for the fixed effects β and the random effects b also enjoy appealing

statistical properties. When the variance component θ is known, β̂(θ) and b̂(θ) are solutions

to the Henderson mixed model equation system (3.1.27) [Henderson, 1984].




XTR̂−1X XTR̂−1Z

ZTR̂−1X ZTR̂−1Z+ D̂−1







β̂

b̂


 =




XTR̂−1y

ZTR̂−1y


 (3.1.27)

Both Henderson [1984] and Robinson [1991] demonstrated the supreme properties of the

estimators in terms of statistical accuracy and precision where β̂(θ) is the ‘Best Linear Un-

biased Estimator’(BLUE) and b̂(θ) is the ‘Best Linear Unbiased Predictor’(BLUP). The

term ‘estimator’ and ‘predictor’ were historically used to distinguish between the fixed and

the random effects. In cases when θ is unknown, the estimator β̂ ˆ(θ) and b̂(θ̂) can be as

close to BLUE and BLUP as possible if θ is properly estimated.

Estimating of the Variance Component

The estimate of the unknown variance component θ can be obtained using the general-

purpose EM algorithm proposed by Laird and Ware [1982]. The EM algorithm is a two-step

iterative algorithm that is able to optimize the proposed function when the function depends

on some unobserved data or some piece of information is missing. This unified approach in-

herits the maximum likelihood approach from the frequentist perspective and the Empirical

Bayes estimator from the Bayesian perspective which narrowed the divergence of the two
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cultures. Another advantage of the EM algorithm is its monotonicity, which increases the

likelihood at each iteration and is guaranteed to converge. In the linear mixed model setting,

as discussed by Larid et al. [1987], the EM algorithm can be implemented in two apparently

different ways. The first approach is referred to as the ‘missing data’ or the ‘incomplete data’

[Jennrich and Schluchter, 1985] approach, where the incompleteness implies the number of

measurements from certain subjects are less than the standard. The second approach is

more natural and intuitive. The observed data is the actual measurements on each subject

as in the first approach while the unobserved or the incomplete data refers to the unknown

random parameters and error in the mixed model. Here, we primarily concentrate on ob-

taining the parameter estimates using EM algorithm from the second approach.

We first illustrate the procedure to obtain the ML estimates using the EM algorithm. In

the linear mixed model (3.1.9), suppose R is a diagonal matrix with each diagonal element

being σ2 and D is a q × q nonnegative definite matrix. To define a ‘Maximization’ step, the

ML estimates in a complete data setting for σ2 and D can be obtained as:

σ̂2(θ) =
m∑

i

ǫTi (θ)ǫi(θ)/n

D̂(θ) =
m∑

i

bi(θ)b
T
i (θ)/m (3.1.28)

where ǫ̂i(θ̂) = yi − xiβ(θ̂) − zibi(θ̂) and n =
∑m

i ni is the total number of observations

and m is the total number of subjects. If the estimate of θ and β(θ) are obtained, we can

derive the conditional expectation of σ̂2(θ), D̂(θ) given the observed data y, β̂(θ̂) and θ̂,

which defines the ‘Expectation’ step. By using the property of quadratic form of the ex-
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pectation where E(yTAy) = µT
yAµy + tr(AV), Var(y) = V (proof can be found in John-

son and Wichern [2007]), the conditional expectation of E
(∑m

i ǫTi (θ)ǫi(θ)|yi, β̂(θ̂), θ̂
)
and

E
(∑m

i bi(θ)bi(θ)
T |yi, β̂(θ̂), θ̂

)
can be written as the explicit form shown below:

E
( m∑

i

ǫTi (θ)ǫi(θ)|yi, β̂(θ̂), θ̂
)
=

m∑

i

(
ǫ̂i(θ̂)ǫ̂i(θ̂) + tr Var(ǫi(θ̂)|yi, β̂(θ̂), θ̂)

)

E
( m∑

i

bi(θ)bi(θ)
T |yi, β̂(θ̂), θ̂

)
=

m∑

i

(
b̂i(θ̂)b̂i(θ̂)

T + tr Var(bi(θ̂)|yi, β̂(θ̂), θ̂)
)
(3.1.29)

The EM algorithm works by assigning an initial value of θ and calculating the conditional

expectation of the unknown variance (3.1.30). By substituting the expectations of the ML

estimates in the ‘M’ step and iterating between these two steps, an estimate of θ is achieved

when the log-likelihood reaches its maximum.

We also illustrate the procedure for obtaining the REML estimate using the EM algo-

rithm. To obtain the parameter estimates using REML (3.1.20), the ‘M’ step remains the

same as shown in (3.1.28). In the ‘E’ step, since the fixed effect is marginalized out of

the log-likelihood function, the conditional expectations of σ̂2(θ), D̂(θ) only depend on the

observed response y and variance estimate θ̂, where (3.1.30) can be rewritten as:

E
( m∑

i

ǫTi (θ)ǫi(θ)|yi, θ̂
)
=

m∑

i

(
ǫ̂i(θ̂)ǫ̂i(θ̂) + tr Var(ǫi(θ̂)|yi, θ̂)

)

E
( m∑

i

bi(θ)bi(θ)
T |yi, θ̂

)
=

m∑

i

(
b̂i(θ̂)b̂i(θ̂)

T + tr Var(bi(θ̂)|yi, θ̂)
)

(3.1.30)

The EM iterates between the two steps and leads to smaller estimated variance θ̂ due to

gaining an additional degree of freedom from the marginalized fixed effects.

63



We now illustrate the EM application in estimating variance component in the linear

mixed model using a special example. Suppose a linear mixed model has a form (3.1.9)

where the random effect b follows a normal distribution N(0, σ2
1Iq×q) and the error ǫ follows

a normal distribution N(0, σ2
0In×n). From previous discussion, we know in a complete data

setting, the MLE estimates for σ2
0 and σ2

1 can be written as:

σ̂1
2 =

bT(θ)b(θ)

q
(3.1.31)

σ̂0
2 =

ǫT (θ)ǫ(θ)

n
(3.1.32)

where ǫ = y − Xβ − Zb. Before constructing the quadratic conditional expectation of

E(bT(θ)b(θ)|y, β̂ ˆ(θ), θ̂) and E(ǫT (θ)ǫ(θ)|y, β̂ ˆ(θ), θ̂), we first calculate the conditional ex-

pectation of E(b(θ)|y, β̂ ˆ(θ), θ̂) and E(ǫ(θ)|y, β̂ ˆ(θ), θ̂) which will be needed using Bayes rule.

Under Bayes Theorem, the posterior distribution P (b|y) is proportional to the product of

the prior and the conditional distribution P (y|b)×P (b), where the conditional distribution

y|b ∼ N(Xβ + Zb,V), V = σ2
1ZZ

T + σ2
0I and the prior b ∼ N(0, σ2

1Iq×q). By conducting

some algebra, it can be shown the posterior distribution of b has the following form:

b|y ∼ N(σ2
1Z

TV−1(y −Xβ), σ2
1I− σ4

1Z
TV−1Z) (3.1.33)

In the same fashion, the posterior distribution of ǫ given y follows a normal distribution,

that is, ǫ|y ∼ N(σ2
0V

−1(y −Xβ), σ2
0I− σ4

0V
−1).
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We now can calculate the quadratic conditional expectation according to its property.

E(bT(θ)b(θ)|y, β̂ ˆ(θ), θ̂) = tr(Var(b|y)) + E(b|y)TE(b|y)

= tr(σ2
1(θ)I− σ4

1(θ)Z
TV(θ)−1Z)+

σ4
1(θ)(y −Xβ(θ))TV−1(θ)ZZTV−1(θ)(y −Xβ(θ))

E(ǫT (θ)ǫ(θ)|y, β̂ ˆ(θ), θ̂) = tr(σ2
0(θ)I− σ4

0(θ)V
−1(θ))+

σ4
0(θ)(y −Xβ(θ))TV−1(θ)V−1(θ)(y −Xβ(θ))

where the estimate of β(θ) can be obtained in (3.1.17).

65



3.2 Nonlinear Mixed Model

In this section we introduce the nonlinear mixed model and the corresponding model fitting

strategy. The nonlinear mixed model, as a direct extension from the linear mixed model, pro-

vides a powerful and widespread tool to analyze repeated-measured data where the unknown

parameters is nonlinear in the response. The nonlinear mixed model is extensively imple-

mented in areas such as pharmacokinetics and pharmacodynamics to evaluate an organism ’s

response to a given drug dose in order to determine safe dose ranges used in clinical trials. In

addition, it has broad applications for measuring growth curves, which we will demonstrate

using the ‘orange trees’ data originally presented by Draper and Smith [1981]. The nonlinear

mixed model inherits the appealing properties from the linear mixed model in terms of al-

lowing nonconstant correlation among observations and fitting unbalanced design. However,

the true challenge lies in the model fitting procedure where a closed-form expression for the

marginalized likelihood does not exist and therefore requires numerical approximations.

3.2.1 The Model Framework

The general form of a nonlinear mixed model was first defined by Lindstrom and Bates [1990]

to be:

y = f(φ,X) + ǫ (3.2.1)

where φ = Xβ + Zbi and f(·) is a nonlinear function. When f(·) is an identity function,

the model (3.2.1) is equivalent to the linear mixed model defined in (3.1.9). X and Z are the
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design matrices of dimension n× p and n× q, respectively. β is a p× 1 vector of fixed effects

and bi is a q×1 vector of random effects, where bi follows a normal distribution N(0, σ2D).

The error ǫ also follows a normal distribution N(0, σ2I). In this setting, D is called the

scaled variance because it represents the ratio of variance from the random effect over the

variance from the error. The random effect bi and the error term ǫ are independent such

that Cov(bi, ǫ) = 0. Therefore, for the jth measurement on the ith subject, the nonlinear

mixed model can be written as:

yij = f(φij,xij) + ǫij, i = 1, ...,M, j = 1, ...ni (3.2.2)

where φij = xT
ijβ + zijbi and bi ∼ N(0, σ2D), ǫij ∼ N(0, σ2).

3.2.2 The Marginal Likelihood and its Approximation

A variety of approaches have been proposed to obtain the estimates of model parameters

as well as the variance components. Here, we concentrate on the maximum likelihood or

restricted maximum likelihood approach to obtain the parameter estimates. In the nonlinear

mixed model, we still let θ represent the variance components that account for the inter-

cluster heterogeneity as well as the intra-cluster homogeneity, where the fixed effects β and

the random effects b are both functions of θ. We wish to make inference of θ with respect

to the marginal likelihood of y to make full use of information from the data. The marginal
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likelihood defined by Lindstrom and Bates [1990] has the following form:

p(y) =

∫
p(y|b)p(b)db. (3.2.3)

As mentioned previously, due to the nonlinearities of the model parameters in the response y,

in general there is no closed-form expression of p(y) so that numerical approximation meth-

ods are required. Pinheiro and Bates [1995] reviewed four widely accepted approximations

to the likelihood: the Linear Mixed Effects approximation proposed by Lindstrom and Bates

[1990]; the Laplacian Approximation by L.Tierney and Kadane [1986]; Importance Sampling

by Geweke [1989] and Adaptive Gauss-Hermite Quadrature by Davidian and Gallant [1993].

There are close connections among the four approximation methods. In fact, Wolfinger [1993]

showed the Linear Mixed Effects Approximation to the restricted log-likelihood is equiva-

lent to the Laplacian approximation to the marginal likelihood (3.2.3) assuming a flat prior

for the fixed effect. Important Sampling resembles Adaptive Gauss-Hermite Quadrature

in generating the abscissas and weights for approximation. The Laplacian approximation

is equivalent to the Gauss-Hermite Quadrature approximation with one quadrature point.

Here, we narrow down the discussion on the Adaptive Gauss-Hermite Quadrature approxi-

mation.

The Gaussian-Hermite Quadrature algorithm was originally introduced by Davis and

Rabinowitz [1975], where the integral of the function with form f(t)e−t2 can be approximated

by the sum of a polynomial evaluated at m set of abscissas and weights (z∗i , wi) shown in

(3.2.4). The abscissas z∗i are the roots of the mth order Hermite polynomial, which always

has m roots in the real number domain. wi are the corresponding weights calculated by
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the generalized Hermite weight function. As an attribute of most approximation methods,

the precision increases as the number of quadrature points m increases with a price of

computational complexity increasing simultaneously.

∞∫

−∞

f(t)e−t2 =
m∑

i=1

wif(z
∗
i ) (3.2.4)

A more general Gaussian-Hermite Quadrature approximation was discussed in [Liu and

Pierce, 1994] assuming the random variable t follows a normal distribution N(µ, σ2) that

augments more flexibility in the function to be approximated (3.2.5),

∞∫

−∞

f(t)e−
(t−µ)2

2σ2 =
√
2σ̂

m∑

i=1

wif(µ̂+
√
2σ̂z∗i ) (3.2.5)

where µ̂ satisfies ∂f(t)
∂t

= 0; σ̂ = 1√
ĵ
and ĵ = ∂2 log f(t)

∂t2
|t=µ̂.

In the Gauss-Hermite Quadrature approximation, the abscissas and weights are fixed

beforehand to approach the normality of t. Geweke [1989] introduced the Monte Carlo inte-

gration where the abscissas and weights are generated randomly from the underlying distri-

bution, which provides a much more efficient way to approximate the integral. Pinheiro and

Bates [1995] incorporates this important sampling idea to the Gauss-Hermite Quadrature

algorithm to introduce an adaptive Gaussian-Hermite Quadrature (AHQ) procedure where

the abscissas and weights are constructed according to both the Hermite polynomial as well

as the observed samples.
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We denote the AHQ procedure to approximate the marginal likelihood (3.2.3) of the

nonlinear mixed model (3.2.2). Similar to constructing the likelihood in the linear mixed

model (3.1.23), the likelihood for the nonlinear mixed model can be written as:

L(β,bi,θ;y) = (2πσ2)−q/2|D|−1/2 exp

{
− ‖yi − f(β,bi)‖2

2σ2

}
exp

{
− bi

TD−1bi

2σ2

}
.(3.2.6)

To approximate
∫
L(β,b,θ;y)dbi using AHQ, we define g(β,D,bi,yi) = ‖yi− f(β,bi)‖2+

bi
TD−1bi andG(·) be the second-order derivatives of g(·) with respect to bi whereG(β,D,yi) =

∂f(β,bi)

∂bT

i

|bi=b̂i

∂f(β,bi)

∂bi

|bi=b̂i
+D−1. We denote b∗

i = b̂i+σ(G(β,D,yi))
−1/2z∗i to match the right

side of (3.2.5), where the quantity G(β,D,yi))
−1/2 represents the important sampling proce-

dure which distinguishes the adaptive Gauss-Hermite procedure from the traditional version.

The estimate b̂i can be obtained by the mode of g(·), that is b̂i = argminbi
g(β,D,bi,yi).

Therefore, the marginal likelihood can be approximated as:

∫ (
(2πσ2)−q/2|D|−1/2 exp

{
− ‖yi − f(β,bi)‖2

2σ2

}
exp

{
− bi

TD−1bi

2σ2

})
dbi

≃
NGHQ∑

j1=1

· · ·
NGHQ∑

jq=1

(
exp (−g(β,D,bi,yi, b̂i + σ(G(β,D,yi))

−1/2z∗i )/2σ
2 + ‖zj∗1 ···j∗q ‖

2/2)
) q∏

k=1

wjk.

(3.2.7)

Correspondingly, the marginal log-likelihood can be written as

− [N log 2πσ2 +M log |D|+
M∑

i=1

log |G(β,D,yi)|]/2+

M∑

i=1

log

NGHQ∑

j1=1···jq=1

(
exp (−g(β,D,yi, b̂i + σ(G(β,D,yi))

−1/2z∗i )/2σ
2 + ‖zj∗1 ···j∗q ‖

2/2)
) q∏

k=1

wjk.

(3.2.8)
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As mentioned previously, when one set of abscissas and weight (z∗1 , w1) is used, the Adaptive

Gaussian-Hermite quadrature is equivalent to the Laplacian approximation where (3.2.8)

can be simplified as

−[N(1 + log 2πσ̂2) +M log |D|+
M∑

i=1

log |G(β,D,yi)|]/2. (3.2.9)

3.2.3 Estimating of the Parameters

The procedures for obtaining the estimates of the variance components and the unknown

model parameters in the nonlinear mixed model are similar to that for the linear mixed

model. We again let θ = (θ1, · · · , θm) be the unobservable intra-subject and inter-subject

variances where the fixed effects β and the random effects bi are both functions of θ. The

estimates of the variance component θ can be obtained using the general-purpose EM algo-

rithm with modification for the nonlinear mixed model. After obtaining the estimates of the

variance components, the estimates of the fixed effects can be obtained by optimizing the

approximation of the marginal likelihood. The optimization techniques have been introduced

in Section (1.3.2). The random effects can be estimated using an Empirical Bayes approach,

where the posterior distribution of bi can be determined by:

p(b|y) = p(y|b)p(b)∫
p(y|b)p(b)db . (3.2.10)

We demonstrate the parameter estimates procedure using the following example.
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Figure 3.1: Orange Tree Growth Curves

3.2.4 Orange Tree Example

The orange tree data [Draper and Smith, 1981] consists of seven measurements of trunk cir-

cumference on five orange trees. Since the trunk circumferences have an apparent nonlinear

relationship with time as shown in Figure 3.1, it is of interest to fit a nonlinear model that

can predict the growth pattern of the orange trees. Lindstrom and Bates [1990] as well as

Pinheiro and Bates [1995] proposed a nonlinear mixed effects model that had good perfor-

mance in modeling the orange tree data. For the ith orange tree, the jth measurement can
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be modeled using the following form:

yij =
b1 + ui1

1 + exp(−(dij − b2)/b3)
+ ǫij i = 1, · · · , 5 and j = 1, · · · , 7 (3.2.11)

where dij represents the measurement time; b = (b1, b2, b3) is a vector of three fixed effects;

ui1 is the random effect which follows a normal distribution, ui1 ∼ N(0, σ2
u); and ǫij is the

error term which also follows a normal distribution, ǫij ∼ N(0, σ2
e). The scaled variance D

described in (3.2.2) is degenerated to a ratio of σ2
u/σ

2
e .

To obtain the estimates of variance components σ2
e and σ2

u in the nonlinear mixed model

using the EM algorithm, we rewrite model (3.2.11) accordingly. We denote y∗ij = yij −
b1

1+exp(−(dij−b2)/b3)
and z∗ij = ui1

1+exp(−(dij−b2)/b3)
, thus model (3.2.11) can be rewritten as y∗ij =

z∗ij+ǫij. Equivalently, the model can be written using matrix notation y∗ = Z∗+ǫ. Let V be

the variance matrix of y∗ where V = σ2
uZ

∗Z∗T+σ2
eIn×n. In the EM algorithm, for unknown

u and ǫ, the ‘E-step’ can be constructed using the quadratic expectation conditional on the

observed response y and current estimate b̂ according to (3.1.30). In particular, for the

orange tree data, the two conditional expectations can be written as:

E(ǫTǫ|y∗, b̂, (σ2
e)

(k)) = (σ4
e)

(k) · y∗T(V−1)TV−1y∗ + (σ2
e)

(k) ·N − (σ4
e)

(k) · tr(V−1)

E(uuT|y∗, b̂, (σ2
e)

(k)) = (σ4
u)

(k) · y∗T(V−1)TZ∗Z∗TV−1y∗ + (σ2
u)

(k) ·N − (σ4
u)

(k) · tr(Z∗TV−1Z∗)

and the variance component (σ̂u
2)(k+1) and (σ̂e

2)(k+1) can be estimated using (σ̂u
2)(k+1) =

E(ǫT ǫ|y∗,b̂,(σ2
e)

(k))
N

and (σ̂e
2)(k+1) = E(uuT|y∗,b̂,(σ2

e)
(k))

N
. The estimates are incorporated to itera-

tively update the log-likelihood L = −1
2
(log |V|+ y∗TV−1y∗) until the optimum is reached.
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The estimated variances σ̂2
u and σ̂2

e are substituted for the unknown variances in the

marginal likelihood for obtaining the estimates of the fixed effects b. We construct the

marginal likelihood below and approximate it using the adaptive Gauss-Hermite Quadrature

method. For each orange tree i, the likelihood function can be written as:

Li = p(y|ui)p(ui) =

(
1√
2πσ2

e

)ni+1

|D|− 1
2 exp

(
− ‖yi − fi(b;ui)‖2 + uiD

−1ui

2σ2
e

)
(3.2.12)

where fi(b;ui) = b̂1
1+exp(−(dij−b̂2)/b̂3)

. The marginal likelihood for all observations can be

written as:

L∗ =

∫ M∏

i=1

Lidui =

(
1√
2πσ2

e

)N+M

|D|−M
2

M∏

i=1

exp

(
− ‖yi − fi(b;ui)‖2 + uiD

−1ui

2σ2
e

)
dui

(3.2.13)

where M denotes the number of subjects and N denotes the number of observations. To

approximate the marginal likelihood (3.2.13) using adaptive Gauss-Hermite Quadrature al-

gorithm (3.2.7), we assume g(b,D,ui, yi) = ‖yi−f(b,ui)‖2+uT
i D

−1ui and G(b,D,ui, yi) =

∂f(β,bi)

∂bT

i

|bi=b̂i

∂f(β,bi)

∂bi

|bi=b̂i
+D−1. According to (3.2.7), logL∗ can be approximated as:

− [N log(2πσ̂e
2) +M log |D|+

M∑

i=1

log |G(b,D,ui, yi)|/2+

M∑

i=1

log(

NGHQ∑

j=1

(
exp(−g(b,D, yi, ûi + σ̂e(G(b,D,ui, yi))

−1/2z∗i )/2σ̂e
2 + ‖z∗j ‖2/2)

)
wj.

(3.2.14)

When NGHQ = 1, equation (3.2.14) is equivalent to the Laplacian approximation with the
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following form:

−
(
N(1 + log(2πσ̂2

e)) +M log |D|+
M∑

i=1

log |G(b,D,ui, yi|
)
/2 (3.2.15)

By optimizing the approximated marginal likelihood using the general-purpose optimization

techniques, (e.g. Nelder-Mead, BFGS) we can obtain the estimates for the fixed effects.

We fit the orange tree data using four different approaches: 1) Our R code, 2) R package

lme4, 3) SAS PROC NLMIXED, and 4) Bayesian approach via WinBUGS version 14. We com-

pared the parameter and the log-likelihood estimates resulting from the different approaches.

For the first three computational packages/software, we obtained the marginal likelihood

function using both the Laplacian approximation and the adaptive Gauss-Hermite Quadra-

ture with five quadrature points. The techniques for obtaining the estimates of the unknown

parameters differ slightly among the three approaches. In our code, the estimated variance

components were obtained using the EM algorithm to optimize the ML criterion and the

log-likelihood was optimized using Nelder-Mead, which is the default method implemented

in R function optim. The R package lme4, written by D. Bates and Bolker [2011], imple-

ments Penalized Iteratively Reweighted Least Squares (PIRLS) [Bates, 2011] to obtain the

parameter estimates with options to estimate the latent variable θ by optimizing either the

ML or REML criterion. For comparison purposes, we choose the option to obtain θ̂ by ML

criterion. In SAS version 9.2 PROC NLMIXED procedure, we used the default Quasi-Newton

algorithm to optimize the ML based marginal likelihood. In the Bayesian approach, we set

the burning = 1000, thinning = 5, iteration = 230000. The priors for the variance com-

ponent were chosen according to [D.K. Dey and Chang, 1997] and the priors for the fixed
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effects were the flat priors. Tables 3.3, 3.4, 3.5 and 3.6 present the parameter estimates from

the four computational softwares/packages. By comparing the results in the four tables, we

can conclude the estimates of the fixed effects are robust across optimization algorithms as

well as approximation procedures. However, the estimates of variance can be quite different

depending on the optimization techniques as well as the number of quadrature points used

in the approximation procedure. In particular, there is apparently a huge inflation in the

estimate of variance using Laplacian approximation by the R package lme4. In addition, the

estimate of variance under the Bayesian framework differed significantly compared to that

from the frequentist approaches.

Table 3.3: R code output for the orange tree example

Laplacian Approximation

Parameter Estimate SE DF t-value P-value
b1 192.1 15.65 4 12.33 0.0002*
b2 727.9 35.09 4 21.14 <0.001*
b3 348.0 26.98 4 13.23 0.0002*
σ2
u 1002.29 4

σ2
e 61.51 4

−logL=131.57
Adaptive Gaussian Quadrature NGHQ = 5

Parameter Estimate SE DF t-value P-value
b1 192.1 11.32 4 16.97 <0.001*
b2 728.4 33.32 4 21.85 <0.001*
b3 348.5 30.32 4 11.50 0.0003*
σ2
u 974.42 4

σ2
e 61.80 4

−logL=133.32
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Table 3.4: R package lme4 output for the orange tree example

Laplacian Approximation

Parameter Estimate SE DF t-value P-value
b1 192.0 104.09 4 1.85 0.14
b2 727.9 31.97 4 22.78 <0.001*
b3 348.0 24.42 4 14.25 0.001*
σ2
u 53985.2 232.35 4 232.34 <0.001*

σ2
e 52.9 7.27 4 7.28 0.002*

−logL=945.3
Adaptive Gaussian Quadrature NGHQ = 5

Parameter Estimate SE DF t-value P-value
b1 192.1 15.58 4 12.32 0.0002*
b2 727.9 34.44 4 21.14 <0.001*
b3 348.1 26.31 4 13.23 0.0002*
σ2
u 1001.5 31.65 4 31.64 <0.001*

σ2
e 61.51 7.84 4 7.84 0.001*

−logL=129.9

Table 3.5: SAS PROC NLMIXED output for the orange tree example

Laplacian Approximation

Parameter Estimate SE DF t-value P-value
b1 192.1 15.65 4 12.27 0.0003*
b2 727.9 35.25 4 20.65 <0.001*
b3 348.1 27.08 4 12.85 0.0002*
σ2
u 999.9 647.44 4 1.54 0.20

σ2
e 61.51 15.89 4 3.87 0.02*

−logL=132.5
Adaptive Gaussian Quadrature NGHQ = 5

Parameter Estimate SE DF t-value P-value
b1 192.1 15.65 4 12.27 0.0003*
b2 727.9 35.25 4 20.65 <0.001*
b3 348.1 27.08 4 12.85 0.0002*
σ2
u 999.9 647.44 4 1.54 0.20

σ2
e 61.51 15.89 4 3.87 0.02*

−logL=132.5
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Table 3.6: WinBUGS output for the orange tree example

Parameter Estimate SD MC error Bayesian Interval
b1 193.1 13.34 0.2634 [168.3, 221.1]
b2 731.5 43.03 0.6831 [658.6, 827.2]
b3 351.7 32.48 0.5181 [292.3, 419.6]
σ2
u 561.8 185.1 2.881 [278.1, 994.6]

σ2
e 86 26.46 0.4006 [47.91, 153.2]
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3.3 Generalized Linear Model

3.3.1 Generalized Linear Model Framework

The generalized Linear Model (GLM) first introduced by Nelder and Wedderburn [1972] and

further extended by McCullagh and Nelder [1989] provides a flexible generalization from the

linear model that allows the distribution of the response to be discrete and non-normal.

GLM converts the nonlinear relationship between the response and predictors to a linear

relationship by linking the function of the response variable to a linear predictor where the

statistical inference in the linear model can be directly adapted. In practice, it often restricts

GLMs to the exponential family of distribution of the response variable that includes the

most commonly used statistical models: linear regression, logistic regression, Poisson regres-

sion, etc. This unified class of distributions constructs a convenient framework that allows

the same model fitting strategy to be applied to models with different error distributions.

A typical GLM consists of three parts: the random component, the systematic compo-

nent and a link function. The random component specifies the distribution of response y;

the systematic component defines the linear predictors; and the link function connects the

two components. In the random component, the distribution of y is often belongs to an

exponential family, which covers a large number of commonly used distribution, such as:

normal, binomial, gamma, exponential, beta, etc. A general form of the exponential family

can be written as:

f(yi; θi) = a(θi)b(yi) exp(yiQ(θi)) (3.3.1)
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where yi is the response from the ith observation and θ is the natural parameter that needs

to be estimated; a(·), b(·) and Q(·) are functions with Q(·) specifying the form of the link

function, known as g(·). When the response is discrete, one parameter θ may be inadequate

to capture the dispersion and variation in data. Alternatively, a modified form of the expo-

nential family with an additional parameter φ can be used to adjust for the over-dispersion

and under-dispersion. Accordingly, the two-parameter exponential family density f(yi; θ, φ)

can be written as:

f(yi; θi, φ) = exp ([yiθi − b(θi)]/a(φ) + c(yi, φ)) (3.3.2)

where θ is the natural parameter and φ is the dispersion parameter. When φ is known or

the estimate of φ is observed, (3.3.2) simplifies to the form (3.3.1) where function Q(·) still

determines the form of the link function g(·).

The systematic component specifies the linear predictor as that in linear regression model.

We denote ηi =
∑

j βjxij, j = 1, · · · , p, where βj represents the regression coefficient and

xij are the corresponding elements in the design matrix X. The mean response of the ith

observation (denote as µi) is therefore connected to the linear component ηi via link function

g(·) with a form of:

g(µi) = ηi =
∑

j

βjxij (3.3.3)

which creates the framework of GLM.
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3.3.2 Moments and Likelihood for GLM

We now review some important statistical inference and properties of GLM. According to

(3.3.2), the log-likelihood for observation i can be written as:

Li(θ, φ; yi) = [yiθi − b(θi)]/a(φ) + c(yi, φ). (3.3.4)

To simplify the notation, we denote the log-likelihood of Li instead of Li(θ, φ; yi). We show

in (3.3.5) by taking first-order and second-order derivatives of Li with respect to the natural

parameter θi, the mean and variance of response yi can be written as functions of a(φ) and

b(θi). According to (3.3.4), it follows

∂Li

∂θi
=

yi − b′(θi)

a(φ)
,
∂2Li

∂θ2i
=
−b′′(θi)
a(φ)

(3.3.5)

where b′(θi) and b′′(θi) denote the first and second order derivatives of function b(·) eval-

uated at θi. When the likelihood reaches its maximum yields E
(
∂Li

∂θi

)
= 0 follows µi =

E(yi) = b′(θi). In addition, the relation between mean and variance can be illustrated as

E
(
∂2Li

∂θ2i

)
= E

(
∂Li

∂θi

)2
follows V ar(yi) = b′′(θi)a(φ).

It is also of interest to make the inference on the model parameter βj to investigate how

the explanatory variable impacts the outcome. Since βj is connected to the log-likelihood Li

through parameters µi and θi, by applying the chain rule and taking the first-order derivative

of log-likelihood with respect to βj, the likelihood equation can then be written as:

∂Li

∂βj

=
∂Li

∂θi

∂θi
∂µi

∂µi

∂βj

= 0. (3.3.6)
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From previous knowledge, we know ∂Li

∂θi
= yi−b′(θi)

a(φ)
and ∂θi

∂µi
= (∂µi

∂θi
)−1 = b′′(θi)

−1 = a(φ)
V ar(Yi)

.

By substituting the two explicit forms into (3.3.6), the likelihood equation can be updated

as:

∂Li

∂βj

=
(yi − µi)

V ar(yi)

∂µi

∂βj

= 0. (3.3.7)

Correspondingly, the likelihood equation for all observations according to (3.3.7) can be

written as:

∂L

∂βj

=
N∑

i=1

∂Li

∂βj

=
N∑

i=1

(yi − µi)

V ar(yi)

∂µi

∂βj

= 0. (3.3.8)

Equation (3.3.8) is also known as the quasi-score function and its matrix form is defined as:

U(β;y) =
∂L

∂β
= D′V−1(y − µ) (3.3.9)

where D is the n× p matrix with its (i, j)th entry to be ∂µi

∂βj
; V is the n× n diagonal matrix

with the ith diagonal entry to be V ar(yi); and y − µ is a vector of length n with the ith

entry to be yi − µi.

Alternatively, since ∂µi

∂βj
= ∂µi

∂ηi

∂ηi
∂βj

= xij
∂µi

∂ηi
, (3.3.8) can also be written as

∂L

∂βj

=
N∑

i=1

(yi − µi)xij

V ar(yi)

∂µi

∂ηi
= 0 (3.3.10)
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with the matrix notation as:

U(β;y) =
∂L

∂β
= XTW(y − µ)

∂µ

∂η
(3.3.11)

where X is a n× p design matrix; W is a n× n diagonal matrix with the ith diagonal entry

to be wi = (∂µi

∂ηi
)2/V ar(yi); and (y − µ)∂µ

∂η
is a vector of length n with the ith entry to be

(yi − µi)
∂µi

∂ηi
.

3.3.3 Maximum Likelihood Estimates for GLM

The estimate of model parameter β can be obtained using the maximum likelihood approach.

The ML estimates have two appealing theoretical properties: they are approximately un-

biased and highly efficient. It is required to solve the gradient of the log-likelihood (3.3.7)

to obtain the ML estimate of β. There is generally no closed form in the expression of β,

the iterative optimization procedures are therefore needed. Besides Newton-Raphson and

Fisher’s Scoring methods discussed in Section 1.3.2, we here introduce the third prevalent

optimization method: Iterative Reweighted Least Squares, often known as IRLS [Green,

1984].

In the discussion of Fisher’s Scoring algorithm, we introduced the information matrix

ιi with a form of ιi = −E
(

∂2Li

∂βj∂βj′

)
for the ith observation. According to (3.3.10) and
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E(∂Li

∂βj
) = 0, the explicit form of information matrix ιi for GLM can be written as:

ιi = −E
(

∂2Li

∂βj∂βj′

)
= E

(
∂Li

∂βj

)(
∂Li

∂βj′

)
= E

(
(yi − µi)

2xijxij′

V ar(yi)2

(
∂µi

∂ηi

)2)
. (3.3.12)

As E(yi − µi)
2 = V ar(yi), after a few steps of algebra, the information matrix ι for N

observations can be written as:

ι =
N∑

i=1

xijxij′

V ar(yi)

(
∂µi

∂ηi

)2

= X′WX (3.3.13)

where W is a n× n diagonal matrix with the ith diagonal entry to be wi = (∂µi

∂ηi
)2/V ar(yi).

Recall in Fisher’s Scoring algorithm, β(s) can be updated using iterative procedure that

satisfies β(s) = β(s−1) + (ι(s−1))−1U (s−1). By substituting the form of ι from (3.3.13) and

U from (3.3.11), β(s) can be written as a form of the iteratively weighted least squares

(IRLS):

β(s) = (X′W(s−1)X)−1

(
X′W(s−1)

(
Xβ(s−1) + (y − µ(s−1))

∂µ(s−1)

∂η(s−1)

))

= (X′W(s−1)X)−1X′W(s−1)z(s−1). (3.3.14)

3.3.4 Quasi-Likelihood Estimates for GLM

One drawback of the maximum likelihood approach to obtain the parameter estimate is it

heavily relies on the explicit form of the assumed distribution. Thus, its usage is prohibited
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for a response with abnormal dispersion or that deviates far from the known distribution.

Wedderburn [1974] proposed a quasi-likelihood whose structure only depends on the mean

µi(β) and variance V ari(β) of the response variable. More surprisingly, he showed that

even when the distribution of response yi is non-normal, the estimate of model parameter β

can still be asymptotically unbiased if it is obtained by optimizing the log-likelihood from

yi ∼ N(µi(β), V ari(β)).

The quasi-likelihood Q(µi, φ) is defined as

∂Qi(µi, φ)

∂µi

) =
yi − µi

V ar(yi)
(3.3.15)

where µi is the mean response and V ar(yi) = φV ar(µi) captures the dispersion in the

response. It is not difficult to show the quasi-likelihood Q(µi, φ) enjoys the same appealing

statistical properties as log-likelihood L(θ, φ; yi) does. For example, the information matrix

ι constructed using quasi-likelihood has the identical form of (3.3.12), that is

ιi = −E
(
∂2Qi(µi, φ)

∂βj∂βj′

)
=

xijxij′

V ar(yi)

(
∂µi

∂ηi

)2

=
∂µi

∂βj

∂µi

∂βj′

1

V ar(yi)
. (3.3.16)

In matrix notation, the information matrix ι for n observations can be written as:

ι = D′V−1D (3.3.17)

where D is the n × p matrix with the (i, j)th entry to be ∂µi

∂βj
and V is a diagonal matrix

with the ith entry to be V ar(yi). The model parameter estimates can be obtained using
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the iterative optimization method where β is updated as β(s) = β(s−1) + (ι(s−1))−1U (s−1).

By substituting the information matrix ι using equation (3.3.17) and the gradient U using

equation (3.3.9), the estimate of β can be again written as a form of the iteratively weighted

least squares (IRLS):

β(s) = β(s−1) + (D′(s−1)V(s−1)−1D(s−1))−1D(s−1)′V(s−1)−1(y − µ(s−1)) (3.3.18)
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3.4 Generalized Linear Mixed Model

The extension of generalized linear model to incorporate the longitudinal or clustered data

usually comes in two flavors: 1) the marginal or population-averaged model; and 2) the

random-effect or subject-specific model. The two types of models were developed to answer

the underlying question from different perspectives and thus yield different model parame-

ter interpretations. The marginal model focuses on depicting the mean response that only

depends on the fixed effect and not on any random effects. On the contrary, the subject-

specific model introduces the random effect which allows the mean response to vary across

subjects. The two models also differ in the way to measure the correlation among repeated

measurements and thus result in different estimation procedures.

3.4.1 Generalized Equation Estimation for Marginal Model

The marginal model, as suggested by its name, emphasizes that the mean response depends

only on the fixed-effects of interest and not on the individual heterogeneities. One of the

appealing advantages of the marginal model is that a full distribution of the response is

often not required. Instead, only the mean and variance of the response are needed to

construct the model. This property of the marginal model is exceptional for at least two

reasons: 1) only a few tractable distributions exist for discrete responses and the assumed

probability density can be easily violated due to dispersion in data, which is especially true

for longitudinal or clustered discrete data; 2) the computational complexity of the marginal

likelihood for discrete longitudinal or clustered data can be formidable while the estimation

procedure for marginal model is relatively standard. We now illustrate the three parts that
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define a marginal model for discrete longitudinal data:

1. The mean response for the ith subject µi = E(yi|xi) is connected to a set of fixed-effects

via a link function g(·) where g(µi) = xi
Tβ.

2. The variance of the ith subject depends on the variance of the mean response and a

dispersion parameter φ, that is: V ar(yi|xi) = φv(µi).

3. The within-subject association among repeated measurements of subject i can be de-

picted as a function of a set of additional parameters α and mean response µi.

The first two components specify that the mean and variance of the response follow the

framework of the GLM which is related to the quasi-likelihood (3.3.15). It is the third com-

ponent that actually establishes the extension to longitudinal or clustered discrete data by

allowing within-subject association for the same individual.

To estimate the model parameters for discrete longitudinal data is always challenging

since there is no convenient and simple form of the marginal likelihood of the joint multi-

variate distribution of the response. The remarkable method, generalized estimating equation

(GEE) extended naturally from quasi-likelihood [Wedderburn, 1974] proposed by Liang and

Zeger [1986], provides an convenient alternative to the full likelihood approach for parameter

estimation. Briefly, the GEE method works by defining the working covariance matrix Vi

of yi to be

Vi = φA
1/2
i Ri(α)A

1/2
i (3.4.1)
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where Ai is a ni × ni diagonal matrix with the jth entry to be v(µij); Ri(α) is a working

correlation matrix depended on the parameter α that specifies the within-subject correla-

tion structure. The term ‘working’ reflects both the covariance and correlation are from the

assumed model not the true observations. To solve the GEE, it requires iterating between

the quasi-likelihood estimate of β (3.3.18) and the estimate of α as a function of β. It starts

with an initial guess of Ri(α), usually an identity matrix or autoregressive structure and an

initial estimate of dispersion parameter φ. The initial estimate of β can be obtained based

on the initial estimate of Ri(α) and φ. Once a new estimate of β is obtained, it is then used

to update the estimate of Ri(α) and φ. This procedure iterates until convergence.

The parameters estimated from GEE method enjoy several appealing statistical proper-

ties. First, the estimator of β can be as efficient as the maximum likelihood estimator for

continuous and certain discrete longitudinal responses. Second, the estimator is robust and

asymptotically unbiased that only requires the mean response to be correct and allow the

within-subject correlation to be misspecified. However, under this scenario, the standard

error obtained may be largely biased and invalid which requires further improvement.

3.4.2 Penalized Quasi-likelihood for GLMM

In contrast to the marginal model, the second way to extend the GLM to allow longitudinal

or clustered data is via the generalized linear mixed model (GLMM), which directly extended

from the linear mixed model framework and allows the mean response from the non-normal

distribution varying among individuals. As the mean response depends on both the fixed and
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random effects, the model parameter β will have a subject-specific interpretation conditional

on the random effect. The GLMM is particularly useful when the individual pattern is of

interest and the main research purpose is to investigate the statistical inference of the set of

explanatory variables that contribute to the dynamic individual heterogeneities. In addition,

the GLMM is irreplaceable when classification and prediction are of primary concern in

analyzing longitudinal or clustered data. We now illustrate the framework of GLMM, which is

closely related to the nonlinear mixed model discussed in Section 3.2. Suppose µij = E(yij|bi)

is the conditional mean of the ith object jth measurement. The GLMM is constructed by

connecting the conditional mean µij to the fixed and random effects via a link function g(·),

that is:

g(µij) = xT
ijβ + zijbi (3.4.2)

where β is the fixed effect; and bi is the random effect that follows a normal distribution with

mean zero and q × q variance matrix Gi. Similar to the marginal model, the conditional

variance V ar(yij|bi) is a function of conditional mean and dispersion parameter, that is

Var(yij|bi) = φv(yij|bi). We further assume the error term ǫi follows a normal distribution

N(0,Ri) and correspondingly, the response for the ith subject yi can be written as:

yi = g−1(xT
i β + zibi) + ǫi (3.4.3)

Despite the notation of the link function, (3.4.3) has the exact same form as the nonlinear

mixed model shown in equation (3.2.2).
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The parameter estimates for the GLMM can be obtained primarily through two ap-

proaches: marginal likelihood and penalized quasi-likelihood. We have discussed the marginal

likelihood approach for the nonlinear mixed model for obtaining the fixed-effects estimates

and the empirical Bayes estimates for the random-effects in Section 3.2.2. The implementa-

tion of the marginal likelihood approach to GLMM is almost identical, which also requires

integration over the distribution of the random effects and the numerical approximation

is often used to fill the analytical absence. The marginal likelihood approach provides an

accurate estimate of model parameter while the computational process to approximate the

integrands can be extremely challenging, especially under the high-dimensional numerical

integration scenario. Several authors have proposed alternative methods to avoid the need

for computing the approximation of the integrand. Notably, Stiratelli et al. [1984] developed

a penalized quasi-likelihood (PQL) method to fit a data with longitudinal dichotomous re-

sponse, which enhanced and generalized by Green [1987], Breslow and Clayton [1993] and

Wolfinger [1993] as a Laplace approximation to the marginal likelihood which considered

as a general approach for fitting GLMM. As with most low-dimensional approximation ap-

proaches, PQL can yield largely biased estimates of the variance component and model

parameters under certain circumstances. Here, we briefly review the version proposed by

Lindstrom and Bates [1990] which was originally used to fit the nonlinear mixed model. With

proper modification and extension, this algorithm has been implemented to the prevalent sta-

tistical software/packages, for example SAS PROC GLIMMIX [Wolfinger and O’connell, 1993]

and R package lme4 [D. Bates and Bolker, 2011] for fitting a variety of mixed-effects models

including GLMM. To begin, we let θ be the variance component that accounts for the inter-

cluster heterogeneity and intra-cluster homogeneity. In equation (3.4.3), the fixed effects β
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and random effects bi are functions of θ. By augmenting the data with a set of ‘pseudo-data’,

it can be shown that β(θ) and bi(θ) jointly maximize the log pseudo-likelihood, which can

be written as:

L∗(β,bi,θ;xi) ∝ log |Ri|+ (yi − g−1(ηi))
TR−1

i (yi − g−1(ηi) + log |Gi|+ bT
i Gibi + c.(3.4.4)

Therefore, once the estimate of variance component θ is obtained, the estimate of β and

bi can be obtained subsequently using the methods for the linear mixed model described in

Section 3.1. To obtain the estimate of θ requires optimizing the marginal likelihood with

respect to the response, which has a form of p(y) =
∫
p(y|b)p(b)db (3.2.3). The random

effect bi is nonlinear in the response and yields no closed-form of the marginal likelihood.

To accomplish, an approximation of the residual ǫi = yi − g−1(xT
i β + zibi) near b̂i can be

conducted using the first-order Taylor series:

yi − g−1(xT
i β + zibi) ≈ yi − g−1(xT

i β + zib̂i) +
∂g−1(ηi)

∂ηi

∣∣∣∣
β̂,b̂i

(b̂i − bi). (3.4.5)

Then the conditional distribution of the residual given random effect bi can be approximated

as:

[
yi − g−1(xT

i β + zib̂i) +
∂g−1(ηi)

∂ηi

∣∣∣∣
β̂,b̂i

(b̂i − bi)

]∣∣∣∣bi ∼ N(0,Ri). (3.4.6)

It follows the conditional distribution of response y given random effect bi can be approxi-
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mated as

y|bi ∼ N

(
g−1(xT

i β + zib̂i)−
∂g−1(ηi)

∂ηi

∣∣∣∣
β̂,b̂i

(b̂i − bi),Ri

)
. (3.4.7)

In combination with the distribution of random effect bi ∼ N(0,Gi) and using the properties

of normal distribution multiplication, the marginal distribution of y can be approximated

as:

y ∼ N

(
g−1(xT

i β + zib̂i)−
∂g−1(ηi)

∂ηi

∣∣∣∣
β̂,b̂i

· b̂i,Vi

)
(3.4.8)

where Vi(θ) = Ri(θ) +
∂g−1(ηi(θ))

∂ηi(θ)
Gi(θ)

(
∂g−1(ηi(θ))

∂ηi(θ)

)T
. By optimizing (3.4.8) using prevalent

iterative optimization methods, such as Newton-Raphson, the estimate of θ can be obtained.

As most optimization methods require the second-order derivatives which is potentially com-

putationally cumbersome, further approximating the residual around the fixed-effect β can

avoid this problem at the cost of sacrificing a proportion of the estimates accuracy. The

estimate of β(θ̂) and bi(θ̂) can be obtained as a function of θ̂ and the updated estimates

of the fixed and random effects are then used to obtain a new estimate of θ. This iterative

procedure is repeated until convergence.
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Chapter 4

Random Coefficient Model with

Ordinal Response

The statistical methods suitable for modeling the clustered or longitudinal data with an

ordinal response have become increasingly important in a variety of fields. A significant

amount of work has been done to model a longitudinal ordinal response through different

approaches. Harville and Mee [1984] initiated a mixed model procedure for analyzing clus-

tered data with an ordinal response where the random effects estimates were approximated

through a Taylor series expansion. Jansen [1990] utilized the numerical quadrature method

to fit the mixed-effect ordinal model with one random effect. Ezzet and Whitehead [1991]

implemented the Newton-Raphson procedure to fit a random-effects model with an ordi-

nal response. Hedeker and Gibbons [1994] developed a random-effects model for an ordinal

response allowing multiple random effects suitable for clustered or longitudinal data with

complex correlation structure. Besides the full likelihood approaches for obtaining the pa-

rameter estimates, several authors have contributed by fitting the random-effects ordinal
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model based on different mechanisms. Notably, Yang [2001] used marginal quasi-likelihood

(MQL) and predictive quasi-likelihood (PQL) to obtain the parameter estimates which is

with less computationally demanding but could be subject to larger bias. In this chapter,

we primarily review the random coefficient method for modeling an ordinal response as dis-

cussed by Hedeker and Gibbons [1994].

