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A new modeling approach for large-eddy simulation~LES! is obtained by combining a
‘‘regularization principle’’ with an explicit filter and its inversion. This regularization approach
allows a systematic derivation of the implied subgrid model, which resolves the closure problem.
The central role of the filter in LES is fully restored, i.e., both the interpretation of LES predictions
in terms of direct simulation results as well as the corresponding subgrid closure are specified by the
filter. The regularization approach is illustrated with ‘‘Leray-smoothing’’ of the nonlinear convective
terms. In turbulent mixing the new, implied subgrid model performs favorably compared to the
dynamic eddy-viscosity procedure. The model is robust at arbitrarily high Reynolds numbers and
correctly predicts self-similar turbulent flow development. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1529180#
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Accurate modeling and simulation of turbulent flow is
topic of intense ongoing research.1 Modern strategies for tur
bulent flow are aimed at reducing the dynamical complex
of the underlying system of partial differential equatio
while reliably predicting the primary flow phenomena.
large-eddy simulation~LES! these conflicting requirement
are expressed by coarsening the description on the one
and subgrid modeling on the other hand. The coarsenin
achieved by spatial filtering2 which externally specifies the
physical detail that will ideally be retained in the LES sol
tion. Maintaining the dynamical properties of the resolv
large scales is approached by introducing subgrid mode
to deal with the closure problem that arises from filtering
nonlinear terms.

In the filtering approach to incompressible flow th
specification of the basic convolution filterL is all that is
required to uniquely define the relation between the un
tered and filtered flow field as well as the closure problem
the so-called turbulent stress tensort i j . This situation is in
sharp contrast with actual present-day large-eddy mode
in which the specification of the subgrid model fort i j as well
as the comparison with reference direct numerical simula
~DNS! results is performed largely independent of the s
cific choice of the filterL.

In this paper we will formulate an alternative approa
to large-eddy simulations which completely restores the
central roles of the basic filterL, i.e., providing an interpre-
tation of LES predictions in terms of filtered DNS results
well as fully specifying all details of the subgrid model. Th
key elements in this new formulation are a ‘‘regularizati
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principle,’’ a filter L and its~formal! inverse operator denote
by L21.3

A regularization principle expresses the smoothing of
dynamics of the Navier–Stokes equations through a spe
proposal for direct alteration of the nonlinear convecti
terms. This modeling differs significantly from traditiona
less direct approaches, e.g., involving the introduction of
ditional eddy-viscosity contributions.4 The latter are clearly
of a different physical nature and do not fully do justice
the intricate nonlinear transport structure of the filter
Navier–Stokes equations. The regularization principle gi
rise to a basic mixed formulation involving both the filtere
and unfiltered solution. Application ofL andL21 then allows
to derive an equivalent representation solely in terms of
filtered solution. This provides a unique identification of t
implied subgrid model without any further external~ad hoc!
input or mathematical-physical considerations of the clos
problem. The regularization modeling approach is not o
theoretically transparent and elegant, but it also gives ris
accurate LES predictions. In particular, we consider the
plied subgrid model that arises from Leray’s regularizati
principle.5 A comparison between the Leray model and d
namic subgrid modeling~e.g., Ref. 6! will be made for tur-
bulent mixing flow, both at moderate and at high Reyno
numbers.

In the filtering approach one assumes any normali
convolution filter L: ui→ūi where ūi (ui) denotes the fil-
tered ~unfiltered! component of the velocity field in thexi

direction. Filtering the Navier–Stokes equations yields

] tūi1] j~ ū j ūi !1] i p̄2 ~1/Re! ] j j ūk52] jt i j , ~1!

where the turbulent stress tensort i j 5uiuj2ūi ū j represents
the closure problem and Re denotes the Reynolds num
Both the relation betweenui andūi as well as the propertie

e:
© 2003 American Institute of Physics
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L14 Phys. Fluids, Vol. 15, No. 1, January 2003 B. J. Geurts and D. D. Holm
of t i j are fully specified byL. In actual subgrid modeling fo
LES, the next step is to introduce a subgrid modelmi j (ū) to
approximatet i j . A variety of subgrid models has been pr
posed to capture dissipative, dispersive, or similarity prop
ties of t i j .

Many subgrid models are arrived at through a physi
or mathematical reasoning which is only loosely connec
to a specific filterL. As an example, the well-known Smag
rinsky model4 is given by mi j

S52(CSD)2uSi j (ū)uSi j (ū)
where the rate of strain tensorSi j 5] i ū j1] j ūi and uSi j u2

5Si j Si j /2. The only explicit reference to the filter, made
this model, is through the filter widthD. In actual simula-
tionsD is specified in terms of the grid spacingh rather than
in terms ofL. Furthermore, the Smagorinsky constantCS is
determined independent ofL, which further reduces any
principal role for the filter. The situation is comparable f
the ‘‘tensor-diffusivity’’ model mi j

TD5CTDDk
2]kūi]kūj , with

Dk the filterwidth in thexk-direction.7 The coefficientCTD is
usually related to the normalized second moment (L(x2)
2x2)/D2 of the filter L. For various popular filters such a
the top-hat or the Gaussian filter one findsCTD51/12, i.e.,
independent of the actual filter used. The role of the filte
in principle fully explicit in Bardina’s similarity modelmi j

