
Regularization methods for learning incomplete matrices

Rahul Mazumder ∗ Trevor Hastie † Robert Tibshirani ‡

June 11, 2009

Abstract

We use convex relaxation techniques to provide a sequence of solutions to the matrix completion
problem. Using the nuclear norm as a regularizer, we provide simple and very efficient algorithms for
minimizing the reconstruction error subject to a bound on the nuclear norm. Our algorithm iteratively
replaces the missing elements with those obtained from a thresholded SVD. With warm starts this allows
us to efficiently compute an entire regularization path of solutions.

1 Introduction

In many applications measured data can be represented in a matrix Xm×n, for which only a relatively
small number of entries are observed. The problem is to “complete” the matrix based on the observed
entries, and has been dubbed the matrix completion problem [CCS08, CR08, RFP07, CT09, KOM09]. The
“Netflix” competition is a primary example, where the data is the basis for a recommender system. The
rows correspond to viewers and the columns to movies, with the entry Xij being the rating ∈ {1, . . . , 5} by
viewer i for movie j. There are 480K viewers and 18K movies, and hence 8.6 billion (8.6 × 109) potential
entries. However, on average each viewer rates about 200 movies, so only 1.2% or 108 entries are observed.
The task is to predict the ratings viewers would give for the movies they have not yet rated.

These problems can be phrased as learning an unknown parameter (a matrix Zm×n) with very high
dimensionality, based on very few observations. In order for such inference to be meaningful, we assume
that the parameter Z lies in a much low dimensional manifold. In this paper, as is relevant in many real
life applications, we assume that Z can be well represented by a matrix of low rank, i.e. Z ≈ VmkGkn,
where k � min(n,m). In this recommender system example, low rank structure suggests that movies can
be grouped into a small number of “genres”, with G�j the relative score for movie j in genre �. Viewer i on
the other hand has an affinity Vi� for genre �, and hence the modeled score for viewer i on movie j is the sum∑k

�=1 Vi�G�j of genre affinities times genre scores. Very recently [CR08, CT09, KOM09] showed theoretically
that under certain assumptions on the entries of the matrix, locations and proportion of unobserved entries,
the true underlying matrix can be recovered within very high accuracy. Typically we view the observed
entries in X as the corresponding entries from Z contaminated with noise.

For a matrix Xm×n let Ω ⊂ {1, . . . , m} × {1, . . . , n} denote the indices of observed entries. We consider
the following optimization problem:

minimize rank(Z)

subject to
∑

(i,j)∈Ω

(Zij − Xij)2 ≤ δ, (1)

where δ ≥ 0 is a regularization parameter controlling the tolerance in training error. The rank constraint
in (1) makes the problem for general Ω combinatorially hard [NJ03]. For a fully-observed X, on the other

∗Statistics Department,Stanford University rahul.mazumder@gmail.com
†Statistics Department and Department of Health, Research and Policy, Stanford University, hastie@stanford.edu
‡Department of Health, Research and Policy and Statistics Department, Stanford University tibs@stanford.edu

1

hand, the solution is given by the singular value decomposition (SVD) of X. The following seemingly small
modification to (1)

minimize ‖Z‖∗
subject to

∑
(i,j)∈Ω

(Zij − Xij)2 ≤ δ (2)

makes the problem convex [Faz02]. Here ‖Z‖∗ is the nuclear norm, or the sum of the singular values of Z.
Under many situations the nuclear norm is an effective convex relaxation to the rank constraint as explored
in [Faz02, CR08, CT09, RFP07]. Optimization of (2) is a semi-definite programming problem [BV04, Faz02]
and can be solved efficiently for small problems, using modern convex optimization software like SeDuMi and
SDPT3. However, since these algorithms are based on second order methods [LV08], the problems become
prohibitively expensive if the dimensions of the matrix exceeds a hundred [CCS08]. In this paper we propose
an algorithm that scales to large problems with m,n ≈ 104–105 or even larger. We obtain a rank-11 solution
to (2) for a problem of size (5 × 105) × (5 × 105) and |Ω| = 104 observed entries in under 11 minutes in
MATLAB. For the same sized matrix with |Ω| = 105 we obtain a rank-52 solution in under 80 minutes.