Chapter 4 is organized as follows: In Section 4.1, we focus on the random coefficient model

for modeling longitudinal data having an ordinal response. We then present the marginal

likelihood for the ordinal random coefficient model and derive its approximation using tradi-

tional and adaptive Gauss-Hermite Quadrature methods in Section 4.2. Estimates of model

parameters and random effects are described in Sections 4.3 and 4.4, respectively. In Section

4.5, we revisit the NIMH Schizophrenia Example introduced in Chapter 1. An additional

example, the Health Services Research Example is reproduced to demonstrate the usage of

the ordinal random coefficient model in Section 4.6. The parameter estimates from the two

examples were compared using several available computational softwares/packages.

4.1 Random Coefficient Model with Ordinal Response

As discussed in Section 3.1, the random coefficient model has its best usage in scenarios

when time-dependent repeated measurements are collected where the random term in the

model can capture the subject-specific variations in data. There are two types of the random

coefficient models: 1) the random intercept model, where only the intercept is assumed to

be subject-specific; 2) the random coefficient model, where both the intercept and slope vary
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across subjects. The ordinal random coefficient model is constructed by adding the additional

subject-specific random effects ui to the traditional ordinal model under the proportional

odds assumption. We exemplify the ordinal random coefficient model for the ith subject

using the cumulative logit link log
(

γic

1−γic

)
, where log

(
γic

1−γic

)
(4.1.1) is a matrix of dimension

ni × C and ni is the number of repeated measurements in subject i.

log

(
γic

1− γic

)
=




log γi11
1−γi11

· · · log γi1c
1−γi1c

· · · log γi1C
1−γi1C

log γi21
1−γi21

· · · log γi2c
1−γi2c

· · · log γi2C
1−γi2C

...
...

...

log
γi,ni1

1−γi,ni1
· · · log

γi,nic

1−γi,nic
· · · log

γi,niC

1−γi,niC




ni×C

(4.1.1)

Each of the elements in the matrix (4.1.1) can be linked to the implicit expression of the

intercept, fixed effects and random effects as shown in (4.1.2) which defines the ordinal

random coefficient model for the jth measurement on the ith subject.

log

(
γijc

1− γijc

)
= log

(
P (Yij ≤ c|xij,ui)

P (Yij > c|xij,ui)

)
= αc + xT

ijβ + ziui (4.1.2)

where αc denotes the category-specific intercept; β is a p×1 vector of coefficients associated

with explanatory variables xij of dimension p × 1. For the random intercept model, zi is

an indicator denoting the intercept and ui is a random variable that follows a univariate

normal distribution N(0, σ2
int). For the random coefficient model, zi is a 1× 2 design matrix

that includes the intercept and the time points when the jth measurement was taken for

the ith subject. Correspondingly, ui = (u1i, u2i) is a vector that follows a bivariate normal
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distribution with mean 0 and variance Gi, where Gi =




σ2
u1

σu1,u2

σu1,u2 σ2
u2


. From (4.1.2), we

can calculate the probabilities πc(xij,ui) that represents the jth measurement of subject i

falls into the cth categories:

πc(xij,ui) = P (Yij ≤ c|xij,ui)− P (Yij ≤ c− 1|xij,ui)

=
exp(αc + xT

ijβ + ziui)

1 + exp(αc + xT
ijβ + ziui)

−
exp(αc−1 + xT

ijβ + ziui)

1 + exp(αc−1 + xT
ijβ + ziui)

. (4.1.3)

It is also worth noting that the error variance in the ordinal random coefficient model is fixed

and its value can be obtained using a latent variable model approach for logistic regression

model. Suppose y∗ is a continuous latent variable , y is an observed dichotomous response

and γ is a threshold where y = 0 if y∗ ≤ γ and y = 1 otherwise. We assume the latent

variable model can be written as: yi = xi
Tβ+ǫi. According to [Hedeker and Gibbons, 2006],

in a logistic regression setting, ǫi is assumed to follow a standard logistic distribution with

mean 0 and variance π2/3. Since the ordinal random coefficient model (4.1.2) has the same

structure as a logistic regression model, it can be assumed the variance in ordinal random

coefficient model is fixed at π2/3. For a random intercept model, the intra-subject corre-

lation can be calculated as σ2

σ2+π2/3
, where σ2 is the variance explains individual heterogeneity.

4.2 The Marginal Likelihood and its Approximation

Estimating the unknown parameters in an ordinal random coefficient model is challenging.

We review the marginal likelihood approach discussed in [Hedeker and Gibbons, 1994] and
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derive the form of the marginal likelihood for the random intercept ordinal model and the

random coefficient ordinal model approximated by traditional and adaptive Gauss-Hermite

Quadrature methods, respectively.

For the ordinal random intercept model, since the random effect ui follows a univariate

normal distribution N(0, σ2
int), the likelihood function for subject i with ni measurements

can be written as:

Li(α,β,ui, σ
2
int|xi) =

1√
2πσ2

int

exp

(
− u2

i

2σ2
int

) ni∏

j=1

C∏

c=1

πc(xij, ui)
yijc (4.2.1)

where (yij1, · · · , yijC) is an indicator vector with yijc = 1 if Yij, which is the jth measurement

on subject i, belongs to the cth category and 0 otherwise. According to equation (3.2.3), the

marginal likelihood for the ith subject, which eliminates the random effects can be written

as:

L∗
i (α,β, σ2

int|xi) =

∫
Li(α,β,ui, σ

2
int|xi)dui

=
1√

2πσ2
int

∫
exp

(
− u2

i

2σ2
int

) ni∏

j=1

C∏

c=1

πc(xij, ui)
yijcdui (4.2.2)

=
1√

2πσ2
int

∫
exp

(
− u2

i

2σ2
int

+ log

ni∏

j=1

C∏

c=1

πc(xij, ui)
yijc

)
dui.(4.2.3)

As ui is nonlinear in the response, no closed-form for this integral can be directly ob-

tained. To solve this problem, we used two numerical integration methods to approximate

the integral: nonadaptive and adaptive Gauss-Hermite Quadrature approximation discussed

in Section 3.2. Let (z∗i , wi) be the set of abscissas and weights from N th order Hermite poly-
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nomial as shown in [Abramowitz and Stegun, 1972]. To simplify the notation, we denote

g(α,β,xi,yijc,ui, σ
2
int) = −

u2
i

2σ2
int

+log
∏ni

j=1

∏C
c=1 πc(xij, ui)

yijc . Then the marginal likelihood

for the ordinal random intercept model can be approximated using Gauss-Hermite Quadra-

ture method as:

L∗
i (α,β, σ2

int|xi) =
1√

2πσ2
int

∫
exp

(
g(α,β,xi,yijc, ui, σ

2
int)

)
dui

=
1√
π

∫
exp

(
g(α,β, σ2

int,xi,yijc, z
∗
i ) +

‖z∗i ‖2
2

)
exp

(
− ‖z

∗
i ‖2
2

)
dz∗i

=
1√
π

NGQ∑

i

exp
(
g(α,β, σ2

int,xi,yijc, z
∗
i )
)
Wi (4.2.4)

where Wi = exp(‖z∗i ‖2)
∏

i wi. Correspondingly, the log-likelihood for each subject can be

approximated as:

logL∗
i (α,β, σ2

int|xi) = −
1

2
log π + log

(NGQ∑

i

exp
(
g(α,β, σ2

int,xi,yijc, z
∗
i )
)
Wi

)
(4.2.5)

and the marginal log likelihood for all subjects can be written as:

logL∗(α,β, σ2
int|xi) = −

N

2
log π +

N∑

i

log

(NGQ∑

i

exp
(
g(α,β, σ2

int,xi,yijc, z
∗
i )
)
Wi

)
.(4.2.6)

We then use the adaptive Gauss-Hermite Quadrature approximation method to ap-

proximate the marginal likelihood. For the adaptive procedure, we assume the integrand

exp
(
g(α,β, σ2

int,xi,yijc, z
∗
i )
)
in equation (4.2.4) can be approximated by a normal distribu-

tionN(ûi, f
−1(α,β, σ2

int,xi,yijc, ui)), where ûi is the Empirical Bayes estimate of ui as well as

the mode of function f(·) defined in equation (4.2.7). Let ui = ûi+
√
2f ′′(α,β, σ2

int,xi,yijc, ui)
−1/2z∗i
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and dui =
√
2f ′′(α,β, σ2

int,xi,ycij, ui)
−1/2dz∗i , where f

′′(·, ui)
−1/2 is a square root of f ′′(·, ui)

−1

if f ′′(·, ui)
−1 is a scale and the Cholesky decomposition of f ′′(·, ui)

−1 if f ′′(·, ui)
−1 is a matrix.

When function f(·, ui) has a rather complicated form, the exact form of the second derivative

with respect to the random effect can be incredibly burdensome. Therefore, an approximate

form of the second derivative is often used to reduce the amount of calculation and acceler-

ate computational speed. In R, the second derivative of function f(·, ui) can be obtained by

extracting the Hessian matrix when optimizing the function. As the approximation of Hes-

sian matrix varies from optimization algorithms, the result of numerical integration through

adaptive Gauss-Hermite quadrature can be slightly different.

ûi = argmin− log
(
exp

(
g(α,β, σ2

int,xi,yijc, ui)
))

= argmin f(α,β, σ2
int,xi,yijc, ui) (4.2.7)

Then the marginal likelihood for the ordinal random intercept with ordinal response can be

approximated using adaptive Gauss-Hermite Quadrature method as:

L∗
i (α,β|xi, σ

2
int) =

1√
2πσ2

int

∫
exp

(
g(α,β, σ2

int,xi,yijc, ui, σ
2
int)

)
dui

=
1√

πσ2
intf

′
i
′(·, ui)

∫
exp

(
g(·, ûi +

√
2f ′

i
′−1/2

(·, ui)z
∗
i ) +

‖z∗i ‖2
2

)
exp

(
− ‖z

∗
i ‖2
2

)
dz∗i

=
1√

πσ2
intf

′
i
′(·, ui)

NGQ∑

i

exp
(
g(α,β, σ2

int,xi,yijc, ûi +
√
2f ′

i
′−1/2

(·, ui)z
∗
i )
)
Wi (4.2.8)

where Wi = exp(‖z∗i ‖2)
∏

i wi. Correspondingly, the marginal log likelihood for each subject
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i can be approximated as:

logL∗
i = −

1

2
log(πσ2

intf
′
i
′(·, ui)) + log

(NGQ∑

i

exp
(
g(α,β, σ2

int,xi,yijc, ûi +
√
2f ′

i
′−1/2

(·, ui)z
∗
i )
)
Wi

)

and the marginal log likelihood for all subjects can be approximated as:

logL∗ =− N

2
log(πσ2

int) +
∑

i

log f ′
i
′(·, ui)+

log

(NGQ∑

i

exp
(
g(α,β, σ2

int,xi,yijc, ûi +
√
2f ′

i
′−1/2

(·, ui)z
∗
i )
)
Wi

)
.

(4.2.9)

For the ordinal random coefficient model, the random effect ui follows a bivariate nor-

mal distribution N(0,Gi) with Gi is an unstructured variance matrix. We let u1i denote

the subject-specific intercept and u2i denote the subject-specific slope; σ2
u1 and σ2

u2 are the

variance components, respectively; and ρ =
σu1u2

σu1σu2
captures the correlation between u1 and

u2. Then the likelihood function for subject i with ni measurements can be written as:

Li(α,β,Gi, u1i, u2i|xi) =
1

2πσu1σu2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

(
u2
1i

σ2
u1

+
u2
2i

σ2
u2

− 2ρu1iu2i

σu1σu2

))
×

nj∏

j=1

C∏

c=1

πc(u1i, u2i,xi)
yijc .

(4.2.10)

As a special case, when u1 and u2 are independent implies ρ = 0, equation (4.2.10) can be

simplified as:

Li(α,β,Gi, u1i, u2i|xi) =
1

2πσu1σu2

exp

(
− u2

1i

2σ2
u1

− u2
2i

2σ2
u2

) nj∏

j=1

C∏

c=1

πc(u1i, u2i,xi)
yijc .(4.2.11)
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Then the marginal likelihood for the ith subject, which eliminates the random effects can be

written as:

L∗
i (α,β,Gi|xi) =

∫ ∫
Li(α,β,Gi, u1i, u2i|xi)du1idu2i. (4.2.12)

To approximate the marginal likelihood function using numerical approximation, we let

(z∗i , wi) be the set of abscissas and weights from theN th order Hermite polynomial [Abramowitz

and Stegun, 1972]. Let u1 =
√
2σu1z

∗
i , u2 =

√
2σu2z

∗
i and du1 =

√
2σu1dz

∗
i , du2 =

√
2σu2dz

∗
i .

To simply the notation, let h(u1i, u2i) =
1

2(1−ρ2)

(
u21i

σ2
u1
+ u2i

2

σ2
u2
− 2ρu1iu2i

σu1σu2

)
, then the marginal like-

lihood for the ordinal random coefficient model can be approximated using Gauss-Hermite

Quadrature method as:

L∗
i (α,β,Gi|xi) ≃

∫ ∫
exp

(
log

nj∏

j=1

C∏

c=1

(πc(
√
2σu1zi

∗, u2i)
yijc − h(

√
2σu1zi

∗, u2i)

)
dz∗i du2i

=

∫ NGQ∑

i

exp

(
log

nj∏

j=1

C∏

c=1

(πc(
√
2σu1zi

∗, u2i)
yijc − h(

√
2σu1zi

∗, u2i)

)
Widu2i

=

NGQ∑

i

(NGQ∑

i

exp

(
log

nj∏

j=1

C∏

c=1

(πc(
√
2σu1zi

∗,
√
2σu2zi

∗)yijc−

h(
√
2σu1zi

∗,
√
2σu2zi

∗)

)
Wi

)
Wi

and the log-likelihood for all subjects can be written as:

logL∗(α,β,Gi|xi) = −N log π
√
1− ρ2 +

N∑

i

logL∗
i (α,β,Gi|xi). (4.2.13)

To approximate the marginal likelihood for the random coefficient model with ordi-
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nal response using adaptive Gauss-Hermite Quadrature method, we denote u1i = û1i +
√
2|f ′′

1i(·, ui1)|−1/2z∗i , u2i = û2i +
√
2|f ′′

2i(·, u2i)|−1/2z∗i and du1 =
√
2|f ′′

1i(·, u1i)|−1/2dz∗i , du2 =
√
2|f ′′

2i(·, u2i)|−1/2dz∗i . Let g(α,β,Gi,xi,yijc, u1i, u2i) = − u2
1i

2σ2
u1

− u2
2i

2σ2
u2

+log
∏nj

j=1

∏C
c=1 π

yijc
c (u1i, u2i)

and f(·, u1i, u2i) = − log(exp(g(·, u1i, u2i))). û1i and û2i , which are the Empirical Bayes es-

timate of u1i and u2i can be obtained from equation (4.2.14) simultaneously.

(û1i, û2i) = argmin− log(exp(g(α,β,Gi,xi,yijc, u1i, u2i)))

= argmin f(α,β,Gi,xi,yijc, u1i, u2i) (4.2.14)

f ′′
1i(·, u1i) is the second derivative of f(·, u1i, u2i) with respect to u1i and f ′′

2i(·, u2i) is the

second derivative of f(·) with respect to u2i. Equivalently, f ′′
1i(·, u1i) and f ′′

2i(·, u2i) are the

diagonal of the Hessian matrix of function f(·, u1i, u2i). Since the exact form of the second-

order derivative of function f(·, u1i, u2i) can be quite complex, an approximated form of the

Hessian matrix is often applied. We also denote h(u1i, u2i) =
1

2(1−ρ2)

(
u1i

2

σ2
u1

+ u2i
2

σ2
u2

− 2ρu1iu2i

σu1σu2

)
.
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Then the marginal likelihood can be approximated as

L∗
i (α,β,Gi|xi) ≃

∫ ∫
exp

(
log

nj∏

j=1

C∏

c=1

(πyijc
c (û1+

√
2|f ′′

1i(·, u1i)|−1/2z∗i , u2i)−

h(û1 +
√
2|f ′′

1i(·, u1i)|−1/2z∗i , u2i)

)
dz∗i du2i

=

∫ NGQ∑

i

exp

(
log

nj∏

j=1

C∏

c=1

πyijc
c (û1+

√
2|f ′′

1i(·, u1i)|−1/2z∗i , u2i)−

h(û1 +
√
2|f ′′

1i(·, ui1)|−1/2z∗i , u2i)

)
Wi du2i

=

NGQ∑

i

(NGQ∑

i

exp

(
log

nj∏

j=1

C∏

c=1

πyijc
c (û1 +

√
2|f ′′

1i(·, u1i)|−1/2z∗i , û2 +
√
2|f ′′

2i(·, u2i)|−1/2z∗i )− h(û1+

√
2|f ′′

1i|(·, u1i)
−1/2z∗i , û2 +

√
2|f ′′

2i(·, u2i)|−1/2z∗i )

)
Wi

)
Wi

Correspondingly, the log-likelihood for all subjects can be approximated as:

logL∗(α,β,Gi|xi) = −N log π − N

2
log(σ2

u1
σ2
u2
(1− ρ2))− 1

2

N∑

i

log |f ′′

1i(·, u1i)|−

1

2

N∑

i

log |f ′′

2i(·, u2i)|+
N∑

i

logL∗
i (α,β,Gi|xi).

(4.2.15)

In a special case when there is no correlation between subject-specific intercept and slope

indicating ρ = 0, equation 4.2.15 can be simplified as:

logL∗(α,β,Gi|xi) = −N log π +
N∑

i

logL∗
i (α,β,Gi|xi) (4.2.16)
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4.3 Estimating Model Parameters

The parameter estimates can be directly obtained by optimizing the approximated marginal

likelihood function using general-purpose optimization method. We fit the ordinal random

coefficient model using two statistical software/packages: SAS version 9.2 and R version

2.13.1. In SAS, we fit the model using PROC NLMIXED and PROC GLIMMIX with the de-

fault Quasi-Newton algorithm. In R version 2.13.1, we wrote our own code to optimize

the marginal likelihood approximated using both nonadaptive and adaptive Gauss-Hermite

Quadrature methods. The optimization methods used include the quasi-Newton method

L-BFGS-B which can handle simple box constraints in variables, implemented to R function

optim, as well as the BFGS method implemented to the R function optimx [Nash and Varad-

han, 2012] with extended optimization capabilities. The ordinal package [Christensen, 2012]

is capable of fitting cumulative logit ordinal model with random effects so we also fit ordinal

random intercept models using it.

Since the unknown parameters to be estimated are (αc,β, σ
2
int) for the random intercept

model and (αc,β,σ
2
u1
, σ2

u2
, σu1u2) for the random coefficient model, it is of ultimate importance

to assure the variance components σ2
int, σ

2
u1
, σ2

u2
remain nonnegative during each iteration of

the optimization process. For the random coefficient model specifically, the covariance term

σu1u2 has to be constrained between −
√
σ2
u1
, σ2

u2
and

√
σ2
u1
, σ2

u2
since the correlation coeffi-

cient ρ =
σu1u2√
σ2
u1

,σ2
u2

∈ [−1, 1]. To ensure both constraints are satisfied during the optimization

process, we implement the Cholesky-Banachiewicz decomposition to the variance matrix Gi.

We illustrate the usefulness of Cholesky decomposition in the random coefficient model with

unstructured variance matrixGi. According to Cholesky decomposition, the positive-definite
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variance matrix Gi can be decomposed into the product of a lower triangular matrix and its

transpose as shown in (4.3.1)

Gi = LLT =




σ2
u1

σu1,u2

σu1,u2 σ2
u2


 =




L1 0

L2 L3







L1 L2

0 L3


 (4.3.1)

=




L2
1 L1L2

L1L2 L2
2 + L2

3




For a special case if the correlation coefficient ρ = 0, the Cholesky decomposition can be

conducted as equation (4.3.2).

Gi = LLT =




σ2
u1

0

0 σ2
u2


 =




L1 0

0 L3







L1 0

0 L3


 =




L2
1 0

0 L2
3


 (4.3.2)

We let L1 = exp(ll1) and L3 = exp(ll3) to ensure the positivity of σu1 and σu2. From equation

(4.3.1), the correlation coefficient can be illustrated as ρ = L1L2

L1

√
L2
2+L2

3

and |L2| ≤
√
L2
2 + L2

3

which ensures ρ is always within the proper range.

The standard error of the estimated variance components σ̂2
u1, σ̂

2
u2 and σ̂u1,u2 can be ap-

proximated using Delta method. Suppose a statistic Tn satisfying
√
n[Tn − θ] → N(0, σ2),

then any function of statistic Tn, g(Tn) satisfies
√
n[g(Tn) − g(θ)] → N(0, σ2[g′(θ)]2) where

the standard error of g(Tn) is asymptotically equal to g′(θ)2 σ2√
n
. Then from Cholesky decom-
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position of Gi (4.3.1), the standard error of σ̂2
u1

= exp(ll1)
2 can be approximated as:

SE(σ̂2
u1
) =

d exp(ll1)
2

d2ll1
× SE(ll1). (4.3.3)

Also from equation (4.3.1), the variance σ̂2
u2

consists of elements L2 and ll3. We denote

σ̂2
u2

= g(L2, ll3) = L2
2 + exp(ll3)

2, the variance of σ̂2
u2

can be obtained by:

Var(σ̂2
u2
) =

(
∂g(·)
∂L2

,
∂g(·)
∂ll3

)



Var(L2
2) Cov(L2, ll3)

Cov(L2, ll3) Var(ll23)







∂g(·)
∂L2

∂g(·)
∂ll3


 . (4.3.4)

Correspondingly, the standard error of σ̂2
u2

can be calculated as SE(σ̂2
u2
) =

√
Var(σ̂2

u2
). To

approximate the standard error of covariance σ̂u1,u2 requires an additional log-transformed

step as σ̂u1,u2 = exp (ll1) · L2 is a product of two elements. Let log σ̂u1,u2 = h(ll1, L2) =

ll1 + logL2, the variance of log σ̂u1,u2 can be calculated as:

Var(log σ̂u1,u2) =

(
∂h(·)
∂ll1

,
∂h(·)
∂L2

)



Var(ll21) Cov(L2, ll1)

Cov(L2, ll1) Var(L2
2)







∂h(·)
∂ll1

∂h(·)
∂L2


 (4.3.5)

By using Delta method again and transforming back, the standard error of σ̂u1,u2 can be

obtained by SE(σ̂u1,u2) =
√
σ̂2
u1,u2
× Var(log σ̂u1,u2).
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4.4 Estimating the Random Effects

The estimates of random intercepts and slopes ui are also of interest. The Empirical Bayes

(EB) method, which is the mean of the posterior distribution of the random effects ui given

the observed data, are often used to assess the individual deviation from the population

mean. The posterior distribution of the random effects ui in the ordinal random coefficient

model can be written as:

ϕi(ui|α̂, β̂, Ĝi,xi) =
Li(α̂, β̂, Ĝi,xi|ui)∫
Li(α̂, β̂, Ĝi,xi|ui)dui

(4.4.1)

where Li(α̂, β̂, Ĝi,xi|ui) is the likelihood function with a form of equation (4.2.1) when fitting

an ordinal random intercept model and equation (4.2.10) when fitting an ordinal random

coefficient model.
∫
Li(α̂, β̂, Ĝi,xi|ui)dui is the marginal likelihood does not depend on

the random effect ui. Once the estimates of model parameters for α,β and Gi have been

obtained, the marginal likelihood
∫
Li(α̂, β̂, Ĝi,xi|ui)dui becomes a constant. Therefore,

the posterior distribution of random effects ui is proportional to the likelihood, that is

ϕi(ui|α̂, β̂, Ĝi,xi) ∝ Li(α̂, β̂, Ĝi,xi|ui). Then the Empirical Bayes estimate of ui can be

obtained by optimizing Li(α̂, β̂, Ĝi,xi|ui) with respect to ui.
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4.5 NIMH Schizophrenia Example Revisited

We revisit the NIMH Schizophrenia example described in Section 1.4. Here, we treat the

data as longitudinal measurements where the correlations between repeated measurement

from the same patient are not negligible. The Inpatient Multidimensional Psychiatric Scale

(IMPS) score assessments for each patients were originally designed to be collected at four

time points: Week 0, Week 1, Week 3 and Week 6. Due to noncompliance and loses to

follow-up, a few samples were collected at the time points differing from those scheduled and

several subjects missed scheduled visits as well. In the preprocessing stage, all missing data

were removed from the analysis. Table 4.1 summarizes the IMPS score by treatment group

and time from which we can see an unbalanced design was implemented with the number of

patients recruited to the intervention group was roughly three times to that in the control

group. In addition, the number of patients seen over the four time points decreased in both

groups. A more detailed ‘Severity of Illness’ change with respect to time in the two groups

can be observed from Figures 4.1 and 4.2 reproduced from [Hedeker and Gibbons, 2006].

From these barplots we can see, the number of severely ill patients in both groups drop dra-

matically as the study continuing while the number of normal people increases significantly,

especially in the intervention group.

Table 4.1: Summary of number of patients seen at each of the four time points

Week0 Week1 Week3 Week6
Placebo 107 105 87 70

Intervention 327 321 287 265
Total 434 426 374 335
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Figure 4.1: Summary of IMPS score (Normal, Mild, Marked, Severe) by Time in the Placebo
Group

To further explore the treatment and time effects accounting for inter-subject variation

as well as the intra-subject correlations, for each of the cumulative logit, adjacent-category,

forward continuation ratio and backward continuation ratio ordinal model framework, we

fit three types of mixed-effect models: the random intercept model, the random coefficient

model with assuming no correlation between the random slope and random intercept, and

the random coefficient model with an unstructured covariance matrix. We primarily present

the results from cumulative logit random coefficient/intercept ordinal response models. Ad-

ditional results can be found in Appendix D. Drug (0=placebo, 1=drug), time (
√
week) and

the drug by time interaction terms were included as fixed effects in the model. The model

performance can be evaluated using the likelihood-ratio based deviance test. To compare the

parameter estimates obtained from different software and optimization methods, we fit the
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Figure 4.2: Summary of IMPS score (Normal, Mild, Marked, Severe) by Time in the Inter-
vention Group

ordinal mixed-effect models by three approaches: 1) Our own R program. The parameter es-

timates are obtained by optimizing the approximated marginal likelihood using ‘L-BFGS-B’

in the general-purpose optimization function optim for cumulative logit ordinal model and

the ‘BFGS’ method in function optimx from R package optimx [Nash and Varadhan, 2012]

for other types of the ordinal models. 2) SAS version 9.2. We used PROC GLIMMIX procedure

for fitting random coefficient model with cumulative logit and PROC NLMIXED for fitting all

other ordinal models. All parameter estimates are obtained using the Dual Quasi-Newton

method. 3) R package ordinal developed by Christensen [2012]. The function clmm is capa-

ble for fitting the cumulative link mixed models with one or more random effects using the

Penalized Iteratively Reweighted Least Squares (PIRLS) method implemented in R package

lme4. However, since the clmm function is developed for fitting the random effects model
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rather than the random coefficient model, we are only able to compare the parameter esti-

mates from the random intercept model with cumulative logit.

Tables 4.3, 4.4 and 4.5 present the model fitting results from our R code, SAS and R

package ordinal. For each statistical software/package, the parame ter estimates remain

consistent between the two numerical approximation methods. In this example, a consistent

result and interpretation can be drawn from the statistical inference of the fixed effects when

treating the data as longitudinal compared to treating it as independent observations. The

drug and time interaction results in an extremely small p-value, which can be interpreted

as the distribution of the IMPS score changes more dramatically in intervention group com-

pared to that in the control group. As the interaction is significant, the interpretation of two

main effects cannot be based on their own inferences solely. Instead, we interpret the drug

and time main effects based on contrasts between intervention and placebo groups. The drug

effect βdrug represents the difference of IMPS score distributions between intervention and

placebo groups at baseline (week0). From Table 4.2 we can see the proportion of normal,

mildly, markedly and severely ill subjects are similar in two groups which indicates no sig-

nificant difference in the distribution of IMPS score at baseline. While the time effect βtime

illustrates the change of IMPS score distribution as the study continues. Also from Table

4.2, the proportions of patients from markedly and severely ill groups drop dramatically in

the intervention group compared with those in the placebo group, where a faster recovery

rate is observed in the intervention group than the placebo group. In addition, the variance

of the intercept σ2
int measures subject heterogeneity at baseline which a large value indicates

dynamic illness conditions.
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Table 4.2: Contrast of proportions in severity of illness between intervention and placebo
groups.

Time IMPS score Intervention Placebo Contrast
Week0 Normal 0.31% 0.29% 0.02%

Mild 5.64% 5.34% 0.31%
Marked 28.57% 27.56% 1.02%
Severe 65.48% 66.82% -1.34%

Week1 Normal 2.17% 0.62% 1.54%
Mild 29.05% 10.78% 18.27%

Marked 47.87% 40.34% 7.52%
Severe 20.92% 48.25% -27.33%

Week3 Normal 8.55% 1.09% 7.46%
Mild 57.15% 17.3% 39.85%

Marked 28.4% 46.86% -18.45%
Severe 5.9% 34.75% -28.85%

Week6 Normal 27.89% 1.89% 26%
Mild 60.91% 26.4% 34.5%

Marked 9.71% 48.2% -38.49%
Severe 1.49% 23.51% -22.01%

Tables 4.6 and 4.7 present the parameter estimates from the random coefficient model

assuming the covariance between the random intercept and the random slope is 0. Tables

4.8 and 4.9 present parameter estimates from the random coefficient model with an unstruc-

tured variance matrix. Due to the different optimization methods, estimates of the variance

component are slightly different from our R code and SAS. The interpretation of the fixed

effects remain consistent to that of the random intercept model. As the random coefficient

model takes the subject-specific heterogeneities in slope into consideration, it provides a

more precise assessment of the time trend in both groups. When assuming the independence

of the random intercept and random slope, from the fixed effects estimate in Table 4.6, we
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can conclude the mean change of the IMPS score distribution along with time is 0.70 in the

placebo group and 0.70 + 1.63 = 2.33 in the intervention group. By using the variance of

slope σ2
slope from the random effects, we can caculate the 95% confidence interval for the two

groups where the 95% CI=[-1.39, 2.79] for the placebo group and 95% CI=[0.24, 4.42] for

the intervention group. Both confidence intervals have wide spread indicate large variations

of the trends in two groups. Notice the 95% CI of the intervention group covers 0, which

indicates both positive and negative trends have been observed. Similarly, in the random

coefficient model with unstructured variance matrix, the mean and confidence interval for

the time trend is 0.83, 95%CI=[-1.74, 3.40] for the placebo group and 2.5, 95% CI=[-0.07,

5.07] for the intervention group, which also addresses the subject variation in the time trend.

From the unstructured variance matrix, the covariance between the random intercept and

slope is also estimated where the correlation of them can be estimated as r = −0.33 from

Table 4.8. This negative correlation can be interpreted as for most severely ill patients, a

more dramatic improvement has been observed than the mildly and moderately ill patients.
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Table 4.3: R output: Random Intercept Model with Cumulative Logit

Nonadaptive Gauss-Hermite ,NGQ = 7

Parameter Estimate SE DF t-value P-value
α1 -5.79 0.315 436 -18.39 <0.0001*
α2 -2.78 0.273 436 -10.18 <0.0001*
α3 -0.68 0.259 436 -2.61 0.009*

βdrug 0.08 0.300 436 0.26 0.80
βtime 0.77 0.130 436 5.87 <0.0001*

βdrug×time 1.19 0.152 436 7.84 <0.0001*
σ2
int 3.73 0.453

−logL 1701.8
Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-value P-value
α1 -5.84 0.331 436 -17.68 <0.0001*
α2 -2.82 0.289 436 -9.75 <0.0001*
α3 -0.70 0.274 436 -2.56 0.011*

βdrug 0.06 0.312 436 0.18 0.857
βtime 0.77 0.131 436 5.86 <0.0001*

βdrug×time 1.20 0.153 436 7.88 <0.0001*
σ2
int 3.72 0.456

−logL 1702.1
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Table 4.4: SAS output: Random Intercept Model with Cumulative Logit

Nonadaptive Gauss-Hermite Quadrature, NGQ = 7

Parameter Estimate SE DF t-value P-value
α1 -5.79 0.315 436 -18.40 <0.0001*
α2 -2.78 0.273 436 -10.19 <0.0001*
α3 -0.67 0.259 436 -2.61 0.0094*

βdrug 0.08 0.300 436 0.26 0.80
βtime 0.77 0.131 436 5.87 <0.0001*

βdrug×time 1.19 0.152 436 7.84 <0.0001*
σ2
int 3.73 0.453

−logL 1701.8
Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-value P-value
α1 -5.84 0.331 436 -17.68 <0.0001*
α2 -2.82 0.289 436 -9.75 <0.0001*
α3 -0.70 0.274 436 -2.56 0.0107*

βdrug 0.06 0.313 436 0.18 0.86
βtime 0.77 0.131 436 5.86 <0.0001*

βdrug×time 1.20 0.153 436 7.88 <0.0001*
σ2
int 3.72 0.456

−logL 1702.1
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Table 4.5: R package ordinal: Random Intercept Model with Cumulative Logit

Nonadaptive Gauss-Hermite Quadrature, NGQ = 7

Parameter Estimate SE DF t-value P-value
α1 -5.85 0.334 436 -17.48 <0.0001*
α2 -2.82 0.293 436 -9.61 <0.0001*
α3 -0.70 0.278 436 -2.53 0.01*

βdrug 0.05 0.319 436 0.17 0.86
βtime 0.77 0.131 436 5.83 <0.0001*

βdrug×time 1.21 0.153 436 7.86 <0.0001*
σ2
int 3.75 1.937

−logL 1701.6
Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-value P-value
α1 -5.84 0.326 436 -17.92 <0.0001*
α2 -2.82 0.283 436 -9.94 <0.0001*
α3 -0.70 0.268 436 -2.62 0.01*

βdrug 0.06 0.303 436 0.18 0.86
βtime 0.77 0.130 436 5.90 <0.0001*

βdrug×time 1.20 0.151 436 7.95 <0.0001*
σ2
int 3.72 1.928

−logL 1702.1
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Table 4.6: R output: Random Coefficient Model with Cumulative Logit assuming
COV(σint, σslope) = 0

Nonadaptive Gauss-Hermite Quadrature, NGQ = 11

Parameter Estimate SE DF t-value P-value
α1 -6.69 0.390 435 -17.13 <0.0001*
α2 -2.94 0.307 435 -9.55 <0.0001*
α3 -0.54 0.285 435 -1.88 0.06

βdrug -0.14 0.325 435 -0.43 0.67
βtime 0.69 0.183 435 3.75 0.0002*

βdrug×time 1.66 0.223 435 7.43 <0.0001*
σ2
int 4.01 0.629

σ2
slope 1.23 0.257
−logL 1547.3
Adaptive Gauss-Hermite Quadrature, NAGQ = 5

Parameter Estimate SE DF t-value P-value
α1 -6.71 0.382 435 -17.58 <0.0001*
α2 -2.98 0.301 435 -9.91 <0.0001*
α3 -0.59 0.279 435 -2.11 0.04*

βdrug -0.08 0.318 435 -0.26 0.80
βtime 0.70 0.179 435 3.88 <0.0001*

βdrug×time 1.63 0.218 435 7.50 <0.0001*
σ2
int 3.90 0.602

σ2
slope 1.14 0.240
−logL 1737.0
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Table 4.7: SAS output: Random Coefficient Model with Cumulative Logit assuming
COV(σint, σslope) = 0

Nonadaptive Gauss-Hermite Quadrature, NGQ = 11

Parameter Estimate SE DF t-value P-value
α1 -6.80 0.399 435 -17.06 <0.0001*
α2 -3.02 0.312 435 -9.70 <0.0001*
α3 -0.61 0.287 435 -2.11 0.035*

βdrug -0.07 0.326 435 -0.21 0.83
βtime 0.70 0.183 435 3.80 0.0002*

βdrug×time 1.67 0.224 435 7.46 <0.0001*
σ2
int 4.08 0.640

σ2
slope 1.25 0.260
−logL 1669.4
Adaptive Gauss-Hermite Quadrature, NAGQ = 5

Parameter Estimate SE DF t-value P-value
α1 -6.78 0.394 435 -17.19 <0.0001*
α2 -3.01 0.310 435 -9.72 <0.0001*
α3 -0.60 0.286 435 -2.08 0.038*

βdrug -0.08 0.325 435 -0.26 0.79
βtime 0.70 0.184 435 3.80 0.0002*

βdrug×time 1.66 0.223 435 7.44 <0.0001*
σ2
int 4.08 0.641

σ2
slope 1.23 0.257
−logL 1669.5
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Table 4.8: R output: Random Coefficient Model with Cumulative Logit

Nonadaptive Gauss-Hermite Quadrature, NGQ = 21

Parameter Estimate SE DF t-value P-value
α1 -7.32 0.473 435 -15.45 <0.0001*
α2 -3.42 0.387 435 -8.85 <0.0001*
α3 -0.82 0.351 435 -2.32 0.02*

βdrug -0.05 0.391 435 -0.14 0.89
βtime 0.88 0.218 435 4.05 <0.0001*

βdrug×time 1.70 0.253 435 6.70 <0.0001*
σ2
int 6.99 1.322

σint,slope -1.51 0.536
σ2
slope 2.01 0.592
−logL 1662.8
Adaptive Gauss-Hermite Quadrature, NAGQ = 7

Parameter Estimate SE DF t-value P-value
α1 -7.13 0.446 435 -16.00 <0.0001*
α2 -3.29 0.363 435 -9.08 <0.0001*
α3 -0.75 0.332 435 -2.25 0.02*

βdrug -0.06 0.371 435 -0.16 0.87
βtime 0.83 0.206 435 4.03 0.0001*

βdrug×time 1.67 0.241 435 6.92 <0.0001*
σ2
int 6.01 1.077

σint,slope -1.06 0.410
σ2
slope 1.72 0.462
−logL 1664.8
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Table 4.9: SAS output: Random Coefficient Model with Cumulative Logit

Nonadaptive Gauss-Hermite Quadrature ,NGQ = 21

Parameter Estimate SE DF t-value P-value
α1 -7.32 0.473 435 -15.49 <0.0001*
α2 -3.42 0.386 435 -8.86 <0.0001*
α3 -0.81 0.351 435 -2.32 0.02*

βdrug -0.06 0.391 435 -0.14 0.89
βtime 0.88 0.218 435 4.05 <0.0001*

βdrug×time 1.69 0.252 435 6.72 <0.0001*
σ2
int 7.00 1.320

σint,slope -1.51 0.533
σ2
slope 2.01 0.419
−logL 1662.8
Adaptive Gauss-Hermite Quadrature, NAGQ = 7

Parameter Estimate SE DF t-value P-value
α1 -7.32 0.472 435 -15.50 <0.0001*
α2 -3.42 0.386 435 -8.86 <0.0001*
α3 -0.81 0.351 435 -2.32 0.02*

βdrug -0.06 0.391 435 -0.14 0.89
βtime 0.88 0.218 435 4.06 <0.0001*

βdrug×time 1.69 0.252 435 6.72 <0.0001*
σ2
int 6.99 1.317

σint,slope -1.51 0.531
σ2
slope 2.00 0.416
−logL 1662.8
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4.6 Health Services Research Example

We now reproduce the results from the Health Services Research example described in

[Hedeker and Gibbons, 2006]. The data was collected from the McKinney Homeless Re-

search Project study conducted in San Diego, CA with the aim to evaluate the usefulness

and effectiveness of section 8 certificate as a way to improve living condition for the severely

mentally ill homeless. A total of 361 people participated in this study among which, 181

with section 8 certificate and 180 without section 8 certificate. The housing status of these

participants were classified into three groups: 1) streets or shelters; 2) community housing;

and 3) independent housing and the status were repeatedly recorded at four time points:

baseline, 6 month, 12 month and 24 month. Figures 4.4 and 4.3 present the distribution of

housing status in groups with and without section 8 certificates at the four time points being

evaluated. From both figures we observe that as the study continued, the living conditions

for both groups tremendously improved given a significant number of people moved from

streets or shelters to independent housing. Also from the two figures, we conclude that a

larger proportion of people from the group with section 8 certificates were able to afford

better living condition. To demonstrate, for each of the cumulative logit, adjacent-category,

forward continuation ratio and backward continuation ratio ordinal model framework, we

fit a random intercept model to capture the individual variation. In each model, the fixed

effects are time effects (treated as categorical and measured at: 6 month, 12 month and 24

month), certificate effect (treated as categorical indicating whether a person had a section 8

certificate) as well as time and certificate interactions. To compare the parameter estimates

obtained from different software, we fit the random intercept model with ordinal response by

three approaches: 1) Our own R program; 2) PROC GLIMMIX procedure in SAS version 9.2;
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and 3) R package ordinal. Tables 4.10, 4.11 and 4.12 present the fitting results for the ran-

dom intercept model with cumulative logit using the three computational tools, respectively.

The estimates remain consistent except the sign difference due to different parameteriza-

tions. All three time effects are associated with small p-values indicating the distribution of

the housing status is significantly different compared to that at baseline. In addition, the

proportion of participants living on the the street or in a shelter consistently decreased as

the study continued. The time and certificate interactions are significant at 6 and 12 months

and marginally significant at 24 months suggesting that the group with section 8 certificate

had better living conditions than the other group at 6 and 12 month, while there was no

significant difference at 24 month. It is interesting to see the certificate effect is marginally

significant, indicating the overall living conditions of two groups are not significantly dif-

ferent. We should be skeptical of this conclusion as the results may be contradictory due

to violation of proportional odds assumption. Therefore, a more complicated model should

be used to address the issue. It is also of interest to explore the intra-subject correlation.

According to discussion in Section 4.1, the within-subject correlation can be estimated as

σ2
int

σ2
int+π2/3

= 0.39.
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Figure 4.3: Summary of Housing Status by Time in Group with Section 8 Certificates

Figure 4.4: Summary of Housing Status by Time in Group without Section 8 Certificates
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Table 4.10: San Diego Homeless Example R output: Random Intercept Model with Cumu-
lative Logit

Adaptive Gauss-Hermite Quadrature, NAGQ = 10

Parameter Estimate SE DF t-value P-value
α1 0.22 0.198 360 1.11 0.27
α2 2.96 0.230 360 12.92 <0.0001*

6 month -1.74 0.235 360 -7.40 <0.0001*
12 month -2.32 0.247 360 -9.39 <0.0001*
24 month -2.50 0.253 360 -9.88 <0.0001*

Section 8 (Yes=1, No=0) -0.50 0.276 360 -1.80 0.07
Section 8 at 6 month -1.41 0.341 360 -4.13 <0.0001*
Section 8 at 12 month -1.17 0.353 360 -3.32 <0.0001*
Section 8 at 24 month -0.64 0.349 360 -1.83 0.07

σ2
int 2.13 0.354

-logL 1137.2

Table 4.11: San Diego Homeless Example SAS output: Random Intercept Model with Cu-
mulative Logit

Adaptive Gauss-Hermite Quadrature, NAGQ = 10

Parameter Estimate SE DF t-value P-value
α1 0.22 0.198 359 1.11 0.27
α2 2.96 0.230 359 12.92 <0.0001*

6 month -1.74 0.235 921 -7.40 <0.0001*
12 month -2.32 0.247 921 -9.39 <0.0001*
24 month -2.50 0.253 921 -9.88 <0.0001*

Section 8 (Yes=1, No=0) -0.50 0.276 921 -1.80 0.07
Section 8 at 6 month -1.41 0.341 921 -4.13 <0.0001*
Section 8 at 12 month -1.17 0.353 921 -3.32 0.0009*
Section 8 at 24 month -0.64 0.349 921 -1.83 0.07

σ2
int 2.13 0.354

-logL 1137.2
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Table 4.12: San Diego Homeless Example R package ordinal : Random Intercept Model
with Cumulative Logit

Adaptive Gauss-Hermite Quadrature, NAGQ = 10

Parameter Estimate SE DF t-value P-value
α1 0.22 0.210 360 1.05 0.30
α2 2.96 0.229 360 12.94 <0.0001*

6 month 1.74 0.242 360 7.17 <0.0001*
12 month 2.31 0.248 360 9.32 <0.0001*
24 month 2.50 0.258 360 9.70 <0.0001*

Section 8 (Yes=1, No=0) 0.50 0.300 360 1.65 0.10
Section 8 at 6 month 1.41 0.357 360 3.94 <0.0001*
Section 8 at 12 month 1.17 0.365 360 3.21 <0.0001*
Section 8 at 24 month 0.64 0.371 360 1.72 0.09

σ2 2.13 0.354
-logL 1137.2
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Chapter 5

Penalized Model for Traditional

Longitudinal High-dimensional Data

with an Ordinal Response

We have introduced the ordinal response and reviewed the ordinal model under the pro-

portional odds assumption in Chapter 1. In Chapter 2, we have reviewed several prevalent

regularization models for deriving a parsimonious model using high-dimensional data when

the response is either continuous or dichotomous. The statistical techniques for analyzing

the longitudinal data was reviewed in Chapter 3. Three classes of mixed effects models:

Linear Mixed Effects Model, Nonlinear Mixed Effects Model, and the Generalized Linear

Mixed Effects Model were discussed for analyzing a variety of repeated measured data with

responses having distinct distributions. In Chapter 4, we provided a comprehensive dis-

cussion on the statistical model for the clustered and longitudinal data with an ordinal
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response. In this chapter, we concentrate on solving the problem of interest. The problem

of interest is to identify a subset of important features that is monotonically as-

sociated with an ordinal response and can be utilized to build a parsimonious

model for prediction and classification in a high-dimensional or a longitudinal

high-dimensional setting. We propose our methodologies for building a parsimonious

model to predict an ordinal outcome using features selected from high-dimensional or lon-

gitudinal high-dimensional data. The rest of Chapter 5 is organized as follows: in Section

5.1, we first review the incremental forward stagewise method introduced in Chapter 2 with

more details. In Section 5.2, we extend the Forward Stagewise algorithm to be suitable for

the ordinal response setting. In Section 5.3, we combine the random coefficient model with

an ordinal response discussed in Chapter 4 and the forward stagewise algorithm to build

a parsimonious model for prediction and classification using longitudinal high-dimensional

data. Model assessment and selection criteria are provided in Section 5.4. A brief description

of the software implementation and our R package with a list of primary R functions are

included in Section 5.5. Two simulation examples with the data generation procedure and

model fitting results are presented in Section 5.6. Additional discussion follows in Section

5.7.

5.1 Review of Forward Stagewise Method

The forward stagewise method, also known as incremental forward stagewise regression, is

a slow learning procedure to provide a greedy approximation to the proposed function. The
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terminology ‘learning’ defined by Arthur Samuel indicates a process that gives computers

the ability to learn for achieving a goal without being explicitly programmed. Since a typ-

ical forward stagewise method consists of hundreds of thousands of tiny little steps before

converging, it was once considered as an inefficient algorithm and remained for a long time.

It has gained enormous attention when Hastie et al. [2007] discovered the prevalent super-

vised learning method. Boosting [Schapire et al., 1998] is the combination of a sequence of

adaptively constructed basis function and a forward stagewise procedure. Another striking

discovery of forward stagewise by Efron et al. [2004] is that it approximates the solution to

an L1 constrained regression (LASSO) problem and the coefficient profiles look exactly the

same under certain scenarios.

The forward stagewise method adopts the gradient descent optimization method, which

is also known as steepest descent method. It is a first-order optimization algorithm where

for each iteration, one takes a step proportional to the negative of the gradient in order to

achieve the local minimum of the purposed function. There are two versions of gradient

descent method, cyclic and greedy. We illustrate the two methods using a simple function

F (·) with two variables x1 and x2. Equations (5.1.1) and (5.1.2) illustrate the two methods

in mathematical formulae:




x
(k+1)
1

x
(k+1)
2


 =




x
(k)
1

x
(k)
2


− γ(k)

(
∇F

x1=x
(k)
1

+∇F
x2=x

(k)
2

)
(5.1.1)
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2


 (5.1.2)

where ∇Fx1 = ∂F (x1,x2)
∂x1

,∇Fx2 = ∂F (x1,x2)
∂x2

and γ(k) is a small number that determines the

magnitude. At each iteration, a greedy method selects one coefficient which leads to the

maximum decrease in the purposed function and moves along that direction. On the con-

trary, a cyclic method updates every coefficient and moves along the joint direction. For

example, at the (k + 1)th iteration, the local optimal points (x
(k+1)
1 , x

(k+1)
2 ) are determined

by its previous position (x
(k)
1 , x

(k)
2 ) and the gradient evaluated at the kth step. For the cyclic

method, the direction and magnitude of the gradient are determined by both x1 and x2 and

therefore the point is moved on both axes as shown in equation (5.1.1). For the greedy

method however, the direction and magnitude are determined by the largest negative gra-

dient and the point is moved in the associated direction. In equation (5.1.2), we assume

|∇Fx1 | > |∇Fx2 |, therefore the point is moved along the x1 axis while remaining fixed on the

x2 axis.

