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Abstract. By Geometric element transformation method (GETMe) always we get a new element.
In this paper, we investigate the regularization of heptahedra using GETMe. Energy function is a
cost function for heptahedra which is also applicable for octahedra, decahedra, hexahedra etc. is
defined by a particular process, which we call base diagonal apex method (BDAMe). We also try to
find the characterization of different cost function using BDAMe when we transform a heptahedra
by GETMe.
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1. Introduction

In many finite element applications unstructured tessellations of the geometry under
consideration play a fundamental role. Therefore, the generation of quality meshes are
essential steps of the simulation process, since mesh quality has an impact on solution
accuracy and the efficiency of the computational methods involved [1, 2, 6, 9].

In [11], Geometric Element Transformation Method (GETMe) is represented as a sim-
ple geometric operation. The effect of this transformation, if applied iteratively, gives
asymptotical but rapid regularization of the initial element. The authors of [11] have
also introduced the concepts of global smoothing control and gave an algorithmic descrip-
tion of this method. The potential of the GETMe based smoothing is also illustrated
there. In [13], the generalized transformation was presented and also described the en-
hanced GETMe-based smoothing by introducing the concepts and quality metric used
for smoothing and termination control. Numerical results and a comparison to other
smoothing methods, both geometrical and optimization-based were also given. In [12],
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the simultaneous GETMe smoothing algorithm based on transforming all mesh elements
and the sequential GETMe algorithm based on transforming only the worst mesh element
were described.

Basically, the geometric element transformation method (GETMe) is a geometry-based
smoothing method for mixed and non-mixed meshes. It is based on a simple geometric
transformation applicable to elements bounded by polygons with an arbitrary number of
nodes. The transformation, if applied iteratively, leads to a regularization of the polygons.
Global mesh smoothing is accomplished by averaging the new node positions obtained by
local element transformations. Thereby, the choice of transformation parameters as well as
averaging weights can be based on the element quality which leads to high quality results.

The most usual technique to improve the quality of a valid mesh, that is, one that does
not have inverted elements, are based upon local smoothing. Usually, objective functions
are appropriate to improve the quality of a valid mesh, but they do not work properly
when there are inverted elements. To avoid this problem we can proceed as Freitag et al
in [3–5].

In this paper, we have defined the characterization of energy function of a heptahedra
using base diagonal apex method (BDAMe). Also, we have defined the new apex transfor-
mation of heptahedron whose base points are fixed. Then we have discussed regularization
properties of a heptahedra and tried to regularize by using geometric element transforma-
tion method (GETMe). Finally we have studied the characterization of energy function
of a particular type of heptahedron using GETMe and BDAMe.

2. Characterization of Energy Function of a Heptahedron

For a 3-complex, the cost function referred as the energy function that discussed in
[10]. But, we cannot estimate the energy function of all 3-D shapes. In [8], the chacteri-
zation of energy function of pentahedron have been defined. In this paper, we shall try to
estimate the energy function of heptahedron by base diagonal apex method (BDAMe).

2.1 Base Diagonal Apex Method(BDAMe):

In [8], A. Bhattacharyya and B. Pal have defined base diagonal apex method. In this
method, we add the two diagonal of the base of the pyramid and then add between the
intersection point of the diagonal and the apex of the pyramid. This line (from apex to the
intersection point of the diagonals) may be the height of the pyramid or may not be the
height of the pyramid, totally depend upon the type of pyramid we choose. If we follow
this method, we get six 3-simplex, that is, six tetrahedra. Now, each tetrahedron has a cost
function or energy function. Therefore, we get six cost functions and then we can easily
define cost function for heptahedra and to define the cost function of 3-D shapes except
3-simplex, we introduce the function h(vi, σ

n), the signed distance from c(σn) to aff(σn−1
i )

with convention that h(vi, σ
n) ≥ 0 when c(σn) and vi are the same side of aff(σn−1

i ). Here
σn are the n-simplex, c(σn) the circumcenter of the n-simplex, facet aff(σn−1

i ) and vertex
vi. We have worked on all 3-D figures, so in that case n = 3. The magnitude of h(vi, σ

n)
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can be treated as the distance between c(σn) and c(σn−1
i ), and its sign can be computed

by testing whether c(σn) and vi have the same orientation with respect to aff(σn−1
i ) or not.

Now by BDAMe, the heptahedron is the sum of the maximum number of six 3-simplexes.
Here we divide the quantity h(vi, σ

n) by the circumradius R(σn) to get a quantity called
cost function or energy function. Observe that, −1 < h(vi, σ

n)/R(σn) < 1 for finite σn,
as R(σn)2 = h(vi, σ

n)2 +R(σn−1
i )2. Then, we have the following theorem.

Theorem 2.1 The energy function (using BDAMe) fp(σ
n) = 1

N

∑N
j=1maxv∈σn |h(v,σ

n
j )

R(σn
j )

|,
where N is number of tetrahedrons obtained using BDAMe of a 3D-figure (pentahedron,
hexahedron, decahedron, octahedron, ..., etc), always lies between 0 and 1 that is, 0 <
fp(σ

n) < 1.