B

5ūi ū j2u% iu% j .8 In actual simulations, however, one fre
quently adopts a wider explicit filter or a filter of a differe
type, to enhance smoothing properties of this model.1 More-
over, the model is sometimes multiplied by a constantCB

which is specified independently of any presumed filter.9 Fi-
nally, the successful dynamic subgrid modeling requires o
the explicit specification of the so-called test filter.10 To re-
tain the central Germano identity the test filter can in pr
ciple be chosen independent ofL, mainly requiring the speci-
fication of the filterwidth of the test filter relative toD.
Additional averaging over homogeneous directions, ‘‘cl
ping’’ steps to stabilize actual simulations, and the fact t
the assumed base models are themselves only loosely
nected toL, also make the dynamic procedure rather ins
sitive to the specific assumed filter.

In contrast to these popular LES models, the regular
tion approach involves the introduction of a pair (L,L21) to
fully specify the implied subgrid model as well as the inte
pretation of LES predictions in terms of reference DNS
sults. The selection of any other pair (L,L21) directly leads
to its corresponding DNS interpretation and the associa
subgrid model consistent with the regularization princip
This modeling strategy has a number of important bene
addressing directly the nonlinear convective contributio
and requiring no additional ‘‘external’’ information such a
model coefficients or the width of the test filter. The regul
ization principle allows a transparent modeling in which t
modeled system of equations can be made to share a nu
of fundamental properties with the Navier–Stokes equatio
such as transformation symmetries, Kelvin’s circulati
theorem, etc. The implied subgrid model is quite simple
implement, with some technical complications arising fro
the construction of an accurate inverse operatorL21.

To illustrate the approach we consider the intuitively a
pealing and particularly simple Leray regularization in whi
Downloaded 01 Feb 2010 to 131.155.151.96. Redistribution subject to AI
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the convective fluxes are replaced byū j] jui , i.e., the solu-
tion u is convected with a smoothed velocityū. Conse-
quently, the nonlinear effects are reduced by an amount g
erned by the smoothing properties ofL. The governing
equations in the Leray formulation can be written as5

] j ū j50; ] tui1ū j] jui1] i p2 ~1/Re! ] j j ui50. ~2!

Uniqueness and regularity of the solution to these equat
have been established rigorously.5 The Leray formulation
contains the unfiltered Navier–Stokes equations in the lim
ing caseL→Id, e.g., asD→0 ~Id denotes the identity!. The
unfiltered solution can readily be eliminated from~2! by us-
ing the inversion operatoruj5L21(ū j ). After some calcula-
tion ~2! can be written in the same way as the LES ‘‘tem
plate’’ ~1! in which t i j on the right hand side is replaced b
the asymmetric, filtered similarity-type Leray modelmi j

L

given by

mi j
L 5L~ ū jL

21~ ūi !!2ū j ūi5ū jui2ū j ūi . ~3!

This model requires the explicit application of bothL and
L21. The tensormi j

L is not symmetric. However, the flow i
governed by the divergence] jmi j

L which can be shown to
transform covariantly under Galilean transformations a
under a change to a uniformly rotating reference frame,
does] jt i j . For properly chosen filter, Leray solutions of th
regularized Navier–Stokes equations behave better with
spect to smoothness and boundedness. Correspondingly
subgrid model~3! can be expected to yield similar benefits
a large-eddy context. The straightforward modelmi j

5L(L21(ūi)L
21(ū j ))2ūi ū j does not provide sufficien

smoothing and leads to unstable LES on coarse grids, at
Re.

In the sequel we consider invertible numerical quad
ture approximating the top-hat filter. In one dimension t
numerical convolution filteringū5G* u corresponds to ker-
nels

G~z!5( ajd~z2zj !; uzj u<D/2. ~4!

In particular, we consider three-point filters witha051
2a, a15a215a/2 and z050, z152z215D/2. Here we
usea51/3 which corresponds to Simpson quadrature of
top-hat filter. In actual simulations the resolved fields a
known only on a set of grid points$xm%m50

N . The application
of L21 to a general discrete solution$ū(xm)% can be speci-
fied using discrete Fourier transformation as11

L21~ ūm!5 (
j 52n

n S a211A122a

a D u j u ūm1r j /2

~122a!1/2, ~5!

where the subgrid resolutionr 5D/h is assumed to be even
An accurate and efficient inversion can be obtained with o
a few terms, recovering the original signal to within machi
accuracy withn'10. The invertibility of L only refers to
invertibility on the LES grid. Injection from a fine DNS grid
to a coarse LES grid is not invertible. At fixedD, variation of
the subgrid resolutionr allows an independent control ove
flow smoothing and numerical representation.12 Simulation
results obtained in this way are properly smoothed forkD
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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,2p. At constantD the inclusion of modes with highe
wavenumberk in caser .1 allows to approach the grid
independent solution to the ‘‘fixed-D’’ problem. However,
the modes withk.2p/D are not properly smoothed in th
sense of Leray; the Fourier transform of the kernelG does
not reduce in amplitude for largekD but rather, it oscillates
between fixed limits. To achieve a genuine PDE result, Le
analysis requires correct smoothing of the filter also at h
wavenumber. The present results are limited to the mo
with kD,2p and in subsequent illustrations we restrict ou
selves to this range.