There are appealing advantages for using the greedy version of the gradient descent

optimization method such as the method is computationally inexpensive and the results are

readily interpretable. In addition, by intentionally setting γ(k) to be small enough, high

consistency regarding the selected features can be achieved. One common criticism of the

greedy algorithm is it may fail to produce the globally optimal solution since it neither

searches exhaustively on all possible paths nor adjusts for the previous paths. Because of
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this limited vision problem, the greedy algorithm is often implemented to perform the feature

selection rather than merely optimization.

5.2 Regularization Method for High-dimensional Data

with Ordinal Response

We modified the Generalized Monotone Incremental Forward Stagewise algorithm for lo-

gistic regression [Hastie et al., 2007] to be suitable for the ordinal model, particularly the

cumulative logit ordinal model under the proportional odds assumption. Recall in equation

(5.2.1), we introduced the cumulative logit ordinal model having the form

log

(
γic

1− γic

)
= log

(
P (Yi ≤ c|xi)

P (Yi > c|xi)

)
= αc + xT

i β, c = 1, · · · , C − 1; i = 1, · · · , n (5.2.1)

where αc denotes the category-specific intercept; β is a p×1 vector of coefficients associated

with explanatory variables xi. In a high-dimensional setting, where the number of features

(p) is much greater than the number of observations (N), the maximum likelihood estimates

for the model parameters αc,β are no longer feasible due to insufficient degrees of freedom.

Alternatively, the forward stagewise algorithm, by updating one coefficient βj at a time us-

ing a small incremental amount, provides a greedy approximation to the penalized likelihood

function. This incremental learning procedure tremendously increases the prediction accu-

racy by trading off the unbiasedness for smaller variation.
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To implement the forward stagewise algorithm for the ordinal model, the first-order

derivative of the negative log-likelihood function − logL(α,β;x) with respect to each βj is

required to determine the coefficient update direction. To reduce the complexity of compu-

tation and accelerate the optimization process, through the selection procedure the intercept

α remains the same and is estimated under the null hypothesis where β = 0. That is, for

the intercept αc corresponding to the cth category in cumulative logit ordinal model, the

estimate α̂c can be written as αc = log P (Yi≤c)
1−P (Yi≤c)

. The estimate of α will be updated given

the penalized estimate of β for a more accurate calculation of the model fitting criteria

once the selection process completes. In equation (1.3.1), we presented the general form of

the likelihood function for the ordinal model. Correspondingly, the negative log-likelihood

function can be written as:

− logL(α,β;x) = −
n∑

i=1

logLi(α,β;xi)

= −
n∑

i=1

log

( C∏

c=1

πc(xi)
yci

)
= −

n∑

i=1

C∑

c=1

yci log πc(xi) (5.2.2)

For a given βj, the first-order derivative of − logL(α,β;x) can be written as:

− ∂ logL(α,β;x)

∂βj

= −
n∑

i=1

( C∑

c=1

yci ·
∂πc(xi)
∂βj

πc(xi)

)
(5.2.3)

For cumulative logit ordinal model specifically, the probability for each category πc(xi) can
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be written as:

πc(xi) = P (Yi ≤ c|xi)− P (Yi ≤ c− 1|xi)

=
exp(αc + xi

Tβ)

1 + exp(αc + xi
Tβ)
− exp(αc−1 + xi

Tβ)

1 + exp(αc−1 + xi
Tβ)

(5.2.4)

and then for any given category c, the partial derivative of πc(xi) with respect to βj can be

calculated as:

∂πc(xi)

∂βj

= xij ·
(
P (Yi ≤ c|xi)(1− P (Yi ≤ c|xi))− P (Yi ≤ c− 1|xi)(1− P (Yi ≤ c− 1|xi))

)

= xij ·
(

exp(αc + xi
Tβ)

(1 + exp(αc + xi
Tβ))2

− exp(αc−1 + xi
Tβ)

(1 + exp(αc−1 + xi
Tβ))2

)
. (5.2.5)

Correspondingly, the element in equation (5.2.3) can be written as:

∂πc(xi)
∂βj

πc(xi)
= xij · (1− P (Yi ≤ c− 1|xi)− P (Yi ≤ xi))

= xij ·
(
1− exp(αc−1 + xi

Tβ)

1 + exp(αc−1 + xi
Tβ)
− exp(αc + xi

Tβ)

1 + exp(αc−1 + xi
Tβ)

)
. (5.2.6)

Equations (5.2.5) and (5.2.6) can be further simplified for two extreme categories. When

c = 1 follows α0 = −∞ and exp(α0+xi
Tβ)

(1+exp(α0+xi
Tβ))2

= 0, therefore

∂π1(xi)

∂βj

= xij ·
exp(α1 + xi

Tβ)

(1 + exp(α1 + xi
Tβ))2

(5.2.7)

and
∂π1(xi)
∂βj

π1(xi)
= xij ·

(
1− exp(α1 + xi

Tβ)

1 + exp(α1 + xi
Tβ)

)
. (5.2.8)
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When c=C follows αC =∞ and exp(αC+xi
Tβ)

(1+exp(αC+xi
Tβ))2

= 1, therefore

∂πC(xi)

∂βj

= −xij ·
exp(αC−1 + xi

Tβ)

(1 + exp(αC−1 + xi
Tβ))2

(5.2.9)

and
∂πC(xi)

∂βj

πC(xi)
= −xij ·

exp(αC−1 + xi
Tβ)

1 + exp(αC−1 + xi
Tβ)

(5.2.10)

By plugging the exact form of ∂πc(xi)
∂βj

into equation (5.2.3) and solve, the gradient of negative

log-likelihood for the ordinal model can be written as:

− ∂ logL(α,β;x)

∂βj

=
n∑

i=1

(y1i · ∂π1(xi)
∂βj

π1(xi)
+

C−1∑

c=2

yci · ∂πc(xi)
∂βj

πc(xi)
+

yCi · ∂πC(xi)
∂βj

πC(xi)

)

=
n∑

i=1

xij ·
(
y1i

1

1 + exp(α1 + xi
Tβ)

+
C−1∑

c=2

yci

(
1− exp(αc−1 + xi

Tβ)

1 + exp(αc−1 + xi
Tβ)

− exp(αc + xi
Tβ)

1 + exp(αc−1 + xi
Tβ

)
− yCi

exp(αC−1 + xi
Tβ)

1 + exp(αC−1 + xi
Tβ)

)
(5.2.11)

where −∂ logL(α,β;x)
∂β

=
(
− ∂ logL(α,β;x)

∂β1
, · · · ,−∂ logL(α,β;x)

∂βp

)
is a gradient vector of length p. The

βj associated with the largest negative gradient of the log-likelihood is selected for updating

by a small incremental amount.

At each iteration, the intercept αc is also updated by fitting the cumulative logit ordinal

model using the penalized estimates of β where the likelihood function L(α,β;x) in equation

(1.3.2) is only dependent on the unknown parameter α. That is, equation (1.3.2) can be
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modified as:

L(α, β̂;x) =
n∏

i=1

( C∏

c=1

πc(xi)
yic
)

=
n∏

i=1

[ C∏

c=1

(
exp(αc + xT

i β̂)

1 + exp(αc + xT
i β̂)

− exp(αc−1 + xT
i β̂)

1 + exp(αc−1 + xT
i β̂)

)yic]
. (5.2.12)

The estimate of α is obtained by optimizing the likelihood using the constrained nonlinear

optimization algorithm Augmented Lagrangian Adaptive Barrier Minimization proposed by

Varadhan [2011].

We now present the Generalized Monotone Incremental Forward Stagewise for ordinal

response with high-dimensional data in Algorithm 1.
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Algorithm 1

1. Create a negative version −xj of each predictor xj and expand the predictor space to

X̃ = (X,−X). Set the initial values for the coefficients β = (β1, · · · , β2p) = 0. Obtain

the estimate of intercepts under the null hypothesis where αc = log
∑c

c=1 P (Y≤c)

1−∑c
c=1 P (Y≤c)

for

c = 1 · · · , C − 1 and α0 = −∞, αC =∞.

2. Find the predictor xj, j = 1, · · · , 2p with the largest negative gradient of the log-

likelihood −∂ logL(α,β;x)
∂βj

evaluated at the current estimate β(s).

3. Update the coefficient estimate of the selected predictor xj in step 2 with β
(s+1)
j ←

β
(s)
j + ǫ, where ǫ is a small positive amount; a rational choice is ǫ = 1× 10−4.

4. Fit the ordinal model with the updated predictor estimates β(s+1) to obtain the updated
intercept estimates α(s+1). The corresponding model fitting criteria AIC and BIC are
also calculated.

5. Repeat steps 2, 3 and 4 many times until convergence.

Since there is no standard stopping criteria in forward stagewise method for the ordinal

model, we implemented the criteria to stop the iterative process when the difference be-

tween successive log-likelihoods is smaller than a given value, that is logL(α,β|xi)β=β(s+1) −

logL(α,β|xi)β=β(s) < δ. The forward stagewise method stops if this difference is smaller

than a certain value δ. Note in step 4, it can be extremely cumbersome to fit an ordinal

model at every single iteration for obtaining the intercept estimates α since it is not uncom-

mon for the forward stagewise algorithm to go through hundreds of thousands of iterations

before converging. An efficient modification of step 4 can be to fit an ordinal model using the

last set of features with nonzero penalized coefficients before a new feature enters into the

model, which largely reduces the computational complexity. The final model can be selected
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based on either Akaike Information Criterion (AIC) [Akaike, 1974] with the form of

AIC = −2 logL(α,β;x) + 2k (5.2.13)

or Bayesian Information Criterion (BIC)[Schwarz, 1978] with the form of

BIC = −2 logL(α,β;x) + k log(n) (5.2.14)

where in both criterion, k is the number of free parameters to be estimated and n is the

number of observations. The ordinal model having a minimum AIC or BIC can be used for

model selection such that the corresponding biased estimates α̂ and β̂biased are utilized for

prediction purposes.

5.3 Regularization Method for Longitudinal High-dimensional

Data with an Ordinal Response

Longitudinal data analysis has been playing a profound and irreplaceable role in analyzing

clustered and correlated data from a variety of fields. Substantial effort has been devoted

to developing statistical models and inferential procedures for explaining the relationship

between independent and dependent variables. However, little work has been done in de-

veloping the variable selection procedure for longitudinal data, especially for longitudinal

data with high-dimensional features (N << p) due to the immense cost of generating and
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collecting longitudinal genomic data. Since the 1990s, the emergence of genomic technologies

and the ‘omics’ revolution, the cost of genomic technologies has tremendously decreased and

with their increased use, the need for developing cutting-edge data mining algorithms to

identify and select a few key drivers from tens of thousands measured for a complex disease

at the molecular level is imperative. However, due to the untidy confounding and multivari-

ate dependencies in the longitudinal high-dimensional data, it is very challenging to select

effective classifiers to build a parsimonious model and enhance predictability. Some work

has been done by several researchers to address the variable selection problem in a linear

mixed-effect model and generalized linear mixed model framework. For the linear mixed-

effect model, Chen and Dunson [2003] proposed a hierarchical Bayesian model to identify

any random effect having zero variance and thus performed random effects selection in linear

mixed models. Vaida and Blanchard [2005] derived and compared different forms of Akaike

information criterion (AIC) used for model selection in marginal and conditional represen-

tation of linear mixed-effect models where the population and cluster-specific parameters

are of concern, respectively. Bondell et al. [2010] implemented the adaptive LASSO [Zou,

2006] as a shrinkage penalty on the reparameterized linear mixed-effects models for select-

ing fixed and random effects simultaneously. The model is fitted using the constrained EM

algorithm [Larid et al., 1987] where the random effects are unobserved in the conditional

expectation and the penalized likelihood is maximized at each iteration. For the generalized

linear mixed model, Pan [2001] proposed a modified AIC based on quasi-likelihood with

adjustment for the penalty which is suitable for model selection in Generalized Estimating

Equations (GEE). Fu [2003] incorporated the bridge penalty to GEE model for variable se-

lection when collinearity is present and the tuning parameter in the penalty is determined
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by quasi-Generalized Cross-Validation.

Among these algorithms mentioned above, none has provided a flexible structure for

extending to analyze longitudinal high-dimensional data. Here, we further implemented

the Generalized Monotone Incremental Forward Stagewise (GMIFS) algorithm discussed

in Section 5.2 to analyze the longitudinal high-dimensional data. We propose a two-step

algorithm: first, we concentrate on all the fixed-effects and implement the forward stagewise

algorithm to perform the variable selection procedure for the high-dimensional features;

second, we used the set of biased estimates to fit a random coefficient ordinal response

model for classification and prediction purposes. It is worth mentioning that the variable

selection procedure conducted by the forward stagewise method actually shares the same

computational complexity for traditional and longitudinal data since in the ordinal random

coefficient model, the normal distribution of the random component does not depend on

the coefficient β. Recall the likelihood L(α,β,ui,Gi;xi) for the ordinal random coefficient

model discussed in Section 4.2 has an explicit form:

L(α,β, ui,Gi;x) =
∏

i

1√
2πσ2

int

exp

(
− u2

i

2σ2
int

) ni∏

j=1

C∏

c=1

πc(xij, ui)
yijc (5.3.1)

if assuming a random intercept model and

Li(α,β,Gi, u1i, u2i;xi) =
1

2πσu1σu2

√
1− ρ2

exp

(
− 1

2(1− ρ2)

(
u2
1i

σ2
u1

+
u2
2i

σ2
u2

− 2ρu1iu2i

σu1σu2

))
×

nj∏

j=1

C∏

c=1

πc(u1i, u2i)
yijc .

(5.3.2)
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if assuming a random coefficient model. In both scenarios, the log-likelihood logL(α,β,ui,Gi;xi)

can be expressed as:

logL(α,β,ui,Gi;xi) = log g(u,G) + log

( ni∏

j=1

C∏

c=1

πc(xij, ui)
yijc

)
(5.3.3)

where g(u,G) is the distribution of random effects u. Since only the second part on the right

side of equation (5.3.3) dependent on the coefficient β, the gradient of the log-likelihood for

the random coefficient ordinal model is the same as that of the traditional ordinal model,

that is, −∂ logL(α,β;x)
∂βj

= −∂ logL(α,β,ui,Gi;x)
∂βj

.

We now present our Generalized Monotone Incremental Forward Stagewise method for

modeling a longitudinal ordinal response in the presence of high-dimensional data in Algo-

rithm 2.
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Algorithm 2

1. Create a negative version −xj of each predictor xj and expand the predictor space to

X̃ = (X,−X). Set the initial values for the coefficients β = (β1, · · · , β2p) = 0. Obtain

the estimate of intercepts under the null hypothesis where αc = log
∑c

c=1 P (Y≤c)

1−∑c
c=1 P (Y≤c)

for

c = 1 · · · , C − 1 and α0 = −∞, αC =∞.

2. Find the predictor xj, j = 1, · · · , 2p with the largest negative gradient of the log-

likelihood −∂ logL(α,β,ui,Gi;x)
∂βj

evaluated at the current estimate β(s).

3. Update the coefficient estimate of the selected predictor xj in step 2 with β
(s+1)
j ←

β
(s)
j + ǫ, where ǫ is a small positive amount; a rational choice is ǫ = 1× 10−4.

4. Repeat steps 2 and 3 many times until convergence.

5. Update the intercept estimates α̂ by fitting a series of ordinal model using the last set of
features with nonzero coefficients before a new feature enters into the model. Calculate
the corresponding model fitting criteria AIC and BIC for selecting the optimal set of
features with nonzero coefficients.

6. A parsimonious ordinal random intercept/coefficient model

log

(
P (Yi ≤ c|xi,ui)

P (Yi > c|xi,ui)

)
= αc + xT

i β̂biased + ziui (5.3.4)

is fitted using the optimal penalized estimate β̂biased to further update the intercept
estimate α̂ and obtain the empirical Bayes estimator of the random effect ui, which
are used for prediction and classification purposes along with β̂biased.
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It may be easy to notice the first five steps in the forward stagewise algorithm for ordinal

response with longitudinal high-dimensional data stand exactly the same as that for tradi-

tional high-dimensional data where the beauty lies in the fact that the first-order derivative

of the log-likelihood with respect to βj for the two types of data have the exact same forms.

The only modification made is the convergence criteria in step 4 to adapt to the dynamic and

vulnerable properties of the longitudinal high-dimensional data and guarantees convergence.

We implement the double convergence criteria: 1) the difference between two successive log-

likelihood is smaller than a given value; 2) the number of features having a nonzero coefficient

estimates is less than a specified value.

In addition, there is a trade-off between computational complexity and accuracy at step 5

when selecting the optimal model based on the AIC or BIC criteria. Currently, in the method

described, we treat observation as independent and fit a fixed-effects only ordinal model using

the last set of features with nonzero coefficients before a new feature enters into the model

to obtain an approximately best model fitting criteria. Given the framework of longitudinal

data, step 5 should have been done by fitting a series of penalized ordinal random inter-

cept/coefficient model with the form of (5.3.4) using different sets of penalized estimates.

However, the computational process can be extremely burdensome without implementation

of parallel computing. Currently, we compromise a small amount of accuracy in return for

a faster solution. We adjust this bias introduced by ignoring the within-subject correla-

tion in step 6 by fitting a smaller number of penalized ordinal random intercept/coefficient

model to further update intercept estimate α̂ as well as model fitting criteria. Then the

best parsimonious model can be selected accordingly where the performance of classification

142



and prediction can be evaluated correspondingly. We now illustrate step 6 in more details.

Suppose the model associated with optimal model fitting criteria selected in step 5 have q

features with nonzero coefficients, in step 6 we fit (2k + 1) penalized ordinal random inter-

cept/coefficient models with the number of features with nonzero coefficients ranging from

q − k to q + k, where k specifies the range. For example, when k = 0, only one penalized

ordinal random intercept/coefficient model with q nonzero coefficients is fitted; when k = 1,

three penalized ordinal random intercept/coefficient models with q− 1, q and q + 1 nonzero

coefficients are fitted, respectively.

5.4 Model Assessment and Selection

The performance of learning methods and predictive modeling are often evaluated by the con-

sistency of variable selection and prediction accuracy. It is of ultimate importance to assess

model performance using the proper criteria such that the chosen model can be generalized

to a broader range of data. There are several prevalent methods for model assessment such

as cross-validation and bootstrap methods. In this thesis, we use cross-validation to eval-

uate models for high-dimensional and longitudinal high-dimensional data. Cross-validation

is probably the most widely used model assessment method for its easy interpretation and

implementation. Prediction error is a good measurement of prediction accuracy and model

complexity, which is defined as the average loss between observed Y and fitted Ŷ over a

given sample. A good learning method and predictive model should maintain similar predic-

tion accuracy over any independent sample (Test sample) aside from the sample (Training
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sample) used to develop the final model. The prediction error estimated from the train-

ing sample is often not a good estimate of the prediction error compared to a test sample

since the training error monotonically decreases as the model complexity increases, while

a model with too many parameters is generally susceptible to new data and suffers from

‘over-fitting’. Thus, a possible way to solve the problem is to use the holdout method by

splitting the given dataset into two groups where the training set is used to fit an optimal

model and the test set is used to evaluate whether the optimal model can be generalized to

any independent dataset. One potential issue of the holdout method is the estimate of test

error can be heavily dependent on how the data are split. An ‘unfortunately’ biased split can

overwhelmingly mislead the estimate. Cross-validation corrects this problem by repeating

the ‘split-fit-evaluate’ procedure many times and to obtain an average test error which is

robust to the split. There are different ways to perform cross-validation, the most commonly

used is K-fold cross-validation. To perform a K-fold cross-validation procedure, the data

are divided into K parts where the K− 1 parts form a training set and the remaining 1 part

forms a test set. The model is fit using the training set and the average prediction error

across all N observation is evaluated using equation (5.4.1).

CV (ŷ) =
1

N

N∑

i=1

L(yi, ŷi
−K(i)) (5.4.1)

where L(·) is a loss function and ŷi
−K(i) is the fitted observation when observation i is a

member of the partition (test set). A typical loss function for categorical data is the 0-1

loss function where L(yi, ŷi
−K(i)) = I(yi 6= ŷi

−K(i)). This procedure is repeated K times

until every partition is used as test set for exactly one time. When K = N , this procedure
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is also called N -fold or Leave-One-Out cross-validation. It is of interest to ask what the

value of K should be selected to best perform the cross-validation procedure. Unfortunately,

there is no single answer to this question and the choice of K is often determined by three

considerations: tolerance of the bias, sparsity of the data, and computational time. Hastie

et al. [2009] explored in detail the relationship between size of the training set and the pre-

diction error. Typically, when the number of folds K increases, the bias of the test error

decreases while the variance increases as well as the computational time required to achieve

certain degree of accuracy. In addition, for a very sparse dataset, an N-fold cross-validation

procedure is often implemented to obtain a good estimate of prediction error. There are few

publications that discuss cross-validation procedures for longitudinal high-dimensional data.

In this thesis, we conduct the quasi K-fold cross-validation for longitudinal data by dividing

the total subjects into K partitions where the K − 1 partitions from a training set and the

remaining 1 part forms a test set. Since the number of repeated measurements per subject

can vary, the number of observations in the test set varies with each split.

There is an unavoidable issue associated with cross-validation procedures for ordinal

response data when the ordinal categories are highly unbalanced. When only a few observa-

tions belong to one category, it may happen that a training dataset does not cover the full

original ordinal scale. This can lead to a very high prediction error in the test dataset and

yields misleading results. This problem is especially severe for longitudinal data when the

extreme measurements are associated with a few subjects. To avoid this problem in K-fold

cross-validation, we excluded the training sets that do not contain the full range of ordinal

outcomes for both traditional and longitudinal data.
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Besides the expected prediction error estimated from the cross-validation procedure, the

other tool we use to evaluate the model performance is the Goodman and Kruskal’s gamma.

This gamma statistic, defined by Goodman and Kruskal [1954], measures the similarity of

the orderings from the observed and predicted response and thus assesses the strength of

association in a contingency table. It is calculated as a function of concordant and discordant

pairs. According to [Agresti, 2010], a concordant pair is when the subject ranked higher

on one measurement also ranks higher on the other and a discordant pair is when the

subject ranked higher on one measurement ranks lower on the other. Mathematically, the

probabilities of concordance (C) and discordance (D) are defined in equation (5.4.2).

C =
∑

i

∑

j

πij

(∑

h>i

∑

k>j

πhk

)

D =
∑

i

∑

j

πij

(∑

h<i

∑

k<j

πhk

)
(5.4.2)

Correspondingly, the gamma statistics can be constructed as:

γ =
C −D

C +D
(5.4.3)

where γ ranges from −1 to 1. When there are no discordant pairs D = 0 implies γ = 1 and

when there are no concordant pairs C = 0 implies γ = −1.
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5.5 Software Implementation

We developed the computational tool using the R programming environment and produced

an R package called ordinalmixed. We attach the reference manual here which includes the

detailed descriptions of the main functions in this package. In addition, two flowcharts (5.1)

and (5.2) describe the working flow for the core functions.
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Package ‘ordinalmixed’

November 9, 2013

Type Package

Title Fit traditional and penalized random coefficients/intercept

ordinal response model for classifying and predicting an longitudinal ordinal response.

Version 1.0

Date 2013-11-07

Author Jiayi Hou, Kellie Archer

Maintainer Jiayi Hou <houj2@vcu.edu>

Description Develop a set of classifiers using GMIFS algorithm to identify features monotonically in-

creasing or decreasing with the ordinal response. Fit a random coefficient/intercept ordinal re-

sponse model using the exact method. Incorporate the penalized esti-

mates from GMIFS with other predictors to construct a penalized random coeffi-

cient/intercept ordinal response model for classification and prediction.

License GPL-2

Depends numDeriv, ucminf, glmmML, MASS, optimx, alabama

R topics documented:

ordinalmixed-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

forward.stagewise.cum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

FSPenFixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

FSPenFixedCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

FSPenMixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

FSPenMixedCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ordinal.mixed.model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Index 15
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2 forward.stagewise.cum

ordinalmixed-package Fit traditional and penalized random coefficients/intercept ordinal re-

sponse model for classifying and predicting an longitudinal ordinal

response.

Description

Develop a set of classifiers using Generalized Monotone Incremental Forward Stagewise (GMIFS)

algorithm to identify features monotonically increasing or decreasing with the ordinal response.

Fit a random coefficient/intercept ordinal response model where the parameter estimates are ob-

tained from optimizing the marginal likelihood.

Incorporate the penalized estimates from GMIFS with other predictors to construct a penalized ran-

dom coefficient/intercept ordinal response model for classification and prediction.

Implement the cross-validation procedure to evaluate the model performance.

Develop visualization tools to produce regularization path plots as well as other graphs.

Details

Package: ordinalmixed

Type: Package

Version: 1.0

Date: 2013-11-07

License: GPL-2

Author(s)

Jiayi Hou, Kellie Archer

Maintainer: Jiayi Hou <houj2@vcu.edu>

References

KJ. Archer and J. Hou (2013). Generalized Monotone Incremental Forward Stagewise Method for

Ordinal Response Prediction for High-dimensional datasets. Technical Report.

J. Hou (2013). Regularization Methods for Predicting an Ordinal Response Using Longitudinal

High-dimensional Genomic Data. Dissertation work.

forward.stagewise.cum Variable Selection by GMIFS in Cumulative Logit Ordinal Model

Description

This function performs the Generalized Monotone Incremental Forward Stagewise (GMIFS) pro-

cedure for traditional, high-dimensional and longitudinal high-dimensional data with an ordinal

response and yields a full solution of the penalized coefficient estimates β.
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Usage

forward.stagewise.cum(x, y, epsilon, tol, cut.prop)

Arguments

x a matrix contains all the predictors to be identified by GMIFS.

y an ordered factor represents an ordinal response

epsilon an optional numeric represents a small incremental amount to update β at each

iteration. Default is epsilon=1e-4.

tol an optional numeric represents a convergence criterion between successive log-

likelihoods. Default is tol=1e-6.

cut.prop an optional numeric represents the maximum proportion of features with nonzero

coefficients. Default is cut.prop=1.

Details

This function implements the GMIFS procedure for reducing dimension and building good classi-

fiers in data with ordinal response. It is suitable in both traditional and high-dimensional data setting

with no limitation on the number of covariates. The likelihood in GMIFS is constructed based on

the cumulative logit ordinal model. Through the iterative procedure, the estimate of intercept α

remains consistent by using the initial estimation where αc = log
P (Yi<c)

1−P (Yi<c) .

Value

beta.list a list contains the covariate with a nonzero penalized estimate at each iteration.

num.nonzero a list contains the number of covariates with a nonzero penalized estimate at

each iteration.

Author(s)

Jiayi Hou

References

KJ. Archer and J. Hou (2013). Generalized Monotone Incremental Forward Stagewise Method for

Ordinal Response Prediction for High-dimensional datasets. Technical Report

T. Hastie, J. Taylor, R. Tibshirani, and G. Walther (2007). Forward Stagewise Regression and the

Monotone Lasso. Electronic Journal of Statistics, 2007(1):1-29.

See Also

glmpathcr glmnetcr

Examples

### NOT RUN ###

# data <- read.csv("GSE10006.csv")

# x=data[,3:dim(data)[2]]

# y=data[,2]

# y <-factor(y, levels=c("non-smoker","smoker","early-COPD","COPD"),ordered=TRUE)

# fit <- forward.stagewise.cum(x, y, 1e-4, 1e-4, 1)
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FSPenFixed Build a Penalized Fixed-effects Cumulative Logit Ordinal Model

Description

This function identifies an active set of important features that is monotonically associated with an

ordinal response and utilizes it to fit a penalized cumulative logit ordinal model for prediction and

classification. It first calls forward.stagewise.cum to perform the GMIFS for data with ordinal

response and yield a full solution of the penalized coefficient estimates of β. At steps immediately

preceding the step where a new feature enters the active set, a penalized ordinal model is fitted to

update the estimate of intercept α using the corresponding penalized estimates of β. The model

fitting criteria is calculated correspondingly. The optimal parsimonious model is selected based on

the model fitting criteria. The predicted ordinal response is calculated for the best parsimonious

model.

Usage

FSPenFixed(x, y, data, gene.name = NULL, beta.name = NULL,

epsilon = 1e-04, tol = 1e-06, cut.prop = 1,

criteria = "AIC", standardize = FALSE)

Arguments

x a matrix contains all the predictors to be identified by GMIFS.

y an ordered factor represents an ordinal response.

data a data frame contains all variables occurring in the function.

gene.name an optional vector contains the name of covariates which have a known esti-

mate before entering into FSPenFixed. If you wish to use GMIFS performed

by forward.stagewise.cum for building the active set and obtaining penalized

estimates for features, use gene.name=NULL. Default is gene.name=NULL.

beta.name an optional vector contains the coefficient estimates associated with gene.name.

Default is gene.name=NULL.

epsilon an optional numeric represents a small incremental amount to update β at each

iteration. Default is epsilon=1e-4.

tol an optional numeric represents a convergence criterion between successive log-

likelihoods. Default is tol=1e-6.

cut.prop an optional numeric represents the maximum proportion of features with nonzero

coefficients. Default is cut.prop=1.

criteria an optional character specifies the best parsimonious model is selected based on

either AIC or BIC model fitting criteria. Default is criteria="AIC".

standardize an optional logic determines whether x needs to be standardized.

Details

The FSPenFixed function first calls forward.stagewise.cum to perform the GMIFS for ordinal

response. Those results get passed to additional functions (output.CumFS, steps, logLL) to fit

a series of penalized cumulative logit ordinal models. By using the intercept estimate α̂ and cor-

responding penalized estimates β from the optimal parsimonious ordinal model, function Predict

calculates the predicted ordinal response where the prediction error can be assessed by comparing

it with the true ordinal response.
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Value

FSPenFixed returns a list with the following components:

alpha the intercept estimate from the optimal parsimonious ordinal model.

beta.gene the penalized estimates of covariates with a nonzero coefficient identified by

GMIFS and used to build the optimal parsimonious ordinal model.

gene.name the name of the covariates with a nonzero coefficient identified by GMIFS and

used to build the optimal parsimonious ordinal model.

logLL the value of log-likelihood for the optimal parsimonious ordinal model.

pred.table a contingency table compares the predicted and observed ordinal responses.

fullpaths a forwardstagewise object contains the names, number and penalized estimates

of covariates with a nonzero coefficient estimate at each iteration.

Author(s)

Jiayi Hou

References

J. Hou (2013). Regularization Methods for Predicting an Ordinal Response Using Longitudinal

High-dimensional Genomic Data. Dissertation work.

Examples

### NOT RUN ###

# data <- read.csv("GSE10006.csv")

# data <- data[,-2]

# x=data[,3:dim(data)[2]]

# y=data[,2]

# y <-factor(y, levels=c("non-smoker","smoker","early-COPD","COPD"),ordered=TRUE)

# output <- FSPenFixed(x, y, data, tol=1e-5)

FSPenFixedCV K-fold Cross-Validation for FSPenFixed

Description

This function performs K-fold cross-validation to evaluate the performance of penalized cumulative

logit ordinal model built by FSPenFixed.

Usage

FSPenFixedCV(x, y, data, kfold, gene.name = NULL,

beta.name = NULL, epsilon = 1e-04,

tol = 1e-06, cut.prop =1, criteria = "AIC",

standardize = FALSE)
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Arguments

x a matrix contains all the predictors to be identified by GMIFS.

y an ordered factor represents an ordinal response.

data a data frame contains all variables occurring in the function.

kfold a numeric specifies the number of partitions into which the data should be split.

gene.name an optional vector contains the name of covariates which have a known estimate

obtained other regularization models before entering into FSPenFixed. If you

wish to use GMIFS performed by forward.stagewise.cum for building the ac-

tive set and obtaining penalized estimates for features, leave gene.name=NULL.

Default is gene.name=NULL.

beta.name an optional vector contains the coefficient estimates associated with gene.name.

Default is gene.name=NULL.

epsilon an optional numeric represents a small incremental amount to update β. Default

is epsilon=1e-4.

tol an optional numeric represents a convergence criterion between successive log-

likelihoods. Default is tol=1e-6.

cut.prop an optional numeric represents the maximum proportion of features with nonzero

coefficients. Default is cut.prop=1.

criteria an optional character specifies the best parsimonious model is selected based on

either AIC or BIC model fitting criteria. Default is criteria="AIC".

standardize an optional logic determines whether x needs to be standardized.

Details

It is of ultimate importance to assess model performance using the proper criteria such that the

chosen model can be generalized to a broader range of data. Cross-validation performs a "split-

fit-evaluate" procedure many times to obtain a robust assessment of model performance. A K-fold

cross-validation performs by dividing the full dataset into K parts where the K-1 parts constructs

a training set and the remaining 1 part forms a test set. The model is fitted using the training

dataset and evaluated using the full dataset according to criterion such as: expected prediction

error, consistency of variable selection and for ordinal response particular, Goodman and Kruskal’s

gamma statistic.

Value

FSPenFixedCV returns K lists with each having the following components:

test.index the row names of observations in the test dataset.

new.beta the penalized estimates of covariates with a nonzero coefficient identified by

GMIFS and used to build the optimal parsimonious ordinal model in the training

dataset.

gene.name the name of the covariates with a nonzero coefficient identified by GMIFS and

used to build the optimal parsimonious ordinal model in the training dataset.

pred.table a contingency table compares the predicted and observed ordinal responses in

the full dataset.

Note

For a large-scale or high-dimensional data, an alternation of this function may be appropriate to

incorporate with certain parallel computing packages to accelerate the computing process.
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Author(s)

Jiayi Hou

References

J. Hou (2013). Regularization Methods for Predicting an Ordinal Response Using Longitudinal

High-dimensional Genomic Data. Dissertation work.

T. Hastie, R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning: Data Min-

ing, Inference and Prediction. Springer, New York, NY, 2nd edition.

Examples

### NOT RUN ###

# data <- read.csv("GSE10006.csv")

# x=data[,3:dim(data)[2]]

# y=data[,2]

# y <-factor(y, levels=c("non-smoker","smoker","early-COPD","COPD"),ordered=TRUE)

# output <- FSPenFixedCV(x, y, data, kfold=dim(data)[1])

FSPenMixed Build a Penalized Mixed-effects Cumulative Logit Ordinal Model

Description

This function identifies an active set of important features that is monotonically associated with

an ordinal response and utilizes it to fit a penalized random coefficients/intercept ordinal response

model with cumulative logit for prediction and classification. It first calls forward.stagewise.cum

to perform the GMIFS for data with longitudinal ordinal response and yield a full solution of the

penalized coeffcient estimates β. At steps immediately preceding the step where a new feature

enters the active set, a penalized fixed-effects ordinal model with cumulative logit is fitted to up-

date the estimate of intercept α using the penalized estimates of β. The model fitting criteria is

calculated correspondingly. The best parsimonious penalized fixed-effects ordinal model is then

selected based on the model fitting criteria. To take the subject-specific intercept and slope into

consideration, FSPenMixed then calls function ordinal.mixed.model to fit a penalized random

coefficient/intercept ordinal response model using features in the active set. This set of features

along with corresponding penalized estimates remain the same as those in the best penalized fixed-

effects ordinal model. The estimate of intercept α and model fitting criteria are then updated again.

Along with the empirical Bayes estimates of the random effects, the predicted ordinal response can

be calculated accordingly.

Usage

FSPenMixed(response.name, predictor.name, id.name, time.name, data,

nGauss = NULL, gene.name = NULL, beta.name = NULL,

link = c("Cumulative", "Adjacent", "Forward CR", "Backward CR"),

model = c("Random Intercept", "Random Coefficient",

"Indep Random Coefficient"), Adaptive = c("TRUE", "FALSE"),

Cholesky = c("TRUE", "FALSE"), x, y, epsilon = 1e-04,

tol = 1e-6, cut.prop =1, range = 0,

criteria = "AIC", standardize = FALSE)
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Arguments

response.name a character indicates the name of ordinal response in data.

predictor.name a character vector indicates the names of fixed-effects in data. Note this set of

predictors differ from that specified in x matrix. The predictors specified here do

not select by GMIFS and are only used when fitting a penalized random coeffi-

cient/intercept ordinal response model. If no additional predictors are included

rather than those in x matrix, use predictor.name=NULL.

id.name a character indicates name of subject in data to specify the subject-specific in-

tercept.

time.name a character indicates the name of time covariate in data to specify the subject-

specific slope.

data a data frame contains all variables occurring in the function.

nGauss an optional numeric indicates the number of abscissas from Hermite polynomial

used to approximate the marginal likelihood. Default is nGauss=10.

gene.name an optional vector contains the name of covariates which have a known es-

timate before entering into the ordinal.mixed.model function. Default is

gene.name=NULL.

beta.gene an optional vector contains the coefficient estimates associated with gene.name.

Default is gene.name=NULL.

link an optional character specifies link function in random coefficient/intercept or-

dinal response model. Currently the model with link="Cumulative" link can

be fitted. Default is link="Cumulative".

model an optional character specifies the model type which defines the covariance

structure of the random effect(s). Default is model="Random Intercept".

Adaptive an optional character determines whether an adaptive or nonadaptive Gauss-

Hermite Quadrature numerical method should be used to approximate the marginal

likelihood. Default is Adaptive="TRUE".

Cholesky an optional character determines whether a Cholesky decomposition should be

used when estimating the covariance matrix of the random effect(s). Default is

Cholesky="TRUE".

x a matrix contains all the predictor variables to be identified by GMIFS.

y an ordered factor represents an ordinal response where y=data[, response.name].

epsilon an optional numeric represents a small incremental amount to update β. Default

is epsilon=1e-4.

tol an optional numeric represents a convergence criterion between successive log-

likelihoods. Default is tol=1e-6.

cut.prop an optional numeric represents the maximum proportion of features with nonzero

coefficients. Default is cut.prop=1.

range an optional numeric specifies 2*range+1 penalized random coefficient/intercept

ordinal response models to be fitted. Default is range=0.

criteria an optional character specifies the best parsimonious model is selected based on

either AIC or BIC model fitting criteria. Default is criteria="AIC".

standardize an optional logic determines whether matrix x needs to be standardized.



FSPenMixed 9

Details

The Function FSPenMixed consists of two parts: the GMIFS part and the penalized random coeffi-

cient/intercept ordinal response model part. In the GMIFS part, it first calls function forward.stagewise.cum

to identify an active set of important features that is monotonically associated with a longitudinal

ordinal response. These results get passed to additional functions (output.CumFS, steps, logLL)

to update the estimates of intercept α and select the best parsimonious penalized fixed-effects

ordinal model. These results get passed to function ordinal.mixed.model where a penalized

ordinal coefficient/intercept model is fitted. The estimates of intercept α, fixed-effects speci-

fied by predictor.name and the covariance matrix are obtained by optimizing the approximated

marginal likelihood using general-purpose iterative optimization method. The empirical bayes es-

timate of the random effect as well as the predicted ordinal response are obtained using function

ConditionalMode.

Value

FSPenMixed returns a list with the following components:

parm the estimate of intercept, fixed-effects and covariance matrix.

new.beta the penalized estimates of covariates with a nonzero coefficient identified by

GMIFS and used to build the optimal ordinal model.

gene.name the name of the covariates with a nonzero coefficient identified by GMIFS and

used to build the optimal ordinal model.

AIC the value of AIC for the optimal random coefficient/intercept ordinal response

model.

BIC the value of BIC for the optimal random coefficient/intercept ordinal response

model.

logLL the value of log-likelihood for the optimal parsimonious random coefficient/intercept

ordinal response model.

pred.table a contingency table compares the predicted and observed ordinal responses.

fullpaths a forwardstagewise object contains the names, number and penalized estimates

of covariates with a nonzero coefficient estimate at each iteration.

Author(s)

Jiayi Hou

References

J. Hou (2013). Regularization Methods for Predicting an Ordinal Response Using Longitudinal

High-dimensional Genomic Data. Dissertation work.

Examples

### NOT RUN###

# data <- read.csv("gluegrant.csv")

# output1 <- FSPenMixed(response.name="RENAL3",

# predictor.name="SAMPLE_STUDYSTART_DAYS",

# id.name="PATIENT_ID",

# time.name="SAMPLE_STUDYSTART_DAYS", data,

# x=data.matrix(data[, 15:dim(data)[2]]),

# y=data[,"RENAL3"],

# model="Random Coefficient", range=0, cut.prop=0.0015)
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FSPenMixedCV Cross-validation for FSPenMixed

Description

This function performs cross-validation to evaluate the performance of penalized random coeffi-

cient/intercept ordinal response model build in FSPenMixed.

Usage

FSPenMixedCV(response.name, predictor.name, id.name, time.name, data,

kfold, nGauss = NULL, gene.name = NULL, beta.name = NULL,

link = c("Cumulative", "Adjacent", "Forward CR", "Backward CR"),

model = c("Random Intercept", "Random Coefficient",

"Indep Random Coefficient"), Adaptive = c("TRUE", "FALSE"),

Cholesky = c("TRUE", "FALSE"), x, y, epsilon = 1e-04, tol = 1e-06,

cut.prop = 1, range = 0, criteria = "AIC", standardize = FALSE)

Arguments

response.name a character indicates the name of ordinal response in data.

predictor.name a character vector indicates the names of fixed-effects in data. Note this set of

predictors differ from that specified in x matrix. The predictors specified here do

not select by GMIFS and are only used when fitting a penalized random coeffi-

cient/intercept ordinal response model. If no additional predictors are included

rather than those in x matrix, use predictor.name=NULL.

id.name a character indicates name of subject in data to specify the subject-specific in-

tercept.

time.name a character indicates the name of time covariate in data to specify the subject-

specific slope.

kfold a numeric specifies the number of partitions into which the number of subjects

in data should be split to for cross-validation.

data a data frame contains all variables occurring in the function.

nGauss an optional numeric indicates the number of abscissas from Hermite polynomial

used to approximate the marginal likelihood. Default is nGauss=10.

gene.name an optional vector contains the name of covariates which have a known es-

timate before entering into the ordinal.mixed.model function. Default is

gene.name=NULL.

beta.gene an optional vector contains the coefficient estimates associated with gene.name.

Default is gene.name=NULL.

link an optional character specifies link function in random coefficient/intercept or-

dinal response model. Currently the model with link="Cumulative" link can

be fitted. Default is link="Cumulative".

model an optional character specifies the model type which defines the covariance

structure of the random effect(s). Default is model="Random Intercept".

Adaptive an optional character determines whether an adaptive or nonadaptive Gauss-

Hermite Quadrature numerical method should be used to approximate the marginal

likelihood. Default is Adaptive="TRUE".
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Cholesky an optional character determines whether a Cholesky decomposition should be

used when estimating the covariance matrix of the random effect(s). Default is

Cholesky="TRUE".

x a matrix contains all the predictor variables to be identified by GMIFS.

y an ordered factor represents an ordinal response where y=data[, response.name].

epsilon an optional numeric represents a small incremental amount to update β. Default

is epsilon=1e-4.

tol an optional numeric represents a convergence criterion between successive log-

likelihoods. Default is tol=1e-6.

cut.prop an optional numeric represents the maximum proportion of features with nonzero

coefficients. Default is cut.prop=1.

range an optional numeric specifies 2*range+1 penalized random coefficient/intercept

ordinal response models to be fitted. Default is range=0.

criteria an optional character specifies the best parsimonious model is selected based on

either AIC or BIC model fitting criteria. Default is criteria="AIC".

standardize an optional logic determines whether matrix x needs to be standardized.

Details

Few publications have discussed cross-validation procedures for longitudinal data. We conduct the

quasi K-fold cross-validation for longitudinal data by dividing the total subjects instead of observa-

tions into K partitions where the K-1 partitions from a training set and the remaining 1 part forms

a test set. Since the number of repeated measurements per subject can vary, the number of obser-

vations in the test set varies with each split. The model is then fitted using the training dataset and

evaluated using the full dataset according to criterion such as: expected prediction error, consistency

of variable selection and for ordinal response particular, Goodman and Kruskal’s gamma statistic.

Value

FSPenMixedCV returns K lists with each having the following components:

test.index the id.name of subjects in the test dataset.

new.beta the penalized estimates of covariates with a nonzero coefficient identified by

GMIFS and used to build the optimal parsimonious ordinal model in the training

dataset.

gene.name the name of the covariates with a nonzero coefficient identified by GMIFS and

used to build the optimal parsimonious ordinal model in the training dataset.

pred.table a contingency table compares the predicted and observed ordinal responses in

the full dataset.

Note

For a large-scale or longitudinal high-dimensional data, an alternation of this function may be appro-

priate to incorporate with certain parallel computing packages to accelerate the computing process.

Author(s)

Jiayi Hou
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References

J. Hou (2013). Regularization Methods for Predicting an Ordinal Response Using Longitudinal

High-dimensional Genomic Data. Dissertation work.

T. Hastie, R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning: Data Min-

ing, Inference and Prediction. Springer, New York, NY, 2nd edition.

Examples

### NOT RUN ###

# data <- read.csv("gluegrant.csv")

# PenMixedCV <- FSPenMixedCV (response.name="RENAL3",

# predictor.name="SAMPLE_STUDYSTART_DAYS",

# id.name="PATIENT_ID",

# time.name="SAMPLE_STUDYSTART_DAYS" ,

# data, kfold=10,

# x=data.matrix(data[, 14:dim(data)[2]]),

# y=data[,"RENAL3"])

ordinal.mixed.model Random Coefficient/Intercept Ordinal Response Model

Description

This function can fit either a penalized or traditional random coefficient/intercept ordinal response

model to capture the time-dependent trends in data. When the options gene.name=NULL, beta.gene=NULL,

a traditional random intercept/coefficient ordinal response model is fitted using the covariates spec-

ified in predictor.name as the fixed effects. When gene.name and beta.gene are specified,

a penalized random intercept/coefficient ordinal response model is fitted using both the covari-

ates specified in predictor.name and gene.name as fixed effects. Only the features specified

in predictor.name are estimated during the fitting process and the known estimates specified in

beta.gene remain constant.

Usage

ordinal.mixed.model(response.name, predictor.name, id.name, time.name, data,

nGauss = NULL, gene.name = NULL, beta.gene = NULL,

link = c("Cumulative", "Adjacent", "Forward CR", "Backward CR"),

model = c("Random Intercept", "Random Coefficient",

"Indep Random Coefficient"), Adaptive = c("TRUE", "FALSE"),

Cholesky = c("TRUE", "FALSE"), ...)

Arguments

response.name a character indicates ordinal response name in data.

predictor.name a character vector indicates the names of fixed-effects in data. For null model,

use predictor.name=NULL

id.name a character indicates subject name in data to specify the subject-specific inter-

cept.

time.name a character indicates the time covariate in data to specify the subject-specific

slope.
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data a data frame contains all variables occurring in the function.

nGauss an optional numeric indicates the number of abscissas from Hermite polynomial

used to approximate the marginal likelihood. Default is nGauss=10.

gene.name an optional vector contains the name of covariates which have a known estimate

obtained from GMIFS or other regularization models before entering into the

ordinal.mixed.model function. Default is gene.name=NULL.

beta.gene an optional vector contains the coefficient estimates associated with gene.name.