[CT09, CCS08, CR08] consider the criterion

minimize ‖Z‖∗
subject to Zij = Xij , ∀(i, j) ∈ Ω (3)

When δ = 0, criterion (1) is equivalent to (3), in that it requires the training error to be zero. [CT09, CR08]
further develop theoretical properties establishing the equivalence of the rank minimization and the nuclear
norm minimization problems (1,3). Cai et. al. [CCS08] in their paper propose a first-order singular-value-
thresholding algorithm scalable to large matrices for the problem (2) with δ = 0. They comment on the
problem (2), with δ > 0, and suggest that it becomes prohibitive for large scale problems. Hence they
consider the δ > 0 case to be unsuitable for matrix completion.

We believe that (3) will almost always be too rigid, as it will force the procedure to overfit. If minimization
of prediction error is our main goal, then the solution Z∗ will typically lie somewhere in the interior of the
path (Figure 1), indexed by δ.

In this paper we provide an algorithm for computing solutions of (2), on a grid of δ values, based on warm
restarts. The algorithm is inspired by Hastie et al.’s SVD- impute [HTS+99, TCS+01] and is very different
the proximal forward-backward splitting method of [CCS08, CW05, SMC08], which requires the choice of a
step size. In [SMC08], the SVD step becomes prohibitive, so some randomized algorithms are used for the
computation. Our algorithm is very different, and by exploiting matrix structure can solve problems much
larger than those in [SMC08].

Our algorithm requires the computation of a low-rank SVD of a matrix (which is not sparse) at every
iteration. Here we crucially exploit the problem matrix structure:

Y = YSP (Sparse) + YLR (Low Rank) (4)

In (4) YSP has the same sparsity structure as the observed X, and YLR has the rank r � m,n of the
estimated Z. For large scale problems, we use iterative methods based on Lanczos bidiagonalization with
partial re-orthogonalization (as in the PROPACK algorithm [Lar98]), for computing the first few singular
vectors/values of Y. Due to the specific structure of (4), multiplication by Y and Y ′ can both be done in a
cost-efficient way..

2 Algorithm and Convergence analysis

2.1 Notation

We adopt the notation of [CCS08]. Define a matrix PΩ(Y) (with dimension n × m)

PΩ(Y) (i, j) =
{

Yi,j if (i, j) ∈ Ω
0 if (i, j) /∈ Ω,

(5)

2

which is a projection of the matrix Ym×n onto the observed entries. In the same spirit, define the com-
plementary projection P⊥

Ω (Y) via P⊥
Ω (Y) + PΩ(Y) = Y. Using (5) we can rewrite

∑
(i,j)∈Ω(Zij − Xij)2 as

‖PΩ(Z) − PΩ(X)‖2
F .

2.2 Nuclear norm regularization

We present the following lemma, given in [CCS08], which forms a basic ingredient in our algorithm.

Lemma 1. Suppose the matrix Wm×n has rank r. The solution to the convex optimization problem

minimize
Z

1
2‖Z − W‖2

F + λ‖Z‖∗ (6)

is given by Ŵ = Sλ(W) where

Sλ(W) ≡ UDλV ′ with Dλ = diag [(d1 − λ)+, . . . , (dr − λ)+] , (7)

where X = UDV ′ is the SVD of W , D = diag [d1, . . . , dr], and t+ = max(t, 0).

The notation Sλ(W) refers to soft-thresholding [DJKP95]. The proof follows by looking at the sub-
gradient of the function to be minimized, and is given in [CCS08].

2.3 Algorithm

Problem (2) can be written in its equivalent Lagrangian form

minimize
Z

1
2‖PΩ(Z) − PΩ(X)‖2

F + λ‖Z‖∗ (8)

Here λ ≥ 0 is a regularization parameter controlling the nuclear norm of the minimizer Ẑλ of (8) (with a
1-1 mapping to δ > 0 in (2)). We now present an algorithm for computing a series of solutions to (8) using
warm starts. Define fλ(Z) = 1

2‖PΩ(Z) − PΩ(X)‖2
F + λ‖Z‖∗.

Algorithm 1 Soft-Impute

1. Initialize Zold = 0 and create a decreasing grid Λ of values λ1 > . . . > λK .

2. For every fixed λ = λ1, λ2, . . . ∈ Λ iterate till convergence:

(a) Compute Znew ← Sλ(PΩ(X) + P⊥
Ω (Zold))

(b) If ‖fλ(Znew)−fλ(Zold)‖2
F

‖fλ(Zold)‖2
F

< ε, go to step 2e.