To assess the Leray model the turbulent mixing laye
simulated in a volume,3 at various Re adopting a fourt
order accurate spatial discretization and explicit Rung
Kutta time stepping. We compare predictions with those
tained using the dynamic subgrid model, which was sho
to be among the most accurate models in a compara
study of the same turbulent mixing layer reported in Ref.

A first introductory test of the Leray model is obtaine
by studying instantaneous solutions. As a typical illustrat
of the mixing layer the DNS prediction of the normal velo
ity u2 is shown in the turbulent regime in Fig. 1~a!. We used
Re550 based on the initial momentum thickness and fr
stream flow properties. The filteredu2 can be seen in Fig
1~b! establishing a significant smoothing due to the ‘‘Sim
son’’ filter at D5,/16. The Leray prediction@Fig. 1~c!# ap-
pears to capture the main ‘‘character’’ as well as some of
details of the filtered DNS solution. A slight underpredictio
of the influence of the small scales is, however, appar
Further visualization showed that the instantaneous Le
predictions display much better overall agreement with
tered DNS than the dynamic model, which relative to t
Leray model significantly overpredicts the smoothing.6 Of
course, assessing the quality of LES predictions in this w
is difficult to quantify and we consider more specific me
sures next.

The evolution of a crucial mean-flow property such
the momentum thickness is shown in Fig. 2. The Leray
sults compare significantly better with filtered DNS resu
than those obtained with the dynamic model on 323 grid
cells. We observe that some of the discrepancies betw
Leray and filtered DNS results are due to numerical conta
nation. By increasing the resolution at fixedD, a good im-
pression of the grid-independent solution to the mode
equations can be inferred using 6432963 grid-cells, i.e.,
D/h54 to 6.12 Numerical contamination also plays a role
the dynamic model. The grid-independent solution cor
sponding to the dynamic model appears less accurate
the corresponding Leray result.

A more detailed assessment is obtained from the stre
wise kinetic energy spectrum shown in Fig. 3. The dynam
model yields a significant underprediction of the interme
ate and smaller retained scales, particularly for the appr
mately grid-independent solution. The Leray predictions
much better. On coarse grids, an overprediction of
smaller scales is apparent due to interaction with the sp
discretization method. At proper numerical subgrid reso
tion the situation is considerably improved and the Le
model is seen to capture all scales with high accuracy
Downloaded 01 Feb 2010 to 131.155.151.96. Redistribution subject to AI
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slight, systematic underprediction of the smaller scales
mains, consistent with the impression obtained from Fi
1~b!–1~c!.

A particularly appealing property of Leray modeling
the robustness at very high Reynolds numbers, cf. Fig
This is quite unique for a subgrid model without an expli
eddy-viscosity contribution. Although comparison with fi
tered DNS data is impossible here, we observe that
smoothed Leray dynamics is essentially captured ar
5D/h>4.12 The tail of the spectrum increases with Re, i
dicating a greater importance of small scale flow featur
Improved subgrid resolution shows a reduction of the
smallest scales, consistent with the reduced numerical e
At high Re the spectrum corresponding to the Leray mo
tends to contain a region with approximatelyk25/3 behavior,

FIG. 1. Normal velocity componentu2 at timet580, ~a!: DNS, ~b!: filtered
DNS, ~c!: Leray on 643; using a filterwidthD5,/16. The light~dark! iso-
surfaces correspond tou250.3 ~20.3!.
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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which is absent at Re550. Further analysis showed that th
solution develops self-similarly at high Re.

The Leray model was presented to illustrate the n
regularization approach for LES. It predicts mean flow pro
erties such as momentum thickness very accurately.
model exhibits both positive and negative production of t
bulent kinetic energy. The computational overhead ass
ated with the Leray model can be much lower than that
dynamic~mixed! models, especially if quantities are desir
which are rather insensitive to the inversion quality. T
regularized Leray dynamics shows an appealing robust
at high Re. Further extensions of the regularization appro
are presently being considered. Of particular interest is

FIG. 2. Momentum thicknessu: filtered DNS~s!, Leray model (323: dash–
dotted line, 643: solid line, 963: n!, dynamic model (323: dashed line, 643:
dashed line, withL!. A fixed filterwidth of ,/16 was used.

FIG. 3. Streamwise kinetic energy spectrumE at t575: filtered DNS~s!,
Leray model (323: dash–dotted line, 643: solid line, 963: n!, dynamic
model (323: dashed line, 643: dashed line withL!. A fixed filterwidth of
,/16 was used.
Downloaded 01 Feb 2010 to 131.155.151.96. Redistribution subject to AI
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Lagrangian averaged NS–a model13 which arises in the
Euler–Poincare´ framework for smoothed flow dynamics.
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