Default is gene.name=NULL.

link an optional character specifies link function in random coefficient/intercept ordi-

nal response model. For traditional ordinal model when gene.name=NULL, beta.gene=NULL,

there are four types of models can be fitted by specifying the link to be one of

("Cumulative", "Adjacent", "Forward CR", "Backward CR"). For penal-

ized ordinal model, currently the model with link="Cumulative" link can be

fitted. Default is link="Cumulative".

model an optional character specifies the model type which defines the covariance

structure of the random effect(s). Default is model="Random Intercept".

Adaptive an optional character determines whether an adaptive or nonadaptive Gauss-

Hermite Quadrature numerical method should be used to approximate the marginal

likelihood. Default is Adaptive="TRUE".

Cholesky an optional character determines whether a Cholesky decomposition should be

used when estimating the covariance matrix of the random effect(s). Default is

Cholesky="TRUE".

... additional arguments from any of the internal functions

Details

This function fits either a penalized or traditional random coefficient/intercept ordinal response

model. A generalized linear mixed model approach is implemented to allow the mean response

varying across subjects where the fixed-effects have a subject-specific interpretation conditional

on the random effect. The estimates of the fixed-effects β, intercept α and covariance matrix are

obtained by optimizing the approximate form of the marginal likelihood using the general-purpose

iterative optimization methods. The estimates of random effects bi are obtained through empirical

Bayes method. ordinal.mixed.model consists of two parts: approximation and optimization.

In approximation part, the set of abscissas and weights from Hermite polynomial is generated by

function ghq. Functions em.bayes, ghq are used for Gauss-Hermite Quadrature methods. The

data matrix generated by functions index.all and linear.predictor are expanded according to

the number of quadrature points. Function GHQ.intu1 gathers all information needed to calculate

the approximated marginal likelihood. In optimization part, the approximated marginal likelihood

is optimized by function optim or optimx given the initial parameter estimates specified by user or

generated by function initial.value to obtain the estimate for the fixed-effects as well as variance

components. Function chol2var transforms back the estimate of variance and its standard error if

a Cholesky decomposition is used in the optimization process.

Value

ordinal.mixed.model returns a list with the first element being a data.frame contains the coeffi-

cient estimates, standard error at convergence as well as the corresponding statistical inferences; the

second element contains value of the function at convergence.

Author(s)

Jiayi Hou



14 ordinal.mixed.model

References

D. Hedeker and R. Gibbons (2006). Longitudinal Data Analysis. John Wiley & Sons, Inc, Hoboken,

NJ.

J. Hou (2013). Regularization Methods for Predicting an Ordinal Response Using Longitudinal

High-dimensional Genomic Data. Dissertation work.

See Also

ordinal lme4

Examples

### NOT RUN ###

# data <- read.csv("NIMH Schizophrenia.csv")

# response.name = "imps79o"

# predictor.name= c(’tx’,’sweek’,’txswk’)

# id.name = "id"

# time.name = ’sweek’

# Ordinal random intercept and random coefficient models with cumulative logit #

# fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name,

# time.name, data, nGauss=15)

# fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name,

# data, model="Random Coefficient")

# Ordinal random intercept and random coefficient models with adjacent category #

# fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name,

# data, link="Adjacent", nGauss=5)

# fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name,

# data, model="Random Coefficient", link="Adjacent")
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Figure 5.1: Flowchart for function FSPenFixed in R package ordinalmixed. The blue circle
represents input/output and the cyan rectangle represents an R function. The FSPenFixed

function first calls function forward.stagewise.cum to perform steps 1,2 and 3 described in
GMIFS for ordinal response with high-dimensional data. Those results get passed to addi-
tional functions (output.CumFS, steps, logLL) to perform step 4. By using α̂ and β̂biased

from the optimal parsimonious ordinal model, function Predict calculates the predicted
ordinal response where the prediction error can be estimated by comparing it with the true
ordinal response.

164



Figure 5.2: Flowchart for function FSPenFixed and ordinal.mixed.model in R package ordinalmixed. The
blue circle represents input/output and the cyan rectangle represents an R function. Function FSPenMixed

consists of two parts: the GMIFS part and the ordinal random coefficient/intercept model part. The ordinal
random coefficient/intercept model is fitted by function ordinal.mixed.model, which is primarily shown
in this flowchart. The GMIFS part is the same as that in function FSPenFixed where it first calls function
forward.stagewise.cum to perform steps 1, 2, 3 and 4 described in GMIFS for modeling a longitudinal
ordinal response in the presence of high-dimensional data. Those results get passed to additional functions
(output.CumFS, steps, logLL) to update the intercept estimates α̂ and decide the optimal set of features
with nonzero coefficient estimates. The corresponding results get passed to function ordinal.mixed.model

where a penalized ordinal coefficient/intercept model is fitted. This function consists of two parts: approxi-
mation and optimization. In approximation part, the set of abscissas and weights from Hermite polynomial
is generated by function ghq for nonadaptive and functions em.bayes, ghq for adaptive Gauss-Hermite
Quadrature methods. The data matrix generated by functions index.all and linear.predictor are ex-
panded according to the number of quadrature points. Function GHQ.intu1 gathers all information needed
to calculate the approximated marginal likelihood. In the optimization part, the approximated marginal
likelihood is optimized by function optim or optimx given the initial parameter estimates specified by the
user or generated by function initial.value to obtain the estimate for the fixed-effects as well as vari-
ance components. Function chol2var transforms back the estimate of variance and its standard error if a
Cholesky decomposition is used in the optimization process. The empirical Bayes estimate of the random
effect as well as the predicted ordinal response are calculated in function ConditionalMode.
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5.6 Simulations to Evaluate the Proposed Model

5.6.1 Simulation for High-dimensional Data

We simulated a high-dimensional dataset to include n = 90 samples and p = 1000 features.

We generated the samples to belong to three groups where each group includes 30 samples,

mimicking an ordinal response having three levels. We first generated each feature inde-

pendently using a standard normal distribution, that is, xj ∼ N(0, 1). Ten features were

randomly selected among the 1000 features to have a nonzero coefficient. For each of these

10 features, we generated group 1 observations using a standard normal distribution N(0, 1);

group 2 observations using a normal distribution with mean ±1.5 and variance 1; and group

3 observations using a normal distribution with mean ±3 and variance 1. We used GMIFS

algorithm to reduce the dimensionality of the dataset and to construct a parsimonious model.

The N-fold cross-validation procedure was conducted to evaluate model performance with

respect to the following aspects: prediction accuracy, consistency, and correctness in detect-

ing the truly important features as well as the similarity of the orderings of the observed and

predicted ordinal response.

We repeated the simulation study 100 times and the results are reported in Table 5.1

from which consistently good results were observed in models selected using both AIC and

BIC criteria. The important features identified has a median of 7 with ranging from 2 to

10, where the number of important features assumed is 10. In addition, the false features

identified by GMIFS has a median of 2 with ranging from 0 to 18 according to AIC criteria

and a median of 0 with ranging from 0 to 4 according to BIC criteria. It indicates GMIFS
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has the ability to detect a subset that contains the important features. We will argue in the

discussion section that GMIFS serves as a method to build parsimonious model for prediction

and classification rather than merely a variable selection procedure.

Table 5.1: Results from 100 simulation studies where each included 90 samples and 1000
independent features. The median and range are reported for N-fold cross-validation predic-
tion error, N-fold cross-validation Goodman and Kruskal’s gamma, and the number of true
features detected.

Criteria N-fold CV error N-fold CV gamma True features detected False Features detected
AIC 6.67%[1.11%, 34.4%] 1[0.89, 1] 7[2, 10] 2[0, 18]
BIC 6.67%[1.11%, 33.3%] 1[0.89, 1] 7[2, 10] 0[0,4]

5.6.2 Simulation for Longitudinal High-dimensional Data

It is very challenging to simulate longitudinal high-dimensional data with an ordinal response

due to the complex relationship between the large number of features and the small number

of response categories. Rather than simulating the predictors and ordinal responses indepen-

dently without considering their dependencies, we adopt the longitudinal high-dimensional

features from a small time-course microarray experiment designed for investigating the ex-

pression response of human T cells to phorbol myristate acetate (PMA) and ionomicin

treatment [Rangel et al., 2004] and then build the ordinal response correspondingly using

the latent variable approach. This small time-course microarray dataset is available in the R

package longitudinal [Opgen-Rhein and Strimmer, 2013]. The data contains the temporal

expression of 58 genes from 10 samples measured at 10 unequally spaced time points (0, 2,

4, 6, 8, 18, 24, 32, 48, 72 hour). To simulate the ordinal response, we randomly select 6 of

58 genes to have nonzero coefficients β and the magnitude of the six coefficients are assigned

with random numbers between -5 and 5. Then the latent response y∗ can be constructed
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using y∗ = xTβ + ǫ where ǫ ∼ N(0, 1). The latent variable y∗ is divided into three equal

parts to form an ordinal response.

We repeated the simulation study 25 times to examine the performance of GMIFS to

detect the true nonzero features. Since the number of observations is small and the ordinal

response is pseudo, we were unable to fit the penalized ordinal random coefficient model.

Therefore, the classification accuracy and similarity of orderings were not evaluated. How-

ever, in all these simulation studies, the number of true nonzero features detected by GMIFS

has a median of 4 with the range from 1 to 6, which again demonstrates one attribute of

GMIFS: it has the ability to detect a subset of features which covers a proportion of the true

features with nonzero coefficients. It also demonstrates the valid usage of GMIFS on data

with repeated measurements.

5.7 Some Discussion

We have proposed a learning method to construct a parsimonious model to classify and pre-

dict the ordinal outcome using traditional and longitudinal high-dimensional data. In the

past, several authors have developed methodologies for analyzing time-course gene expres-

sion data. For example, Yuan and Kendziorski [2006] proposed Hidden Markov Models to

detect differential expression patterns in genes over time under multiple biological conditions.

Tai and Speed [2006] developed a variation of Hotelling T 2-statistics and the multivariate

empirical Bayes statistics to detect temporal changes of certain genes in one- and two-sample

cases where the expression level changes often motivate the experiments. Zhou et al. [2010]

developed a factorial design by pooling information across the time course while account-
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ing for multiple testing and nonnormality of the microarray data to effectively extract dy-

namic features. Zhang et al. [2013] proposed a novel ‘optimal direction’ approach to extract

useful features to perform binary classification problems in time-course microarray setting.

However, most of the approaches for extracting temporal patterns of differential expression

requires fixed and equal number of time points between heterogeneous samples which tremen-

dously limits its usage. Besides, most of the approaches used the average or pooled feature

information across time which ignores the correlation structure and dependencies between

measurements. In addition, for ordinal outcomes with more than two categories, currently

there is no solution for classification and prediction using longitudinal high-dimensional data.

Our work incorporates the classical random coefficient model with the cutting-edge ma-

chine learning algorithm to provide a two-step disruptive method to address the very chal-

lenging classification and prediction problem in data with a large number of features as

well as complex correlation structure. In the variable selection stage, the proposed method

provides a flexible structure to accommodate a tremendous amount of features including

genomic predictors, clinical information and baseline demographic variables and be able to

evaluate them simultaneously. In the model fitting stage, the method utilizes the correlations

and dependencies in the time-varying process and can easily adapt to a varying number of

measurements collected at different time points which enormously broadens the usage. The

validity and effectiveness of our model are demonstrated using simulation studies which

are described in chapter 6. Currently, we use cross-validation as the only way to evaluate

the model complexity and variable selection consistency. Alternative methods such as the

Bootstrap[Efron and Tibshirani, 1997], which is considered as a smoothed version of cross-
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validation that reduces variability of a near-unbiased expected prediction error, will be used

in the future.

It is worth while pointing out that we used the model fitting criteria of minimal AIC

and BIC to select the final model rather than the minimal prediction error via a cross-

validation procedure in the LASSO and LAR. The reason we did not select the model based

on prediction error estimated from cross-validation is simply due to computational time.

Since a typical forward stagewise procedure contains hundreds of thousands steps, it usu-

ally requires long computational time before converging in the R programming environment,

making cross-validation unpractical for model selection for high-dimensional data. As dis-

cussed in [Tibshirani, 1996] and proved by Leng et al. [2006], the final model associated with

minimal prediction error selected by LASSO may not contain all the important variables;

that is, the ultimate parsimonious model is not necessarily the true model. This conclusion

also holds for the forward stagewise method which is demonstrated in the simulation study.

In addition, as discussed in Section 5.1, the forward stagewise method provides a greedy ap-

proximation to the proposed function which selects the features associated with immediate

descent and leads to local optimal at each iteration. However, since a greedy optimization

procedure does not adjust and modify its previous paths, the features that largely decrease

the proposed function at an early stage may not be part of the optimal solution in a long

run. Therefore, similar to LASSO and LAR, the forward stagewise method is also a way

to select good classifiers for building a parsimonious model for classification and prediction

purposes but may not serve as an optimal variable selection method.
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Predictive modeling is so important in areas such as computational biology, bioinformat-

ics and translational medicine for finding potential biomarkers. In this thesis, we primarily

applied the proposed method to microarray gene expression data, but it can be easily applied

to other types of biological data, such as sequencing and GWAS data.
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Chapter 6

Application of Proposed Methodology

In Chapter 5, we introduced the Generalized Monotone Incremental Forward Stagewise

(GMIFS) method for building a parsimonious ordinal response model using high-dimensional

data. In addition, we incorporated the random coefficient model with the GMIFS method

to build a penalized ordinal model with random effects using longitudinal high-dimensional

data. The proposed models were applied to two simulated datasets. In this chapter, we

apply the proposed methods to two real microarray datasets: an Affymetrix gene expression

dataset that included 58 subjects in a COPD study (GSE10006) and the Glue Grant data

from a burn injury study. The former is a study consisting of gene expression data at one

time point whereas the latter is a longitudinal study where samples were procured from

each patient over time. Specifically, in Section 6.1 we describe the results from the COPD

study which was performed to identify a subset of important genes associated with smoking

behavior and useful for classifying COPD stage. In Section 6.2, we present the results from

the burn injury study where a set of good classifiers are detected to capture the ordinal trend

developing along with time. For both examples, the model performance is examined using
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cross-validation. For the probe sets having nonzero coefficients, probe annotation data was

used to map probeset ID to gene symbol and to identify corresponding information in public

repositories such as protein products, associated diseases, and existing drugs that target the

gene to make our discoveries meaningful and interpretable to clinical researchers. Additional

discussion and conclusions are included in Section 6.3.

6.1 Application to the Smoking Study

Chronic Obstructive Pulmonary Disease (COPD) is a lung disease most commonly caused

by tobacco smoke and is the third leading cause of death in the U.S. However, the mech-

anism by which smoke causes impairment and breakdown of lung tissue is still unclear

and in fact, only a proportion of smokers (10% − 15%) eventually develop COPD [Mayer

and Newman, 2001]. It is widely accepted that the genetic susceptibility combined with

environmental exposure which varies by individual contribute to this difference. A study

conducted by researchers at Weill Cornell Medical College assumed cigarette smoking may

influence the lectin gene expression in the small airway epithelium which increases the

risk of bacterial infection. A microarray experiment was designed to test this hypothe-

sis. A total of 58 patients from whom airway epithelial cells were collected including 13

healthy nonsmoker, 18 smoker, 13 early COPD patients, and 14 COPD patients, were in-

cluded in this study. The samples were hybridized to Affymetrix Human Genome U133

Plus 2.0 microarrays. For each sample, 54657 probe set expression levels were obtained.

The data from this study has been deposited into Gene Expression Omnibus, GSE10006

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE10006). The quality of the
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microarrays was assessed by the 3′ : 5′ ratios of housekeeping gene GAPDH. No sample re-

vealed quality issues as all ratings were close to 1 thus all 58 samples were used in the analysis.

We first applied the GMIFS algorithm to the full dataset collected from the smoking

study (GSE10006 data) setting the two parameters of increment amount ǫ = 1 × 10−4 and

the convergence criteria to δ = 1× 10−4. All features were standardized to have mean 0 and

unit norm. The initial intercept α was taken to be αc = log
∑C

c=1 P (Y≤c)

1−
∑C

c=1 P (Y≤c)
. Upon convergence,

83 probe sets with nonzero coefficient estimates were included in the model. To update the

estimate of intercept α and get a more accurate model fitting criteria for selecting the best

parsimonious model, we then estimated α for those steps immediately preceding the step

where a new feature entered the active set of predictor. It is worth emphasizing that only α

is updated for these steps while the penalized estimate of β is fixed and used to update α.

Therefore, a total of 83 penalized ordinal models were fitted and the corresponding model

fitting criteria were also calculated. The model with optimal fitting criteria (e.g. minimal

AIC) was selected as the best parsimonious model and the corresponding parameter estimates

α̂ and β̂biased were used for calculating the fitted ordinal response. Figure 6.1 presents this

selection process: on the left panel, the model fitting criteria AIC reaches the minimal

at 15965 steps; on the right panel, each colored line represents one probe with nonzero

coefficient and the dashed vertical line represents the cutoff at around 16000 step. The probe

sets associated with the colored line left of the dashed vertical line have nonzero penalized

estimates at the threshold. In this scenario, 19 probe sets enter into the active set and are

considered as ‘good classifiers’. These probe sets were then used to classify stage of COPD

under an ordinal model framework. These probe sets performed well in distinguishing the
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non-smokers from the COPD patients as shown in Table 6.1. Also from the contingency table,

a large proportion of misclassifications were observed in the early COPD and smoker groups

which implies the expression levels of the selected probe sets are similar in these two groups.

As mentioned earlier, one prominent advantage in analyzing data a multi-category outcome

under the ordinal model framework rather than using a pairwise comparison approach is

its superiority in detecting important features associated with monotonic trends. Here, our

proposed model identified a set of probe sets whose expression levels were monotonically

associated with tobacco usage.

Figure 6.1: The model fitting paths (left) and the regularization profile (right) plots for
the GSE10006 data. In each plot, the horizontal-axis is the step the forward stagewise
algorithm has undertaken and the vertical-axes are the model fitting criteria AIC (left) and
the penalized estimate for the coefficients (right).

We also performed N-fold cross-validation to obtain a robust estimate of the prediction

175



Table 6.1: Contingency Table for the observed and predicted COPD category using
GSE10006 data. The predicted ordinal response was calculated using the penalized esti-
mates obtained at 15965 steps.

Pred/Obs COPD EarlyCOPD Smoker Non-smoker
COPD 11 0 0 0

EarlyCOPD 2 18 8 0
Smoker 0 0 2 2

Non-smoker 0 0 3 12

error, variable selection as well as the Goodman and Kruskal’s gamma. From the cross-

validation procedure, an expected prediction accuracy of 74.1%(55.2%−87.9%) was obtained

where a large proportion of misclassifications was due to the confusion between the smoker

and early COPD groups. A high Goodman and Kruskal’s gamma 0.99(0.97 − 1.00) was

also obtained which indicates strong association between the observed and predicted ordinal

scales. We present the important probe sets having a non-zero coefficient in at least one of the

cross-validation fits in descending order of CV% in Table 6.2. CV% represents the percentage

of times a probe set was identified by GMIFS in the cross-validation models. Each probe set

name was matched to its gene symbol, chromosomal location, molecular function, associated

disease, and drugs or chemical compounds either targeted or related. This information was

mainly obtained from two public repositories: The Universal Protein Resource database and

the GeneCard database. Several genes detected have been reported to be associated with

lung cancer, inflammatory and other severe diseases. In a study to examine the association of

4-OHEs (estrogen metabolites) level and effect of tobacco smoke exposure, [Peng et al., 2013]

concluded that tobacco smoke accelerates the level of 4-OHEs which is primarily produced by

CYP1B1 and thus inhibition of CYP1B1 can be a promising strategy for the prevention and

treatment of lung cancer. The SPRR1B gene is related to cell differentiation which leads to
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non-small-cell lung cancer. This was discovered in a microarray study by Woenckhaus et al.

[2006] when comparing samples from surgically resected and microdissected of non-small-

cell lung cancers, matched normal bronchial epithelium and peripheral lung tissue among 22

smokers and 5 non-smokers.
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Table 6.2: Probe sets having non-zero coefficients in the cumulative logit models by
GMIFS from N-fold cross-validation procedure using GSE10006 Data. The probe sets on
the Affymetrix Human Genome U133 Plus 2.0 Array were mapped to Gene Symbol us-
ing R package hgu133a2.db. Each gene’s molecular function information was obtained
from the The Universal Protein Resource database (http://www.uniprot.org/). The
associated disease and drug information were obtained from GeneCard database (http:
//www.genecards.org).
No. AFFYprobe SYMBOL CV% Location Type Disease Drugs

1
205281 s at PIGA 100% Xp22.1 glycosyltransferase hemoglobinuria 3-Dehydrosphinganine

transferase anemia aerolysin
lymphoma, etc n-acetylglucosamine,etc

2
202435 s at CYP1B1 91.4% 2q22.2 monooxygenase congenital glaucoma estrone

oxidoreductase breast cancer, etc

3
202436 s at CYP1B1 89.7% 2q22.2 monooxygenase congenital glaucoma estrone

oxidoreductase breast cancer, etc

4
209331 s at MAX 87.9% 14q23 activator lung cancer leucine

repressor prostate cancer, etc lysine
5 219563 at LINC00341 87.9% 14q32.13 RNA Gene

6
201387 s at UCHL1 87.9% 4p13 hydrolase Parkinson’s disease dopamine

ligase trauma lysine
protease leukemia,etc tyrosine,etc

7
205064 at SPRR1B 86.2% 1q21-q22 protein binding ichthyosis retinoic acid

lung carcinoma proline
skin disease, etc diethylstilbestrol,etc

8
211220 s at HSF2 86.2% 6q22 activator carcinoma mg 132

leukemia,etc leucine,etc

9
205513 at TCN1 84.5% 11q11-q12 cobalamin binding lymphoma cobalamin

oral cancer cobalt
anemia,etc methylmalonic acid,etc

10 202254 at SIPA1L1 70.7% 14q24.1 GTPase activation papilloma
11 218980 at FHOD3 56.9% 18q12 protein coding leukemia,etc

12
217997 at PHLDA1 6.9% 12q15 phospholipid breast cancer

binding melanoma,etc
13 823 at CX3CL1 6.9% 16q13 chemokine activity leukemia,etc tarc,etc
14 211998 at H3F3A 5.2% 1q42.12 DNA binding leukemia, etc
15 211998 at H3F3B 5.2% 17q25.1 DNA binding lupus, etc
16 202341 s at TRIM2 3.4% 4q31.3 ion binding schizophrenia,etc
17 204427 s at TMED2 1.7% 12q24.31 protein binding pancreatitis
18 204427 s at RRAS2 1.7% 11p15.2 GTP binding carcinoma,etc tetrapeptide, etc
19 213069 at HEG1 1.7% 3q21.2 ion binding malformation
20 213989 x at SETD4 1.7% 21q22.13 protein binding down syndrome

21
215253 s at RCAN1 1.7% 21q22.1-q22.2 DNA binding down syndrome ts 16

leukemia,etc tacrolimus, etc

22
213069 at DENND2A 1.7% 7q34 Rab guanyl-nucleotide

exchange
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6.2 Application to the Glue Grant Study

The Inflammation and the Host Response to Injury is a large-scale collaborative research

program supported by the National Institute of General Medical Sciences which began in

1998. It aims to better understand the human body’s response to serious injury using a

discovery-driven approach. A large amount of biomedical, genomic, and proteomic data are

being successively collected for analysis. One of the missions of this research program is

to provide improved understanding of novel genomic technologies applied to translational

medicine as well as to clinical practice. For example, one goal is to identify gene sets having

high predictability of multiple organ failure, which would be of tremendous value. As part

of this program, one study focused on the body’s response to burn injury. More detailed

information regarding this program can be found at www.gluegrant.org.

The original multi-center study recruited 2002 burn injury patients and samples from

different tissues were hybridized on either high-throughput microarrays or were sequenced

for genomic research purposes. We demonstrate the validity of our proposed model using

869 buffy coat samples hybridized to Affymetrix Human Genome U133 Plus 2.0 Arrays and

normalized and summarized using the dChip method [Li and Wong, 2001]. After removing

observations with missing outcomes, 657 samples from 169 burn injury patients were used

in our analysis. Originally, for each sample, there are 54675 probe sets for each sample. We

further reduced the dimensionality by and filtering probe sets according to the Affymetrix

Detection Call algorithm which provides an assessment of the reliability of each transcript.

After filtering probe sets that are Absent on all arrays, there were 48093 probe sets remain-

ing for statistical analysis. The severity of illness of the burn injury patients was assessed
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using the Marshall Multiple Organ Dysfunction Score [Marshall, 1995], which is considered

to be a comprehensive and effective measurement system for critical illness condition and

has been demonstrated to be strongly associated with risk of ICU and hospital mortality.

The Marshall Score evaluates the dysfunction level of six systems: 1) the respiratory sys-

tem (Po2/FIO2 ratio); 2) the renal system (serum creatinine concentration); 3) the hepatic

system (serum bilirubin concentration); 4) the hematologic system (platelet count); 5) the

central nervous system (Glasgow Coma Scale) and 6) the cardiovascular system (pressure-

adjusted heart rate). The assessment of each organ results in an ordinal outcome ranging

from 0 to 4 with 0 indicating normal and 4 indicating severe dysfunction. In addition, an

aggregated Marshall score was derived by adding the individual organ scores. In our anal-

ysis, we modified the ordinal outcome by combining some categories together so that the

observations in each category are more balanced. We applied the proposed model to classify

the severity of illness according to all seven Marshall score measurements. The results from

the Marshall score assessed on the renal system, central nervous system, and the aggregated

Marshall score are mainly discussed.

According to [Ibrahim et al., 2013], acute kidney injury (AKI) is known to be a major

complication leading to mortality in burn injury patients. However, the treatment for this

condition is still not well defined. Therefore, early diagnosis and prevention are of ultimate

importance for preventing aggressive progression that incurs irreversible tissue damage. In

other aspects, mental health and quality of life of severe burn injury patients are also of great

concern. There is growing evidence that psychological health problems during the acute care

setting have long-term consequences and influence outcome of burn injury [Renneberg et al.,
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2013]. Post-traumatic stress disorder (PTSD) is a common mental disorder that has been

seen in up to 43% of burn injury patients 1 or more years after hospitalization [McKibben

et al., 2008]. This aftermath psychological depression, if not identified and treated prop-

erly at early stages, could markedly change the survivors’ quality of life. Besides these two

specific system outcomes, the aggregated Marshall score also provides an insightful overall

assessment of critical illness which is of tremendous value in making treatment decision.

The original time covariate in the data was recorded on the hour scale; we converted it

to a day scale for convenience. Figure 6.2 illustrates the distribution of the sample collection

times where the majority of samples were collected at four scheduled time points: baseline,

day 4, day 7 and day 14. However, apparently a large number of samples were collected

between the scheduled times which implied a very complex correlation structure among

repeated measurements. In our analysis, the time covariate was standardized to have unit

norm to correspond with the gene expression features which were also standardized. The set

of important features were selected according to the AIC model fitting criteria. All analyses

were conducted using the R programming environment 3.0.0.

Table 6.3: The original and modified Marshall score for the renal system

Original Normal(0) Mild(1) Moderate(2) Markedly(3) Severe(4)
236 395 17 4 5

Modified Normal(0) Mild(1) Moderate+(2+)
236 395 26
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Figure 6.2: Counts of the days when the buffy coat samples were collected and hybridized to
Affymetrix HG U133 Plus 2.0 array from 169 burn injury patients during their hospitalized
days.
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6.2.1 Marshall score for the renal system

We first present the results when applying the proposed model to the longitudinal high-

dimensional burn injury data using the renal system Marshall score as our ordinal outcome.

All features, including the time covariate, were standardized to have a mean of 0 and unit

variance. The original Marshall score varied from 0 to 4 with the number of observations in

each category displayed in the first row of Table 6.3. We combined the Moderate, Markedly,

and Severe illness groups to create a modified three-category ordinal outcome as shown in

the second row of Table 6.3. Figure 6.3 presents the distribution of the three-category renal

system Marshall score evaluated at four time points: baseline, day 4, day 7 and day 14,
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Figure 6.3: Distribution of three-category Marshall score assessed on the renal system at
four time points: baseline, day 4, day 7 and day 14.
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where an apparent decreasing trend is observed for groups with mild and more severe kidney

dysfunction. In addition, an increase in the number of patients with normal kidney func-

tion (Marshall score of 0) indicates the effectiveness of treatment. We applied the GMIFS

algorithm to the Glue Grant data setting the three parameters of increment amount to

ǫ = 1× 10−4, convergence criteria to δ = 1× 10−4 and the maximal proportion of important

probe sets detected to be 0.0015 (which corresponds to 72 probe sets inclusion of the total

48093). Upon convergence, 72 probe sets with nonzero coefficients entered the active set.

We then updated the α estimates at those steps immediately preceding the step where a new

feature entered the active set of predictors. The model with optimal fitting criteria was then

selected. In this scenario, the best parsimonious model associated with the minimal AIC was
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at step 19235 where the active set consisted of 34 probe sets with non-zero coefficient esti-

mates. Figure 6.4 presents this selection process: on the left panel, the model fitting criteria

AIC reaches its minimum at step 19235. On the right panel, each colored line represents one

probe set having nonzero coefficient and the dashed vertical line represents the cutoff at the

19235th step. The probe sets associated with the colored line left of the dashed vertical line

are considered to be useful for classification. Because the burn injury data is a longitudinal

high-dimensional data set where the within-subject correlation is not negligible, a random

coefficient/intercept ordinal response model was further fit using the 34 probe sets having

non-zero coefficient estimates to update intercept estimate α̂ and model fitting criteria again.

After obtaining the updated estimates of the intercepts and the empirical Bayes estimate of

the random effects, the fitted ordinal response can be calculated correspondingly. Tables 6.4

and 6.5 present the contingency table for the observed and predicted renal system Marshall

score from the random intercept and random coefficient ordinal model, respectively. From

both tables, a high classification accuracy ( 88.1% and 95.3%, respectively) was obtained.

It is not surprising that the random coefficient model had better classification performance

than the random intercept model, as it takes both the heterogeneity at baseline and varia-

tions in time trend into consideration. However, the computational time required for fitting

a random coefficient model can be much longer than for fitting a random intercept model,

especially when the data are relatively dense and the number of features having a nonzero

coefficient is large. It is also of interest to compare the prediction accuracy when treating

the data as longitudinal versus traditional. Table 6.6 presents the contingency table of the

observed and predicted renal system Marshall score when ignoring the correlation between

repeated measurements. The prediction accuracy drops to 80.7% and no observation in the
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extreme category is correctly classified.

To further validate the model performance and assess whether the result can be general-

ized to an independent data set, we also performed the cross-validation on the burn injury

data. In each split, the test data consists of five subjects so that the size of test dataset

varied as the number of repeated measurements per subject differs. In addition, because

the number of observations in the ‘moderate and beyond’ group is significantly smaller than

the other groups, to ensure the expected prediction error from the test data is not mislead-

ing due to lack of observations from the extreme category in the training data, we omitted

all splits from the cross-validation procedure where the training data only contained obser-

vations from the normal and mildly ill groups. By implementing the proposed model on

the training dataset and using the corresponding parameter estimates for calculating the

predicted ordinal response for the full dataset, for the penalized random intercept ordinal

response model, a high prediction accuracy with median 88.3% and range from 87.7% to

88.9%; and for the penalized random coefficient ordinal response model, a higher prediction

accuracy with median 95.3% and range from 95.1% to 95.4% were obtained, which implied

a consistently commendable performance of the proposed model on an independent dataset.

A high Goodman and Kruskal’ gamma 0.9851 [0.9828-0.9877] for random intercept model

and 0.9984 [0.9983-0.9985] for random coefficient model were also observed indicating strong

ordering similarities between the observed and predicted ordinal outcomes.

We presented the probe set having a non-zero coefficient in at least one of the cross-

validation fits in a descending order of CV% in Table 6.7. CV% represents the percentage
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of times a probe set was identified by GMIFS in the cross-validation models. Five genes:

HLA-DMB, DDAH2, BTN3A1, FUT3 and SOX13 were robustly identified by GMIFS in all

partitions of cross-validation. Figure 6.5 illustrate the gene expression change of the first

four genes along with days of hospitalization in three ordered renal impairment groups. For

specific gene, the dot represents the observed gene expression from one microarray sample and

the solid curve represents the average gene expression level in an ordered category fitted by

locally weighted scatterplot smoothing (LOESS) technique [Cleveland, 1979]. By visualizing

these graphs, three ordered groups can be clearly distinguished by the average gene expression

level where the corresponding solid curves are approximately parallel and monotonically

associated with the ordinal scale. The two characteristics depict the specific gene a good

classifier. Also from these graphs, a larger bandwidth (gray shadow) was observed in the

extreme category due to a significantly smaller number of observations in that category yields

a much larger variation. Among the robust good classifiers, some have been previously

reported to be associated with hypertension, e.g., DDAH2, SOX13, which is important

as hypertension is considered to be a major cause of kidney disease. A large amount of

research has concentrated on understanding the biological mechanism behind hypertension.

For example, Pullamsetti et al. [2005] investigated the role of the metabolizing enzyme DDAH

in the course of Idiopathic pulmonary arterial hypertension (IPAH). Two isoforms of DDAH

(DDAH1 and DDAH2) have been found in mammals. When comparing the tissue samples

from healthy donors and IPAH patients, a significant reduction of DDAH2 immunoreactivity

was observed while no significant difference in DDAH1 immunostaining intensity, which

demonstrated the change in expression of DDAH in IPAH lungs.
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Figure 6.4: The model fitting paths (left) and the regularization profile (right) plots for
the Glue Grant burn injury data. In each plot, the horizontal-axis is the steps the forward
stagewise algorithm has undertaken and the vertical-axes are the model fitting criteria AIC
(left) and the penalized estimate for the coefficients (right).
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Table 6.4: Contingency table of the observed and predicted three-category Marshall score
assessed on the renal system. The predicted ordinal outcome is calculated from penalized
random intercept ordinal response model.

Pred/Obs Normal(0) Mild(1) Moderate+(2+)
Normal(0) 196 14 0

Mild(1) 40 377 20
Moderate+(2+) 0 4 6

Table 6.5: Contingency table of the observed and predicted three-category Marshall score
assessed on the renal system. The predicted ordinal outcome is calculated from penalized
random coefficient ordinal response model.

Pred/Obs Normal(0) Mild(1) Moderate+(2+)
Normal(0) 222 5 0

Mild(1) 14 389 11
Moderate+(2+) 0 1 15
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Table 6.6: Contingency table of the observed and predicted three-category Marshall score
assessed on renal system when ignoring the correlation between repeated measurements from
the same subject.

Pred/Obs Normal(0) Mild(1) Moderate+(2+)
Normal(0) 166 31 1

Mild(1) 70 364 25
Moderate+(2+) 0 0 0
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Table 6.7: A subset of Affymetrix probe sets having a non-zero coefficient estimate from the
GMIFS applied to the Glue Grant burn injury data when using the modified Marshall score
assessed on the renal system as ordinal outcome. The probe set having a non-zero coefficient
is ordered in a descending order of CV% where CV% represents the percentage of times a
probe set was identified by GMIFS in the cross-validation models. The test dataset in each
cross-validation model includes five subjects. Only the probe set can be mapped to a Gene
Symbol is listed here and the full list of probe sets identified can be found in Appendix H.
No. AFFYprobe SYMBOL CV% Est Location Type Disease Drugs

1
203932 at HLA-DMB 100% 0.244 6q21.3 lupus oligonucleotide

diabetes
arthritis, etc

2
209770 at BTN3A1 100% 0.158 6q22.1 T cell receptor schizophrenia

ovarian cancer, etc

3
212033 at RBM25 100% 0.058 14q24.3 mRNA binding Alzheimer’s disease

thyroiditis

4
214088 s at FUT3 100% 0.158 19p13.3 protein-binding cancer GDP-L-fucose

cystic fibrosis tetrasaccharide
amnesia glycolipid, etc

5
214909 s at DDAH2 100% -0.210 6q21.3 amino acid binding lupus Citrulline

hypertension Dimethylamine
kidney disease, etc adma, etc

6
38918 at SOX13 100% 0.073 1q32 DNA binding cirrhosis leucine

hypertension
neuronitis,etc

7
209514 s at RAB27A 97.0% -0.057 15q15-q21.1 GDP/GTP binding Griscelli syndrome gtp

albinism,etc gdp,etc
8 214025 at DDX28 97.0% -0.046 16q22.1 ATP binding prostatitis
9 39817 s at C6orf108 97.0% 0.047 6p21.1 protein-binding

10
218191 s at LMBRD1 93.9% 0.028 6q13 cobalamin binding anemia

hepatitis
metabolic disorders

11
216336 x at MT1E 81.8% 0.025 16q13 ion binding cancer cadmium

carcinoma, etc glyceraldehyde

12
207539 s at IL4 69.7% 0.014 5q31.1 growth factor activity lymphoma ionomycin

asthma il 10
leukemia, etc rantes, etc

13
204970 s at MAFG 63.2% -0.014 17q25.3 DNA binding fibrosarcoma tbhq

lung cancer leucine

14
201968 s at PGM1 51.5% -0.002 1p22.1 ion binding liver cirrhosis D-Glucose

tuberculosis, etc Magnesium
15 220924 s at SLC38A2 51.5% -0.003 12q protein binding neuronitis, etc glutamate, etc

16
209762 x at SP110 36.4% 0.004 2q37.1 DNA binding tuberculosis

leukemia
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6.2.2 Marshall score for the central nervous system

We now present the results when applying the proposed model to the burn injury data when

using Marshall score on the central nervous system as the ordinal outcome. We modified

the original five-category ordinal scale to a more balanced three-category ordinal scale as

shown in Table 6.8. We applied the forward stagewise algorithm to the full dataset setting

the parameters to increment amount to ǫ = 1× 10−4, convergence criteria to δ = 1× 10−4,

and the maximal proportion of important probe sets detected to 0.0015. Upon convergence,

72 probe sets had nonzero coefficients. We then fitted 72 penalized cumulative logit ordinal

models at each of the turning point where a new feature enters into the active set in the

following one step to update the estimate of α and model fitting criteria. The model with

optimal fitting criteria was then selected. In this case, the best parsimonious model associ-

ated with minimal AIC was at step 27128 where the active set consisted of 64 probe sets with

non-zero coefficient estimates. We then used the coefficient estimates of the 64 probe sets to

fit a penalized random coefficient/intercept ordinal response model for classification purpose.

After obtaining the updated estimates of the intercepts and the empirical Bayes estimates

of the random effects, the fitted ordinal outcome was calculated and the contingency table

of the observed and predicted ordinal outcomes was constructed correspondingly. Classifica-

tion accuracy of 71.7% and 92.1% were obtained for the penalized random intercept (Table

6.9) and penalized random coefficient (Table 6.10) models, respectively. The classification

accuracy from the penalized ordinal random intercept model was similar to that from the

traditional ordinal model when ignoring the intra-subject correlation (70.5% as shown in

Table 6.11). However, when taking the time trend into consideration and quantify the cor-

relation between measurements, the accuracy in classification was tremendously improved
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where the mental disorder severity of only a few observations were misclassified.

Table 6.8: The original and modified central nervous system Marshall score.

Original Normal(0) Mild(1) Moderate(2) Markedly(3) Severe(4)
210 48 125 84 190

Modified
Normal/ Moderate/ Severe(4)
Mild(0,1) Markedly(2,3)

258 209 190

A subset of 64 probe sets having a non-zero coefficient included in the penalized random

coefficient/intercept ordinal response model were listed in Table 6.12, where each probe an-

notation was mapped to the corresponding gene symbol. There are several genes that have

been reported to be associated with mental disorders and psychosocial impairment, such as

Alzheimer’s disease, schizophrenia, and neuritis. For example, RGS10 protein is known to

have a predominant location in the cytosol [Rivero et al., 2010] and its movement between the

cytoplasm and the nucleus is considered as a possible mechanism of regulating intra-cellular

signaling [Burgon et al., 2001]. Rivero et al. [2013] designed an experiment to evaluate the

treatment effect of an antipsychotic or antidepressant on schizophrenic, non-diagnosed sui-

cide, and control groups where cytosolic RGS10 protein immunoreactivity has been involved

in. However, no significant difference in RGS10 protein expression level was detected which

implies new treatment and further studies are needed to elucidate its function. The reelin

signaling is involved in the etiology of neurodevelopmental and psychiatric disorders such as:

schizophrenia, bipolar, depression and autism. One of the two reelin receptors in the path-

way is related to LRP8 gene [Fatemi, 2001]. Sequeira et al. [2012] reviewed nine most recent

microarray studies of peripheral blood gene expression in schizophrenia where little agree-
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ment was reached in terms of specific genes identified enriched biological pathways. This

could be due to different experimental designs and preparations, heterogeneity in subjects,

large proportion of noise and high false positive rate. Ingenuity Pathway Analysis (IPA) was

run on the gene symbols from the nine peripheral blood microarray experiments. However,

the comprehensive understanding of the mechanism and biological function of most mental

disorder still remains vague. To acquire a solid and precise understanding requires advanced

knowledge in systems biology, a collection of a larger number of samples for examining mul-

tiple brain regions, and more stable methods such as RNA-sequencing.

Table 6.9: Contingency table of the observed and predicted three-category Marshall score
assessed on central nervous system. The predicted ordinal outcome was calculated from the
penalized random intercept ordinal response model.

Mild(0,1) Moderate(2,3) Severe(4)
Mild(0,1) 188 37 5

Moderate(2,3) 70 144 46
Severe(4) 0 28 139

Table 6.10: Contingency table of the observed and predicted three-category Marshall score
assessed on central nervous system. The predicted ordinal outcome was calculated from the
penalized random coefficient ordinal response model.

Mild(0,1) Moderate(2,3) Severe(4)
Mild(0,1) 236 5 0

Moderate(2,3) 22 188 9
Severe(4) 0 16 181
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Table 6.11: Contingency table of the observed and predicted three-category Marshall score
assessed on central nervous system when ignoring the correlation between repeated measure-
ments from the same subject.

Mild(0,1) Moderate(2,3) Severe(4)
Mild(0,1) 210 75 4

Moderate(2,3) 40 108 41
Severe(4) 8 26 145

193



Figure 6.5: Average gene expression levels in three ordinal categories change along
with patient days in hospital for four genes: HLA-DMB (top left), DDAH2(top right),
BTN3A1(bottom left) and FUT3(bottom right). These genes are 100% identified by GMIFS
in cross-validation assessment procedure. For a specific gene, the dot represents the observed
gene expression from one microarray platform and the solid curve represents the average gene
expression level in an ordered category fitted by LOESS smoothing technique.
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Table 6.12: A subsetof Affymetrix probe sets having a non-zero coefficient estimate in the
GMIFS from Glue Grant burn injury dataset when using three-category central nervous
system Marshall score as ordinal outcome mapped to Gene Symbol.
No. AFFYprobe SYMBOL Est Location Type Disease Drugs

1
207564 x at OGT 0.16 Xq13 enzyme activator Alzheimer Lactosamine

diabetes,etc threonine,etc

2
214909 s at DDAH2 -0.14 6p21 amino acid hypertension Citrulline

binding kidney disease,etc nitric oxide, etc
3 218078 s at ZDHHC3 -0.12 3p21.31 ion binding ataxia

4
203633 at CPT1A 0.08 11q13.2 protein binding diabetes Coenzyme A

metabolic disorder Glycerol, etc

5
204316 at RGS10 0.08 10q25 GTPase activator nervosa gnrh

schizophrenia cysteine
neuronitis

6 204970 s at MAFG -0.06 17q25.3 DNA binding fibrosarcoma

7
205686 s at CD86 0.06 3q21 coreceptor immunodeficiency Abatacept

neuritis, etc ctla4-ig, etc

8
205517 at GATA4 -0.06 8p23.1-p22 DNA binding,etc lymphoma azathioprine

heart disease zinc, etc
cancer, etc

9
205425 at HIP1 -0.06 7q11.23 clathrin binding Huntington’s disease inositol

neuropathy, etc glutamine,etc

10
208433 s at LRP8 -0.05 1p32.3 ion binding, etc depression tyrosine

neuronitis, etc phosphotyrosine, etc
11 206110 at HIST1H3H 0.05 6p22.1 DNA binding erythematosus
12 219452 at DPEP2 0.05 16q22.1 Leukotriene E4

13
206114 at EPHA4 -0.05 2q36.1 ATP binding Alzheimer tyrosine

neuronitis, etc ADP, etc
14 209553 at VPS8 0.04 3q27.2 zinc ion binding
15 209553 at LOC100505729 0.04 - RNA gene

16
211998 at H3F3A 0.04 1q42.12 DNA binding lupus

immunodeficiency, etc

17
211998 at H3F3B 0.04 17q25.1 DNA binding lupus

immunodeficiency, etc
18 201978 s at KIAA0141 0.04 5q31 protein coding thyroiditis
19 205781 at C16orf7 -0.04 16q24.3 GTPase activator

20
211743 s at PRG2 -0.03 11q12 carbohydrate cancer estromustine

binding rhinitis, etc estracyt, etc

21
203932 at HLA-DMB 0.03 6q21.3 lupus oligonucleotide

diabetes
arthritis, etc

22 220614 s at C6orf103 -0.02 6q24.2 ion binding, etc leprosy
23 60474 at FERMT1 0.02 20p12.3 phospholipid binding periodontitis, etc
24 213624 at SMPDL3A -0.02 6q22.32 protein binding histiocytoma, etc
25 206705 at TULP1 -0.02 6p21.3 protein binding neuronitis, etc

26
202381 at ADAM9 -0.02 8p11.23 collagen binding, etc myeloma Clotrimazole

cancer, etc
27 222287 at TRDN 0.02 6q22.31 protein binding bipolar, etc ryanodine, etc
28 201810 s at LOC100505696 -0.02 - - - -
29 201810 s at SH3BP5 -0.02 3p24.3 kinase inhibitor schizophrenia,etc tyrosine, etc

30
202673 at DPM1 0.01 20q13.1 alcohol binding, etc tuberculosis Dolichol-20, etc

alcoholism

31
200899 s at MGEA5 0.01 10q24.1-3 protein binding diabetes

meningioma
32 202925 s at PLAGL2 -0.01 20q11.21 DNA binding, etc anemia, etc
33 203389 at KIF3C -0.01 2p23 ATP binding schizophrenia
34 204611 s at PPP2R5B -0.01 11q12 protein binding neuronitis, etc

35
205098 at CCR1 -0.01 3p21 protein binding hematopoiesis J 113863

leukemia, etc bx471, etc
36 214469 at HIST1H2AE 0.0033 6p22.1 DNA binding immunodeficiency
37 214469 at HIST1H2AB 0.0017 6p22.1 DNA binding immunodeficiency
38 213298 at NFIC -0.0013 19p13.3 DNA binding neuronitis, etc diamide
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6.2.3 Aggregated Marshall score

Besides using the assessments on a specific biological system to classify the severity of illness,

it is also valuable to get an overall assessment of the medical condition using the aggregated

Marshall score. Theoretically, the aggregated Marshall score ranges from 0 to 24 because on

each of the six system scores can take on values from 0 to 4. However, it is rare for a patient

to be evaluated as ‘markedly’ or ‘severely’ ill in all aspects. In fact, the aggregated Marshall

score observed in the burn injury dataset varies from 0 to 15 with a heavy concentration of

values falling between 4 and 8. In order to use the proposed method and treat the outcome

as an ordinal scale, we compressed the original aggregated Marshall score (Figure 6.6) to a

modified measurement with three categories as shown in Table 6.13.

We the applied the forward stagewise algorithm to the full dataset setting the parameters

increment amount to ǫ = 1 × 10−4, convergence criteria to δ = 1 × 10−4 and the maximal

proportion of important probes detected to be 0.0015. Upon convergence, 72 probes had

non-zero coefficient entered the active set. We then fitted 72 penalized cumulative logit ordi-

nal models at each of the turning point where a new feature enters into the active set in the

following one step. In this case, the best parsimonious model associated with minimal AIC

was at step 16813 where the active set consisted of 35 probe sets with non-zero coefficient

estimates. We then used the coefficient estimates of the 35 probe sets to fit a penalized ran-

dom coefficient/intercept ordinal response model for classification purpose. After obtaining

updated estimates of the intercepts and the empirical Bayes estimates of the random effects,

the fitted ordinal scale can be calculated correspondingly. High concordance between the

observed and fitted response was observed with the classification accuracies of 85.5% and
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87.2% for the penalized random intercept and random coefficient ordinal response models,

respectively (Tables 6.14 and 6.15). An improvement in classification accuracy was also ob-

served when treating the data as longitudinal compared to treating it as traditional, where

the classification accuracy dropped to 72.8% as shown in Table 6.16.