(c) Assign Zold ← Znew and go to step 2b.

(d) Assign Ẑλ ← Znew and Zold ← Znew

3. Output the sequence of solutions Ẑλ1 , . . . , ẐλK
.

The algorithm repeatedly replaces the missing entries with the current guess, and then updates the guess
by solving (8). Figure 1 shows some examples of solutions using Algorithm 1 (blue curves). We see test and
training error in the left two columns as a function of the nuclear norm, obtained from a grid of values Λ.
These error curves show a smooth and very competitive performance.

3

2.4 Convergence analysis

In this section we prove that Algorithm 1 converges to the solution to (2).
For an arbitrary matrix Z̃, define

Qλ(Z|Z̃) = 1
2‖PΩ(X) + P⊥

Ω (Z̃) − Z‖2
F + λ‖Z‖∗, (9)

a surrogate of the objective function fλ(z). Note that fλ(Z̃) = Qλ(Z̃|Z̃) for any Z̃.

Lemma 2. For every fixed λ ≥ 0, define a sequence Zk
λ by

Zk+1
λ = arg min

Z
Qλ(Z|Zk

λ), (10)

with Z0
λ = 0. The sequence Zk

λ satisfies

fλ(Zk+1
λ) ≤ Qλ(Zk+1

λ |Zk
λ) ≤ fλ(Zk

λ) (11)

Proof.

fλ(Zk
λ) = 1

2‖PΩ(X) + P⊥
Ω (Zk

λ) − Zk
λ‖2

F + λ‖Zk
λ‖∗

≥ min
Z

{‖PΩ(X) + P⊥
Ω (Zk

λ) − Z‖2
F + λ‖Z‖∗}

= Qλ(Zk+1
λ |Zk

λ)

= 1
2‖{PΩ(X) − PΩ(Zk+1

λ)} + {P⊥
Ω (Zk

λ) − P⊥
Ω (Zk+1

λ)}‖2
F + λ‖Zk+1

λ ‖∗
= 1

2 {‖PΩ(X) − PΩ(Zk+1
λ)‖2

F + ‖P⊥
Ω (Zk

λ) − P⊥
Ω (Zk+1

λ)}‖2
F } + λ‖Zk+1

λ ‖∗
≥ 1

2 ‖PΩ(X) − PΩ(Zk+1
λ)‖2

F + λ‖Zk+1
λ ‖∗

= Qλ(Zk+1
λ |Zk+1

λ)

Lemma 3. The nuclear norm shrinkage operator Sλ(·) satisfies the following for any W1, W2 (with matching
dimensions)

‖Sλ(W1) − Sλ(W2)‖2
F ≤ ‖W1 − W2‖2

F (12)

Proof. We omit the proof here for the sake of brevity. The details work out by expanding the operator Sλ(·)
in terms of the singular value decomposition of W1 and W2. Then we use trace inequalities for the product of
two matrices [Las95] where one is real symmetric, the other arbitrary. A proof of this Lemma also appears
in [SMC08], though the method is different from ours.

Lemma 4. Suppose the sequence Zk
λ obtained from (10) converges to Z∞

λ . Then Z∞
λ is a stationary point

of fλ(Z).

Proof. The sub-gradients of the nuclear norm ‖Z‖∗ are given by [CCS08]

∂‖Z‖∗ = {UV ′ + W : Wm×n, U ′W = 0, WV = 0, ‖W‖2 ≤ 1} (13)

where Z = UDV ′ is the SVD of Z. Since Zk
λ minimizes Qλ(Z|Zk−1

λ), it satisfies:

0 ∈ −(PΩ(X) + P⊥
Ω (Zk−1

λ) − Zk
λ) + ∂‖Zk

λ‖∗ ∀k (14)

Since Zk
λ → Z∞

λ ,

(PΩ(X) + P⊥
Ω (Zk−1

λ) − Zk
λ) −→ (PΩ(X) − PΩ(Z∞

λ)). (15)

4

For every k, a sub-gradient p(Zk
λ) ∈ ∂‖Zk

λ‖∗ corresponds to a tuple (uk, vk, wk). Then (passing on to a
subsequence if necessary), (uk, vk, wk) → (u∞, v∞, w∞) and this limit corresponds to p(Z∞

λ) ∈ ∂‖Z∞
λ ‖∗.