A subset of the 35 probe sets having a non-zero coefficient included in the penalized

random coefficient/intercept ordinal response model were presented in Table 6.18, where

each probe annotation was mapped to the corresponding gene symbol. It is of interest to

evaluate the concordance between the set of genes included in the aggregated Marshall score

model and the set of genes included in the specific Marshall score models. Three genes:

HLA-DMB, MAFG and DDAH2 were detected to be the robust classifiers under all three

scenarios (Table 6.17).

Table 6.13: Modified three-category aggregated Marshall score

Categories Mild(0-4) Moderate(5-9) Markedly(10-15)
No.obs 287 298 72

Table 6.14: Contingency table of the observed and predicted three-category aggregated
Marshall Score. The predicted ordinal outcome is calculated from penalized random intercept
ordinal response model.

Pred/Obs Mild(0-4) Moderate(5-9) Severe(10-15)
Mild(0-4) 261 26 2

Moderate(5-9) 26 265 34
Severe(10-15) 0 7 36
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Figure 6.6: Distribution of raw aggregated Marshall Score (observed range from 0 to 15) in
burn injury dataset.
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Table 6.15: Contingency table of the observed and predicted three-category aggregated Mar-
shall Score. The predicted ordinal outcome is calculated from penalized random coefficient
ordinal response model.

Pred/Obs Mild(0-4) Moderate(5-9) Severe(10-15)
Mild(0-4) 254 13 0

Moderate(5-9) 33 280 33
Severe(10-15) 0 5 39

Table 6.16: Contingency table of the observed and predicted three-category aggregated
Marshall score when ignoring the correlation between repeated measurements from the same
subject.

Pred/Obs Mild(0-4) Moderate(5-9) Severe(10-15)
Mild(0-4) 227 53 1

Moderate(5-9) 60 244 64
Severe(10-15) 0 1 7
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Table 6.17: List of overlapping genes detected among the three classifications: the modified
Marshall score on the renal system, the modified Marshall score on the central nervous
system and the modified aggregated Marshall score.

Groups Number of Probes Gene Symbol
Renal vs Neuro 5 HLA-DMB, MAFG, DDAH2

Renal vs Aggregated
11 HLA-DMB, MAFG, RAB27A

BTN3A1, RBM25, DDX28
DDAH2, SLC38A2

Neuro vs Aggregated
13 ADAM9, HLA-DMB, MAFG

HIST1H3H, SMPDL3A, DDAH2
Renal vs Neuro vs Aggregated 5 HLA-DMB, MAFG, DDAH2

Table 6.18: A subsetof Affymetrix probe sets having a non-zero coefficient estimate in the
GMIFS from Glue Grant burn injury dataset when using three-category aggregated Marshall
score as ordinal outcome mapped to Gene Symbol.
No. AFFYprobe SYMBOL Est Location Type Disease Drugs

1
214909 s at DDAH2 -0.23 6p21 amino acid hypertension Citrulline

binding kidney disease,etc nitric oxide, etc

2
203932 at HLA-DMB 0.18 6q21.3 lupus oligonucleotide

diabetes
arthritis, etc

3
202381 at ADAM9 -0.08 8p11.23 collagen binding, etc myeloma Clotrimazole

cancer, etc
4 213624 at SMPDL3A -0.07 6q22.32 protein binding histiocytoma, etc

5
212033 at RBM25 0.05 14q24.3 mRNA binding Alzheimer’s disease

thyroiditis
6 209375 at XPC 0.05 3p25 DNA binding pigmentosum, etc cisplatin, etc
7 204970 s at MAFG -0.05 17q25.3 DNA binding fibrosarcoma
8 202973 x at FAM13A 0.05 4q22.1 GTPase activator COPD, etc

9
209514 s at RAB27A -0.04 15q15-q21.1 GDP/GTP binding Griscelli syndrome gtp

albinism,etc gdp,etc
10 220924 s at SLC38A2 -0.04 12q protein binding neuronitis, etc glutamate, etc
11 214025 at DDX28 -0.02 16q22.1 ATP binding prostatitis
12 218380 at LOC728392 0.02 17p13.2 - Parkinson’s disease
13 213199 at C2CD3 0.01 11q13.4 protein binding nephronophthisis
14 206110 at HIST1H3H 0.01 6p22.1 DNA binding erythematosus
15 219681 s at RAB11FIP1 0.01 8p11.22 protein binding neuronitis, etc

16
209770 at BTN3A1 0.01 6q22.1 T cell receptor schizophrenia

ovarian cancer, etc
17 202116 at DPF2 0.01 11q13.1 ion binding nephropathy, etc
18 220112 at ANKRD55 -0.00 5q11.2 - arthritis, etc
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6.3 Discussion

In this chapter, we applied the proposed model to solve the challenging classification and

prediction problem in the traditional and longitudinal high-dimensional data setting for a

multi-category ordinal response. The proposed model combines the novel machine learning

algorithm, generalized monotone incremental forward stagewise (GMIFS), and the classical

generalized linear mixed model (GLMM) as a statistical model capable of classifying an ordi-

nal outcome using high-dimensional data with a complex correlation structure. The proposed

model has a promising performance given its high prediction accuracy, consistency of vari-

able selection, and concordance of orderings demonstrated by different microarray datasets.

Demonstrated by the cross-validation procedure, the proposed model performed well on the

training dataset and can be generalized to an independent test dataset and still remains

consistently superior performance. In addition, the set of important features detected by

GMIFS shares a large proportion of overlapping for different combinations of training and

test datasets.

From the examples presented, it is clear the proposed model works best if 1) the number

of ordered categories is relatively small and the number of observations in each category is

balanced; and 2) the number of features having a nonzero coefficient is small, that is, the

degree of sparseness is high. In fact, some theoretical and simulation work has shown the

ordered variable with 3 or 4 categories often carries the maximal information and if the

number of categories goes beyond 5, it can be treated as continuous instead [Pasta, 2009].

In addition, [Friedman et al., 2004] discussed that the model with an L1 penalty follows

the ‘bet on sparsity’ principle which reflects a fact that it has a good performance in sparse
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data with a small to moderate size of important features. We conclude this principle also

holds for the GMIFS method. When comparing the set of nonzero coefficients from the data

which uses the Marshall score on the renal system as the ordinal outcome versus that which

uses the Marshall score on the central nervous system, a much larger number of features are

identified from the central nervous system than the renal system. It has been discussed in

several publications, e.g.,Karssen et al. [2006], that a relatively large set of modest changes in

gene expression rather than a small set of strong signals are often identified to incur mental

disorders with high variability, complexity, and heterogeneity. Correspondingly, since the

real change in expression levels are often obscured with extraneous source of variation even

under a carefully planned experiment, the set of features having nonzero coefficients can be

a mixed of features that are good classifiers as well as noise features, which influences the

predictive power and explains why the model for Marshall score on the renal system achieves

higher prediction accuracy than that on the central nervous system.

The other potential improvement for GMIFS is the convergence criteria we implemented

as well as the model fitting criteria. Currently, the two convergence criteria we used are:

1) the difference between successive log-likelihoods is smaller than a given tolerance; 2) the

proportion of features with nonzero coefficients reaches a pre-specified number. Criterion

1) can often be satisfied in high-dimensional data with independence assumption. However,

criterion 1) is seldom satisfied in longitudinal data due to inter-subject heterogeneity and

complicated intra-subject correlation, which have the potential to influence to the fixed effect

estimate and we choose to put it aside when obtaining the penalized estimate. Instead, the

longitudinal high-dimensional model is often converged according to criterion 2). Although

201



the choice of cutoff value in criterion 2) is somewhat arbitrary, based on the ‘bet on sparsity’

principle, only a small or moderate sized feature set with nonzero coefficients should be in

the final model, thus a large enough value can cover all the important features.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Health status and disease-related ordinal measurements play an irreplaceable role for assess-

ment of severity of illness in a hospital setting as well as in translational medical research.

With the emergence of novel genomic technologies being actively applied in diagnostic and

therapeutic areas, a proper statistical methodology that is able to capture the strong sig-

nals from high-dimensional data for classifying and predicting an ordinal outcome is a great

need. In addition, repeated measurements are common in clinical practice for tracking and

monitoring the progression of disease, therefore we also developed a statistical model that

is capable of analyzing correlated longitudinal high-dimensional data with an ordinal out-

come. In Chapter 1, we reviewed the classical statistical model for analyzing data with an

ordinal response in the traditional setting where enough degrees of freedom can be allocated

for parameter estimation. Primarily, we reviewed four types of ordinal models: cumulative

logit, adjacent category, backward continuation ratio, and forward continuation ratio models
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under the proportional odds assumption. The parameter estimates via the Maximum Like-

lihood approach as well as the corresponding software implementations were also included.

In Chapter 2, we reviewed regularization methods that are often implemented to use a few

important features to predict outcome in a high-dimensional dataset, where the number of

features is much larger than the number of samples. Three prevalent methods: least abso-

lute shrinkage and selection operator (LASSO), generalized monotone incremental forward

stagewise (GMIFS), and least angle regression (LAR) were reviewed when interest lies in

predicting a continuous or dichotomous response. In Chapter 3, we reviewed the statisti-

cal models to analyze a broad range of longitudinal data with different distributions in the

responses. Namely, we reviewed the linear mixed models (LMM), nonlinear mixed model

(NLMM), and generalized linear mixed model (GLMM) where the response has a normal,

non-normal, or discrete distribution, respectively. The model fitting techniques for each type

of model were discussed in detail afterwards. Specifically, for the linear mixed models, the

Expectation-Maximization (EM) algorithm was implemented to obtain the estimate of the

variance component and both Maximum Likelihood (ML) and Restricted Maximum Likeli-

hood (REML) approaches were used to obtain the estimates of the fixed and random effects;

for the nonlinear mixed models, the marginal likelihood and its numerical approximation

form was optimized to obtain estimates of the fixed effects and variance components. The

random effects were estimated using the Empirical Bayes approach; for the generalized lin-

ear mixed models, generalized estimating equations (GEE) and penalized quasi-likelihood

(PQL) were briefly reviewed to obtain biased estimates of the fixed effects and the corre-

lation structure. In Chapter 4, we introduced the ordinal random intercept and random

coefficient models which were suitable for analyzing longitudinal data with an ordinal re-
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sponse. The models were fitted using the marginal likelihood approach whose closed-form

was approximated by both the nonadaptive and adaptive Gauss-Hermite Quadrature meth-

ods. The fixed effects were obtained by optimizing the marginal likelihood and the random

effects were obtained through empirical Bayes method. In Chapter 5, we first stated the

question of interest, that is, to identify a subset of important features that is monotonically

associated with the ordinal response that can be utilized to build a parsimonious model for

predication and classification in a high-dimensional or longitudinal high-dimensional setting.

We extended the GMIFS method for a binary outcome to solve the prediction and classifica-

tion problem for high-dimensional data with an ordinal outcome. In addition, we combined

the novel GMIFS method with the classical ordinal random coefficient model to create an

innovative penalized random coefficient/intercept ordinal response model for solving the chal-

lenging classification and prediction problem for the longitudinal high-dimensional setting.

The model assessment and selection criteria for the proposed models were also discussed. In

Chapter 6, we applied the proposed model to two real microarray datasets to demonstrate

its usage and effectiveness in analyzing this novel type of data. The model performance

was assessed using cross-validation to estimate primarily three characteristics: prediction

accuracy, consistency of variable selection, and similarity of ordering between the observed

and predicted ordinal outcomes. In the COPD study, a high-dimensional dataset consisting

of 58 samples, 54657 features, and four ordered response categories, our method detected

several genes, e.g., CYP1B1, SPRR1B, which are known to be associated with progression

of lung cancer, inflammation and other diseases. In the burn injury study, 657 longitudinal

high-dimensional microarray samples were collected from 169 patients with the comprehen-

sive assessment of the severity of illness using the Marshall Multiple Organ Dysfunction
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Score on six organs. The results presented primarily focused on using the Marshall score

assessed on the renal and central nervous system as the ordinal outcomes. One set of genes,

e.g., DDAH2, SOX13, have been reported in literature to be associated with hypertension

and kidney disease was also detected by our method. In addition, another set of gene, e.g.,

RGS10 and LRP8 which have been previously associated with mental disorders were also

detected by our proposed method when using the Marshall score on the central nervous

system as the ordinal outcomes. In both scenarios, the set of genes detected serves as good

classifiers to classify and predict the progression of disease severity. In fact, a very high

prediction accuracy of 95.3% was observed from the cross-validation procedure when using

the Marshall score on the renal system as the outcome.

7.2 Future Work

7.2.1 Variable Selection using LAR type Algorithm

The proposed model incorporates the GMIFS method for selecting important features which

are monotonically associated with the ordinal scale. For each step, the coefficient associated

with the largest negative gradient of the likelihood is updated with a very small incremental

amount. Thus, this procedure usually takes hundreds of thousands iterations before reach-

ing convergence criteria. Efron et al. [2004] introduced the Least Angle Regression (LAR)

method for high-dimensional data where the response is continuous, which has been con-

sidered as a ‘democratic’ version of the Forward Stagewise algorithm. LAR is a less greedy

version of forward stagewise and Efron et al. [2004] showed with a small modification on

LAR, the penalized estimates from LAR and forward stagewise agree in general. The other
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striking property of LAR is it only requires p steps for the full solution, where p is the number

of features. This property of LAR is appealing since it can tremendously reduce the com-

putational time. Madigan and Ridgeway [2004] briefly discussed the possibility of extending

the LAR algorithm to generalized linear models and illustrated using logistic regression.

Suppose πi is the probability observation i falls into category 0 and yi is the corresponding

indicator, the log-likelihood of N observations having a binary outcome can be written as:

logL =
N∑

i

yi log
πi

1− πi

− log(1− πi). (7.2.1)

Using the logit link for πi, the linear expression α+xT
i β demonstrates the log-likelihood is a

function of α and β, which can be denoted as logL(α, β;x). Similar to the GMIFS method,

the LAR algorithm starts with all coefficients β = 0. At the first step, β∗
j1

associated with

the maximum gradient of − logL(α,β;x) is selected to update and thus j∗1 is a member

belonging to the active set, that is j∗1 ∈ A.

j∗1 = argmax
j

∣∣∣∣−
∂ logL(α,β;x)

∂βj

∣∣∣∣ = argmax
j

∣∣− xT
j

∑

i

(yi − πi)
∣∣

= argmax
j

∣∣∣∣− xT
j

∑

i

(yi −
exp(α + xT

i β)

1 + exp(α + xT
i β)

∣∣∣∣ (7.2.2)

In the following iterations, suppose βj2 is the coefficient associated with the second largest

gradient and j2 ∈ Ac. An inequality constraint (7.2.3), where sj indicates the sign of the first-

order derivative in the LAR development, is required to hold until the absolute magnitude of

gradient in direction xj2 exceeds that in direction xj∗
1
, and consequently j2 enters the active
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set A, that is j∗2 ∈ A.

∣∣∣∣−
∂ logL(α,β;x)

∂β∗
j1

∣∣∣∣−
∣∣∣∣−

∂ logL(α,β;x)

∂βj2

∣∣∣∣ ≥ 0

(sj∗1xj∗
1
− sj2xj2)

T

(∑

i

(yi −
exp(α + xT

i β)

1 + exp(α + xT
i β)

)
≥ 0. (7.2.3)

Now the active set A contains two elements j∗1 and j∗2 which construct a new direction

between xj∗
1
and xj∗

2
. Suppose βj3 is the coefficient associated with the third largest gradient

and j3 ∈ Ac, the inequality (7.2.4) needs to be held until the absolute magnitude of the

gradient in direction xj3 exceeds those in directions xj∗
1
and xj∗

2
,

min
j∗1 ,j

∗

2

(∣∣∣∣−
∂ logL(α,β;x)

∂β∗
j1

∣∣∣∣,
∣∣∣∣−

∂ logL(α,β;x)

∂β∗
j2

∣∣∣∣
)
−

∣∣∣∣−
∂ logL(α,β;x)

∂βj3

∣∣∣∣ ≥ 0. (7.2.4)

Similar logic applies to the following iterations which yields the full solution. The extension

to the ordinal model should be followed accordingly.

7.2.2 Variable Selection with Consideration of the Correlations

between Features

In either GMIFS or LAR methods, a strong assumption, which in fact is seldom men-

tioned, is the independence between features. In practice, this assumption may never be

held for high-dimensional data and for the genomic data, particularly. It is well known a

group of genes often works together to complete one or several complex biological processes.

Pathway analysis is an approach to identify groups of related genes according to their un-
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derlying molecular functions. It has been applied to the analysis of Gene Ontology terms

(http://www.geneontology.org/) for finding physical interaction networks between genes

and gene products. It also helps to exploit pathway knowledge in the public repository Ky-

oto Encyclopedia of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/), which

records networks of molecular interactions in cells and their variants specific to particular

organisms. A brief review of current approaches and outstanding challenges of pathway

analysis can be found in Khatri et al. [2012].

To select a set of correlated features using a penalized model, modifications to existing

methods are essential. In fact, Yuan and Lin [2006] introduced three modified models: group

LASSO, group LAR, and group non-negative garrottee to address the correlation issue when

the response is continuous. We briefly explain the mechanism of group LAR here. Suppose a

vector r is of length n, where n is the number of observations in sample and p is the number

of features denoted by x1, · · · ,xp. The angle θ(r,xj) is determined by vector r and feature

xj. It follows cos
2 θ(r,xj) = ‖xT

j r‖2/‖r‖2 is the proportion of the total variation in direction

r explained in direction xj. The group LAR starts with all coefficients β = (β1, · · · , βp) = 0.

It first finds the feature xj that has the smallest angle θ with response Y , that is equivalent to

say, direction xj explains the largest proportion of variation in the response Y at the current

iteration. The group LAR proceeds in the direction of Y until another feature x2 has the

same angle with the current residual r, that is, ‖xT
1 r‖ = ‖xT

2 r‖. The group LAR marches

in the direction of current residual r determined by x1 and x2, until the third feature x3

enters the active set where the angle between x3 and r is the same as θ(r,x1) and θ(r,x2).

The group LAR now moves in a direction of the updated residual r, which is determined
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by x1,x2 and x3, until the fourth feature x4 enters the active set and so on and so forth.

Extending the group LAR to a generalized linear model, or in particular the ordinal model

may need further modification, since the residual is not a good measurement in data having

discrete response.

7.2.3 Application to Other Genomic and Medical Data

In this dissertation, we applied the proposed model to microarray dataset for detecting im-

portant genes associated with the progression of disease. The usage of our proposed model

certainly should not be limited to microarray data, other types of genomic data, such as SNP

or high-throughput sequencing data could also be analyzed using our proposed model pro-

vided the response is ordinal. A single-nucleotide polymorphism (SNP) refers to a variation

in a single DNA base. Such variations have been identified as causal for certain diseases and

thus are critically important for personalized medicine in biomedical research. Genome-wide

association studies (GWAS), are conducted to examine common genetic variants among in-

dividuals to determine if certain variants are associated with a disease. The proposed model

can be applied to this type of data for feature selection as well as for trait classification

purposes. Another popular technology for measuring gene expression is next-generation se-

quencing. This novel technology provides a solution for low-cost sequencing that parallelizes

the sequencing process and results in millions of sequences reads for a single sample. Al-

though a huge amount of data processing still remains an ineluctable challenge even with

the rapid development of high-performance computing capacity, gene expression studies have

been moving gradually from microarray technologies to RNA sequencing as it promises higher
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resolution, lower biases, and ability to discover novel transcripts and mutations [Soon et al.,

2013]. In fact, some striking advancements in personalized medicine include monitoring cer-

tain types of diseases are using high-throughput methods. For example Chen et al. [2012]

presented an integrative personal omics profile (iPOP), which performs a comprehensive anal-

ysis of longitudinal omic information (combination of genomic, transcriptomic, proteomic,

metabolomic and autoantibody) from a single individual over 14 months. RNA-seq samples

at 20 time points were generated resulting over 2.67 billion uniquely mapped 101b paired-end

reads along with other approaches. By analyzing this wealth of omics information to search

for correlated patterns over time and single unusual events can reveal multiple medical risks,

including type 2 diabetes and coronary artery disease in this individual. Our proposed model

has the potential to analyze a much larger longitudinal study for obtaining more general con-

clusions.

In addition, the proposed model has the potential to provide tremendous benefits to per-

sonalized medicine from non-genomic data, such as using large-scale medical record databases

to predict health outcomes. A revealing example was provided by [McCormick et al., 2011]

where a hierarchical model was proposed from the Bayesian perspective to mine the associ-

ations between past, current, and future events. A simple example is that a patient expe-

riencing dyspepsia and epigastirc pains is likely reporting heartburn in future doctor visits.

Because most patients experience only a few among a massive set of possible symptoms and

patients often visit the doctors’ office only periodically, a longitudinal sparse dataset results

which remains a challenge for existing statistical models. However, our proposed model may

be a possible solution to predict disease progression using large-scale medical record data,
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which often has a longitudinal structure.
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Appendix A

NIMH Schizophrenia Data Code

A.1 R code for NIMH Schizophrenia Data

# Import the NIMH Schizophrenia Data and Preprocessing #
library(alabama)
NIMH<-read.csv(’NIMH Schizophrenia.csv’,header=TRUE)
attach(NIMH)
yi1<-ifelse(NIMH$imps79o==1,1,0)
yi2<-ifelse(NIMH$imps79o==2,1,0)
yi3<-ifelse(NIMH$imps79o==3,1,0)
yi4<-ifelse(NIMH$imps79o==4,1,0)
xi<-NIMH[,c(’tx’,’sweek’,’txswk’)]
G=function(z){
G=exp(z)/(1+exp(z))
return(G)
}

g=function(z) {
g=exp(z)/(1+exp(z))^2
return(g)
}

### Cumulative logit Ordinal Model ###
alpha<-vector(length=4,mode=’numeric’)
alpha[1]<-0
beta<-vector(length=3,mode=’numeric’)
par<-vector(length=6,mode=’numeric’)
logL.cum <-function(par){

comp1<-comp2<-comp3<-comp4<-vector(length=dim(NIMH)[1],mode=’numeric’)
z0<-z1<-z2<-z3<-z4<-vector(length=dim(NIMH)[1],mode=’numeric’)
alpha<-par[1:3]; beta<-par[4:6]

for (ii in 1: dim(NIMH)[1]){
z0[ii]<--Inf+sum(beta*xi[ii,])
z1[ii]<-alpha[1]+sum(beta*xi[ii,])
z2[ii]<-alpha[2]+sum(beta*xi[ii,])
z3[ii]<-alpha[3]+sum(beta*xi[ii,])
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z4[ii]<-100+sum(beta*xi[ii,])
}
comp1<-yi1*log(G(z1)-G(z0))
comp2<-yi2*log(G(z2)-G(z1))
comp3<-yi3*log(G(z3)-G(z2))
comp4<-yi4*log(G(z4)-G(z3))
-sum(comp1+comp2+comp3+comp4)

}
hin<-function(par){
alpha<-par[1:3]
h<-rep(NA,1)
h[1]<-alpha[2]-alpha[1]
h[2]<-alpha[3]-alpha[2]
h
}
hin.jac<-function(par){
alpha<-par[1:3]
j<-matrix(NA,2, length(par))
j[1,]<-c(1,0,1,0,0,0)
j[2,]<-c(0,1,1,0,0,0)
j
}
x0<-c(1,2,3)
fit.cum <- auglag(par=c(x0,c(0,0,0)),logL.cum, hin=hin,hin.jac=hin.jac)
### Adjacent-Category Ordinal Model ###
par<-vector(length=6,mode=’numeric’)
logL.acat<-function(par){

comp1<-comp2<-comp3<-comp4<-vector(length=dim(NIMH)[1],mode=’numeric’)
z1<-z2<-z3<-z4<-vector(length=dim(NIMH)[1],mode=’numeric’)
alpha<-par[1:3];a1<-alpha[1];a2<-alpha[2];a3<-alpha[3]
beta<-par[4:6]

for (ii in 1: dim(NIMH)[1]){
z1[ii]<-exp(-a1-a2-a3-3*sum(beta*xi[ii,]))/(1+exp(-a1-a2-a3-3*sum(beta*xi[ii,]))+

exp(-a2-a3-2*sum(beta*xi[ii,]))+exp(-a3-sum(beta*xi[ii,])))
z2[ii]<-exp(-a2-a3-2*sum(beta*xi[ii,]))/(1+exp(-a1-a2-a3-3*sum(beta*xi[ii,]))+

exp(-a2-a3-2*sum(beta*xi[ii,]))+exp(-a3-sum(beta*xi[ii,])))
z3[ii]<-exp(-a3-sum(beta*xi[ii,]))/(1+exp(-a1-a2-a3-3*sum(beta*xi[ii,]))+

exp(-a2-a3-2*sum(beta*xi[ii,]))+exp(-a3-sum(beta*xi[ii,])))
z4[ii]<-1/(1+exp(-a1-a2-a3-3*sum(beta*xi[ii,]))+exp(-a2-a3-2*sum(beta*xi[ii,]))+

exp(-a3-sum(beta*xi[ii,])))
}

comp1<-yi1*log(z1)
comp2<-yi2*log(z2)
comp3<-yi3*log(z3)
comp4<-yi4*log(z4)
-sum(comp1+comp2+comp3+comp4)

}
fit.acat<-nlm(logL.acat,c(0,0,0,0,0,0),hessian=T)
se.acat <- sqrt(diag(solve(fit.acat$hessian)))

### Backward Continuation Ratio Model ###
par<-vector(length=6,mode=’numeric’)
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logL.bwdcr<-function(par){
comp1<-comp2<-comp3<-comp4<-vector(length=dim(NIMH)[1],mode=’numeric’)
z1<-z2<-z3<-z4<-vector(length=dim(NIMH)[1],mode=’numeric’)
alpha<-par[1:3];a2<-alpha[1];a3<-alpha[2];a4<-alpha[3]
beta<-par[4:6]

for (ii in 1: dim(NIMH)[1]){
z4[ii]<-exp(a4+sum(beta*xi[ii,]))/(1+exp(a4+sum(beta*xi[ii,])))
z3[ii]<-exp(a3+sum(beta*xi[ii,]))*(1-z4[ii])/(1+exp(a3+sum(beta*xi[ii,])))
z2[ii]<-exp(a2+sum(beta*xi[ii,]))*(1-z4[ii]-z3[ii])/(1+exp(a2+sum(beta*xi[ii,])))
z1[ii]<-1-z2[ii]-z3[ii]-z4[ii]
}
comp1<-yi1*log(z1)
comp2<-yi2*log(z2)
comp3<-yi3*log(z3)
comp4<-yi4*log(z4)
-sum(comp1+comp2+comp3+comp4)

}
fit.bwdcr<-nlm(logL.bwdcr,c(0,0,0,0,0,0),hessian=T)
se.bwdcr <- sqrt(diag(solve(fit.bwdcr$hessian)))
### Forward Continuation Ratio Model ###
par<-vector(length=6,mode=’numeric’)
logL.fwdcr<-function(par){

comp1<-comp2<-comp3<-comp4<-vector(length=dim(NIMH)[1],mode=’numeric’)
z1<-z2<-z3<-z4<-vector(length=dim(NIMH)[1],mode=’numeric’)
alpha<-par[1:3];a2<-alpha[1];a3<-alpha[2];a4<-alpha[3]
beta<-par[4:6]

for (ii in 1: dim(NIMH)[1]){
z1[ii]<-exp(a2+sum(beta*xi[ii,]))/(1+exp(a2+sum(beta*xi[ii,])))
z2[ii]<-exp(a3+sum(beta*xi[ii,]))*(1-z1[ii])/(1+exp(a3+sum(beta*xi[ii,])))
z3[ii]<-exp(a4+sum(beta*xi[ii,]))*(1-z1[ii]-z2[ii])/(1+exp(a4+sum(beta*xi[ii,])))
z4[ii]<-1-z1[ii]-z2[ii]-z3[ii]
}
comp1<-yi1*log(z1)
comp2<-yi2*log(z2)
comp3<-yi3*log(z3)
comp4<-yi4*log(z4)
-sum(comp1+comp2+comp3+comp4)

}
fit.fwdcr<-nlm(logL.fwdcr,c(0,0,0,0,0,0),hessian=T)
se.fwrdcr<-sqrt(diag(solve(fit.fwdcr$hessian)))
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A.2 R code for NIMH Schizophrenia Data using VGAM

package

NIMH<-read.csv(’NIMH Schizophrenia.csv’,header=TRUE)
attach(NIMH)
library(VGAM)
optm.output <- function(fit.vglm) {

output <- summary(fit.vglm)@coef3
df <- dim(NIMH)[1]-6
t.value <- output[,1]/output[,2]
p.value <- rep(0,6)
for (ii in 1:length(p.value)){
p.value[ii] <- 2*pt(abs(t.value[ii]), df, lower.tail=F)
}

output1 <- data.frame(round(output[,1],2), round(output[,2],3),
round(rep(df,6),0), round(t.value,3), round(p.value,3))

return(output1)
}
### Cumulative logit Ordinal Model ###
fit.vglm<-vglm(imps79o~tx+sweek+tx*sweek, family=cumulative(parallel=T,reverse=F))
optm.output(fit.vglm)
### Adjacent-Categories ordinal model ###
fit.vglm<-vglm(imps79o~tx+sweek+tx*sweek, family=acat(parallel=T,reverse=F))
optm.output(fit.vglm)
### Backward Continuation Ratio Model ###
fit.vglm<-vglm(imps79o~tx+sweek+tx*sweek, family=sratio(parallel=T,reverse=T))
optm.output(fit.vglm)
### Forward Continuation Ratio model ###
fit.vglm<-vglm(imps79o~tx+sweek+tx*sweek, family=sratio(parallel=T,reverse=F ))
optm.output(fit.vglm)
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A.3 SAS code for NIMH Schizophrenia Data

/*Ordinal Model with fixed effects*/;
DATA one; INFILE ’V:\schizx1.dat’;
INPUT id imps79 imps79b imps79o int tx week sweek txswk ;
run;
DATA one;
set one;
IF imps79 > -9;
run;
data three;
set one;
if imps79o=1 then do;
y1=1; y2=0; y3=0; y4=0;
end;
else if imps79o=2 then do;
y1=0; y2=1; y3=0; y4=0;
end;
else if imps79o=3 then do;
y1=0; y2=0; y3=1; y4=0;
end;
if imps79o=4 then do;
y1=0; y2=0; y3=0; y4=1;
end;
output;
run;
/*Cumulative logit Ordinal Model*/;
PROC GLIMMIX DATA=three METHOD=QUAD(QPOINTS=21) NOCLPRINT;
CLASS id;
MODEL imps79o = tx sweek txswk / SOLUTION DIST=MULTINOMIAL LINK=CUMLOGIT;
RUN;
/*Adjacent Category Ordinal Model*/;
proc nlmixed data=three method=Gauss tech=newrap qtol=1e-3;
parms alpha1=0, alpha2=0, alpha3=0,beta1=0,beta2=0,beta3=0;
/*linear predictor*/;
eta1=alpha1 + beta1*tx + beta2*sweek + beta3*txswk ;
eta2=alpha2 + beta1*tx + beta2*sweek + beta3*txswk ;
eta3=alpha3 + beta1*tx + beta2*sweek + beta3*txswk ;
pi1= 1/(exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);
pi2= exp(eta1)/(exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);
pi3= exp(eta1+eta2)/(exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);
pi4= exp(eta1+eta2+eta3) / (exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);

z = (pi1**y1)*(pi2**y2)*(pi3**y3)*(pi4**y4);
if (z > 1e-15) then ll = log(z);
else ll=-1e100;
model z~ general(ll);

run;
/*Backward Continuation Ratio Ordinal Model*/;
proc nlmixed data=three method=Gauss noad qtol=1e-4;
parms alpha2=0, alpha3=0, alpha4=0,beta1=0,beta2=0,beta3=0;
eta2 = alpha2 + beta1*tx + beta2*sweek + beta3*txswk ;
eta3 = alpha3 + beta1*tx + beta2*sweek + beta3*txswk ;
eta4 = alpha4 + beta1*tx + beta2*sweek + beta3*txswk ;
p4 = exp(eta4)/(1+exp(eta4));
p3 = (1-p4)*exp(eta3)/(1+exp(eta3));
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p2 = (1-p3-p4)*exp(eta2)/(1+exp(eta2));
p1 = 1-p2-p3-p4;
/*Define likelihood*/
z = (p1**y1)*(p2**y2)*(p3**y3)*(p4**y4);
if (z > 1e-8) then ll = log(z);
else ll=-1e100;
model z~ general(ll);
run;
/*Forward Continuation Ratio Ordinal Model*/;
proc nlmixed data=three method=Gauss noad qtol=1e-4;
parms alpha1=0, alpha2=0, alpha3=0,beta1=0,beta2=0,beta3=0;
/*linear predictor*/;
eta1 = alpha1 + beta1*tx + beta2*sweek + beta3*txswk ;
eta2 = alpha2 + beta1*tx + beta2*sweek + beta3*txswk ;
eta3 = alpha3 + beta1*tx + beta2*sweek + beta3*txswk ;
p1 = exp(eta1)/(1+exp(eta1));
p2 = (1-p1)*exp(eta2)/(1+exp(eta2));
p3 = (1-p1-p2)*exp(eta3)/(1+exp(eta3));
p4 = 1-p1-p2-p3;
z = (p1**y1)*(p2**y2)*(p3**y3)*(p4**y4);
if (z > 1e-8) then ll = log(z);
else ll=-1e100;
model z~ General(ll);
run;
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Appendix B

Orange Tree Example Code

B.1 R code for Orange Tree Example

# Implement EM algorithm to estimate the variance components #
library(MASS)
tree<-read.csv(file="tree.csv",header=TRUE)
attach(tree)
y<-tree$y
x<-tree$day
index<-tree$tree
n<-dim(tree)[1]
new.y<-y-parm[1]/(1+exp(-(x-parm[2])/parm[3]))
z<-matrix(rep(as.vector(diag(1,5)),rep(7,25)),35,5)
new.z<-z/(1+exp(-(x-parm[2])/parm[3]))
q1 <- nrow(new.z)
em.mixed <- function(y, x, z, var0, var1,maxiter=2000,tolerance = 1e-0010)
{
time <-proc.time()
n <- length(y)
conv <- 1
L0 <- loglike(y, x, new.z, var0, var1)
i<-0
cat(" Iter. sigma0 sigma1 Likelihood",fill=T)
repeat {
if(i>maxiter) {conv<-0
break}
V <- c(var1) * new.z %*% t(new.z) + c(var0) * diag(n)
Vinv <- solve(V)
resid <- new.y
temp1 <- Vinv %*% resid
s0 <- c(var0)^2 * t(temp1)%*%temp1 + c(var0) * n - c(var0)^2 * sum(diag(Vinv))
s1 <- c(var1)^2 * t(temp1)%*%z%*%t(z)%*%temp1+ c(var1)*q1 - c(var1)^2
*sum(diag(t(z)%*%Vinv%*%z))
var0 <- s0/n
var1 <- s1/q1
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L1 <- loglike(y, x, new.z, var0, var1)
if(L1 < L0) { print("log-likelihood must increase, llikel <llikeO, break.")
conv <- 0
break
}
i <- i + 1
cat(" ", i," ",var0," ",var1," ",L1,fill=T)
if(abs(L1 - L0) < tolerance) {break} #check for convergence
L0 <- L1
}
list( var0=var0,var1=var1,Loglikelihood=L0)
}
loglike<- function(y, x, z, var0, var1)
{
n<- length(y)
V <- c(var1) * z %*% t(z) + c(var0) * diag(n)
Vinv <- ginv(V)
resid <- new.y
temp1 <- Vinv %*% resid
(-.5)*( log(det(V)) + t(resid) %*% temp1 )
# x<-b1/(1+exp(-(x-b2)/b3))
# (-.5)*( log(det(V))+ log (det(t(x)%*%Vinv%*%x))+ t(resid) %*% temp1 )
}
tolerance <- 1e-0010
maxiter <- 2000
seed<-100
# AGH numeric integration #
n1<-1
library(orthopolynom)
gh.poly<-ghermite.h.polynomials( n1, 0, normalized=FALSE)
node<-solve(gh.poly[[n1+1]])
weight <- ghermite.h.weight( node, 0 )
L1.star<-mu.star<-vector(length=7,mode=’numeric’)
temp<-b.out<-t<-vector(length=5,mode=’numeric’)
b.f<-function(parm){
for (kk in 1:5){
g1<-function(t) {
for (ii in 1:7){
mu.star[ii]<-(parm[1]+t )/(1+exp(-(x[ii+7*(kk-1)]-parm[2])/parm[3]))
L1.star[ii]<-(y[ii+7*(kk-1)]-mu.star[ii])^2
}
sum(L1.star)+(1/D.hat)*t^2
}
b.out[kk]<-nlm(g1,0)$estimate
}
return(b.out)
}
M<-5;N<-35;
temp1<-G<-vector(length=5,mode=’numeric’); eval1<-matrix(nc=1,nr=N)
node1<-matrix(nc=n1,nr=N); L1<-mu<-matrix(nc=n1,nr=N)
L2<-L4<-matrix(nc=n1,nr=M)
c<-replicate(n1*5,1)
J.matrix<-matrix(c,nr=5,nc=n1)
f<-function(parm){
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b<-b.f(parm)
for (kk in 1:5) {
for (ii in 1:7) {
b10<-parm[1] ; b20<-parm[2] ;b30<-parm[3]
fx<-deriv(y~(b1+t)/(1+exp(-(x-b2)/b3)),c("t"),
function(b1,b2,b3, x=day[ii+7*(kk-1)],t=b[kk]){} )
eval1[ii+7*(kk-1)]<-as.numeric(attributes(fx(b10,b20,b30))$gradient)
G[kk]<-sum(t(eval1[(1+7*(kk-1)):(7+7*(kk-1)),])%*%eval1[(1+7*(kk-1)):(7+7*(kk-1)),])+1/D.hat

}
}
for (kk in 1:5) {
for (ii in 1:7) {
for ( jj in 1:n1) {
index<-ii+7*(kk-1)
node1[(1+7*(kk-1)):(7+7*(kk-1)),jj]<-b[kk]+ sqrt(c(sigma2)*(1/G[kk]))*node[jj]
mu[index,jj]<-(parm[1]+node1[index,jj] )/(1+exp(-(x[index]-parm[2])/parm[3]))
L1[ii+7*(kk-1),jj]<- (y[ii+7*(kk-1)]-mu[ii+7*(kk-1),jj])^2
tmp<-(b^2/D.hat**J.matrix)
L2[kk,jj]<- sum(L1[(1+7*(kk-1)):(7+7*(kk-1)),jj])
L3<-(L2+tmp)/(2*c(sigma2))
L4[kk,jj]<-exp(-L3[kk,jj]+node[jj]^2/2)

}
}

}
tmp1<-L4*weight
temp1<-apply(tmp1,1,sum)
log(prod(temp1))-(35*log(2*pi*sigma2)+5*log(D.hat)+5*log(G[1]))/2
}
# Incoporate AGH numeric intergration with EM algorithm #
j<-0
parm<-c(200,700,350)
repeat{
new.y<-y-parm[1]/(1+exp(-(x-parm[2])/parm[3]))
z<-matrix(rep(as.vector(diag(1,5)),rep(7,25)),35,5)
new.z<-z/(1+exp(-(x-parm[2])/parm[3]))
q1 <- nrow(new.z)
em.output<-em.mixed(y,x,new.z,1,1)
sigma2<-c(em.output$var0)
D.hat<-c(em.output$var1/em.output$var0)
AGH.output<-optim(parm,f,control=list(fnscale=-10, trace=5),hessian=TRUE)
if(abs(parm[1]-AGH.output$par[1])<0.0001) {break}
parm<-AGH.output$par
j<-j+1
cat(j,parm,sigma2,D.hat)
output<-list(sigma.e=sigma2, sigma.u=sigma2*D.hat, parm=parm)
}
output
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B.2 R code for Orange Tree Example using lme4 pack-

age

library(lme4)
tree<-read.csv(file="tree.csv", header=TRUE)
attach(tree)
circumference<-tree$y
age<-tree$day
tree<-tree$tree
# Laplacian Approximation #
(nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,
Orange, start = c(Asym = 200, xmid = 700, scal = 350), REML=F))
#Adaptive Gaussian-Hermite Quadrature Approximation with 5 points #
(nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree,
Orange, start = c(Asym = 200, xmid = 700, scal = 350), nAGQ=5), REML=F))
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B.3 SAS code Orange Tree Example

data tree;
input tree day y;
datalines;
1 118 30
1 484 58
1 664 87
1 1004 115
1 1231 120
1 1372 142
1 1582 145
2 118 33
2 484 69
2 664 111
2 1004 156
2 1231 172
2 1372 203
2 1582 203
3 118 30
3 484 51
3 664 75
3 1004 108
3 1231 115
3 1372 139
3 1582 140
4 118 32
4 484 62
4 664 112
4 1004 167
4 1231 179
4 1372 209
4 1582 214
5 118 30
5 484 49
5 664 81
5 1004 125
5 1231 142
5 1372 174
5 1582 177
run;
/*Adaptive Gaussian Quadrature N_{AGQ}=5*/;
/*Laplacian Approximation, equivalent to N_{AGQ)=1*/;
proc nlmixed data=tree tech=quanew update=bfgs qpoint=1;
parms b1=200 b2=700 b3=350 s2u=1000 s2e=60;
num = b1+u1;
ex = exp(-(day-b2)/b3);
den = 1 + ex;
model y ~ normal(num/den,s2e);
random u1 ~ normal(0,s2u) subject=tree;
run;
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B.4 WinBUGS code for Orange Tree Example

Step 1. To check whether the model notation is correct for use, highlight the word model
first. Then go to the toolbar click on model and specification. In the pop up window, select
check model. If the model notation is correct, on the bottom left corner of the window a
statement ‘model is syntactically correct ’will show and in the Specification Tool window,
the words load data and compile will change from gray to black.

# The Model #
model {
for (i in 1:K) {
u[i,1]~dnorm(0, tau)
for (j in 1:n) {
Y[i, j] ~ dnorm(eta[i, j], tauC)
eta[i, j] <- (phi1+u[i,1]) / (1 + exp(-(x[j]-phi2)/phi3))
}

}
varC ~ dgamma(3, 0.01); var~dgamma(3,0.01)
tau<-1/var; tauC<-1/varC
phi1~dunif(-1000,1000); phi2~dunif(-1000,1000); phi3~dunif(-1000,1000)
}

Step 2. To load data, highlight the word list and check load data. If data is successfully
loaded, on the bottom left corner a statement will show ‘data loaded’. Then click compile
in the Specification Tool window to combine the data and model together.

# The Data #
list(n = 7, K = 5, x = c(118.00, 484.00, 664.00, 1004.00, 1231.00, 1372.00, 1582.00),
Y = structure(
.Data = c(30.00, 58.00, 87.00, 115.00, 120.00, 142.00, 145.00,
33.00, 69.00, 111.00, 156.00, 172.00, 203.00, 203.00,
30.00, 51.00, 75.00, 108.00, 115.00, 139.00, 140.00,
32.00, 62.00, 112.00, 167.00, 179.00, 209.00, 214.00,
30.00, 49.00, 81.00, 125.00, 142.00, 174.00, 177.00),
Dim = c(5, 7)))

Step 3: On specification tool window, click gen inits to generate initials and a statement
‘initial values generated, model initialized’will show on the bottom left corner.

Step 4: To start the Gibbs sampling, go to the tool bar on top and choose model update.
In the pop up Update tool, specify the number of updates and thinning, and click update.
Then go to the tool bar check Inference and samples. In the pop up Sample Monitor Tool
bar type the name of the parameter of interest, e.g. b1, b2,b3 in the node and click each
one so that it can be added for monitoring. Next type * in the node box and specify the
beginning iteration with consideration of the number of burn-in. After setting up all this,
go to the tool bar select model and update, click update in the update tool window. At the
meantime, in the sample monitor tool click trace, density, auto correlations so the pop up
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graphics window will help diagnose the convergence of samples. Click on stats on the sample
monitoring tool to see the descriptive statistics of the parameters that typed in node. If
the chain converges, the descriptive statistics including posterior mean, standard deviation,
MC error, posterior median, 95% prediction interval will show in the stat. Otherwise, if the
chain does not converge, an error message will report instead.
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Appendix C

NIMH Schizophrenia Longitudinal
Data Code

C.1 R code for NIMH Schizophrenia Longitudinal Data

Please see Section I.2

C.2 SAS code for NIMH Schizophrenia Longitudinal

Data
/***Import the Data***/;
DATA one; INFILE ’schizx1.dat’;
INPUT id imps79 imps79b imps79o int tx week sweek txswk ;
run;
DATA one;
set one;
IF imps79 > -9;
run;
data three;
set one;
if imps79o=1 then do;
y1=1; y2=0; y3=0; y4=0;
end;
else if imps79o=2 then do;
y1=0; y2=1; y3=0; y4=0;
end;
else if imps79o=3 then do;
y1=0; y2=0; y3=1; y4=0;
end;
if imps79o=4 then do;
y1=0; y2=0; y3=0; y4=1;
end;
output;
run;
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PROC FORMAT;
VALUE tx 0 = ’placebo’ 1 = ’drug’;

run;
/*** Random Coefficient Model with Cumulative Logit ***/;
PROC GLIMMIX DATA=three METHOD=QUAD(QPOINTS=21) NOCLPRINT;
CLASS id;
MODEL imps79o = tx sweek txswk / SOLUTION DIST=MULTINOMIAL LINK=CUMLOGIT;
/* Random Intercept*/;
RANDOM INTERCEPT / SUBJECT=id;
/*Random Coefficient, COV_{int,slope}=0*/;
RANDOM INTERCEPT sweek / SUBJECT=id;
/*Random Coefficient*/;
RANDOM INTERCEPT sweek / SUBJECT=id type=un;
RUN;
/*** Random Coefficient Model with Adjacent-Category***/;
/*Random Intercept*/;
proc nlmixed data=three method=Gauss tech=newrap qtol=1e-3;
parms alpha1=0, alpha2=0, alpha3=0,beta1=0,beta2=0,beta3=0 s1=1;
/*linear predictor*/;
eta1=alpha1 + beta1*tx + beta2*sweek + beta3*txswk + t;
eta2=alpha2 + beta1*tx + beta2*sweek + beta3*txswk + t;
eta3=alpha3 + beta1*tx + beta2*sweek + beta3*txswk + t;
pi1= 1/(exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);
pi2= exp(eta1)/(exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);
pi3= exp(eta1+eta2)/(exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);
pi4= exp(eta1+eta2+eta3) / (exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);

z = (pi1**y1)*(pi2**y2)*(pi3**y3)*(pi4**y4);
if (z > 1e-15) then ll = log(z);
else ll=-1e100;
model z~ general(ll);
random t ~ normal(0, s1) subject = id;

run;
/*Random Coefficient*/;
proc nlmixed data=three method=Gauss noad qtol=1e-4;
*proc nlmixed data=three method=Gauss qtol=1e-4;
parms alpha1=0, alpha2=0, alpha3=0,beta1=0,beta2=0,beta3=0,s1=1,s2=1;
eta1=alpha1 + beta1*tx + beta2*sweek + beta3*txswk + u1 + u2*sweek;
eta2=alpha2 + beta1*tx + beta2*sweek + beta3*txswk + u1 + u2*sweek;
eta3=alpha3 + beta1*tx + beta2*sweek + beta3*txswk + u1 + u2*sweek;
pi1= 1/(exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);
pi2= exp(eta1)/(exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);
pi3= exp(eta1+eta2)/(exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);
pi4= exp(eta1+eta2+eta3) / (exp(eta1+eta2+eta3)+exp(eta1+eta2) + exp(eta1) + 1);

z = (pi1**y1)*(pi2**y2)*(pi3**y3)*(pi4**y4);
if (z > 1e-8) then ll = log(z);
else ll=-1e100;
model z ~ general(ll);
/*Random Coefficient, COV_{int,slope}=0*/;
random u1 u2 ~ normal([0,0], [s1,0,s2]) subject = id;
/*Random Coefficient*/;

random u1 u2 ~ normal([0,0], [s1,cov12,s2]) subject = id;
run;
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/*** Random Coefficient Model with Backward Continuation Ratio ***/;
/*Random Intercept*/;
proc nlmixed data=three method=Gauss qtol=1e-4;
*proc nlmixed data=three method=Gauss noad qtol=1e-4;
parms alpha2=0, alpha3=0, alpha4=0,beta1=0,beta2=0,beta3=0, s1=1;
/*linear predictor*/;
eta2 = alpha2 + beta1*tx + beta2*sweek + beta3*txswk + u1;
eta3 = alpha3 + beta1*tx + beta2*sweek + beta3*txswk + u1;
eta4 = alpha4 + beta1*tx + beta2*sweek + beta3*txswk + u1;
p4 = exp(eta4)/(1+exp(eta4));
p3 = (1-p4)*exp(eta3)/(1+exp(eta3));
p2 = (1-p3-p4)*exp(eta2)/(1+exp(eta2));
p1 = 1-p2-p3-p4;
/*Define likelihood*/
z = (p1**y1)*(p2**y2)*(p3**y3)*(p4**y4);
if (z > 1e-8) then ll = log(z);
else ll=-1e100;
model z~ General(ll);
random u1 ~ normal(0, s1) subject = id;
run;
/*Random Coefficient*/;
proc nlmixed data=three method=Gauss qtol=1e-4;
*proc nlmixed data=three method=Gauss noad qtol=1e-4;
parms alpha2=0, alpha3=0, alpha4=0,beta1=0,beta2=0,beta3=0, s1=1, s2=1;
/*linear predictor*/;
eta2 = alpha2 + beta1*tx + beta2*sweek + beta3*txswk + u1 + u2*sweek;
eta3 = alpha3 + beta1*tx + beta2*sweek + beta3*txswk + u1 + u2*sweek;
eta4 = alpha4 + beta1*tx + beta2*sweek + beta3*txswk + u1 + u2*sweek;
p4 = exp(eta4)/(1+exp(eta4));
p3 = (1-p4)*exp(eta3)/(1+exp(eta3));
p2 = (1-p3-p4)*exp(eta2)/(1+exp(eta2));
p1 = 1-p2-p3-p4;
z = (p1**y1)*(p2**y2)*(p3**y3)*(p4**y4);
if (z > 1e-8) then ll = log(z);
else ll=-1e100;
model z~ General(ll);

/*Random Coefficient, COV_{int,slope}=0*/;
random u1 u2 ~ normal([0,0], [s1,0,s2]) subject = id;
/*Random Coefficient*/;
random u1 u2 ~ normal([0,0], [s1,cov12,s2]) subject = id;

run;
/*** Random Coefficient Model with Forward Continuation Ratio ***/;
/*Random Intercept*/;
*proc nlmixed data=three method=Gauss qtol=1e-4;
proc nlmixed data=three method=Gauss noad qtol=1e-4;
parms alpha1=0, alpha2=0, alpha3=0,beta1=0,beta2=0,beta3=0, s1=1;
/*linear predictor*/;
eta1 = alpha1 + beta1*tx + beta2*sweek + beta3*txswk + u1;
eta2 = alpha2 + beta1*tx + beta2*sweek + beta3*txswk + u1;
eta3 = alpha3 + beta1*tx + beta2*sweek + beta3*txswk + u1;
p1 = exp(eta1)/(1+exp(eta1));
p2 = (1-p1)*exp(eta2)/(1+exp(eta2));
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p3 = (1-p1-p2)*exp(eta3)/(1+exp(eta3));
p4 = 1-p1-p2-p3;
/*Define likelihood*/
z = (p1**y1)*(p2**y2)*(p3**y3)*(p4**y4);
if (z > 1e-8) then ll = log(z);
else ll=-1e100;
model z~ General(ll);
random u1 ~ normal(0, s1) subject = id;
run;
/*Random Coefficient*/;
proc nlmixed data=three method=Gauss qtol=1e-4;
*proc nlmixed data=three method=Gauss noad qtol=1e-4;
parms alpha1=0, alpha2=0, alpha3=0,beta1=0,beta2=0,beta3=0, s1=1,s2=1;
/*linear predictor*/;
eta1 = alpha1 + beta1*tx + beta2*sweek + beta3*txswk + u1 + u2*sweek;
eta2 = alpha2 + beta1*tx + beta2*sweek + beta3*txswk + u1 + u2*sweek;
eta3 = alpha3 + beta1*tx + beta2*sweek + beta3*txswk + u1 + u2*sweek;
p1 = exp(eta1)/(1+exp(eta1));
p2 = (1-p1)*exp(eta2)/(1+exp(eta2));
p3 = (1-p1-p2)*exp(eta3)/(1+exp(eta3));
p4 = 1-p1-p2-p3;
/*Define likelihood*/
z = (p1**y1)*(p2**y2)*(p3**y3)*(p4**y4);
if (z > 1e-8) then ll = log(z);
else ll=-1e100;
model z~ General(ll);

/*Random Coefficient, COV_{int,slope}=0*/;
random u1 u2 ~ normal([0,0], [s1,0,s2]) subject = id;
/*Random Coefficient*/;
random u1 u2 ~ normal([0,0], [s1,cov12,s2]) subject = id;

run;
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C.3 R code for NIMH Schizophrenia Longitudinal Data

using ordinal pacakge

NIMH<-read.csv("NIMH Schizophrenia.csv")
attach(NIMH)
library(ordinal)
library(MASS)
# Random Intercept model #
# Nonadpative #
output1<-clmm(as.factor(imps79o)~tx+sweek+txswk+(1|id),link="logit",
threshold=’flexible’,nAGQ= -7)
# Adaptive #
output1<-clmm(as.factor(imps79o)~tx+sweek+txswk+(1|id),link="logit",
threshold=’flexible’,nAGQ= 3)
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Appendix D

NIMH Schizophrenia Longitudinal
Data Additional Results

D.1 Random Coefficient Model with Adjacent Cate-

gories Logit
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Table D.1: R output: Random Intercept Model with Adjacent Categories Logit

Nonadaptive Gauss-Hermite Quadrature, NGQ = 21

Parameter Estimate SE DF t-value P-value
α1 4.40 0.296 436 14.88 <0.0001*
α2 1.96 0.244 436 8.05 <0.0001*
α3 0.88 0.214 436 4.09 <0.0001*

βdrug -0.05 0.240 436 -0.21 0.84
βtime -0.61 0.101 436 -6.03 <0.0001*

βdrug×time -0.89 0.119 436 -7.45 <0.0001*
σ2
int 2.15 0.301 436 7.15 <0.0001*

−logL 1698.0
Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-value P-value
α1 4.39 0.307 436 14.28 <0.0001*
α2 1.96 0.259 436 7.57 <0.0001*
α3 0.87 0.231 436 3.78 <0.0001*

βdrug -0.05 0.265 436 -0.18 0.85
βtime -0.61 0.104 436 -5.87 <0.0001*

βdrug×time -0.89 0.124 436 -7.17 <0.0001*
σ2
int 2.12 0.296 436 7.16 <0.0001*

−logL 1698.9
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Table D.2: SAS output: Random Intercept Model with Adjacent Categories Logit

Nonadaptive Gauss-Hermite Quadrature, NGQ = 21

Parameter Estimate SE DF t-value P-value
α1 4.40 0.296 436 14.88 <0.0001*
α2 1.96 0.244 436 8.05 <0.0001*
α3 0.88 0.214 436 4.09 <0.0001*

βdrug -0.05 0.240 436 -0.21 0.83
βtime -0.61 0.101 436 -6.03 <0.0001*

βdrug×time -0.89 0.120 436 -7.44 <0.0001*
σ2
int 2.15 0.301 436 7.15 <0.0001*

−logL 1698.0
Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-value P-value
α1 4.38 0.295 436 14.89 <0.0001*
α2 1.96 0.243 436 8.06 <0.0001*
α3 0.87 0.214 436 4.09 <0.0001*

βdrug -0.05 0.239 436 -0.20 0.84
βtime -0.61 0.101 436 -6.03 <0.0001*

βdrug×time -0.89 0.119 436 -7.42 <0.0001*
σ2
int 2.12 0.30 436 7.16 <0.0001*

−logL 1699.0
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Table D.3: R output: Random Coefficient Model with Adjacent Categories Logit assuming
COV(σint, σslope) = 0

Nonadaptive Gauss-Hermite Quadrature, NGQ = 21

Parameter Estimate SE DF t-value P-value
α1 5.48 0.385 435 14.24 <0.0001*
α2 2.23 0.278 435 8.00 <0.0001*
α3 0.73 0.236 435 3.09 0.002*

βdrug 0.08 0.264 435 0.31 0.76
βtime -0.57 0.151 435 -3.81 0.0002*

βdrug×time -1.33 0.189 435 -7.05 <0.0001*
σ2
int 2.65 0.470 435 5.65 <0.0001*

σ2
slope 0.81 0.189 435 4.28 <0.0001*
−logL 1668.9
Adaptive Gauss-Hermite Quadrature, NAGQ = 9

Parameter Estimate SE DF t-value P-value
α1 5.48 0.382 435 14.34 <0.0001*
α2 2.23 0.275 435 8.09 <0.0001*
α3 0.73 0.233 435 3.14 0.002*

βdrug 0.08 0.260 435 0.31 0.76
βtime -0.57 0.150 435 -3.82 0.0002*

βdrug×time -1.33 0.189 435 -7.07 <0.0001*
σ2
int 2.65 0.467 435 5.67 <0.0001*

σ2
slope 0.80 0.188 435 4.29 < 0.0001*
−logL 1668.9
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Table D.4: SAS output: Random Coefficient Model with Adjacent Categories Logit assuming
COV(σint, σslope) = 0

Nonadaptive Gauss-Hermite Quadrature ,NGQ = 21

Parameter Estimate SE DF t-value P-value
α1 5.49 0.387 435 14.24 <0.0001*
α2 2.24 0.278 435 8.00 <0.0001*
α3 0.75 0.234 435 3.10 0.002*

βdrug 0.06 0.262 435 0.31 0.76
βtime -0.57 0.146 435 -3.81 0.0002*

βdrug×time -1.34 0.187 435 -7.05 <0.0001*
σ2
int 2.66 0.467 435 5.69 <0.0001*

σ2
slope 0.80 0.182 435 4.43 <0.0001*
−logL 1668.9
Adaptive Gauss-Hermite Quadrature, NAGQ = 9

Parameter Estimate SE DF t-value P-value
α1 5.48 0.385 435 14.21 <0.0001*
α2 2.23 0.278 435 8.05 <0.0001*
α3 0.73 0.236 435 3.19 0.0015*

βdrug 0.08 0.265 435 0.23 0.82
βtime -0.58 0.151 435 -3.92 0.0001*

βdrug×time -1.33 0.189 435 -7.17 <0.0001*
σ2
int 2.66 0.470 435 5.69 <0.0001*

σ2
slope 0.80 0.189 435 4.43 <0.0001*
−logL 1668.9
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Table D.5: R output: Random Coefficient Model with Adjacent Categories

Adaptive Gauss-Hermite Quadrature, NAGQ = 9

Parameter Estimate SE DF t-value P-value
α1 5.94 0.456 435 13.02 <0.0001*
α2 2.58 0.349 435 7.38 <0.0001*
α3 0.86 0.291 435 2.95 0.003*

βdrug 0.07 0.323 435 0.21 0.83
βtime -0.71 0.180 435 -3.97 0.0001*

βdrug×time -1.38 0.212 435 -6.51 < 0.0001*
σ2
int 4.34 0.892 435 4.87 <0.0001*

σint,slope -0.85 0.331 435 -2.56 0.01*
σ2
slope 1.26 0.325 435 3.88 0.0001*
−logL 1663.6

Table D.6: SAS output: Random Coefficient Model with Adjacent Categories

Adaptive Gauss-Hermite Quadrature, NAGQ = 9

Parameter Estimate SE DF t-value P-value
α1 6.02 0.458 435 13.14 <0.0001*
α2 2.62 0.348 435 7.55 <0.0001*
α3 0.88 0.290 435 3.02 0.003*
β1 0.07 0.321 435 0.21 0.83
β2 -0.73 0.182 435 -4.02 <0.0001*
β3 -1.39 0.216 435 -6.47 <0.0001*
σu2

1
4.62 0.980 435 4.72 <0.0001*

σu1,u2 -0.97 0.374 435 -2.59 0.01*
σu2

2
1.35 0.315 435 4.28 <0.0001*

−logL 1663.1
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D.2 Random Coefficient Model with Backward Con-

tinuation Ratio

Table D.7: R output: Random Intercept Model with Backward Continuation Ratio

Nonadaptive Gauss-Hermite Quadrature, NGQ = 3

Parameter Estimate SE DF t-value P-value
α2 5.22 0.302 436 17.28 <0.0001*
α3 2.39 0.261 436 9.15 <0.0001*
α4 0.90 0.232 436 3.88 <0.0001*
β1 -0.45 0.262 436 -1.71 0.09
β2 -0.75 0.118 436 -6.31 <0.0001*
β3 -0.96 0.136 436 -7.06 <0.0001*
σ2
u 2.23 0.231 436 9.66 <0.0001*

−logL 1710.4
Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-value P-value
α2 5.18 0.323 436 16.05 <0.0001*
α3 2.26 0.276 436 8.17 <0.0001*
α4 0.68 0.252 436 2.71 0.007*
β1 -0.14 0.286 436 -0.48 0.63
β2 -0.76 0.120 436 -6.35 <0.0001*
β3 -1.02 0.140 436 -7.28 <0.0001*
σ2
u 3.10 0.395 436 7.84 <0.0001*

−logL 1702.5
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Table D.8: SAS output: Random Intercept Model with Backward Continuation Ratio

Nonadaptive Gauss-Hermite Quadrature, NGQ = 3

Parameter Estimate SE DF t-value P-value
α2 5.22 0.302 436 17.28 <0.0001*
α3 2.39 0.261 436 9.16 <0.0001*
α4 0.90 0.232 436 3.88 0.0001*
β1 -0.45 0.262 436 -1.71 0.09
β2 -0.75 0.118 436 -6.32 <0.0001*
β3 -0.96 0.136 436 -7.06 <0.0001*
σ2
u 2.23 0.231 436 9.66 <0.0001*

−logL 1710.4
Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-value P-value
α2 5.19 0.324 436 16.04 <0.0001*
α3 2.27 0.277 436 8.17 <0.0001*
α4 0.69 0.253 436 2.71 0.007*
β1 -0.14 0.287 436 -0.48 0.63
β2 -0.76 0.120 436 -6.35 <0.0001*
β3 -1.02 0.140 436 -7.30 <0.0001*
σ2
u 3.14 0.401 436 7.82 <0.0001*

−logL 1701.9
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Table D.9: R output: Random Coefficient Model with Backward Continuation Ratio assum-
ing COV(σint, σslope) = 0

Nonadaptive Gauss-Hermite Quadrature, NGQ = 9

Parameter Estimate SE DF t-value P-value
α2 6.26 0.406 435 15.43 <0.0001*
α3 2.56 0.311 435 8.22 <0.0001*
α4 0.59 0.273 435 2.17 0.03*
β1 -0.005 0.307 435 -0.02 0.99
β2 -0.67 0.169 435 -3.96 <0.0001*
β3 -1.51 0.211 435 -7.20 <0.0001*
σ2
u1

3.67 0.587 435 6.26 <0.0001*
σ2
u2

1.11 0.230 435 4.83 <0.0001*
−logL 1557.2
Adaptive Gauss-Hermite Quadrature, NAGQ = 7

Parameter Estimate SE DF t-value P-value
α2 6.23 0.399 435 15.64 <0.0001*
α3 2.54 0.306 435 8.30 <0.0001*
α4 0.57 0.271 435 2.11 0.04*
β1 0.04 0.306 435 0.12 0.90
β2 -0.69 0.172 435 -3.99 0.0001*
β3 -1.50 0.211 435 -7.09 <0.0001*
σ2
u1

3.62 0.577 435 6.27 < 0.0001*
σ2
u2

1.06 0.231 435 4.57 < 0.0001*
−logL 1672.0
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Table D.10: SAS output: Random Coefficient Model with Backward Continuation Ratio
assuming COV(σint, σslope) = 0

Nonadaptive Gauss-Hermite Quadrature ,NGQ = 9

Parameter Estimate SE DF t-value P-value
α2 6.27 0.406 435 15.42 <0.0001*
α3 2.56 0.311 435 8.25 <0.0001*
α4 0.59 0.273 435 2.16 0.03*
β1 0.004 0.308 435 0.01 0.99
β2 -0.68 0.169 435 -4.03 <0.0001*
β3 -1.51 0.211 435 -7.17 <0.0001*
σ2
u1

3.67 0.591 435 6.20 <0.0001*
σ2
u2

1.07 0.229 435 4.69 <0.0001*
−logL 1671.8
Adaptive Gauss-Hermite Quadrature, NAGQ = 7

Parameter Estimate SE DF t-value P-value
α2 6.25 0.401 435 15.58 <0.0001*
α3 2.55 0.307 435 8.30 <0.0001*
α4 0.57 0.271 435 2.11 0.04*
β1 0.04 0.307 435 0.12 0.90
β2 -0.69 0.172 435 -3.98 <0.0001*
β3 -1.50 0.212 435 -7.10 <0.0001*
σ2
u1

3.66 0.589 435 6.22 <0.0001*
σ2
u2

1.07 0.236 435 4.55 <0.0001*
−logL 1671.8
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Table D.11: R output: Random Coefficient Model with Backward Continuation Ratio

Adaptive Gauss-Hermite Quadrature, NAGQ = 9

Parameter Estimate SE DF t-value P-value
α2 6.71 0.460 435 14.57 <0.0001*
α3 2.92 0.370 435 7.91 <0.0001*
α4 0.75 0.325 435 2.30 0.02*
β1 0.03 0.363 435 0.08 0.94
β2 -0.84 0.200 435 -4.21 <0.0001*
β3 -1.54 0.236 435 -6.53 <0.0001*
σu2

1
5.87 1.073 435 5.48 <0.0001*

σu1,u2 -1.18 0.412 435 -2.87 0.004*
σu2

2
1.65 0.432 435 3.83 0.0001*

−logL 1665.3
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Table D.12: SAS output: Random Coefficient Model with Backward Continuation Ratio

Nonadaptive Gauss-Hermite Quadrature ,NGQ = 21

Parameter Estimate SE DF t-value P-value
α2 6.79 0.475 435 14.28 <0.0001*
α3 2.98 0.380 435 7.83 <0.0001*
α4 0.77 0.332 435 2.32 0.02*
β1 0.03 0.369 435 0.08 0.94
β2 -0.86 0.205 435 -4.21 <0.0001*
β3 -1.55 0.240 435 -6.48 <0.0001*
σu2

1
6.24 1.189 435 5.25 <0.0001*

σu1,u2 -1.35 0.463 435 -2.91 0.004*
σu2

2
1.76 0.382 435 4.61 <0.0001*

−logL 1664.6
Adaptive Gauss-Hermite Quadrature, NAGQ = 9

Parameter Estimate SE DF t-value P-value
α2 6.78 0.473 435 14.35 <0.0001*
α3 2.98 0.379 435 7.85 <0.0001*
α4 0.77 0.332 435 2.33 0.02*
β1 0.03 0.369 435 0.08 0.94
β2 -0.86 0.205 435 -4.21 <0.0001*
β3 -1.55 0.240 435 -6.47 <0.0001*
σu2

1
6.24 1.19 435 5.26 <0.0001*

σu1,u2 -1.35 0.467 435 -2.88 0.004*
σu2

2
1.76 0.377 435 4.67 <0.0001*

−logL 1664.7
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D.3 Random Coefficient Model with Forward Contin-

uation Ratio

Table D.13: R output: Random Intercept Model with Forward Continuation Ratio

Nonadaptive Gauss-Hermite Quadrature, NGQ = 3

Parameter Estimate SE DF t-value P-value
α1 -5.38 0.296 436 -18.19 <0.0001*
α2 -2.80 0.258 436 -10.86 <0.0001*
α3 -1.17 0.238 436 -4.91 <0.0001*
β1 0.27 0.267 436 1.03 0.30
β2 0.66 0.118 436 5.62 <0.0001*
β3 1.06 0.137 436 7.77 <0.0001*
σ2
u 2.27 0.230 436 9.89 <0.0001*

−logL 1709.8
Adaptive Gauss-Hermite Quadrature, NAGQ = 5

Parameter Estimate SE DF t-value P-value
α1 -5.39 0.312 436 -17.25 <0.0001*
α2 -2.69 0.269 436 -10.03 <0.0001*
α3 -0.97 0.253 436 -3.84 0.0001*
β1 -0.01 0.286 436 -0.05 0.96
β2 0.67 0.119 436 5.61 <0.0001*
β3 1.14 0.140 436 8.15 <0.0001*
σ2
u 3.13 0.392 436 7.98 <0.0001*

−logL 1701.9

254



Table D.14: SAS output: Random Intercept Model with Forward Continuation Ratio

Nonadaptive Gauss-Hermite Quadrature, NGQ = 3

Parameter Estimate SE DF t-value P-value
α1 -5.38 0.296 436 -18.19 <0.0001*
α2 -2.80 0.258 436 -10.86 <0.0001*
α3 -1.17 0.238 436 -4.91 <0.0001*
β1 0.28 0.267 436 1.03 0.30
β2 0.66 0.118 436 5.62 <0.0001*
β3 1.06 0.137 436 7.77 <0.0001*
σ2
u 2.27 0.230 436 9.89 <0.0001*

−logL 1709.8
Adaptive Gauss-Hermite Quadrature, NAGQ = 5

Parameter Estimate SE DF t-value P-value
α1 -5.39 0.313 436 -17.25 <0.0001*
α2 -2.69 0.269 436 -10.03 <0.0001*
α3 -0.97 0.253 436 -3.84 0.0001*
β1 -0.01 0.286 436 -0.05 0.96
β2 0.67 0.119 436 5.61 <0.0001*
β3 1.14 0.140 436 8.16 <0.0001*
σ2
u 3.13 0.392 436 7.98 <0.0001*

−logL 1701.9
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Table D.15: R output: Random Coefficient Model with Forward Continuation Ratio assum-
ing COV(σint, σslope) = 0

Nonadaptive Gauss-Hermite Quadrature, NGQ = 21

Parameter Estimate SE DF t-value P-value
α1 -6.35 0.382 435 -16.62 < 0.0001*
α2 -2.85 0.291 435 -9.77 < 0.0001*
α3 -0.81 0.267 435 -3.03 0.003*
β1 -0.13 0.301 435 -0.43 0.67
β2 0.62 0.172 435 3.63 0.0003*
β3 1.58 0.210 435 7.51 < 0.0001*
σ2
u1

3.46 0.566 435 6.12 < 0.0001*
σ2
u2

1.09 0.231 435 4.73 < 0.0001*
−logL 1668.3
Adaptive Gauss-Hermite Quadrature, NAGQ = 7

Parameter Estimate SE DF t-value P-value
α1 -6.33 0.378 435 -16.72 <0.0001*
α2 -2.84 0.290 435 -9.79 <0.0001*
α3 -0.81 0.266 435 -3.03 0.0026*
β1 -0.13 0.300 435 -0.43 0.67
β2 0.62 0.171 435 3.64 0.0003*
β3 1.57 0.209 435 7.52 <0.0001*
σ2
u1

3.42 0.555 435 6.17 < 0.0001*
σ2
u2

1.07 0.226 435 4.76 < 0.0001*
−logL 1668.5
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Table D.16: SAS output: Random Coefficient Model with Forward Continuation Ratio
assuming COV(σint, σslope) = 0

Nonadaptive Gauss-Hermite Quadrature ,NGQ = 21

Parameter Estimate SE DF t-value P-value
α1 -6.35 0.382 435 -16.62 <0.0001*
α2 -2.85 0.291 435 -9.77 <0.0001*
α3 -0.81 0.267 435 -3.02 0.003*
β1 -0.13 0.301 435 -0.43 0.67
β2 0.63 0.172 435 3.63 0.0003*
β3 1.58 0.210 435 7.51 <0.0001*
σ2
u1

3.46 0.566 435 6.12 <0.0001*
σ2
u2

1.09 0.231 435 4.73 <0.0001*
−logL 1668.3
Adaptive Gauss-Hermite Quadrature, NAGQ = 7

Parameter Estimate SE DF t-value P-value
α1 -6.35 0.382 435 -16.62 <0.0001*
α2 -2.85 0.291 435 -9.77 <0.0001*
α3 -0.81 0.267 435 -3.02 0.003*
β1 -0.13 0.301 435 -0.43 0.67
β2 0.63 0.172 435 3.63 0.0003*
β3 1.58 0.210 435 7.51 <0.0001*
σ2
u1

3.46 0.566 435 6.12 <0.0001*
σ2
u2

1.09 0.231 435 4.73 <0.0001*
−logL 1668.4
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Table D.17: R output: Random Coefficient Model with Forward Continuation Ratio

Adaptive Gauss-Hermite Quadrature, NAGQ = 7

Parameter Estimate SE DF t-value P-value
α1 -6.68 0.429 435 -15.55 <0.0001*
α2 -3.10 0.340 435 -9.12 <0.0001*
α3 -0.92 0.307 435 -3.01 0.003*
β1 -0.10 0.342 435 -0.30 0.77
β2 0.75 0.193 435 3.87 0.0001*
β3 1.58 0.227 435 6.99 <0.0001*
σu2

1
5.09 0.957 435 5.32 <0.0001*

σu1,u2 -0.88 0.361 435 -2.44 0.02*
σu2

2
1.50 0.395 435 3.80 0.0002*

−logL 1414.2
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Table D.18: SAS output: Random Coefficient Model with Forward Continuation Ratio

Nonadaptive Gauss-Hermite Quadrature ,NGQ = 31

Parameter Estimate SE DF t-value P-value
α1 -6.86 0.457 435 -14.99 <0.0001*
α2 -3.22 0.363 435 -8.86 <0.0001*
α3 -0.98 0.326 435 -3.00 <0.002*
β1 -0.10 0.362 435 -0.27 0.79
β2 0.80 0.204 435 3.91 0.0001*
β3 1.61 0.237 435 6.79 <0.0001*
σu2

1
5.95 1.176 435 5.06 <0.0001*

σu1,u2 -1.27 0.470 435 -2.69 0.007*
σu2

2
1.75 0.375 435 4.67 <0.0001*

−logL 1662.4
Adaptive Gauss-Hermite Quadrature, NAGQ = 7

Parameter Estimate SE DF t-value P-value
α1 -6.68 0.429 435 -15.54 <0.0001*
α2 -3.10 0.340 435 -9.11 <0.0001*
α3 -0.92 0.307 435 -3.01 0.003*
β1 -0.10 0.343 435 -0.30 0.77
β2 0.75 0.193 435 3.87 0.0001*
β3 1.58 0.227 435 6.99 <0.0001*
σu2

1
5.09 0.957 435 5.32 <0.0001*

σu1,u2 -0.88 0.361 435 -2.44 0.02*
σu2

2
1.50 0.395 435 3.80 0.0002*

−logL 1664.3
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Appendix E

Health Service Research Example
Code

E.1 R code for Health Service Research Example

Please see Section I.3

E.2 SAS code for Health Service Research Example

OPTIONS NOCENTER ;
TITLE ’Mixed-effects Analyses of San Diego Homeless Data’;
DATA one;
INFILE "\sdhouse.DAT";
INPUT Id Housing Int Section8 Time1 Time2 Time3 Sect8T1 Sect8T2 Sect8T3

NonSect8 LinTime S8LinT ;
IF Housing = 999 then Housing = .;run;

DATA one;
set one;
if housing = 0 then do ;
y1=1; y2=0; y3=0;
end;
else if housing=1 then do;
y1=0; y2=1; y3=0;
end;
else if housing=2 then do;
y1=0; y2=0; y3=1;
end;
output;
run;
/* fixed-effects proportional odds model */
PROC LOGISTIC DESCENDING DATA=one;
MODEL Housing = Time1 Time2 Time3 Section8 Sect8T1 Sect8T2 Sect8T3;
RUN;
/* Cumulative logit: Random-intercept proportional odds model*/
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PROC GLIMMIX DATA=one METHOD=QUAD(QPOINTS=21) NOCLPRINT;
CLASS id;
MODEL Housing =Time1 Time2 Time3 Section8 Sect8T1 Sect8T2 Sect8T3 /

SOLUTION DIST=MULTINOMIAL LINK=CUMLOGIT;
RANDOM INTERCEPT / SUBJECT=id;
RUN;
/*Adjacent Category: Random-intercept proportional odds model*/
PROC NLMIXED DATA=one method=Gauss tech=newrap qtol=1e-3;
parms alpha1=0, alpha2=0, beta1=0, beta2=0, beta3=0, beta4=0,

beta5=0, beta6=0, beta7=0 s1=1;
eta1 = alpha1 + beta1*Time1 + beta2*Time2 + beta3*Time3 +

beta4*Section8 + beta5*Sect8T1 + beta6*Sect8T2 + beta7*Sect8T3 + u;
eta2 = alpha2 + beta1*Time1 + beta2*Time2 + beta3*Time3 +

beta4*Section8 + beta5*Sect8T1 + beta6*Sect8T2 + beta7*Sect8T3 + u;
pi1 = 1/(exp(eta1+eta2) + exp(eta1) + 1);
pi2 = exp(eta1)/(exp(eta1+eta2) + exp(eta1) + 1);
pi3 = exp(eta1+eta2)/(exp(eta1+eta2) + exp(eta1) + 1);
z=(pi1**y1)*(pi2**y2)*(pi3**y3);
ll=log(z);
model z~general(ll);
random u~normal(0, s1) subject=id;
run;
/*Backward Continuation Ratio:Random-intercept proportional odds model*/
PROC NLMIXED DATA=one method=Gauss tech=newrap qtol=1e-3;
parms alpha2=0, alpha3=0, beta1=0, beta2=0, beta3=0, beta4=0,

beta5=0, beta6=0, beta7=0 s1=1;
eta2 = alpha2 + beta1*Time1 + beta2*Time2 + beta3*Time3 +

beta4*Section8 + beta5*Sect8T1 + beta6*Sect8T2 + beta7*Sect8T3 + u;
eta3 = alpha3 + beta1*Time1 + beta2*Time2 + beta3*Time3 +

beta4*Section8 + beta5*Sect8T1 + beta6*Sect8T2 + beta7*Sect8T3 + u;
pi3 = exp(eta3)/(1+exp(eta3));
pi2 = (1-pi3)*exp(eta2)/(1+exp(eta2));
pi1 = 1-pi2-pi3;
z=(pi1**y1)*(pi2**y2)*(pi3**y3);
ll=log(z);
model z~general(ll);
random u~normal(0, s1) subject=id;
run;
/*Forward Continuation Ratio:Random-intercept proportional odds model*/
PROC NLMIXED DATA=one method=Gauss tech=newrap qtol=1e-3;
parms alpha1=0, alpha2=0, beta1=0, beta2=0, beta3=0, beta4=0,

beta5=0, beta6=0, beta7=0, s1=1;
eta1 = alpha1 + beta1*Time1 + beta2*Time2 + beta3*Time3 +

beta4*Section8 + beta5*Sect8T1 + beta6*Sect8T2 + beta7*Sect8T3 + u;
eta2 = alpha2 + beta1*Time1 + beta2*Time2 + beta3*Time3 +

beta4*Section8 + beta5*Sect8T1 + beta6*Sect8T2 + beta7*Sect8T3 + u;
pi1 = exp(eta1)/(1+exp(eta1));
pi2 = (1-pi1)*exp(eta2)/(1+exp(eta2));
pi3 = 1-pi1-pi2;
z=(pi1**y1)*(pi2**y2)*(pi3**y3);
ll=log(z);
model z~general(ll);
random u~normal(0, s1) subject=id;
run;
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Appendix F

Health Service Research Example
Additional Results

F.1 Health Service Research Example output: Ran-

dom Intercept Model with Adjacent-Category Logit

Table F.1: R output: Random Intercept Model with Adjacent-Category Logit

Adaptive Gauss-Hermite Quadrature, NAGQ = 10

Parameter Estimate SE DF t-stat P-value
α1 -0.33 0.169 -1.99 360 0.05*
α2 -2.28 0.218 -10.48 360 <0.0001*

6 Month 1.43 0.200 7.14 360 <0.0001*
12 Month 1.94 0.215 9.00 360 <0.0001*
24 Month 2.07 0.219 9.47 360 <0.0001*
Section 8 0.42 0.229 1.81 360 0.07

Section 8 at 6 Month 1.16 0.288 4.02 360 <0.0001*
Section 8 at 12 Month 0.89 0.298 2.97 360 <0.0001*
Section 8 at 24 Month 0.47 0.292 1.61 360 0.11

σ2
int 1.49

-logL 1142.27
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Table F.2: SAS output: Random Intercept Model with Adjacent-Category Logit

Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-stat P-value
α1 -0.33 0.168 -1.99 360 0.05*
α2 -2.28 0.217 -10.49 360 <0.0001*

6 Month 1.42 0.200 7.13 360 <0.0001*
12 Month 1.93 0.215 9.00 360 <0.0001*
24 Month 2.07 0.219 9.47 360 <0.0001*
Section 8 0.42 0.229 1.81 360 0.07

Section 8 at 6 Month 1.16 0.288 4.02 360 <0.0001*
Section 8 at 12 Month 0.88 0.298 2.97 360 <0.0001*
Section 8 at 24 Month 0.47 0.291 1.60 360 0.11

σ2
int 1.47

-logL 1142.65

F.2 Random Intercept Model with Backward Contin-

uation Ratio
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Table F.3: R output: Random Intercept Model with Backward Continuation Ratio

Adaptive Gauss-Hermite Quadrature, NAGQ = 10

Parameter Estimate SE DF t-stat P-value
α1 -0.45 0.189 -2.40 360 0.02*
α2 -2.82 0.223 -12.65 360 <0.0001*

6 Month 1.67 0.220 7.57 360 <0.0001*
12 Month 2.25 0.235 9.58 360 <0.0001*
24 Month 2.37 0.240 9.86 360 <0.0001*
Section 8 0.45 0.259 1.75 360 0.08

Section 8 at 6 Month 1.31 0.321 4.09 360 0.0001*
Section 8 at 12 Month 0.98 0.331 2.96 360 0.003*
Section 8 at 24 Month 0.55 0.326 1.69 360 0.09

σ2
int 1.93

-logL 1141.40

Table F.4: SAS output: Random Intercept Model with Backward Continuation Ratio

Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-stat P-value
α1 -0.45 0.188 -2.41 360 0.02*
α2 -2.81 0.222 -12.67 360 <0.0001*

6 Month 1.67 0.220 7.56 360 <0.0001*
12 Month 2.24 0.234 9.57 360 <0.0001*
24 Month 2.36 0.240 9.86 360 <0.0001*
Section 8 0.45 0.259 1.75 360 0.08

Section 8 at 6 Month 1.31 0.321 4.08 360 0.0001*
Section 8 at 12 Month 0.98 0.331 2.96 360 0.003*
Section 8 at 24 Month 0.55 0.326 1.68 360 0.09

σ2
int 1.91

-logL 1141.75
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F.3 Random Intercept Model with Forward Continu-

ation Ratio Logit

Table F.5: R output: Random Intercept Model with Forward Continuation Ratio

Adaptive Gauss-Hermite Quadrature, NAGQ = 10

Parameter Estimate SE DF t-stat P-value
α1 0.12 0.185 0.66 360 0.51
α2 2.52 0.227 11.07 360 <0.0001*

6 Month -1.55 0.220 -7.04 360 <0.0001*
12 Month -2.08 0.232 -8.96 360 <0.0001*
24 Month -2.29 0.237 -9.64 360 <0.0001*
Section 8 -0.46 0.257 -1.81 360 0.07

Section 8 at 6 Month -1.33 0.319 -4.15 360 <0.0001*
Section 8 at 12 Month -1.14 0.332 -3.45 360 <0.0001*
Section 8 at 24 Month -0.60 0.326 -1.84 360 0.07

σ2
int 1.86

-logL 1138.63
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Table F.6: SAS output: Random Intercept Model with Forward Continuation Ratio

Adaptive Gauss-Hermite Quadrature, NAGQ = 3

Parameter Estimate SE DF t-stat P-value
α1 0.12 0.184 0.66 360 0.51
α2 2.51 0.227 11.08 360 <0.0001*

6 Month -1.55 0.220 -7.04 360 <0.0001*
12 Month -2.08 0.232 -8.95 360 <0.0001*
24 Month -2.29 0.237 -9.64 360 <0.0001*
Section 8 -0.46 0.256 -1.81 360 0.07

Section 8 at 6 Month -1.32 0.319 -4.15 360 <0.0001*
Section 8 at 12 Month -1.14 0.332 -3.44 360 0.0006*
Section 8 at 24 Month -0.60 0.326 -1.83 360 0.07

σ2
int 1.82

-logL 1138.15
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Appendix G

GSE10006 Smoking Study Additional
Results

Table G.1: A full list of Affymetrix probes detected by Forward Stagwise method using
N-fold cross validation in GSE10006 data from the smoking study. All probes are matched
to Gene Symbol using R package hgu133a2.db.

No. AFFY Probe Gene Symbol CV%

1 205281 s at PIGA 100%
2 229623 at 98.3%
3 240727 s at 96.6%
4 202435 s at CYP1B1 91.4%
5 202436 s at CYP1B1 89.7%
6 1557136 at 87.9%
7 209331 s at MAX 87.9%
8 219563 at LINC00341 87.9%
9 201387 s at UCHL1 86.2%
10 205064 at SPRR1B 86.2%
11 211220 s at HSF2 86.2%
12 205513 at TCN1 84.5%
13 224901 at 72.4%
14 202254 at SIPA1L1 70.7%
15 242755 at 65.5%
16 229354 at 62.1%
17 218980 at FHOD3 56.9%
18 222288 at 53.4%
19 234541 s at 50%

Continued on next page
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Table G.1 – Continued from previous page

No. AFFY probe Gene Symbol CV%

20 227787 s at 22.4%
21 232098 at 19%
22 1559403 at 17.2%
23 229302 at 12.1%
24 236261 at 12.1%
25 1565921 a at 10.3%
26 222662 at 10.3%
27 217997 at PHLDA1 6.9%
28 231061 at 6.9%
29 823 at CX3CL1 6.9%
31 1560105 at 5.2%
32 211998 at H3F3A 5.2%
33 211998 at H3F3B 5.2%
34 226545 at 5.2%
35 243635 at 5.2%
36 202341 s at TRIM2 3.4%
37 220494 s at 3.4%
38 237972 at 3.4%
39 241772 at 3.4%
40 1555682 at 1.7%
41 1558794 at 1.7%
42 1566032 at 1.7%
43 204427 s at TMED2 1.7%
44 208456 s at RRAS2 1.7%
45 213069 at HEG1 1.7%
46 213989 x at SETD4 1.7%
47 215253 s at RCAN1 1.7%
48 221886 at DENND2A 1.7%
49 224570 s at 1.7%
50 224894 at 1.7%
51 229378 at 1.7%
52 232898 at 1.7%
53 237351 at 1.7%
54 240418 at 1.7%
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Appendix H

Glue Grant Burn Injury Study
Example Additional Results

Table H.1: A full list of Affymetrix probes detected by Forward Stagwise method using cross
validation from Glue Grant burn injury data with modified Marshall score assessed on renal
system as the ordinal outcome. All probes are matched to Gene Symbol using R package
hgu133a2.db. The probe set having a non-zero coefficient is ordered in a descending order
of CV% where CV% represents the percentage of times a probe set was identified by GMIFS
in the cross-validation models. The test dataset in each cross-validation model includes five
subjects.

No. AFFY Probe Gene Symbol CV%

1 1556471 at 100%
2 203932 at HLA-DMB 100%
3 209446 s at 100%
4 209770 at BTN3A1 100%
5 212033 at RBM25 100%
6 214088 s at FUT3 100%
7 214909 s at DDAH2 100%
8 222982 x at 100%
9 224414 s at 100%
10 224935 at 100%
11 226932 at 100%
12 227616 at 100%
13 38918 at SOX13 100%
14 209514 s at RAB27A 97%

Continued on next page
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Table H.1 – Continued from previous page

No. AFFY probe Gene Symbol CV%

15 214025 at DDX28 97%
16 224478 s at 97%
17 241710 at 97%
18 39817 s at C6orf108 97%
19 218191 s at LMBRD1 93.9%
20 1553286 at 84.8%
21 227091 at 84.8%
22 229382 at 84.8%
23 216336 x at MT1E 81.8%
24 231779 at 75.8%
25 227290 at 72.7%
26 232128 s at 72.7%
27 207539 s at IL4 69.7%
28 229007 at 69.7%
29 204970 s at MAFG 66.7%
30 244348 at 63.6%
31 201968 s at PGM1 51.5%
32 220924 s at SLC38A2 51.5%
33 224797 at 51.5%
34 204944 at PTPRG 39.4%
35 205900 at KRT1 39.4%
36 208964 s at FADS1 36.4%
37 208964 s at MIR1908 36.4%
38 209345 s at PI4K2A 36.4%
39 209762 x at SP110 36.4%
40 233602 at 36.4%
41 215087 at C15orf39 33.3%
42 219975 x at OLAH 33.3%
43 235568 at 30.3%
44 205001 s at DDX3Y 27.3%
45 208392 x at SP110 27.3%
46 208962 s at FADS1 21.2%
47 208962 s at MIR1908 18.2%
48 221763 at JMJD1C 18.2%
49 203234 at UPP1 15.2%
50 203547 at CD4 15.2%
51 231380 at 15.2%
52 209958 s at BBS9 12.1%

Continued on next page
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Table H.1 – Continued from previous page

No. AFFY probe Gene Symbol CV%

53 244856 at 12.1%
54 1554280 a at 9.1%
55 202218 s at FADS2 9.1%
56 213700 s at 9.1%
57 216910 at XPNPEP2 9.1%
58 222760 at 9.1%
59 224936 at 9.1%
60 226189 at 9.1%
61 233950 at 9.1%
62 1561437 at 6.1%
63 202313 at PPP2R2A 6.1%
64 203633 at CPT1A 6.1%
65 204838 s at MLH3 6.1%
66 221959 at FAM110B 6.1%
67 227125 at 6.1%
68 231070 at 6.1%
69 233265 at 6.1%
70 237009 at 6.1%
71 240970 x at 6.1%
72 1562794 at 3%
73 1567697 at 3%
74 1569955 at 3%
75 1570173 at 3%
76 1729 at TRADD 3%
77 201155 s at MFN2 3%
78 204205 at APOBEC3G 3%
79 204963 at SSPN 3%
80 210914 at 3%
81 215837 x at 3%
82 219587 at TTC12 3%
83 220987 s at NUAK2 3%
84 220987 s at AKIP1 3%
85 223124 s at 3%
86 227177 at 3%
87 227992 s at 3%
88 233886 at 3%
89 237275 at 3%
90 240480 at 3%

Continued on next page
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Table H.1 – Continued from previous page

No. AFFY probe Gene Symbol CV%

91 241808 at 3%
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Table H.2: A full list of Affymetrix probes detected by Forward Stagwise method using full
set of Glue Grant burn injury data with modified Marshall score assessed on central nervous
system as the ordinal outcome. All probes are matched to Gene Symbol using R package
hgu133a2.db.

No. AFFY Probe Gene Symbol Penalized Est

1 1552773 at -0.24
2 226747 at 0.17
3 207564 x at OGT 0.16
4 214909 s at DDAH2 -0.14
5 218078 s at ZDHHC3 -0.12
6 226932 at 0.11
7 241133 at 0.09
8 203633 at CPT1A 0.08
9 204316 at RGS10 0.08
10 227345 at -0.07
11 204970 s at MAFG -0.06
12 205686 s at CD86 0.06
13 205517 at GATA4 -0.06
14 205425 at HIP1 -0.06
15 1552772 at -0.05
16 208433 s at LRP8 -0.05
17 206110 at HIST1H3H 0.05
18 219452 at DPEP2 0.05
19 236278 at -0.05
20 206114 at EPHA4 -0.05
21 225755 at 0.05
22 233602 at -0.04
23 209553 at VPS8 0.04
24 209553 at LOC100505729 0.04
25 1553575 at 0.04
26 211998 at H3F3A 0.04
27 211998 at H3F3B 0.04
28 229821 at 0.04
29 201978 s at KIAA0141 0.04
30 205781 at C16orf7 -0.04
31 229593 at 0.03
32 1565809 x at -0.03
33 211743 s at PRG2 -0.03
34 236487 at 0.03

Continued on next page
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Table H.2 – Continued from previous page

No. AFFY probe Gene Symbol Penalized Est

35 203932 at HLA-DMB 0.03
36 242565 x at 0.03
37 244553 at 0.03
38 228338 at 0.03
39 220614 s at C6orf103 -0.02
40 60474 at FERMT1 0.02
41 226630 at 0.02
42 242311 x at -0.02
43 240416 at -0.02
44 213624 at SMPDL3A -0.02
45 206705 at TULP1 -0.02
46 202381 at ADAM9 -0.02
47 222287 at TRDN 0.02
48 241837 at -0.02
49 201810 s at LOC100505696 -0.02
50 201810 s at SH3BP5 -0.02
51 202673 at DPM1 0.01
52 238495 at -0.01
53 200899 s at MGEA5 0.01
54 228656 at 0.01
55 225051 at 0.01
56 226531 at -0.01
57 1561590 a at -0.01
58 202925 s at PLAGL2 -0.01
59 203389 at KIF3C -0.01
60 204611 s at PPP2R5B -0.01
61 205098 at CCR1 -0.01
62 231779 at -0.01
63 224102 at 0.01
64 214469 at HIST1H2AE 0.00
65 214469 at HIST1H2AB 0.00
66 243211 at -0.00
67 229962 at 0.00
68 213298 at NFIC -0.00
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Table H.3: A full list of Affymetrix probes detected by Forward Stagwise method using full
set of Glue Grant burn injury data with modified aggregated Marshall score as the ordinal
outcome. All probes are matched to Gene Symbol using R package hgu133a2.db.