Hence, from (14, 15), passing on to the limits

0 ∈ (PΩ(X) − PΩ(Z∞
λ)) + ∂‖Z∞

λ ‖∗ (16)

This proves the stationarity of the limit Z∞
λ .

Theorem 1. The sequence Zk
λ defined in Lemma 2 converges to Z∞

λ which solves

min
Z

1
2‖PΩ(Z) − PΩ(X)‖2

F + λ‖Z‖∗ (17)

Proof. Firstly observe that the sequence Zk
λ is bounded; for it to converge it must have a unique accumulation

point.
Observe that

‖Zk+1
λ − Zk

λ‖2
F = ‖Sλ(PΩ(X) + P⊥

Ω (Zk
λ)) − Sλ(PΩ(X) + P⊥

Ω (Zk−1
λ))‖2

F

(by Lemma 3) ≤ ‖
(
PΩ(X) + P⊥

Ω (Zk
λ)

)
−

(
PΩ(X) + P⊥

Ω (Zk−1
λ)

)
‖2

F

= ‖P⊥
Ω (Zk

λ − Zk−1
λ)‖2

F

≤ ‖Zk
λ − Zk−1

λ ‖2
F (18)

Due to boundedness, every infinite subsequence of Zk
λ has a further subsequence that converges. If the

sequence Zk
λ has two distinct limit points then for infinitely many k′ ≥ 0, ‖Zk′

λ −Zk′−1
λ ‖F ≥ ε, for some ε > 0.

Using (18) this contradicts the convergence of any subsequence of Zk
λ . Hence the sequence Zk

λ converges.
Using Lemma 4, the limit Z∞

λ is a stationary point of fλ(Z) and hence its minimizer.

3 From soft to hard-thresholding

The nuclear norm behaves like a �1 norm, and can be viewed as a soft approximation of the �0 norm or
rank of a matrix. In penalized linear regression for example, the �1 norm or LASSO [Tib96] is widely used
as a convex surrogate for the �0 penalty or best-subset selection. The LASSO performs very well on a
wide variety of situations in producing a parsimonious model with good prediction error. However, if the
underlying model is very sparse, then the LASSO with its uniform shrinkage can overestimate the number of
non-zero coefficients. In such situations concave penalized regressions are gaining popularity as a surrogate
to �0. By analogy for matrices, it makes sense to go beyond the nuclear norm minimization problem to more
aggressive penalties bridging the gap between �1 and �0. We propose minimizing

fp,λ(Z) = 1
2‖PΩ(Z) − PΩ(X)‖2

F + λ
∑

j

p(λj(Z); γ) (19)

where p(|t|; γ) is concave in |t|. The parameter γ ∈ [γinf , γsup] controls the degree of concavity, with
p(|t|; γinf) = |t| (�1 penalty), on one end and p(|t|; γsup) = |t|0 (�0 penalty) on the other. In particular
for the �0 penalty denote fp,λ(Z) by fH,λ(Z) for “hard” thresholding. See [Fri08, FL01, Zha07] for examples
of such penalties.

Criterion (19) is no longer convex and hence becomes more difficult. It can be shown that Algorithm 1
can be modified in a suitable fashion for the penalty p(·; γ). This algorithm also has guaranteed convergence
properties. The details of these arguments and statistical properties will be studied in a longer version of
this paper. As a concrete example, we present here some features of the �0 norm regularization on singular
values.

The version of (6) for the �0 norm is

min
Z

1
2‖Z − W‖2

F + λ‖Z‖0. (20)

5

The solution is given by a reduced-rank SVD of W ; for every λ there is a corresponding q = q(λ) number
of singular-values to be retained in the SVD decomposition. As in (7), the thresholding operator resulting
from (20) is

SH
λ (W) = UDqV

′ where Dq = diag (d1, . . . , dq, 0, . . . , 0) (21)

Similar to Soft-Impute (Algorithm 1), the algorithm Hard-Impute for the �0 penalty is given by
Algorithm 2.

Algorithm 2 Hard-Impute

1. Create a decreasing grid Λ of values λ1 > . . . > λK . Initialize Z̃λk
k = 1, . . . ,K (see Section 3.1).

2. For every fixed λ = λ1, λ2, . . . ∈ Λ iterate till convergence:

(a) Initialize Zold ← Z̃λ.