No. AFFY Probe Gene Symbol Penalized Est

1 214909 s at DDAH2 -0.23
2 203932 at HLA-DMB 0.18
3 241133 at 0.14
4 235568 at -0.13
5 202381 at ADAM9 -0.08
6 225755 at 0.07
7 231779 at -0.07
8 213624 at SMPDL3A -0.07
9 224414 s at -0.07
10 212033 at RBM25 0.05
11 209375 at XPC 0.05
12 204970 s at MAFG -0.05
13 202973 x at FAM13A 0.05
14 209514 s at RAB27A -0.04
15 220924 s at SLC38A2 -0.04
16 223073 at -0.04
17 227265 at 0.04
18 236487 at 0.04
19 238994 at -0.03
20 1557821 at 0.03
21 240384 at -0.03
22 214025 at DDX28 -0.02
23 227345 at -0.02
24 226932 at 0.02
25 218380 at LOC728392 0.02
26 213199 at C2CD3 0.01
27 206110 at HIST1H3H 0.01
28 219681 s at RAB11FIP1 0.01
29 229306 at -0.01
30 217443 at -0.01
31 223203 at 0.01
32 209770 at BTN3A1 0.01
33 202116 at DPF2 0.01
34 220112 at ANKRD55 -0.00
35 226747 at 0.00
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Appendix I

R code for R package ordinalmixed
with Applications

I.1 Source Code
############################################################################
### START "Compile_step1.R ###
pairwise.multiply1 <- function(A,B){

output<-matrix(nc=dim(A)[2],nr=dim(A)[1])
for (ii in 1: dim(A)[1]){
for (jj in 1: dim(A)[2]){

output[ii,jj]<-(A[ii,jj]*B[ii,jj])
}

}
output
}

############################################################################
forward.stagewise.cum <- function(x, y, epsilon, tol, cut.prop) {

X <- as.matrix(cbind(x,-x))
y <- as.numeric(y)
levels <- sort(unique(y))
cat <- length(levels)
Ymat<-matrix(0,nrow=length(y),ncol=cat)
for (ii in 1:cat){

index <- which(y==ii, arr.ind=T)
Ymat[index,ii] <- 1

}
n <- dim(X)[1]
p <- dim(X)[2]

alpha <- vector(length=cat-1, mode="numeric")
for (ii in 1:length(alpha)){

kk <- 1:ii
alpha[ii] <- log(sum(Ymat[,kk])/(n - sum(Ymat[,kk])))
}

beta <- rep(0, ncol(X))
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names(beta)<- 1:dim(X)[2]
output <- beta.list <- Num.nonzero <- list()

kk <- 1
repeat{
p <- matrix(0, nrow=dim(X)[1], ncol=cat-1)
pi <- matrix(0, nrow=dim(X)[1], ncol=cat)
for (ii in 1:(cat-1)){

p[,ii] <- exp(rep(alpha[ii],dim(X)[1]) + (X%*%beta)) /
(1 + exp(rep(alpha[ii],dim(X)[1]) + (X%*%beta)))

}
for (ii in 1:cat){

if (ii==1){pi[,ii] <- p[,ii]
} else if (ii==cat) {pi[,cat] <- 1-p[,(cat-1)]
} else {pi[,ii] <- p[,ii]-p[,(ii-1)]}

}
# Check if pi has zero elements #
for (ii in 1:cat){
for (jj in 1:dim(pi)[1]){
if (pi[jj,ii]==0) {pi[jj,ii] <- 1e-10}
}

}
LL.tmp <- pairwise.multiply1(Ymat, log(pi))
LL0 <- -sum(LL.tmp)

# First derivative #
u <- matrix(0, ncol=cat, nrow=n)
for (ii in 1:cat){
if (ii==1){u[,1] <- pairwise.multiply1(as.matrix(-Ymat[,1]),

as.matrix(1-p[,1]))
}
else if (ii==cat){u[,cat] <- pairwise.multiply1(as.matrix(Ymat[,cat]),

as.matrix(p[,(cat-1)]))
} else {u[,ii] <- pairwise.multiply1(as.matrix(-Ymat[,ii]),

as.matrix(1-p[,(ii-1)]-p[,ii]))
}
}
u <- apply(u, 1, sum)

# Forward Stagewise variable selection #
jacobian <- t(X) %*% u
if (min(jacobian)<=0) {update.j <- which.min(jacobian)} #
beta[update.j] <- beta[update.j]+ epsilon
# Caculate the updated likelihood #

for (ii in 1:(cat-1)){
p[,ii] <- exp(rep(alpha[ii],dim(X)[1]) + (X%*%beta)) /

(1 + exp(rep(alpha[ii],dim(X)[1]) + (X%*%beta)))
}
for (ii in 1:cat){

if (ii==1){pi[,ii] <- p[,ii]
} else if (ii==cat) {pi[,cat] <- 1-p[,(cat-1)]
} else {pi[,ii] <- p[,ii]-p[,(ii-1)]}

}
# pi can be 0, fit too good! #
# Check if pi has zero elements #
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for (ii in 1:cat){
for (jj in 1:dim(pi)[1]){
if (pi[jj,ii]==0) {pi[jj,ii] <- 1e-10}
}

}
LL.tmp <- pairwise.multiply1(Ymat, log(pi))
LL1 <- -sum(LL.tmp)

beta2 <- beta[1:dim(x)[2]] - beta[(dim(x)[2]+1):dim(X)[2]]
names(beta2) <- 1:dim(x)[2]
beta.list[[kk]] <- beta2[beta2!=0]
Num.nonzero[[kk]] <- length(beta2[beta2!=0])
if ( (abs(LL1-LL0) < tol) || (Num.nonzero[[kk]] > dim(x)[2]*cut.prop)) {

break
}

LL0 <- LL1
kk <- kk + 1

}
list(beta.list=beta.list, num.nonzero=Num.nonzero)
}

### END Compile_step1.R ###
###################################################################
###################################################################
### START CumForwardStagewise_v1.R ###
library(alabama)
###Pairwise.multiply function ###
pairwise.multiply1 <- function(A,B){

output<-matrix(nc=dim(A)[2],nr=dim(A)[1])
for (ii in 1: dim(A)[1]){
for (jj in 1: dim(A)[2]){

output[ii,jj]<-(A[ii,jj]*B[ii,jj])
}

}
output
}

###################################################################
### A loglikelihood with respect to the intercept only ###
logLL <- function(x, y, beta1) {

y <- as.numeric(y)
levels <- sort(unique(y))
cat <- length(levels)
alpha <- rep(0, (cat-1))
p <- matrix(0, nrow=dim(x)[1], ncol=cat-1)
pi <- matrix(0, nrow=dim(x)[1], ncol=cat)
Ymat<-matrix(0,nrow=length(y),ncol=cat)

for (ii in 1:cat){
index <- which(y==ii, arr.ind=T)
Ymat[index,ii] <- 1

}
#if(scale==T) { x <- scale(x)}
newx <- x[,as.numeric(names(beta1))]
logL <- function(alpha) {

for (ii in 1:(cat-1)){
p[,ii] <- exp(rep(alpha[ii], dim(x)[1]) +

(as.matrix(newx)%*%as.matrix(beta1))) /
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(1 + exp(rep(alpha[ii],dim(x)[1]) +
(as.matrix(newx)%*%as.matrix(beta1))))

}
for (ii in 1:cat){

if (ii==1){pi[,ii] <- p[,ii]
} else if (ii==cat) {pi[,cat] <- 1-p[,(cat-1)]
} else {

if (alpha[ii] > alpha[ii-1]) {pi[,ii] <- p[,ii]-p[,(ii-1)]
} else {pi[,ii] <- 1}

}
}
LL.tmp <- pairwise.multiply1(Ymat, log(pi))
-sum(LL.tmp)

}
if (cat > 2) {
hin<-function(alpha){

h<-rep(NA,(cat-2))
for (ii in 1:(cat-2)){

h[ii]<- alpha[ii+1]-alpha[ii]
}

h
}

hin.jac<-function(alpha){
j<-matrix(0, (cat-2), (cat-1))
for (ii in 1:(cat-2)){

j[ii, (ii:(ii+1))] <- c(-1,1)
}

j
}

alpha0 <- 1:(cat-1)
fit <-constrOptim.nl(par=alpha0, logL, hin=hin,hin.jac=hin.jac,

control.outer=list(trace=F))
} else if (cat==2) {

alpha0 <- 0
fit <- optim(par=alpha0, logL, method="BFGS", hessian=T)

}
return(fit)
}
############################################################################
Predict <- function(x, y, alpha, beta1) {

num.cat <- nlevels(y)
newx <- as.matrix(x[,as.numeric(names(beta1))])
xbeta <- matrix(rep(newx %*% as.matrix(beta1), num.cat), nc=num.cat)
alpha1 <- c(alpha,500)
eta <- sweep(xbeta, 2, alpha1, "+")
cumulative.p <- t(G(eta))
mat <- diag(1,num.cat)
mat1<- cbind(diag(-1,num.cat-1), (rep(0,num.cat-1)))
mat2 <- rbind(rep(0,num.cat), mat1)
trans.mat <- mat + mat2
p <- t(trans.mat %*% cumulative.p)
pred.y <- apply(p, 1, which.max)
return(pred.y)
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}
### END CumForwardStagewise_v1.R ###
############################################################################
############################################################################
### START Compile_step2.R ###
output.CumFS <- function(forwardstagewise, x, y) {

Num.nonzero <- unlist(forwardstagewise$num.nonzero)
beta.list <- forwardstagewise$beta.list
unique.num <- unique(Num.nonzero)
nonzero <- data.frame(Num.nonzero, 1:length(Num.nonzero))
aic <- bic <- LL <- step <- rep(0, length(unique.num))
temp <- NULL

for (ii in 1:length(unique.num)){
temp <- nonzero[nonzero[,1]==unique.num[ii],]
KK <- temp[dim(temp)[1],2]
new.beta <- beta.list[[KK]]

fit <- logLL(x, y, beta1=new.beta)
new.alpha <- fit$par
new.LL <- fit$value
aic[ii] <- 2*unique.num[ii] + 2*new.LL

bic[ii] <- unique.num[ii]*log(dim(x)[1]) + 2*new.LL
LL[ii] <- new.LL

step[ii] <- KK
}
output <- data.frame(step, unique.num, aic, bic, LL)
return(output)
}

###########################################################################
steps <- function(output, range, criteria){

if (criteria=="AIC") {
optim.step <- output[which.min(output[,"aic"]),"unique.num"]
num.index <- (optim.step-range):(optim.step+range)
step.index <- rep(0,length(num.index))
for (ii in 1:length(step.index)){
step.index[ii] <- output[output[,"unique.num"]== num.index[ii], "step"]
}

} else if (criteria=="BIC") {
optim.step <- output[which.min(output[,"bic"]),"unique.num"]
num.index <- (optim.step-range):(optim.step+range)
step.index <- rep(0,length(num.index))
for (ii in 1:length(step.index)){
step.index[ii] <- output[output[,"unique.num"]== num.index[ii], "step"]
}

}
return(step.index)
}

### END Compile_step2.R ###
###########################################################################
###########################################################################
### START ordinalmixedv2.R ###
# Load packages #
library(numDeriv)
library(ucminf)
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library(glmmML)
library(MASS)
library(optimx)
library(alabama)
# 1.G function used in cumulative and continuation ratio logit #
G <- function(z){

G=exp(z)/(1+exp(z))
return(G)
}

#########################################################################
# 2. pairwise.multiply function #
pairwise.multiply <- function(A,B){

output<-matrix(nc=dim(A)[2],nr=dim(A)[1])
for (ii in 1: dim(A)[1]){
for (jj in 1: dim(A)[2]){

output[ii,jj]<-(A[ii,jj]*B[ii,jj])
}

}
prod(output[output!=0])
}

##########################################################################
# 3. This function will be used to indicate which category the obs falls.
# 1 indicates the obs falls into the corresponding category while others are
# set to be 0.
index.all1 <- function (subject, id.name, predictor.name, response.name,

ordinal.level, data) {
sub.matrix <- as.matrix(data[data[,id.name]==subject,

c(predictor.name, response.name)])
if (dim(sub.matrix)[2]==1){

sub.matrix <- t(sub.matrix)
}
tmp <- subset(sub.matrix, select=response.name)
index.matrix <- matrix(nr=dim(sub.matrix)[1],

nc=length(ordinal.level))
for (ii in 1:length(ordinal.level)) {

index.matrix[,ii] <-ifelse(tmp==ordinal.level[ii],1,0)
}
return (index.matrix)
}

#########################################################################
# 4. This function calculates the probabilities of each category ....
# should talk about predicted or expected!#
linear.predictor <- function(response.name, predictor.name, id.name, data,

time.name, nGauss=NULL, gene.name=NULL, beta.gene=NULL,
link=c("Cumulative", "Adjacent", "Forward CR", "Backward CR"),
model=c("Random Intercept", "Random Coefficient", "Indep Random Coefficient"),
Adaptive=c("TRUE", "FALSE"), Cholesky=c("TRUE", "FALSE"),

num.cat, ordinal.level,
alpha, beta, sigma, weight, node, new.weight,
random1, random2, subject){

link <- match.arg(link)
model <- match.arg(model)
Adaptive <- match.arg(Adaptive)
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Cholesky <- match.arg(Cholesky)
sub.matrix <- data.matrix(data[data[,id.name]==subject,

c(predictor.name, response.name)])
if (dim(sub.matrix)[2]==1){

sub.matrix <- t(sub.matrix)
}

if (is.null(beta.gene)==F){
xgene <- data.matrix(data[data[,id.name]==subject, gene.name])
}

if(is.null(time.name)==TRUE){
time.name <- predictor.name[1]

}
if(is.null(nGauss)==TRUE){nGauss <- 10}
if (c("Cumulative","Adjacent","Forward CR","Backward CR")[charmatch(link,

c("Cumulative","Adjacent","Forward CR","Backward CR"))] == "Cumulative") {
alpha1 <- c(alpha, 500) # set the floor and ceiling value #

if (is.null(beta.gene)==T) {
xbeta <- matrix(rep((sub.matrix[, predictor.name] %*% as.matrix(beta) +

random1 + random2*sub.matrix[,time.name]), num.cat), nc=num.cat)
} else if (is.null(beta.gene)==F) {
xbeta <- matrix(rep(sub.matrix[, predictor.name] %*% as.matrix(beta) +

random1 + random2*sub.matrix[,time.name]+xgene %*% beta.gene,
num.cat), nc=num.cat)
}

eta <- sweep(xbeta, 2, alpha1, "+")
cumulative.p <- t(G(eta))
mat <- diag(1,num.cat)
mat1<- cbind(diag(-1,num.cat-1), (rep(0,num.cat-1)))
mat2 <- rbind(rep(0,num.cat), mat1)
trans.mat <- mat + mat2
p <- t(trans.mat %*% cumulative.p)

}
if (c("Cumulative","Adjacent","Forward CR","Backward CR")[charmatch(link,

c("Cumulative","Adjacent","Forward CR","Backward CR"))] == "Adjacent") {
visit <- 1:dim(sub.matrix)[1]

predict.adj <- function(visit){
new.eta <- eta <- vector(length=num.cat)

# Random effect model with penalized estimate(ordinalmixedalpha.R)#
if (is.null(beta.gene)==F){

for (ii in 2:num.cat) {
eta[1] <- 1
eta[ii] <- alpha[ii-1] + sum(beta*sub.matrix[visit,predictor.name])+

sum(beta.gene * xgene[visit,])+ random1 + random2*sub.matrix[visit,time.name]
}

} else if (is.null(beta.gene)==T){
for (ii in 2:num.cat) {

eta[1] <- 1
eta[ii] <- alpha[ii-1] + sum(beta*sub.matrix[visit,predictor.name])+

random1 + random2*sub.matrix[visit,time.name]
}

}
for(kk in 2:num.cat) {
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new.eta[1] <- eta[1]
new.eta[kk] <- exp(sum(eta[2:kk]))

}
p <- new.eta/sum(new.eta)
return(p)

}
p <- matrix( unlist(lapply(visit, predict.adj)),

nr=dim(sub.matrix)[1], nc=num.cat, byrow=T)
}

if (c("Cumulative","Adjacent","Forward CR","Backward CR")[charmatch(link,
c("Cumulative","Adjacent","Forward CR","Backward CR"))] == "Backward CR") {

visit <- 1:dim(sub.matrix)[1]
predict.adj <- function(visit){

p <- eta <- vector(length=num.cat)
if (is.null(beta.gene)==F){

for (ii in 2:num.cat) {
eta[1] <- 1
eta[ii] <- alpha[ii-1] + sum(beta*sub.matrix[visit,predictor.name])+

sum(beta.gene * xgene[visit,])+ random1 + random2*sub.matrix[visit,time.name]
}

} else if (is.null(beta.gene)==T){
for (ii in 2:num.cat) {

eta[1] <- 1
eta[ii] <- alpha[ii-1] + sum(beta*sub.matrix[visit,predictor.name])+

random1 + random2*sub.matrix[visit,time.name]
}

}
p[num.cat] <- exp(eta[num.cat])/(1+exp(eta[num.cat]))
for (kk in (num.cat-1):1) {

tmp <- sum(p[(kk+1):num.cat])
if (kk >=2) {

p[kk] <- (1-tmp)* exp(eta[kk])/ (1+ exp(eta[kk]))
} else {

p[kk] <- 1-tmp
}
}

return(p)
}
p <- matrix( unlist(lapply(visit, predict.adj)),

nr=dim(sub.matrix)[1], nc=num.cat, byrow=T)
}

if (c("Cumulative","Adjacent","Forward CR","Backward CR")[charmatch(link,
c("Cumulative","Adjacent","Forward CR","Backward CR"))] == "Forward CR"){

visit <- 1:dim(sub.matrix)[1]
predict.adj <- function(visit){

p <- eta <- vector(length=num.cat)
if (is.null(beta.gene)==F){

for (ii in 1:(num.cat-1)) {
eta[num.cat] <- 1
eta[ii] <- alpha[ii] + sum(beta*sub.matrix[visit,predictor.name])+

sum(beta.gene * xgene[visit,])+ random1 + random2*sub.matrix[visit,time.name]
}

} else if (is.null(beta.gene)==T){
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for (ii in 1:(num.cat-1)) {
eta[num.cat] <- 1
eta[ii] <- alpha[ii] + sum(beta*sub.matrix[visit,predictor.name])+

random1 + random2*sub.matrix[visit,time.name]
}

}
p[1] <- exp(eta[1])/(1 + exp(eta[1]))
for (kk in 2:num.cat){

tmp <- sum(p[1:(kk-1)])
if (kk < num.cat){

p[kk] <- (1-tmp) * exp(eta[kk])/(1 + exp(eta[kk]))
} else {

p[kk] <- 1-tmp
}

}
return(p)

}
p <- matrix( unlist(lapply(visit, predict.adj)),

nr=dim(sub.matrix)[1], nc=num.cat, byrow=T)
}
return(p)

}
################################################################################
# 5. This function creates outputs table #
chol2var <- function (data, response.name, predictor.name, parm, hessian, df,

model=c("Random Intercept", "Random Coefficient",
"Indep Random Coefficient")){
model <- match.arg(model)
hessian <- as.matrix(-hessian)
var.mat <- ginv(hessian)

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Intercept"){

index.u1 <- dim(hessian)[1]
se.sigmau1 <- sqrt(4*exp(4*parm[index.u1])* var.mat[index.u1,index.u1])
sigmau1 <- exp(parm[index.u1])^2
new.parm <- c(parm[1:(index.u1-1)], sigmau1)
new.se <- c(sqrt(diag(var.mat))[1:(index.u1-1)],se.sigmau1)

} else
if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,

c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Indep Random Coefficient"){

index.u1 <- dim(hessian)[1]-1
index.u2 <- dim(hessian)[1]

# From Delta’s method #
se.sigmau1 <- sqrt(4*exp(4*parm[index.u1])* var.mat[index.u1,index.u1])
se.sigmau2 <- sqrt(4*exp(4*parm[index.u2])* var.mat[index.u2,index.u2])
se.sigma <- c(se.sigmau1, se.sigmau2)
sigmau1 <- exp(parm[index.u1])^2
sigmau2 <- exp(parm[index.u2])^2
sigma <- c(sigmau1, sigmau2)
new.parm <- c(parm[1:(index.u1-1)], sigma)
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new.se <- c(sqrt(diag(var.mat))[1:(index.u1-1)],se.sigma)
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Coefficient") {

index.l1 <- dim(hessian)[1]-2
index.l2 <- dim(hessian)[1]-1
index.l3 <- dim(hessian)[1]

# SE for sigmau1 #
se.sigmau1 <- sqrt(4*exp(4*parm[index.l1])* var.mat[index.l1,index.l1])
# SE for sigmu2 #
dev <- c(2*exp(2*parm[index.l3]), 2*parm[index.l2])
mat <- var.mat[index.l2:index.l3,index.l2:index.l3]
se.sigmau2 <- sqrt(t(dev) %*% mat %*% dev)
# SE for covu1u2 #
covu1u2 <- exp(parm[index.l1])*parm[index.l2]
dev <- c(1, 1/parm[index.l2])
mat <- var.mat[index.l1:index.l2, index.l1:index.l2]
var.logcov <- t(dev) %*% mat %*% dev
se.cov <- sqrt((covu1u2)^2 * var.logcov)
new.parm <- c(parm[1:(index.l1-1)], exp(parm[index.l1])^2, covu1u2,

exp(parm[index.l3])^2+parm[index.l2]^2)
new.se <- c(sqrt(diag(var.mat))[1:(index.l1-1)], se.sigmau1,

se.cov, se.sigmau2)
}
t.stat <- new.parm/new.se
p.value <- 2*pt(abs(t.stat), df=df, lower.tail=F)
output <- data.frame(round(new.parm,2), round(new.se,3),

round(t.stat,2), round(p.value,4))
colnames(output) <- c("parm", "SE", "t.stat", "p.value")
response <- data[,response.name]
num.cat <- nlevels(as.factor(response))
name.alpha <- paste("alpha",1:(num.cat-1),sep="")
name.beta <- paste("beta", predictor.name[1:length(predictor.name)], sep="_")

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Intercept") {

name.sigma <- c("sigma_int^2")
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Indep Random Coefficient") {

name.sigma <- c("sigma_int^2", "sigma_time^2")
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Coefficient") {
name.sigma <- c("sigma_int^2", "cov_int_time", "sigma_time^2")
}
rownames(output) <- c(name.alpha, name.beta, name.sigma )
return(output)
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}
# se2var creates output when Cholesky==’False’, transform SE to Var #
# Only valid for "Random Coefficient indep" model #
se2var <- function (data, response.name, predictor.name, parm, hessian, df,

model=c("Random Intercept", "Random Coefficient",
"Indep Random Coefficient")){

model <- match.arg(model)
hessian <- as.matrix(-hessian)
var.mat <- ginv(hessian)
se <- sqrt(diag(var.mat))

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Intercept"){
index.u1 <- dim(hessian)[1]
sigmau1 <- parm[index.u1]^2
se.sigmau1 <- 2*abs(parm[index.u1])*se[index.u1]
new.parm <- c(parm[1:(index.u1-1)], sigmau1)
new.se <- c(se[1:(index.u1-1)], se.sigmau1)

} else
if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,

c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Indep Random Coefficient"){

index.u1 <- dim(hessian)[1]-1
index.u2 <- dim(hessian)[1]
sigmau1 <- parm[index.u1]^2
sigmau2 <- parm[index.u2]^2
sigma <- c(sigmau1, sigmau2)

# Delta’s method#
se.sigmau1 <- 2*abs(parm[index.u1])*se[index.u1]
se.sigmau2 <- 2*abs(parm[index.u2])*se[index.u2]
se.sigma <- c(se.sigmau1, se.sigmau2)
new.parm <- c(parm[1:(index.u1-1)], sigma)
new.se <- c(se[1:(index.u1-1)], se.sigma)

}
t.stat <- new.parm/new.se
p.value <- 2*pt(abs(t.stat), df=df, lower.tail=F)
output <- data.frame(round(new.parm,2), round(new.se,3),

round(t.stat,2), round(p.value,4))
colnames(output) <- c("parm", "SE", "t.stat", "p.value")
response <- data[,response.name]
num.cat <- nlevels(as.factor(response))
name.alpha <- paste("alpha",1:(num.cat-1),sep="")
name.beta <- paste("beta", predictor.name[1:length(predictor.name)], sep="_")

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Intercept") {

name.sigma <- c("sigma_int^2")
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Indep Random Coefficient") {
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name.sigma <- c("sigma_int^2", "sigma_time^2")
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Coefficient") {
name.sigma <- c("sigma_int^2", "cov_int_time", "sigma_time^2")
}
rownames(output) <- c(name.alpha, name.beta, name.sigma )

return(output)
}

################################################################################
# 6. This function aggregates all other functions defined previously #
ordinal.model <- function (response.name, predictor.name, id.name, time.name,

data, nGauss=NULL, gene.name=NULL, beta.gene=NULL,
link=c("Cumulative", "Adjacent", "Forward CR", "Backward CR"),

model=c("Random Intercept", "Random Coefficient",
"Indep Random Coefficient"),
Adaptive=c("TRUE", "FALSE"), Cholesky=c("TRUE", "FALSE"),
parm, ...){

response <- data[,response.name]
predictor <- data[,predictor.name]
id <- as.numeric(unique(data[,id.name]))
num.cat <- nlevels(as.factor(response)) #maybe problem#
ordinal.level <- as.numeric(levels(as.factor(response)))

link <- match.arg(link)
model <- match.arg(model)
Adaptive <- match.arg(Adaptive)
Cholesky <- match.arg(Cholesky)

if(is.null(nGauss)==TRUE) { nGauss <- 10}
# Define random effects #
random1 <- 0; random2 <- 0
# Define ordinal model parameters #
alpha <- vector(length=num.cat-1, mode=’numeric’)
alpha <- parm[1:length(alpha)]
beta <- vector(length=length(predictor.name), mode=’numeric’)
beta <- parm[(length(alpha)+1):(length(alpha)+length(beta))]

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Intercept"){
if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="FALSE"){

sigma <- parm[(length(alpha)+length(beta)+1):length(parm)]
} else

if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="TRUE"){
L <- parm[(length(alpha)+length(beta)+1):length(parm)]
sigma <- exp(L[1])
}

} else
if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,

c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Indep Random Coefficient"){

if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="FALSE"){
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sigma <- parm[(length(alpha)+length(beta)+1):length(parm)]
} else

if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="TRUE"){
L <- parm[(length(alpha)+length(beta)+1):length(parm)]
sigma <- c(exp(L[1]), exp(L[2]))
}

} else
if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,

c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Coefficient"){

if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="FALSE"){
tmp.sigma <- parm[(length(alpha)+length(beta)+1):length(parm)]
sigma1 <- tmp.sigma[1]; cov12 <- tmp.sigma[2]; sigma2 <- tmp.sigma[3]
rho <- cov12/(sigma1*sigma2)
sigma <- c(sigma1, sigma2)
} else

if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="TRUE"){
L <- parm[(length(alpha)+length(beta)+1):length(parm)]
ll1 <- L[1]; l2 <- L[2]; ll3 <- L[3]
l1<- exp(ll1); l3<- exp(ll3)
sigma <- c(l1, sqrt(l2^2+l3^2))
covu1u2 <- l1*l2
rho <- covu1u2/(sigma[1]*sigma[2])
}

}
index.all <- function (subject) {

index.all1(subject, id.name, predictor.name, response.name,
ordinal.level, data)

}
index.list <- list()
index.list <- lapply(id,index.all)
index.list <- rep(index.list, times=nGauss)
# The same strategy used in index.all() function will be applied to
# linear.predictor(). This function is defined here because when AdpGHQ=’True’,
# The em.bayes() defined later will be needed to call GHQ.intu1().
# Pay attention to the order of the unknown parameters #
GHQ.intu1 <- function (subject, random1, random2) {
linear.predictor ( response.name, predictor.name, id.name, data,

time.name, nGauss=NULL, gene.name=NULL, beta.gene=NULL,
link, model, Adaptive, Cholesky,

num.cat, ordinal.level,
alpha, beta, sigma, weight, node, new.weight,
random1, random2, subject)

}
weight <- ghq(n.points=nGauss,modified=FALSE)$weights
node <- ghq(n.points=nGauss,modified=FALSE)$ zeros
new.weight <- weight*exp(node^2)

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Intercept"){
if (c("TRUE","FALSE")[charmatch(Adaptive,c("TRUE","FALSE"))]=="FALSE"){
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abs1 <- sqrt(2)*sigma*node
u1 <- nodes1 <- matrix(rep(abs1,length(id)),nr=length(id),byrow=T)
u2 <- nodes2 <- matrix(0,nr=length(id),nc=nGauss)

} else
if (c("TRUE","FALSE")[charmatch(Adaptive,c("TRUE","FALSE"))]=="TRUE"){
em.bayes <- function (subject) {

em.bayes1 <- function(random,subject) {
intu1 <- GHQ.intu1 (subject,random1=random[1],

random2=0)
Cals <- pairwise.multiply(index.list[[rank[rank[,

’id’]==subject,1]]], intu1)
fn <- -log(Cals)+ random[1]^2/(2*sigma^2)
return(fn)
}
em.bayes2 <- function (random) {

em.bayes1(random,subject)
}
bayes <- list()
optim.output <- ucminf(0, em.bayes2, hessian=T)
u.hat <- optim.output$par
f.sec <- diag(optim.output$hessian)
u1 <- u.hat[1] + sqrt(2)*(abs(f.sec)^(-1/2))*node
bayes[[1]] <- u1
bayes[[2]] <- f.sec
return(bayes)
}
random <- vector(length=1, mode=’numeric’)
rank <- data.frame(order(id),id)
abs.temp <- lapply(id, em.bayes)
u1 <- u2 <- nodes1 <- nodes2 <- matrix(nc=nGauss, nr=length(id))
f.sec <- vector(length=length(id), mode=’numeric’)
for ( ii in 1:length(id)){

u1 [ii,] <- nodes1[ii,] <- abs.temp[[ii]][[1]]
f.sec[ii] <- abs.temp[[ii]][[2]]

}
u2 <- nodes2 <- matrix(0, nr=length(id),nc=nGauss)

}
} else

if (c("TRUE","FALSE")[charmatch(Adaptive,c("TRUE","FALSE"))]=="FALSE"){
abs1 <- sqrt(2)*sigma[1]*node
abs2 <- sqrt(2)*sigma[2]*node
u1 <- nodes1 <- matrix(rep(abs1,length(id)),nr=length(id),byrow=T)
u2 <- nodes2 <- matrix(rep(abs2,length(id)),nr=length(id),byrow=T)

} else
if (c("TRUE","FALSE")[charmatch(Adaptive,c("TRUE","FALSE"))]=="TRUE"){

em.bayes <- function (subject) {
em.bayes1 <- function(random,subject) {

intu1 <- GHQ.intu1 (subject,random1=random[1],
random2=random[2])

Cals <- pairwise.multiply(index.list[[rank[rank[,
’id’]==subject,1]]], intu1)
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if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Indep Random Coefficient"){
fn <- -log(Cals)+ random[1]^2/(2*sigma[1]^2) + random[2]^2/(2*sigma[2]^2)
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Coefficient"){
fn <- -log(Cals) + 1/(2*(1-rho^2))*(random[1]^2/(sigma[1]^2) +

random[2]^2/(sigma[2]^2)- 2*rho*random[1]*random[2]/sqrt(sigma[1]^2*sigma[2]^2))
}
return(fn)
}
em.bayes2 <- function (random) {

em.bayes1(random,subject)
}
bayes <- list()
optim.output <- ucminf(c(0,0), em.bayes2, hessian=T)
u.hat <- optim.output$par
f.sec <- diag(optim.output$hessian)
u1 <- u.hat[1] + sqrt(2)*(abs(f.sec[1])^(-1/2))*node
u2 <- u.hat[2] + sqrt(2)*(abs(f.sec[2])^(-1/2))*node
bayes[[1]] <- data.frame(u1,u2)
bayes[[2]] <- f.sec
return(bayes)
}
random <- vector(length=2, mode=’numeric’)
rank <- data.frame(order(id),id)
abs.temp <- lapply(id, em.bayes)
u1 <- u2 <- nodes1 <- nodes2 <- matrix(nc=nGauss, nr=length(id))
f.sec <- matrix(nr=length(id),nc=2)
for ( ii in 1:length(id)){

u1 [ii,] <- nodes1[ii,] <- abs.temp[[ii]][[1]]$u1
u2 [ii,] <- nodes2[ii,] <- abs.temp[[ii]][[1]]$u2
f.sec[ii,] <- abs.temp[[ii]][[2]]

}
}

# Gauss-Hermite Integration procedure #
logL.intu1.list <- list()
prod2 <- temp <- matrix(nr=length(id), nc=nGauss)
Gauss.index <- 1:nGauss
# fn1 is part of GHQ integral on random effect u1 #

if ((c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Coefficient Indep")||

(c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Intercept")){
fn1 <- function (x,u1) {

exp(log(x) - (u1^2)/(2*sigma[1]^2))
}
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} else
if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,

c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Coefficient"){

fn1 <- function(x,u1,u2) {
exp(log(x) - 1/(2*(1-rho^2))*(u1^2/sigma[1]^2+

u2^2/sigma[2]^2 - 2*rho*u1*u2/sqrt(sigma[1]^2*sigma[2]^2)))
}

}
# GHQ integral on both random effects u1,u2 #
fn2 <- function(Gauss.index) {

intu1 <- mapply(GHQ.intu1, id,
random1=u1, u2[,Gauss.index])

# Notice:#
# intu1 should be a list but when all subject have equal number of #
# repeated measurement, it is not a list anymore #
if (is.list(intu1)==F) {
tmp <- list()

for (ii in 1:dim(intu1)[2]){
tmp[[ii]] <- matrix(intu1[,ii], nc=num.cat,

nr=length(intu1[,ii])[1]/num.cat)
}

intu1 <- tmp
}
Cals <- mapply(pairwise.multiply, index.list, intu1)
temp <- matrix(Cals, nr=length(id), nc=nGauss)

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Coefficient"){

temp1 <- mapply(fn1, temp, u1, u2[,Gauss.index])
} else
{ temp1 <- mapply(fn1, temp, u1)}
temp2 <- matrix(temp1, nc=nGauss, nr=length(id), byrow=F)
apply(temp2 %*% new.weight,1,sum)
}

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Intercept"){
prod2 <- fn2(1)

if (c("TRUE","FALSE")[charmatch(Adaptive,c("TRUE","FALSE"))]=="FALSE"){
sum(log(prod2))- length(id)/2*log(pi)
} else {
sum(log(prod2))- (length(id)*log(sigma^2*pi) + sum(log(abs(f.sec))))/2
}

} else {
prod2 <- mapply(fn2,Gauss.index)

if(c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Indep Random Coefficient") {

L2 <- exp(log(prod2) - (nodes2^2)/(2*sigma[2]^2))
L21 <- apply(L2 %*% new.weight, 1, sum)

if (c("TRUE","FALSE")[charmatch(Adaptive,c("TRUE","FALSE"))]=="FALSE"){
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sum(log(L21))-length(id)*log(pi)
} else

if (c("TRUE","FALSE")[charmatch(Adaptive,c("TRUE","FALSE"))]=="TRUE"){
sum(log(L21))-length(id)*log(pi)-length(id)/2*log(sigma[1]^2*sigma[2]^2)-
sum(log(abs(f.sec[,1])))/2-sum(log(abs(f.sec[,2])))/2

}
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Coefficient"){
L2 <- exp(log(prod2))
L21 <- apply(L2 %*% new.weight, 1, sum)

if (c("TRUE","FALSE")[charmatch(Adaptive,c("TRUE","FALSE"))]=="FALSE"){
sum(log(L21))- length(id)*log(pi*sqrt(1-rho^2))

} else
if (c("TRUE","FALSE")[charmatch(Adaptive,c("TRUE","FALSE"))]=="TRUE"){
sum(log(L21))-length(id)*log(pi)-length(id)/2*log(sigma[1]^2*
sigma[2]^2*(1-rho^2))- sum(log(abs(f.sec[,1])))/2-
sum(log(abs(f.sec[,2])))/2

}
}

}
}

################################################################################
# 7. This function onstructs the starting value parm0 #
# The starting value for cumulative logit would be slightly different from others
# with alpha1 < alpha2 <....alpha(c-1) #
initial.value <- function (data, response.name,predictor.name,

link=c("Cumulative", "Adjacent", "Forward CR", "Backward CR"),
model=c("Random Intercept", "Random Coefficient",

"Indep Random Coefficient")){
link <- match.arg(link)

model <- match.arg(model)
response <- data[,response.name]
num.cat <- nlevels(as.factor(response))

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Intercept") {

if (c("Cumulative","Adjacent","Forward CR","Backward CR")[charmatch(link,
c("Cumulative","Adjacent","Forward CR","Backward CR"))] == "Cumulative"){

a0 <- -1
alpha0 <- vector(length=(num.cat-1), mode="numeric")
for (ii in 1: (num.cat-1)){

alpha0[ii] <- a0+(ii-1)
}
beta0 <- rep(0, length(predictor.name))
parm0 <- c(alpha0, beta0, 1)

} else
alpha0 <- rep(0, num.cat-1)
beta0 <- rep(0, length(predictor.name))
parm0 <- c(alpha0, beta0, 1)

} else
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if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Indep Random Coefficient") {

if (c("Cumulative","Adjacent","Forward CR","Backward CR")[charmatch(link,
c("Cumulative","Adjacent","Forward CR","Backward CR"))] == "Cumulative"){

a0 <- -1
alpha0 <- vector(length=(num.cat-1), mode="numeric")
for (ii in 1: (num.cat-1)){

alpha0[ii] <- a0+(ii-1)
}
beta0 <- rep(0, length(predictor.name))
parm0 <- c(alpha0, beta0, 1, 1)

} else
alpha0 <- rep(0, num.cat-1)
beta0 <- rep(0, length(predictor.name))
parm0 <- c(alpha0, beta0, 1, 1)

} else
if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,

c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Coefficient") {

if (c("Cumulative","Adjacent","Forward CR","Backward CR")[charmatch(link,
c("Cumulative","Adjacent","Forward CR","Backward CR"))] == "Cumulative"){

a0 <- -1
alpha0 <- vector(length=(num.cat-1), mode="numeric")
for (ii in 1: (num.cat-1)){

alpha0[ii] <- a0+(ii-1)
}
beta0 <- rep(0, length(predictor.name))
parm0 <- c(alpha0, beta0, 1, 0, 1)

} else
alpha0 <- rep(0, num.cat-1)
beta0 <- rep(0, length(predictor.name))
parm0 <- c(alpha0, beta0, 1, 0, 1)

}
}

################################################################################
# 8.To use the ordinal.model() function #
# ordinal.mixed.model <- function(response.name, predictor.name, id.name, time.name,
# data, beta.gene, gene.name, nGauss,link,model,

Adaptive, Cholesky){
# check if predictors are numeric #

# ordinal.mixed.model(response.name, predictor.name, id.name, time.name, data)
ordinal.mixed.model <- function(response.name, predictor.name, id.name, time.name,

data, nGauss=NULL, gene.name=NULL, beta.gene=NULL,
link=c("Cumulative", "Adjacent", "Forward CR", "Backward CR"),

model=c("Random Intercept", "Random Coefficient",
"Indep Random Coefficient"), Adaptive=c("TRUE", "FALSE"),

Cholesky=c("TRUE", "FALSE"),...){
link <- match.arg(link)
model <- match.arg(model)
Adaptive <- match.arg(Adaptive)
Cholesky <- match.arg(Cholesky)
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data <- data.matrix(data)
if (is.null(time.name)==TRUE){

time.name==predictor.name[1]
}

if(is.null(nGauss)==TRUE) {nGauss <-10}
parm <- initial.value(data, response.name,predictor.name, link, model)
# Possible error messages and solutions #
# 1. Force Cholesky="TRUE" if random coefficient model #

if ((c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Coefficient")&& (

c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="FALSE")) {
cat("Note: Cholesky Decomposition is required for fitting Random Coefficient model \n" )
cat("Cholesky option automatically switched to TRUE \n\n")
Cholesky = "TRUE"
}
# 2. Recommend but not force Adaptive="TRUE" if random coefficient model #

if ((c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Coefficient")&& (
c("TRUE","FALSE")[charmatch(Adaptive, c("TRUE","FALSE"))]=="FALSE")) {
cat("Caution:Adaptive Gauss-Hermite Quadrature is recommended for

Random Coefficient model\n\n")
}
ordinal.model1 <- function(parm){

ordinal.model(response.name, predictor.name, id.name,
time.name, data, nGauss, gene.name,
beta.gene, link, model, Adaptive, Cholesky,
parm)

}
# ordinal.model1(parm)
#}
# ordinal.mixed.model(response.name, predictor.name, id.name, time.name,

# data, link="Adjacent", nGauss=20)
# Specify the degree of freedom #
if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,

c("Indep Random Coefficient","Random Coefficient",
"Random Intercept"))] == "Random Intercept"){

df <- length(unique(data[,id.name]))- 1
} else {
df <- length(unique(data[,id.name]))- 2
}

# Optimization procedure: for all "Cumulative" link, we use optimization function ’optim’ #
# while for all other links, we use "optimx" function. "optimx" function is less sensitive #
# to the initial values of parameters compared with "optim". However, "optimx" does not work #
# so well for "Cumlative" link potentially because of the constraint on the intercepts #
final.outcome <- list()
if (c("Cumulative","Adjacent","Forward CR","Backward CR")[charmatch(link,

c("Cumulative","Adjacent","Forward CR","Backward CR"))] == "Cumulative"){
output <- optim(parm, ordinal.model1, method="L-BFGS-B",

control=list(fnscale=-10,trace=5),hessian=TRUE)
if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="TRUE"){
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result <- chol2var(data, response.name, predictor.name,
output$par, output$hessian, df, model)

} else
if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="FALSE"){

result <- se2var(data, response.name, predictor.name,
output$par, output$hessian, df, model)

}
final.outcome[[1]] <- result
final.outcome[[2]] <- output$value

} else {
output <- optimx(parm, ordinal.model1, method="BFGS",

control=list(fnscale=-10,trace=5, kkt=FALSE),hessian=TRUE)
output1 <- attributes(output)
if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="TRUE"){

result <- chol2var(data, response.name, predictor.name,
parm= output1$details[[1]]$par,
hessian= output1$details[[1]]$nhatend,

df, model)
} else
if (c("TRUE","FALSE")[charmatch(Cholesky, c("TRUE","FALSE"))]=="FALSE"){

result <- se2var(data, response.name, predictor.name,
parm=output1$details[[1]]$par,
hessian= output1$details[[1]]$nhatend,

df, model)
}
final.outcome[[1]] <- result
final.outcome[[2]] <- output1$details[[1]]$value

}
return(final.outcome)

}
### END ordinalmixedv2.R ###
###########################################################################
###########################################################################
### START Compile_step3.R ###
pi <- atan(1)*4
temp <- temp1 <- temp2<- tmp <- NULL
linear.predictor.Cum <- function(response.name, predictor.name, id.name, data,

time.name, num.cat, ordinal.level, alpha,
beta, sigma, random1, random2, subject,

model=c("Random Intercept", "Random Coefficient", "Indep Random Coefficient"),
gene.name=NULL, beta.gene=NULL,...){

model <- match.arg(model)
sub.matrix <- data.matrix(data[data[,id.name]==subject,

c(predictor.name, response.name)])
if (dim(sub.matrix)[2]==1){

sub.matrix <- t(sub.matrix)
}

if (is.null(beta.gene)==F){
xgene <- data.matrix(data[data[,id.name]==subject, gene.name])

}
if(is.null(time.name)==TRUE){

time.name <- predictor.name[1]
}
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alpha1 <- c(alpha, 500)
if (is.null(beta.gene)==T) {

xbeta <- matrix(rep((sub.matrix[, predictor.name] %*% as.matrix(beta) +
random1 + random2*sub.matrix[,time.name]), num.cat), nc=num.cat)

} else if (is.null(beta.gene)==F) {
xbeta <- matrix(rep(sub.matrix[, predictor.name] %*% as.matrix(beta) +

random1 + random2*sub.matrix[,time.name]+xgene %*% beta.gene,
num.cat), nc=num.cat)
}

eta <- sweep(xbeta, 2, alpha1, "+")
cumulative.p <- t(G(eta))
mat <- diag(1,num.cat)
mat1<- cbind(diag(-1,num.cat-1), (rep(0,num.cat-1)))
mat2 <- rbind(rep(0,num.cat), mat1)
trans.mat <- mat + mat2
p <- t(trans.mat %*% cumulative.p)
return(p)
}

################################################################################
ConditionalMode <- function(response.name, predictor.name, id.name, data,

time.name, parm, gene.name=NULL, beta.gene=NULL,
model=c("Random Intercept", "Random Coefficient", "Indep Random Coefficient")){

model <- match.arg(model)
response <- data[,response.name]
predictor <- data[,predictor.name]
id <- as.numeric(unique(data[,id.name]))
num.cat <- nlevels(as.factor(response))
ordinal.level <- as.numeric(levels(as.factor(response)))
# Define random effects #
random1 <- 0; random2 <- 0
# Define ordinal model parameters #
alpha <- vector(length=num.cat-1, mode=’numeric’)
alpha <- parm[1:length(alpha)]
beta <- vector(length=length(predictor.name), mode=’numeric’)
beta <- parm[(length(alpha)+1):(length(alpha)+length(beta))]

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Intercept"){
sigma <- parm[(length(alpha)+length(beta)+1):length(parm)]
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Coefficient"){
sigma <- parm[(length(alpha)+length(beta)+1):length(parm)]
sigma1 <- sigma[1]
sigma2 <- sigma[3]
cov <- sigma[2]
rho <- cov/sqrt(sigma1*sigma2)
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Indep Random Coefficient"){
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sigma <- parm[(length(alpha)+length(beta)+1):length(parm)]
sigma1 <- sigma[1]
sigma2 <- sigma[2]
}

index.all <- function (subject) {
index.all1(subject, id.name, predictor.name, response.name,

ordinal.level, data)
}

index.list <- list()
index.list <- lapply(id,index.all)
nGauss=1
index.list <- rep(index.list, times=nGauss)

# Define function to calculate condition mode for different models #
# Function 1. Random Intercept Model #

ConditionMode.Int <- function(subject){
ConditionMode1 <- function(random1){
p <- linear.predictor.Cum(response.name, predictor.name, id.name, data,

time.name, num.cat, ordinal.level, alpha,
beta, sigma, random1, random2=0, subject)

logp <- log(p)
id <- as.numeric(unique(data[,id.name]))
rank <- data.frame(1:length(id),id)
part1 <- sum(pairwise.multiply1(index.list[[rank[rank[,

’id’]==subject,1]]], logp))
part2 <- 1/2*log(2*pi*sigma)+random1^2/(2*sigma)
nlogh <- part2 - part1
return(nlogh)
}

optim(0, ConditionMode1, method="L-BFGS-B")$par
}

# Function 2. Random Coefficient Model #
ConditionMode.Coef <- function(subject){

ConditionMode2 <- function(random){
random1 <- random[1]
random2 <- random[2]

p <- linear.predictor.Cum(response.name, predictor.name, id.name, data,
time.name, num.cat, ordinal.level, alpha,
beta, sigma, random1, random2, subject)

logp <- log(p)
id <- as.numeric(unique(data[,id.name]))
rank <- data.frame(1:length(id),id)
part1 <- sum(pairwise.multiply1(index.list[[rank[rank[,’id’]==

subject,1]]], logp))
part2 <- log(2*pi*sqrt(sigma1*sigma2)) + 1/2*log(1-rho^2)+

1/(2*(1-rho^2))*(random1^2/sigma1 + random2^2/sigma2 -
2*rho*random1*random2/sqrt(sigma1*sigma2))

nlogh <- part2 - part1
return(nlogh)
}

optim(c(0,0), ConditionMode2, method="L-BFGS-B")$par
}

# Function 3.#
ConditionMode.Coef0 <- function(subject){
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ConditionMode2 <- function(random){
random1 <- random[1]
random2 <- random[2]

p <- linear.predictor.Cum(response.name, predictor.name, id.name, data,
time.name, num.cat, ordinal.level, alpha,
beta, sigma, random1, random2, subject)

logp <- log(p)
id <- as.numeric(unique(data[,id.name]))
rank <- data.frame(1:length(id),id)
part1 <- sum(pairwise.multiply1(index.list[[rank[rank[,’id’]==

subject,1]]], logp))
rho <- 0
part2 <- log(2*pi*sqrt(sigma1*sigma2)) + 1/2*log(1-rho^2)+
1/(2*(1-rho^2))*(random1^2/sigma1 + random2^2/sigma2 -
2*rho*random1*random2/sqrt(sigma1*sigma2))
nlogh <- part2 - part1
return(nlogh)
}

optim(c(0,0), ConditionMode2, method="L-BFGS-B")$par
}

# Function 4. Prediction from Random Intercept Model #
predict1 <- function(subject, random1){

p <- linear.predictor.Cum(response.name, predictor.name, id.name, data,
time.name, num.cat, ordinal.level, alpha,
beta, sigma, random1, random2=0, subject)

apply(p, 1, which.max)
}

# Function 5. Prediction from Random Coefficient Model #
predict2 <- function(subject, random1, random2){
p <- linear.predictor.Cum(response.name, predictor.name, id.name, data,

time.name, num.cat, ordinal.level, alpha,
beta, sigma, random1, random2, subject)

apply(p, 1, which.max)
}

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Intercept"){
u.mode <- mapply(ConditionMode.Int,id)
pred.cat <- unlist(mapply(predict1, id, u.mode))
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Random Coefficient"){
u.mode <- t(mapply(ConditionMode.Coef,id))
pred.cat <- unlist(mapply(predict2, id, u.mode[,1],u.mode[,2]))
} else

if (c("Indep Random Coefficient","Random Coefficient","Random Intercept")[charmatch(model,
c("Indep Random Coefficient","Random Coefficient",