(b) Compute Znew ← SH
λ (PΩ(X) + P⊥

Ω (Zold))

(c) If ‖fλ(Znew)−fλ(Zold)‖2
F

‖fλ(Zold)‖2
F

< ε, go to step 2e.

(d) Assign Zold ← Znew and go to step 2b.

(e) Assign ẐH,λ ← Znew.

3. Output the sequence of solutions ẐH,λ1 , . . . , ẐλK
.

3.1 Post-processing and Initialization

Because the �1 norm regularizes by shrinking the singular values, the number of singular values retained
(through cross-validation, say) may exceed the actual rank of the matrix. In such cases it is reasonable to
undo the shrinkage of the chosen models, which might permit a lower-rank solution.

If Zλ is the solution to (8), then its post-processed version Zu
λ obtained by “unshrinking” the eigen-values

of the matrix Zλ is obtained by

α = arg min
αi≥0, i=1,...,rλ

‖PΩ(X) −
rλ∑
i=1

αiPΩ(uiv
′
i)‖2 (22)

Zu
λ = UDαV ′,

where Dα = diag(α1, . . . , αrλ
). Here rλ is the rank of Zλ and Zλ = UDλV ′ is its SVD. The estimation in

(22) can be done via ordinary least squares, which is feasible because of the sparsity of PΩ(uiv
′
i) and that

rλ is small.1 If the least squares solutions α do not meet the positivity constraints, then the negative sign
can be absorbed into the corresponding singular vector.

In many simulated examples we have observed that this post-processing step gives a good estimate of the
underlying true rank of the matrix (based on prediction error). Since fixed points of Algorithm 2 correspond
to local minima of the function (19), well-chosen warm starts Z̃λ are helpful. A reasonable prescription for
warms-starts is the nuclear norm solution via (Soft-Impute), or the post processed version (22). The latter
appears to significantly speed up convergence for Hard-Impute.

3.2 Computation

The computationally demanding part of Algorithms 1 and 2 is in Sλ(PΩ(X) + P⊥
Ω (Zk

λ)) or SH
λ (PΩ(X) +

P⊥
Ω (Zk

H,λ)). These require calculating a low- rank SVD of the matrices of interest, since the underlying

1Observe that the PΩ(uiv
′
i), i = 1, . . . , rλ are not orthogonal, though the uiv

′
i are.

6

model assumption is that rank(Z) � min{m,n}. In Algorithm 1, for fixed λ, the entire sequence of matrices
Zk

λ have explicit low-rank representations of the form UkDkV ′
k corresponding to Sλ(PΩ(X) + P⊥

Ω (Zk−1
λ))

In addition, observe that PΩ(X) + P⊥
Ω (Zk

λ) can be rewritten as

PΩ(X) + P⊥
Ω (Zk

λ) =
{
PΩ(X) − PΩ(Zk

λ)
}

(Sparse) + Zk
λ (LowRank) (23)

In the numerical linear algebra literature, there are very efficient direct matrix factorization methods for
calculating the SVD of matrices of moderate size (at most a few thousand). When the matrix is sparse,
larger problems can be solved but the computational cost depends heavily upon the sparsity structure
of the matrix. In general however, for large matrices one has to resort to indirect iterative methods for
calculating the leading singular vectors/values of a matrix. There is a lot research in the numerical linear
algebra for developing sophisticated algorithms for this purpose. In this paper we will use the PROPACK
algorithm [Lar, Lar98] because of its low storage requirements, effective flop count and its well documented
MATLAB version. The algorithm for calculating the truncated SVD for a matrix W (say), becomes efficient
if multiplication operations Wb1 and W ′b2 (with b1 ∈ n, b2 ∈ m) can be done with minimal cost.

Our algorithms Soft-Impute and Hard-Impute both require repeated computation of a truncated
SVD for a matrix W with structure as in (23). Note that in (23) the term PΩ(Zk

λ) can be computed in
O(|Ω|r) flops using only the required outer products.

The cost of computing the truncated SVD will depend upon the cost in the operations Wb1 and W ′b2

(which are equal). For the sparse part these multiplications cost O(|Ω|). Although it costs O(|Ω|r) to create
the matrix PΩ(Zk

λ)), this is used for each of the r such multiplications (which also cost O(|Ω|r)), so we need
not include that cost here. The LowRank part costs O((m + n)r) for the multiplication by b1. Hence the
cost is O(|Ω|) + O((m + n)r) per multiplication. cost.