"Random Intercept"))] == "Indep Random Coefficient"){
u.mode <- t(mapply(ConditionMode.Coef0,id))
pred.cat <- unlist(mapply(predict2, id, u.mode[,1],u.mode[,2]))
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}
if (is.matrix(pred.cat)==TRUE) {

pred.cat <- as.vector(pred.cat)
}

return(pred.cat)
}
### END Compile_step3.R ###
###########################################################################
###########################################################################
### "FSPenFixed" function ###
FSPenFixed <- function(x, y, data,

gene.name=NULL, beta.name=NULL,
epsilon=1e-4, tol=1e-6, cut.prop=0.002,
criteria="AIC", standardize=FALSE){

source("Compile_step1.R")
source("Compile_step2.R")
source("Compile_step3.R")
if (standardize==TRUE) {x <- scale(x)

data <- data.frame(y, x)
}

y <- as.ordered(y)
forwardstagewise <- forward.stagewise.cum (x, y, epsilon, tol, cut.prop)
output<- output.CumFS(forwardstagewise, x, y)
step.index <- steps(output, range=0, criteria)
beta.list <- forwardstagewise$beta.list
Num.nonzero <- unlist(forwardstagewise$num.nonzero)
new.beta <- beta.gene <- beta.list[[step.index]]
gene.name <- colnames(x)[as.numeric(names(new.beta))]
fit <- logLL(x, y, beta1=new.beta)
new.alpha <- fit$par
logLL <- fit$value
pred.y <- Predict(x, y, new.alpha, new.beta)
ylevels <- levels(as.ordered(y))
kk <- 1:length(ylevels)

for (ii in 1:length(pred.y)){
for (kk in 1:length(ylevels)){

if (pred.y[ii]==kk) {pred.y[ii] <- ylevels[kk]}
}

}
pred.y <- factor(pred.y, levels=levels(y),ordered=TRUE)
pred.table <- table(pred.y, y)
list(alpha=new.alpha, beta.gene=beta.gene, gene.name=gene.name,

logLL=logLL, pred.table=pred.table)
}
### END "FSPenFixed" function ###
#############################################################################
#############################################################################
### START "FSPenFixedCV" function ###
FSPenFixedCV <- function(x, y, data, kfold,

gene.name=NULL, beta.name=NULL,
epsilon=1e-4, tol=1e-6, cut.prop=0.002,
criteria="AIC", standardize=FALSE){

source("Compile_step1.R")
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source("Compile_step2.R")
source("Compile_step3.R")
if (standardize==TRUE) {x <- scale(x)

data <- data.frame(y, x)
}

y <- as.ordered(y)
PenFixedCV <- list()
for (jj in 1:kfold){

test.index <- (as.integer((jj-1)/kfold*dim(x)[1])+1):
(as.integer(jj/kfold*dim(x)[1]))

train.index <- setdiff(1:dim(x)[1], test.index)
index <- grep(colnames(x)[1], colnames(data))
test.data <- data[test.index,]
train.data <- data[train.index,]
test.x <- data.matrix(test.data[,index:dim(data)[2]])
train.x <- data.matrix(train.data[,index:dim(data)[2]])
test.y <- y[test.index]
train.y <- y[train.index]
forwardstagewise <- forward.stagewise.cum (train.x, train.y,

epsilon, tol, cut.prop)
output<- output.CumFS(forwardstagewise, train.x, train.y)
step.index <- steps(output, range=0, criteria)
beta.list <- forwardstagewise$beta.list
Num.nonzero <- unlist(forwardstagewise$num.nonzero)
new.beta <- beta.gene <- beta.list[[step.index]]
gene.name <- colnames(x)[as.numeric(names(new.beta))]
fit <- logLL(train.x, train.y, beta1=new.beta)
new.alpha <- fit$par
pred.y <- Predict(x, y, new.alpha, new.beta)
ylevels <- levels(as.ordered(y))
kk <- 1:length(ylevels)

for (ii in 1:length(pred.y)){
for (kk in 1:length(ylevels)){

if (pred.y[ii]==kk) {pred.y[ii] <- ylevels[kk]}
}

}
pred.y <- factor(pred.y, levels=levels(y),ordered=TRUE)
pred.table <- table(pred.y, y)
PenFixedCV[[jj]] <- list(test.index=test.index, new.beta=new.beta,

gene.name=gene.name, pred.table=pred.table)
}

return(PenFixedCV)
}
### END "FSPenFixedCV" function ###
#############################################################################
#############################################################################
### START "FSPenMixed function ###
FSPenMixed <- function(response.name, predictor.name,

id.name, time.name, data, nGauss=NULL,
gene.name=NULL, beta.name=NULL,

link=c("Cumulative", "Adjacent", "Forward CR", "Backward CR"),
model=c("Random Intercept", "Random Coefficient",
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"Indep Random Coefficient"), Adaptive=c("TRUE", "FALSE"),
Cholesky=c("TRUE", "FALSE"), x,y,
epsilon=1e-4, tol=1e-3, cut.prop=0.0015,
range=0, criteria="AIC", standardize=FALSE){
### load functions ###
source("Compile_step1.R")
source("Compile_step2.R")
source("Compile_step3.R")
model <- match.arg(model)
link <- match.arg(link)
Adaptive <- match.arg(Adaptive)
Cholesky <- match.arg(Cholesky)
if (is.null(nGauss)==TRUE) {nGauss=10}
if (standardize==TRUE) {x <- scale(x)

data1 <- scale(data[, c(predictor.name, time.name)])
data <- data.frame(data[,c(response.name, id.name)], data1, x)
} #what if time.name=NULL???#
### List of Parameters ###
# x: matrix contained the probes or genes #
# y: ordinal response #
# epsilon: incremental amount in the forward stagewise.Default=1e-4 #
# tol: converge criteria. Default=1e-3 #
# cut.prop: proportion of features assumed to be important. #
# range: number of random coef ordinal models fitted. Default=1 #
# criteria: AIC or BIC. Default="AIC" #
# data: the data used. #
# response.name: name of ordinal response #
# predictor.name: fixed effect, exclude the features selected by FS #
# id.name: subject name #
# time.name: time #
# nGauss: number of Gauss-Hermite Quadrature points. Default=10 #
# link: Type of random coef ordinal models. Default="Cumulative" #
# model: "Random Intercept", "Random Coefficient" #
# Adaptive: Adaptive GHQ procedure. Default=TRUE #
# Cholesky: Cholesky Decomposition for the variance. Default=TRUE #
### Conduct the Forward Stagewise Procedure ###
y <- as.ordered(data[,response.name])
forwardstagewise <- forward.stagewise.cum (x, y, epsilon, tol, cut.prop)
beta.list <- forwardstagewise$beta.list
Num.nonzero <- unlist(forwardstagewise$num.nonzero)
output<- output.CumFS(forwardstagewise, x=x, y=y)
step.index <- steps(output, range, criteria)
PenMixed <- list()
for (jj in 1:length(step.index)) {

new.beta <- beta.gene <- beta.list[[step.index[jj]]]
gene.name <- colnames(x)[as.numeric(names(new.beta))]

fit <- ordinal.mixed.model(response.name, predictor.name, id.name,
time.name, data, nGauss, gene.name,
beta.gene, link, model, Adaptive, Cholesky)

parm <- fit[[1]]$parm
logLL <- fit[[2]]
aic <- 2*length(new.beta) - 2*logLL
bic <- length(new.beta)*log(dim(x)[2]) - 2*logLL
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pred.y <- ConditionalMode(response.name, predictor.name, id.name,
data, time.name, parm, gene.name, beta.gene,
model)

ylevels <- levels(y)
kk <- 1:length(ylevels)
for (ii in 1:length(pred.y)){

for (kk in 1:length(ylevels)){
if (pred.y[ii]==kk) {pred.y[ii] <- ylevels[kk]}
}

}
pred.table <- table(pred.y, y)
PenMixed[[jj]] <- list(parm=parm, new.beta=new.beta, gene.name=gene.name,

AIC=aic, BIC=bic, logLL=logLL, pred.table=pred.table)
}

return(PenMixed)
}
### END "FSPenMixed" function ###
#############################################################################
#############################################################################
### START "FSPenMixedCV" function ###
FSPenMixedCV <- function(response.name, predictor.name,

id.name, time.name, data, kfold=1, loop=20,
nGauss=NULL, gene.name=NULL, beta.name=NULL,

link=c("Cumulative", "Adjacent", "Forward CR", "Backward CR"),
model=c("Random Intercept", "Random Coefficient",

"Indep Random Coefficient"), Adaptive=c("TRUE", "FALSE"),
Cholesky=c("TRUE", "FALSE"), x, y,
epsilon=1e-4, tol=1e-3, cut.prop=0.0014,
range=0, criteria="AIC", standardize=FALSE){

### load functions ###
source("Compile_step1.R")
source("Compile_step2.R")
source("Compile_step3.R")
model <- match.arg(model)
link <- match.arg(link)
Adaptive <- match.arg(Adaptive)
Cholesky <- match.arg(Cholesky)
if (is.null(nGauss)==TRUE) {nGauss=10}
if (standardize==TRUE) {x <- scale(x)

data1 <- scale(data[, c(predictor.name, time.name)])
data <- data.frame(data[,c(response.name, id.name)],

data1, x)
}
y <- as.ordered(y)
N <- length(unique(data[,id.name]))
id <- unique(data[,id.name])
PenMixedCV <- list()
for (jj in 1:kfold){

test.subject <- as.integer((jj-1)/kfold*N+1):
(as.integer(jj/kfold*N))

test.index <- as.matrix(id[test.subject])
train.subject <- setdiff(1:N, test.subject)
train.index <- as.matrix(id[train.subject])

303



colnames(test.index)<-"test.index"
test.data<-merge(test.index, data, by.x="test.index",

by.y=id.name, all.x=T)
colnames(test.data)[1] <- id.name
train.index <- as.matrix(setdiff(id, test.index))
colnames(train.index)<-"train.index"
train.data<-merge(train.index, data, by.x="train.index",

by.y=id.name, all.x=T)
colnames(train.data)[1] <- id.name
index <- grep(colnames(x)[1], colnames(data))
test.x <- data.matrix(test.data[,index:dim(data)[2]])
train.x <- data.matrix(train.data[,index:dim(data)[2]])

if ( nlevels(as.ordered(train.data[, response.name]))!=
nlevels(as.ordered(data[,response.name]))) { next }

### Conduct the Forward Stagewise Procedure ###
train.y <- as.ordered(train.data[,response.name])
test.y <- test.data[, c(id.name, response.name)]
forwardstagewise <- forward.stagewise.cum (x=train.x, y=train.y,

epsilon, tol, cut.prop)
beta.list <- forwardstagewise$beta.list
Num.nonzero <- unlist(forwardstagewise$num.nonzero)
output<- output.CumFS(forwardstagewise, x=train.x, y=train.y)
step.index <- steps(output, range, criteria)

new.beta <- beta.gene <- beta.list[[step.index]]
gene.name <- colnames(x)[as.numeric(names(new.beta))]
fit <- ordinal.mixed.model(response.name, predictor.name, id.name,

time.name, data=train.data, nGauss, gene.name,
beta.gene, link, model, Adaptive, Cholesky)

parm <- fit[[1]]$parm
logLL <- fit[[2]]
aic <- 2*length(new.beta) - 2*logLL
bic <- length(new.beta)*log(dim(x)[2]) - 2*logLL
pred.y <- ConditionalMode(response.name, predictor.name, id.name,

data, time.name, parm, gene.name, beta.gene,
model)

ylevels <- levels(as.ordered(y))
kk <- 1:length(ylevels)
for (ii in 1:length(pred.y)){

for (kk in 1:length(ylevels)){
if (pred.y[ii]==kk) {pred.y[ii] <- ylevels[kk]}
}

}
pred.y <- factor(pred.y, levels=levels(y), ordered=T)
pred.table <- table(pred.y, y)
PenMixedCV[[jj]] <- list(test.index=test.index, new.beta=new.beta,

gene.name=gene.name, pred.table=pred.table)
}

return(PenMixedCV)
}
### END "FSPenMixedCV" function ###
#############################################################################
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I.2 Application to NIMH Schizophrenia Longitudinal

Data
# Import the function and data #
source("ordinalmixedv2.R")
data <- read.csv("NIMH Schizophrenia.csv")
response.name = "imps79o"
predictor.name= c(’tx’,’sweek’,’txswk’)
id.name = "id"
time.name = ’sweek’
# Ordinal random intercept and random coefficient models with cumulative logit #
fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name,

data, nGauss=15)
fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

gene.name=NULL, beta.gene=NULL,
model="Random Coefficient")

# Ordinal random intercept and random coefficient models with adjacent category #
fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

gene.name=NULL, beta.gene=NULL,
link="Adjacent", nGauss=5)

fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name,
data, gene.name=NULL, beta.gene=NULL,

model="Random Coefficient", link="Adjacent")
# Ordinal random intercept and random coefficient models with forward continuation ratio #
fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name,

data, link="Forward")
fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

model="Random Coefficient", link="Forward")
# Ordinal random intercept and random coefficient models with backward continuation ratio #
fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name,

data, link="Backward")
fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

model="Random Coefficient", link="Backward")
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I.3 Application to Health Service Research Example

# Import the function and data #
source("ordinalmixedv2.R")
data <- read.csv("San Diego Homeless.csv")
response.name = "Housing"
predictor.name= c("Time1","Time2","Time3", "Section8", "Sect8T1", "Sect8T2","Sect8T3")
id.name = "Id"
time.name = NULL
# Ordinal random intercept and random coefficient models with cumulative logit #
fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name,

data, nGauss=15)
fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

gene.name=NULL, beta.gene=NULL,
model="Random Coefficient")

# Ordinal random intercept and random coefficient models with adjacent category #
fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

gene.name=NULL, beta.gene=NULL, link="Adjacent",
nGauss=5)

fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,
gene.name=NULL, beta.gene=NULL,
model="Random Coefficient", link="Adjacent")

# Ordinal random intercept and random coefficient models with forward continuation ratio #
fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

link="Forward")
fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

model="Random Coefficient", link="Forward")
# Ordinal random intercept and random coefficient models with backward continuation ratio #
fit1 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

link="Backward")
fit2 <- ordinal.mixed.model (response.name, predictor.name, id.name, time.name, data,

model="Random Coefficient", link="Backward")
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I.4 Application to GSE10006 Smoking Study

### Model fitting ###
source("FSPenFixed.R")
data <- read.csv("GSE10006.csv")
x=data[,3:dim(data)[2]]
y=data[,2]
y <-factor(y, levels=c("non-smoker","smoker","early-COPD","COPD"), ordered=TRUE)
output <- FSPenFixed(x, y, data, tol=1e-5)
############################################################################
### Visualization ###
source("Compile_step1.R")
source("Compile_step2.R")
data <- read.csv("GSE10006.csv")
x=data[,3:dim(data)[2]]
y=data[,2]
y <-factor(y, levels=c("non-smoker","smoker","early-COPD","COPD"),ordered=TRUE)
fit <- forward.stagewise.cum(x, y, 1e-4, 1e-4, 1)
summary <- output.CumFS(fit, x, y)
beta <- fit$beta.list
step <- length(beta)
# full list of genes consecutively enters the active set #
add.gene <- list()
for (ii in 2:dim(summary)[1]){

old.gene <- names(beta[[summary[ii-1,"step"]]])
new.gene <- names(beta[[summary[ii,"step"]]])
add.gene[[ii]] <- setdiff(new.gene, old.gene)
add.gene[[1]] <- names(beta[[summary[1,"step"]]])
}

step <- summary[60,"step"]
plot(0,0,type="n", xlim=c(0,step),

ylim=c(min(beta[[step]]),max(beta[[step]])),
xlab="Step", ylab="Penalized Estimate",cex.lab=1.3,
main="GSE10006 Forward Stagewise Path", cex.main=1.3)

lines(x=c(0,step),y=c(0,0), type="l", col=1, lwd=2)
for (ii in 1:60){
gene <- add.gene[[ii]]
for (kk in ii:dim(summary)[1]) {
if (kk==1){

lines(x=c(0,summary[kk,"step"]), y=c(0, beta[[summary[kk,"step"]]]),col=2,lwd=1.5)
} else if (kk==ii){

lines(x=c(summary[kk-1,"step"],summary[kk,"step"]),
y=c(0,beta[[summary[kk,"step"]]][names(beta[[summary[kk,"step"]]])==gene]),

col=ii+1, lwd=1.5)
} else {
lines(x=c(summary[kk-1,"step"],summary[kk,"step"]),

y=c(beta[[summary[kk-1,"step"]]][names(beta[[summary[kk-1,"step"]]])==gene],
beta[[summary[kk,"step"]]][names(beta[[summary[kk,"step"]]])==gene]),
col=ii+1,lwd=1.5)

}
}
}

307



lines(x=c(15965, 15965), y=c(-1,1),col=1,lty=2)
plot(summary[, "step"], summary[,"aic"], type="b", xlab="step", ylab="AIC", pch=16)
##########################################################################
### N-fold cross-validation ###
source("FSPenFixedCV.R")
data <- read.csv("GSE10006.csv")
x=data[,3:dim(data)[2]]
y=data[,2]
y <-factor(y, levels=c("non-smoker","smoker","early-COPD","COPD"),ordered=TRUE)
FSPen <- FSPenFixedCV(x, y, data, kfold=dim(x)[1])
### Gathering cross-validation together ###
# Define Goodman and Kruskal’s gamma #
Gamma.stat4 <- function(tables) {

c11 <- tables[1,1]*(sum(tables[2:4,2:4]))
c12 <- tables[1,2]* sum(tables[2:4,3:4])
c13 <- tables[1,3]* sum(tables[2:4,4])
c21 <- tables[2,1]* sum(tables[3:4,2:4])
c22 <- tables[2,2]* sum(tables[2:4,2:4])
c23 <- tables[2,3]* sum(tables[3:4,4])
c31 <- tables[3,1]* sum(tables[4,2:4])
c32 <- tables[3,2]* sum(tables[4,3:4])
c33 <- tables[3,3]* sum(tables[4,4])
C <- c11 + c12 + c13 + c21 + c22 + c23 + c31 + c32 + c33
d12 <- tables[1,2]*sum(tables[2:4,1])
d13 <- tables[1,3]*sum(tables[2:4,1:2])
d14 <- tables[1,4]*sum(tables[2:4,1:3])
d22 <- tables[2,2]*sum(tables[3:4,1])
d23 <- tables[2,3]*sum(tables[3:4,1:2])
d24 <- tables[2,4]*sum(tables[3:4,1:3])
d32 <- tables[3,2]*sum(tables[4,1])
d33 <- tables[3,3]*sum(tables[4,1:2])
d34 <- tables[3,4]*sum(tables[4,1:3])
D <- d12 + d13 + d14 + d22 + d23 + d24 + d32 + d33 + d34

gamma.stat <- (C-D)/(C+D)
return(gamma.stat)

}
# kk varies according to the number of split in k-fold cv #
gene.freq <- predaccuracy <- gamma <- NULL
for(kk in 1:48){

gene.freq <- c(gene.freq, FSPen[[kk]]$gene.name)
predaccuracy <- c(predaccuracy,
sum(diag(FSPen[[kk]]$pred.table))/sum(FSPen[[kk]]$pred.table))
gamma <- c(gamma, Gamma.stat4(FSPen[[kk]]$pred.table))

}
gene.freq <- table(gene.freq)
gene.freq1 <- gene.freq[order(gene.freq, decreasing=T)]
gene.freq2 <- round(gene.freq1/48,digits=3)
library(hgu133a2.db)
keys = as.character(names(gene.freq2))
for (ii in 1:length(keys)){

keys[ii] <- substr(keys[ii], 2, nchar(keys[ii]))
}

match <- select(hgu133a2.db, keys=keys, cols="SYMBOL")
match <- match[-30,]
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percent <- paste(round(gene.freq2*100, 3), "%", sep="")
match1 <- data.frame(match, percent)
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I.5 Application to Glue Grant Burn Injury Study

### Data Preprocessing ###
# Data management for the Glue Grant Data #
data.clinical<-read.csv(’TRDB_TIME_VARY_TRAUMA_RPT_20110919_111822.csv’,header=T)
pat_id1<-as.factor(data.clinical[,1])
data.chip<-read.csv(’TRDB_TRAUMA-PT_DEMO_MICRO_SVRTY_RPT_20110919_112945.csv’,header=T)
pat_id2<-as.factor(data.chip[,1])
# This allows to match "patient_id/time" records in clinical data with microarray data
hours_data2<-data.chip[,"HOURS_SINCE_INJURY"]
data.chip[,31]<-as.integer(hours_data2/24)
colnames(data.chip)[31]<-"days_in_hospital"
data.clinical<-transform(data.clinical,pat_days=as.vector(paste(PATIENT_ID,

HOS_DAY_SNC_INJ, sep=’/’)))
data.chip<-transform(data.chip,pat_days=as.vector(paste(PATIENT_ID,

days_in_hospital, sep=’/’)))
new.data<-merge(data.clinical,data.chip, by.x=’pat_days’,by.y=’pat_days’,

all.x=FALSE,all.y=TRUE)
# Select columns of interest #
new.data1<-new.data[c(’PATIENT_ID.x’,"HOS_DAY_SNC_INJ", "HOURS_SINCE_INJURY",

"MARSHALL_NO_GCS", "MARSHALL_MOF","MICROARRAY_ID","ARRAY_SAMPLE_TYPE",
"CHIP_NAME","ANALYSIS_TOOL", "NEURO_MOF", "RESP_MOF", "CARDIO_MOF",
"RENAL_MOF","HEP_MOF","HEM_MOF")]

table( new.data1[,’ARRAY_SAMPLE_TYPE’], new.data1[,’CHIP_NAME’])
# HG-U133_Plus_2 hGlue_2_0_v1.1sq hGlue1_0.1sq
# Buffy Coat 869 0 0
# Monocyte 0 494 211
# PMN 0 501 218
# PMN cDNA 0 2 0
# T-cell 0 492 216
data.chip1<-data.chip[data.chip[,"ARRAY_SAMPLE_TYPE"]=="Buffy Coat",]
data.clinical<-transform(data.clinical,pat_days=as.vector(paste(PATIENT_ID,

HOS_DAY_SNC_INJ, sep=’/’)))
data.chip1<-transform(data.chip1,pat_days=as.vector(paste(PATIENT_ID,

SAMPLE_STUDYSTART_DAYS, sep=’/’)))
new.data<-merge(data.clinical,data.chip1, by.x=’pat_days’,by.y=’pat_days’,

all.x=FALSE,all.y=TRUE)
attach(new.data)
new.data1<-new.data[order(PATIENT_ID.y,SAMPLE_STUDYSTART_DAYS),]
# extract columns of interest #
final.data<-new.data1[,c( "PATIENT_ID.y","SAMPLE_STUDYSTART_DAYS","HOS_DAY_SNC_INJ",

"MARSHALL_NO_GCS", "MARSHALL_MOF", "MICROARRAY_ID", "NEURO_MOF",
"RESP_MOF", "CARDIO_MOF","RENAL_MOF","HEP_MOF","HEM_MOF")]
meta.data <- final.data
meta.data <-read.csv (’final data.csv’,row.name=1)
raw.data<-read.delim(’dchip_tt_20111108_124331.txt’,row.name=1) # 54675*1971 #
col.name<-colnames(raw.data)
exprs.index<-grep("expression",col.name)
exprs.data<-raw.data[,exprs.index] #54675*657#
call.index<-grep("call",col.name)
call.data<-raw.data[,call.index] #54675*657#
# To filter the All absent probes and create R object: Allabsent.RData#
# Allabsent <- rep(0, dim(call.data)[1])
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# for (ii in 1: dim(call.data)[1]){
# tmp <- ifelse(call.data[ii,]=="A",1,0)
# Allabsent[ii] <- sum(tmp)
# }
load("Allabsent.RData")
temp <- data.frame(1:dim(call.data)[1], Allabsent)
remove.index <- temp[temp[,"Allabsent"]==dim(call.data)[2],1]
exprs.data <- exprs.data[-remove.index,] #48093*657 #
col.name<-colnames(exprs.data)
microarray.name<-vector(mode=’numeric’)
for ( ii in 1:length(col.name)){
temp1<-strsplit(col.name[ii],"m")[[1]][2]

temp2<-strsplit(temp1,"_")[[1]][1]
microarray.name[ii]<-temp2

}
microarray.name<-as.numeric(microarray.name) # 657 records #
microarray.diff<-setdiff(meta.data[,6],microarray.name) # 212 records missing #
# Extract the missing information #
# Either the Marshall score missed or the number of days in hospital missed #
miss.pat<-matrix(nc=12,nr=length(microarray.diff))
for (ii in 1:length(microarray.diff)){
miss.pat[ii,]<-as.matrix(meta.data[meta.data[,6]==microarray.diff[ii],])
}

colnames(miss.pat)<-colnames(meta.data)
all.equal(miss.pat[,6], microarray.diff)
rownames(meta.data) <- 1:dim(meta.data)[1]
row.index<-vector(mode=’numeric’)
for ( ii in 1: length(microarray.diff)){
row.index[ii]<-rownames(meta.data[meta.data[,"MICROARRAY_ID"]==microarray.diff[ii],])
}
row.index<-as.numeric(row.index)
meta.data<-meta.data[-row.index,]
all.equal(microarray.name, meta.data[,6])
Pheno.AFX<-new(’AnnotatedDataFrame’, data=exprs.data, varMetadata=meta.data)
# Merge raw.data and meta.data #
exprs.data <- t(exprs.data)
row.name <- rownames(exprs.data)
microarray.name<-vector(mode=’numeric’)
for ( ii in 1:length(row.name)){
temp1<-strsplit(row.name[ii],"m")[[1]][2]

temp2<-strsplit(temp1,"_")[[1]][1]
microarray.name[ii]<-temp2

}
microarray.name<-as.numeric(microarray.name)
rownames(exprs.data) <- microarray.name
exprs.data <- data.frame(microarray.name, exprs.data)
new.data <- merge(meta.data, exprs.data, by.x="MICROARRAY_ID", by.y="microarray.name")
attach(new.data) #657*48105#
new.data1 <- new.data[order(PATIENT_ID.y, SAMPLE_STUDYSTART_DAYS),]
new.data1 <- data.frame(new.data1[,1:12], log(new.data1[,13:dim(new.data1)[2]], base=2))
x <- new.data1[,13:dim(new.data1)[2]] #657*48093#
# Create modified ordinal outcome #
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y <- new.data1[, "MARSHALL_MOF"]
ycat3 <- ycat4 <- NULL
for (ii in 1: length(y)){

if ((y[ii]>=0) && (y[ii] <=4)) { ycat3[ii] <- 1
} else if ((y[ii]>=5) && (y[ii] <=9)) { ycat3[ii] <- 2
} else if ((y[ii] >=10) && (y[ii] <=15)) {ycat3[ii] <- 3

}
}
summary(as.ordered(ycat3))
# 1 2 3
# 287 298 72
for (ii in 1: length(y)){

if (y[ii]==0) { ycat4[ii] <- 1
} else if ((y[ii]>=1) && (y[ii] <=5)) { ycat4[ii] <- 2
} else if ((y[ii] >=6) && (y[ii] <=9)) {ycat4[ii] <- 3
} else {ycat4[ii] <- 4}

}
summary(as.ordered(ycat4))
# 1 2 3 4
#172 178 235 72
y <- new.data1[,"RENAL_MOF"]
RENAL3 <- NULL
for (ii in 1:length(y)){

if (y[ii]==0) { RENAL3[ii] <-0
} else if (y[ii]==1) {RENAL3[ii] <- 1
} else {RENAL3[ii] <-2}

}
summary(as.ordered(RENAL3))
# 0 1 2
# 236 395 26
y <- new.data1[,"NEURO_MOF"]
new.y <- vector(length=length(y), mode="numeric")
for (ii in 1:length(y)) {

if((y[ii]==0) ||(y[ii]==1)) {new.y[ii] <- 1
} else if ((y[ii]==2)||(y[ii]==3)) {new.y[ii] <- 2
} else {new.y[ii] <- 3}

}
new.data1[, "NEURO_MOF"] <- new.y
new.data1 <- data.frame(ycat3, ycat4, RENAL3, new.data1)
write.csv(new.data1, "gluegrant.csv")
##############################################################################
### Model Fitting Procedure ###
source("FSPenMixed.R")]
data <- read.csv("gluegrant.csv")
### Marshall score assessed on renal system ###
# ordinal random intercept model #
output1 <- FSPenMixed(response.name="RENAL3",

predictor.name="SAMPLE_STUDYSTART_DAYS",
id.name="PATIENT_ID",
time.name="SAMPLE_STUDYSTART_DAYS", data,
x=data.matrix(data[, 15:dim(data)[2]]),
y=data[,"RENAL3"],
model="Random Intercept", range=0, cut.prop=0.0015)

# ordinal random coefficient model #
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output2 <- FSPenMixed(response.name="RENAL3",
predictor.name="SAMPLE_STUDYSTART_DAYS",
id.name="PATIENT_ID",
time.name="SAMPLE_STUDYSTART_DAYS", data,
x=data.matrix(data[, 15:dim(data)[2]]),
y=data[,"RENAL3"],
model="Random Coefficient", range=0, cut.prop=0.0015)

### Marshall score assessed on central nervous system ###
# ordinal random intercept model #
output1 <- FSPenMixed(response.name="NEURO_MOF",

predictor.name="SAMPLE_STUDYSTART_DAYS",
id.name="PATIENT_ID",
time.name="SAMPLE_STUDYSTART_DAYS", data,
x=data.matrix(data[, 15:dim(data)[2]]),
y=data[,"NEURO_MOF"],
model="Random Intercept", range=0, cut.prop=0.0015)

# ordinal random coefficient model #
output2 <- FSPenMixed(response.name="NEURO_MOF",

predictor.name="SAMPLE_STUDYSTART_DAYS",
id.name="PATIENT_ID",
time.name="SAMPLE_STUDYSTART_DAYS", data,
x=data.matrix(data[, 15:dim(data)[2]]),
y=data[,"NEURO_MOF"],
model="Random Coefficient", range=0, cut.prop=0.0015)

### aggregated Marshall score with three categories ###
# ordinal random intercept model #
output1 <- FSPenMixed(response.name="ycat3",

predictor.name="SAMPLE_STUDYSTART_DAYS",
id.name="PATIENT_ID",
time.name="SAMPLE_STUDYSTART_DAYS", data,
x=data.matrix(data[, 15:dim(data)[2]]),
y=data[,"ycat3"],
model="Random Intercept", range=0, cut.prop=0.0015)

#ordinal random coefficient model #
output2 <- FSPenMixed(response.name="ycat3",

predictor.name="SAMPLE_STUDYSTART_DAYS",
id.name="PATIENT_ID",
time.name="SAMPLE_STUDYSTART_DAYS", data,
x=data.matrix(data[, 15:dim(data)[2]]),
y=data[,"ycat3"],
model="Random Coefficient", range=0, cut.prop=0.0015)

# Affymatrix annotation match to Gene Symbol #
beta <- output1[[1]]$new.beta
name <- output1[[1]]$gene.name
tmp <- data.frame(name, beta, abs(beta))
tmp <- tmp[with(tmp, order(-tmp[,3])),]
# Match probes to Gene Symbol #
# source("http://bioconductor.org/biocLite.R")
# biocLite("hgu133a2.db")
library(hgu133a2.db)
keys = as.character(tmp[,"name"])
for (ii in 1:length(keys)){

keys[ii] <- substr(keys[ii], 2, nchar(keys[ii]))
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}
match <- select(hgu133a2.db, keys=keys, cols=c("SYMBOL"))
tmp[,1] <- keys
tmp1 <-merge(match, tmp, by.x="PROBEID", by.y="name", all.x=T)
tmp1 <- tmp1[with(tmp1, order(-tmp1[,4])),]
tmp1 <- tmp1[,-4]
#############################################################################
### Visualization using data with Marshall score assessed on the renal system ###
### Regularization Path Plot ###
source("Compile_step1.R")
source("Compile_step2.R")
data <- read.csv("gluegrant.csv")
x=data.matrix(data[, 15:dim(data)[2]])
y=data[, "RENAL3"]
y <-factor(y, levels=c(0, 1, 2), ordered=TRUE)
fit <- forward.stagewise.cum(x, y, 1e-4, 1e-4, 0.0015)
summary <- output.CumFS(fit, x, y)
beta <- fit$beta.list
step <- length(beta)
# full list of genes consecutively enters the active set #
add.gene <- list()
for (ii in 2:dim(summary)[1]){

old.gene <- names(beta[[summary[ii-1,"step"]]])
new.gene <- names(beta[[summary[ii,"step"]]])
add.gene[[ii]] <- setdiff(new.gene, old.gene)
add.gene[[1]] <- names(beta[[summary[1,"step"]]])
}

step <- summary[60,"step"]
plot(0,0,type="n", xlim=c(0,step),

ylim=c(min(beta[[step]]),max(beta[[step]])),
xlab="Step", ylab="Penalized Estimate",cex.lab=1.3,
main="GSE10006 Forward Stagewise Path", cex.main=1.3)

lines(x=c(0,step),y=c(0,0), type="l", col=1, lwd=2)
for (ii in 1:60){
gene <- add.gene[[ii]]
for (kk in ii:dim(summary)[1]) {
if (kk==1){

lines(x=c(0,summary[kk,"step"]), y=c(0, beta[[summary[kk,"step"]]]),col=2,lwd=1.5)
} else if (kk==ii){

lines(x=c(summary[kk-1,"step"],summary[kk,"step"]),
y=c(0,beta[[summary[kk,"step"]]][names(beta[[summary[kk,"step"]]])==gene]),
col=ii+1, lwd=1.5)

} else {
lines(x=c(summary[kk-1,"step"],summary[kk,"step"]),

y=c(beta[[summary[kk-1,"step"]]][names(beta[[summary[kk-1,"step"]]])==gene],
beta[[summary[kk,"step"]]][names(beta[[summary[kk,"step"]]])==gene]),
col=ii+1,lwd=1.5)

}
}
}
### Other plots ###
time <- as.factor(data[,"HOS_DAY_SNC_INJ.x"]) #the same as sample study day #
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freq.time <- t(as.matrix(table(time)))
barplot1 <- barplot(freq.time, names.arg=as.numeric(colnames(freq.time)),ylim=c(0,170),

main="Summary of Sample Study Days in Glue Grant Data", col=1,
xlab="Days of hospitalization",
ylab="Number of Subjects")

text(barplot1, freq.time, labels = freq.time, pos = 3)
time <- data[,"HOS_DAY_SNC_INJ.x"]
time1 <- vector(length=length(time), mode="character")
tmp1 <- data[data[,"HOS_DAY_SNC_INJ.x"]==0, 1:10]
tmp2 <- data[data[,"HOS_DAY_SNC_INJ.x"]==4, 1:10]
tmp3 <- data[data[,"HOS_DAY_SNC_INJ.x"]==7, 1:10]
tmp4 <- data[data[,"HOS_DAY_SNC_INJ.x"]==14, 1:10]
tmp <- rbind(tmp1, tmp2, tmp3, tmp4)
hist2 <- table(tmp[,"new.y"], tmp[,5])
colnames(hist2) <- c("Baseline","Day 4", "Day 7","Day 14")
pdf(file="/home/houj2/gluegrant/Stagewise/Gluegrant_renal_bar3.pdf")
barplot2 <- barplot(hist2, beside=T,

names.arg=levels(c("Baseline","Day 4", "Day 7","Day 14")),
col=terrain.colors(3,alpha=0.6), ylim=c(0,130),
legend.text=c("Normal", "Mild", "Moderate+"),
main="Distribution of Marshall Score on Renal by Time",
xlab="Days of hospitalization",
ylab="Number of Subjects")

text(barplot2, hist2, labels = hist2, pos = 3)
time <- data[," MARSHALL_MOF.x"]
freq.time <- t(as.matrix(table(time)))
barplot1 <- barplot(freq.time, names.arg=as.numeric(colnames(freq.time)),ylim=c(0,180),

main="Distribution of Aggregated Marshall Score in Burn Injury Dataset",
col=1, xlab="Marshall Score",
ylab="Number of Observations")

text(barplot1, freq.time, labels = freq.time, pos = 3)
library(ggplot2)
colnames(data)[7] <- "TIME"
colnames(data)[4] <- "RENAL"
data[,"RENAL"] <- as.factor(data[,"RENAL"])
r <- qplot(TIME, X203932_at, data=data, colour=RENAL) +
xlab("Days of Hospitalization")+ylab("log2 Gene Expression")+opts(title = "HLA-DMB")
r+geom_smooth(size=2)
r <- qplot(TIME, X214909_s_at, data=data, colour=RENAL)+
xlab("Days of Hospitalization")+ylab("log2 Gene Expression")+opts(title="DDAH2")
r+geom_smooth(size=2)
r <- qplot(TIME, X209770_at, data=data, colour=RENAL)+
xlab("Days of Hospitalization")+ylab("log2 Gene Expression")+opts(title="BTN3A1")
r+geom_smooth(size=2)
r <- qplot(TIME, X214088_s_at, data=data, color=RENAL)+
xlab("Days of Hospitalization")+ylab("log2 Gene Expression")+opts(title="FUT3")
r+geom_smooth(size=2)
#############################################################################
### Cross-validation using data with Marshall score assessed on the renal system ###
### Each time, test data contains five subjects ###
load("FSPenMixedCV.R")
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data <- read.csv("gluegrantl")
PenMixedCV <- FSPenMixedCV (response.name="RENAL3",

predictor.name="SAMPLE_STUDYSTART_DAYS",
id.name="PATIENT_ID",
time.name="SAMPLE_STUDYSTART_DAYS" ,
data, kfold=33,
x=data.matrix(data[, 14:dim(data)[2]]),
y=data[,"RENAL3"])

### Gathering all the cross validation results ###
# Define Goodman and Kruskal’s gamma #
Gamma.stat <- function(tables) {

c11 <- tables[1,1]*(sum(tables[2:3,2:3]))
c12 <- tables[1,2]* sum(tables[2:3,3])
c21 <- tables[2,1]* sum(tables[3,2:3])
c22 <- tables[2,2]* tables[3,3]
C <- c11 + c12 + c21 + c22
d12 <- tables[1,2]*sum(tables[2:3,1])
d13 <- tables[1,3]*sum(tables[2:3,1:2])
d22 <- tables[2,2]*tables[3,1]
d23 <- tables[2,3]*sum(tables[3,1:2])
D <- d12 + d13 + d22 + d23

gamma.stat <- (C-D)/(C+D)
return(gamma.stat)

}
# 68 is the number of split, it varies according to kfold #
gene.freq <- predaccuracy <- gamma <- NULL
for (kk in 1:68){

gene.freq <- c(gene.freq, PenMixedCV[[kk]]$gene.name)
predaccuracy <- c(predaccuracy,
sum(diag(PenMixedCV[[kk]]$pred.table))/sum(PenMixedCV[[kk]]$pred.table))
gamma <- c(gamma, Gamma.stat(PenMixedCV[[kk]]$pred.table))
}

gene.freq <- table(gene.freq)
gene.freq1 <- gene.freq[order(gene.freq, decreasing=T)]
gene.freq2 <- round(gene.freq1/68, digits=3)
library(hgu133a2.db)
keys = as.character(names(gene.freq2))
for (ii in 1:length(keys)){

keys[ii] <- substr(keys[ii], 2, nchar(keys[ii]))
}

match <- select(hgu133a2.db, keys=keys, cols="SYMBOL")
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I.6 High-dimensional Data Simulation

### Load functions and Define parameters ###
source("Compile_step1.R")
source("Compile_step2.R")
source("Compile_step3.R")
n <- 90 # number of samples #
p <- 1000 # number of features #
k <- 3 # number of categories #
sig.p <- 1 # number of important features #
n.simu <- 1 # number of simulation #
mean <- 0
mean2 <- 1.5
mean3 <- 3
sd <- 1
CVpredErr.AIC <- CVpredErr.BIC <- list()
CVgamma.AIC <- CVgamma.BIC <- list()
CV.nonzero.AIC <- CV.nonzero.BIC <- list()
# Define Goodman and Kruskal’s gamma #
Gamma.stat <- function(tables) {

c11 <- tables[1,1]*(sum(tables[2:3,2:3]))
c12 <- tables[1,2]* sum(tables[2:3,3])
c21 <- tables[2,1]* sum(tables[3,2:3])
c22 <- tables[2,2]* tables[3,3]
C <- c11 + c12 + c21 + c22
d12 <- tables[1,2]*sum(tables[2:3,1])
d13 <- tables[1,3]*sum(tables[2:3,1:2])
d22 <- tables[2,2]*tables[3,1]
d23 <- tables[2,3]*sum(tables[3,1:2])
D <- d12 + d13 + d22 + d23

gamma.stat <- (C-D)/(C+D)
return(gamma.stat)

}
##############################################################################
### Construct Simulated Data ###
for (kk in 1:n.simu){

x <- matrix(nc=p, nr=n)
for (ii in 1:p) {

x[,ii] <- rnorm(n, mean=mean, sd=sd)
}
sig.p.index <- sample(1:p, sig.p)
nn <- n/k #samples in each category#
x.cat1 <- x.cat2 <- x.cat3 <- matrix(nr=n/k, nc=sig.p)
mean2 <- mean2*sample(c(-1,1), size=sig.p, replace=TRUE)
mean3 <- mean3*sample(c(-1,1), size=sig.p, replace=TRUE)
for (ii in 1:length(sig.p.index)){

x.cat1[,ii] <- rnorm(nn, mean=mean, sd=sd)
x.cat2[,ii] <- rnorm(nn, mean=mean2[ii], sd=sd)
x.cat3[,ii] <- rnorm(nn, mean=mean3[ii], sd=sd)
}

x.cat <- rbind(x.cat1, x.cat2, x.cat3)
for (ii in 1:length(sig.p.index)){

x[,sig.p.index[ii]] <- x.cat[,ii]
}

y <- as.ordered(c(rep(1,nn), rep(2,nn), rep(3,nn)))
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##############################################################################
# N-fold Cross-Validation #
# Define Prediction Error and Gamma Statistics #
predErr.AIC <- predErr.BIC <- vector(length=n, mode="numeric")
gamma.AIC <- gamma.BIC <- vector(length=n, mode="numeric")
true.nonzero.AIC <- true.nonzero.BIC <- vector(length=n, mode="numeric")
for (ii in 1:dim(x)[1]){

x <- scale(x)
train.sample <- x[-ii,]
train.y <- y[-ii]
eval.sample <- as.matrix(t(x[ii,]))
eval.y <- y[ii]
forwardstagewise <- forward.stagewise.cum(x=train.sample, y=train.y,

epsilon=1e-4, tol=1e-4, 1)
output <- output.CumFS(forwardstagewise, x=train.sample, y=train.y)
step.index <- steps(output, 0, criteria="AIC")
beta.list <- forwardstagewise$beta.list
Num.nonzero <- unlist(forwardstagewise$num.nonzero)
new.beta <- beta.gene <- beta.list[[step.index]]
gene.name <- as.numeric(names(new.beta))
fit <- logLL(train.sample, train.y, beta1=new.beta)
new.alpha <- fit$par
pred.y <- Predict(x, y, new.alpha, new.beta)
pred.table <- table(pred.y, y)
predErr.AIC[ii] <- 1 - sum(diag(pred.table))/sum(pred.table)
gamma.AIC[ii] <- Gamma.stat(pred.table)
true.nonzero.AIC[ii] <- length(intersect(sig.p.index, gene.name))
}
CVpredErr.AIC[[kk]] <- predErr.AIC
CVgamma.AIC[[kk]] <- gamma.AIC
CV.nonzero.AIC[[kk]] <- true.nonzero.AIC
}

318



I.7 Longitudinal High-dimensional Data Simulation

### Load functions and Define parameters ###
source("Compile_step1.R")
source("Compile_step2.R")
source("Compile_step3.R")
###############################################################################
# Create the data from longitudinal package #
library(longitudinal)
data(tcell)
# Rearrange data to sort by ID #
tcell <- NULL
for (ii in 1:10){

tmp <- seq(ii, dim(tcell.10)[1], 10)
temp <- tcell.10[tmp,]
tcell <- rbind(tcell, temp)
}

Time <- rep(c(0,2,4,6,8, 18, 24,32,48,72),10)
ID <- NULL
for (ii in 1:10){

tmp.ID <- rep(ii,10)
ID <- c(ID, tmp.ID)
}

tcell <- data.frame(Time, ID, tcell)
################################################################################
CVpredErr.AIC <- CVpredErr.BIC <- list()
CVgamma.AIC <- CVgamma.BIC <- list()
CV.nonzero.AIC <- CV.nonzero.BIC <- list()
n.simu <- 5
for (kk in 1:n.simu){

# Specify the beta and error to create ordinal response #
beta.prior <- rep(0, 58)
sig.p.index <- sample(1:58, 4)
beta.prior[sig.p.index] <- sample(-5:5, 4)
err <- rnorm(100, 0, 1)
latent.y <- as.matrix(tcell[,3:60])%*%beta.prior + err
cutoff <- quantile(latent.y, probs=seq(0,1,1/3))
ordinal.y <- rep(0, 100)
for (ii in 1:100){

if(latent.y[ii] <= cutoff[2]) {ordinal.y[ii] <-1
} else if ((cutoff[2] < latent.y[ii]) &&(latent.y[ii]<=cutoff[3])){ordinal.y[ii] <-2
} else {ordinal.y[ii] <- 3}

}
ordinal.y <- as.ordered(ordinal.y)

################################################################################
# Cross-Validation #
# Define Prediction Error and Gamma Statistics #
predErr.AIC <- predErr.BIC <- vector(length=dim(tcell)[1], mode="numeric")
gamma.AIC <- gamma.BIC <- vector(length=dim(tcell)[1], mode="numeric")
true.nonzero.AIC <- true.nonzero.BIC <- vector(length=dim(tcell)[1], mode="numeric")
for (ii in 1:dim(tcell)[1]){

tcell <- as.matrix(data.frame(tcell[,1:2],scale(tcell[,3:60])))
train.sample <- tcell[-ii,3:60]
train.y <- ordinal.y[-ii]
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eval.sample <- as.matrix(t(tcell[ii, 3:60]))
eval.y <- ordinal.y[ii]

forwardstagewise <- forward.stagewise.cum(x=train.sample, y=train.y,
epsilon=1e-4, tol=1e-4, 1)

output <- output.CumFS(forwardstagewise, x=train.sample, y=train.y)
step.index <- steps(output, 0, criteria="AIC")
beta.list <- forwardstagewise$beta.list
Num.nonzero <- unlist(forwardstagewise$num.nonzero)
new.beta <- beta.gene <- beta.list[[step.index]]
gene.name <- as.numeric(names(new.beta))
fit <- logLL(train.sample, train.y, beta1=new.beta)
new.alpha <- fit$par
pred.y <- Predict(x, y, new.alpha, new.beta)
pred.table <- table(pred.y, y)
predErr.AIC[ii] <- 1 - sum(diag(pred.table))/sum(pred.table)
gamma.AIC[ii] <- Gamma.stat(pred.table)
true.nonzero.AIC[ii] <- length(intersect(sig.p.index, gene.name))
}
CVpredErr.AIC[[kk]] <- predErr.AIC
CVgamma.AIC[[kk]] <- gamma.AIC
CV.nonzero.AIC[[kk]] <- true.nonzero.AIC
}
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