For the reconstruction problem to be theoretically meaningful in the sense of [CT09], we require that
|Ω| ≈ nrpoly(log n). Hence introducing the LowRank part does not add any further complexity in the
multiplication by W and W ′. So the dominant cost in calculating the truncated SVD in our algorithm is
O(|Ω|). The SVT algorithm [CCS08] for exact matrix completion (3) involves calculating the SVD of a sparse
matrix with cost O(|Ω|). This implies that the computational cost of our algorithm and that of [CCS08]
is the same. Since the true rank of the matrix r � min{m,n}, the computational cost of evaluating the
truncated SVD (with rank ≈ r) is linear in matrix dimensions. This justifies the large-scale computational
feasibility of our algorithm.

The PROPACK package does not allow one to request (and hence compute) only the singular values
larger than a threshold λ — one has to specify the number in advance. So once all the computed singular
values fall above the current threshold λ, our algorithm increases the number to be computed until the
smallest is smaller than λ. In large scale problems, we put an absolute limit on the maximum number.

4 Simulation Studies

In this section we study the training and test errors achieved by the estimated matrix by our proposed
algorithms and those by [CCS08, KOM09]. The Reconstruction algorithm (Rcon) described in [KOM09]
considers criterion (1) (in presence of noise). For every fixed rank r it uses a bi-convex algorithm on
a Grassmanian Manifold for computing a rank-r approximation USV ′ (not the SVD). It uses a suitable
starting point obtained by performing a sparse SVD on a clean version of the observed matrix PΩ(X). To
summarize, we look at the performance of the following methods:

• (a) Soft-Impute (algorithm 1); (b) Post-processing on the output of Algorithm 1, (c) Hard-Impute
(Algorithm 2) starting with the output of (b).

• SVT algorithm by [CCS08]

• Rcon reconstruction algorithm by [KOM09]

7

(m,n) |Ω| true rank (r) SNR effective rank (r̂) # Iters time(s)
(3 × 104, 104) 104 15 1 (13, 47, 80) (3, 3, 3) (41.9, 124.7, 305.8)

(5 × 104, 5 × 104) 104 15 1 8 80 237
(105, 105) 104 15 10 (5, 14, 32, 62) (3, 3, 3, 3) (37, 74.5, 199.8, 653)
(105, 105) 105 15 10 (18, 80) (3, 3) (202, 1840)

(5 × 105, 5 × 105) 104 15 10 11 3 628.14
(5 × 105, 5 × 105) 105 15 1 (3, 11, 52) (3, 3, 3) (341.9, 823.4, 4810.75)

Table 1: Performance of the Soft-Impute on different problem instances.

In all our simulation studies we took the underlying model as Zm×n = Um×rV
′
r×n + noise; where U and

V are random matrices with standard normal Gaussian entries, and noise is iid Gaussian. Ω is uniformly
random over the indices of the matrix with p% percent of missing entries. These are the models under which
the coherence conditions hold true for the matrix completion problem to be meaningful as pointed out in
[CT09, KOM09]. The signal to noise ratio for the model and the test-error (standardized) are defined as

SNR =

√
var(UV ′)
var(noise)

; testerror =
‖P⊥

Ω (UV ′ − Ẑ)‖2
F

‖P⊥
Ω (UV ′)‖2

F

(24)

In Figure 1, results corresponding to the training and test errors are shown for all algorithms mentioned
above — nuclear norm (left two panels) and rank (right two panels)— in three problem instances. Since
Rcon only uses rank, it is excluded from the left panels. In all examples (m,n) = (100, 100). SNR, true rank
and percentage of missing entries are indicated in the figures. There is a unique correspondence between λ
and nuclear norm. The plots vs the rank indicate how effective the nuclear norm is as a rank approximation
— that is whether it recovers the true rank while minimizing prediction error. We summarize our findings
in the caption of the figure.

In addition we performed some large scale simulations in Table 1 for our algorithm in different problem
sizes. The problem dimensions, SNR, number of iterations till convergence and time in seconds are reported.
All computations are done in MATLAB and the MATLAB version of PROPACK is used.

Acknowledgements

We thank Emmanuel Candes, Andrea Montanari and Steven Boyd for helpful discussions. Trevor Hastie
was partially supported by grant DMS-0505676 from the National Science Foundation, and grant 2R01 CA
72028-07 from the National Institutes of Health.

8

Type a 50% missing entries with SNR=1, true rank =10

0 1000 2000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Nuclear Norm
0 1000 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nuclear Norm

L1
L1−U
L1−L0
C

Test error Training error

0 20 40 60 80
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Rank
0 20 40 60 80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

L1
L1−U
L1−L0
C
M

Test error Training error

Type b 50% missing entries with SNR=1, true rank =6

0 500 1000 1500
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Nuclear Norm
0 1000 2000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nuclear Norm

L1
L1−U
L1−L0
C

Test error Training error

0 20 40 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Rank
0 20 40 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank

L1
L1−U
L1−L0
C
M

Test error Training error

Type c 80% missing entries with SNR=10, true rank =5

0 200 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nuclear Norm
0 200 400

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nuclear Norm

L1
L1−U
L1−L0
C

Test error Training error

10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rank
0 20 40

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rank

L1
L1−U
L1−L0
C
M

Test error Training error

Figure 1: L1: solution for Soft-Impute; L1-U: Post processing after Soft-Impute; L1-L0 Hard-Impute
applied to L1-U; C : SVT algorithm; M: Recon algorithm. Soft-Impute performs well in the presence
of noise (top and middle panel). When the noise is low, Hard-Impute can improve its performance.The
post-processed version tends to get the correct rank in many situations as in Types b,c. In Type b, the post-
processed version does better than the rest in prediction error. In all the situations SVT algorithm does
very poorly in prediction error, confirming our claim that (3) causes overfitting. Recon predicts poorly as
well apart from Type-c, where it gets better error than Soft-Impute. However Hard-Impute and Recon
have the same performance there.

9

References

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[CCS08] Jian-Feng Cai, Emmanuel J. Candes, and Zuowei Shen. A singular value thresholding algorithm
for matrix completion, 2008.

[CR08] Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foun-
dations of Computational Mathematics, 2008.

[CT09] Emmanuel J. Candès and Terence Tao. The power of convex relaxation: Near-optimal matrix
completion, 2009.

[CW05] P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. Mul-
tiscale Model. Simul., 4(4):1168–1200, 2005.

[DJKP95] D. Donoho, I. Johnstone, G. Kerkyachairan, and D. Picard. Wavelet shrinkage; asymptopia?
(with discussion). J. Royal. Statist. Soc., 57:201–337, 1995.

[Faz02] M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Stanford University, 2002.

[FL01] Jianqing Fan and Runze Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360(13), 2001.

[Fri08] Jerome Friedman. Fast sparse regression and classification. Technical report, Department of
Statistics, Stanford University, 2008.

[HTS+99] Trevor Hastie, Robert Tibshirani, Gavin Sherlock, Michael Eisen, Patrick Brown, and David Bot-
stein. Imputing missing data for gene expression arrays. Technical report, Division of Biostatistics,
Stanford University, 1999.

[KOM09] Raghunandan H. Keshavan, Sewoong Oh, and Andrea Montanari. Matrix completion from a few
entries. CoRR, abs/0901.3150, 2009.

[Lar] R.M. Larsen. Propack-software for large and sparse svd calculations.

[Lar98] R. M. Larsen. Lanczos bidiagonalization with partial reorthogonalization. Technical Report
DAIMI PB-357, Department of Computer Science, Aarhus University, 1998.

[Las95] Jean B. Lasserre. A trace inequality for matrix product. IEEE Transactions on AUtomatic
Control, 40, 1995.

[LV08] Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation with appli-
cation to system identfication. submitted to Mathematical Programming, 2008.

[NJ03] Nathan Srebro Nati and Tommi Jaakkola. Weighted low-rank approximations. In In 20th Inter-
national Conference on Machine Learning, pages 720–727. AAAI Press, 2003.

[RFP07] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization, 2007.

[SMC08] D. Goldfarb S. Ma and L. Chen. Fixed point and bregman iterative methods for matrix rank
minimization. 2008.

[TCS+01] Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor Hastie, Robert Tibshirani,
David Botstein, and Russ B. Altman. Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520–525, 2001.

10

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society, Series B, 58:267–288, 1996.

[Zha07] Cun Hui Zhang. Penalized linear unbiased selection. Technical report, Departments of Statistics
and Biostatistics, Rutgers University, 2007.

11