The proof of this theorem was already done in [16]. So, for our case, the energy function

of heptahedron be fH(σn) = 1
6

∑6
j=1maxv∈σn |h(v,σ

n
j )

R(σn
j )

|, where H stands for heptahedron.

3. Methods of transformation

In this section we use several methods of transformation to regularize the 3-D figure,
like heptahedra. Here, we define a new apex transformation where the base points of the
heptahedron are fixed.

3.1 Transformation of heptahedra using GETMe:

Let H := (h1, h2, h3, h4, h5, h6, h7)
t denote a heptahedron with seven pairwise disjoint

nodes hi ∈ R3, i ∈ {1, ...., 7}, which are positively oriented. Let

n1 := (h7 − h2)× (h3 − h2),

n2 := (h7 − h3)× (h4 − h3),

n3 := (h7 − h4)× (h5 − h4),

n4 := (h7 − h5)× (h6 − h5),

n5 := (h6 − h7)× (h1 − h7),

n6 := (h1 − h7)× (h2 − h7),

n7 := (h5 − h6)× (h1 − h6),

denote the inside oriented face normal of H. A new heptahedron H ′ with nodes h′i is
derived from H by constructing on each node hi the opposing face normal ni scaled by
σ/

√

|ni|, where σ ∈ R+
0 . That is
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(1)

It is clear that if σ = 0 then H ′ and H are same.

3.2 Apex transformation of a heptahedron using GETMe:

Apex transformation means, we transform the apex (top vertex) of the heptahedron
using geometric element transformation method (GETMe) as discussed in the article
(3.1). So, we transform h7 (apex) to h′7 using only the inside oriented face normal n7,
n7 := (h5 − h6) × (h1 − h6) of H. In that case, a new heptahedron H ′ with nodes h′i
is derived from H by constructing the node h7, the opposite face normal n7 scaled by
σ/

√

|n7|, where σ ∈ R+
0 . So, we have given the apex transformation of heptahedron as

below

H ′ =
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(2)

It is clear that if σ = 0 then H ′ and H are same.

3.3 New heptahedron derived from centroid transformation of a heptahe-
dron using GETMe:

Let H denotes a heptahedron with nodes hk and σ ∈ R+ an arbitary scaling factor.
The nodes h′k of the transformed heptahedron H ′ are given by

h′k := ck +
σ

√

|nk|
nk, k ∈ {1, ...., 7}. (3)

that is h′k is obtained by adding the centroid ck of the heptahedron face with the associated
normal nk scaled by σ/

√

|nk|.
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3.4 Apex transformation of the heptahedron using centroid transformation:

In this case we only transform the apex (top vertex) of the heptahedron using method (3).
So, here we transform h7 to h′7 and the transformed heptahedron is given by

H ′ =
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(4)

here ck is the centroid of kth heptahedron face where the associated normal nk scaled by
σ/

√

|nk|, k ∈ {1, .....7} and n7 := (h5 − h6)× (h1 − h6) of H.

3.5 Apex transformation of the heptahedron using centroid transformation
but base points are fixed:

In this case we transform the apex of the heptahedron using centroid transformation
but other base points are unaltered. So, here only transform h7 to h′7 and we define the
heptahedron is given by

H ′ =
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(5)
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In the following figure we want to demonstrate the method (5)

Fig.1: Before transformation of heptahedron Fig.2: Deformed Heptahedron

4. Properties of transformations:

In this section, we discuss the basic properties of the above four transformations.

4.1 The transformations are scale invariant:

Proof: Since the normals ni are scaled by 1/
√

|ni|, therefore the transformations given
by (1), (2), (3), (4), (5) are scale invariant, that means for any s > 0, (sH)′ = sH ′.

To check this property we shall consider some examples where we choose σ = 0.1.

Example 1. In this example, we use the transformations (1) and then investigate the
properties of (sH)′ = sH ′. Let H := (h1, h2, h3, h4, h5, h6, h7)

t denote the heptahedron
with h1 ≡ (−.64, .48, .6), h2 ≡ (.8, 0, .6), h3 ≡ (0,−.8, .6), h4 ≡ (−.8, 0, .6), h5 ≡ (0, .8, .6),
h6 ≡ (.64,−.48, .6), h7 ≡ (0, 0, 1) Let s = 0.5 and applying the transformation (1) both
on (sH)′ and sH ′ after that we get the following table
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Vertex Coordinates of (sH)′

x y z

(sh1)
′ -.3 0.22 .34

(sh2)
′ .38 -.02 .34

(sh3)
′ .02 -.38 .34

(sh4)
′ -.37 .02 .33

(sh5)
′ .03 .44 .30

(sh6)
′ .31 -.28 .28

(sh7)
′ 0 0 .55

Vertex Coordinates of sH ′

x y z

sh′1 -.3 0.22 .34

sh′2 .38 -.02 .34

sh′3 .02 -.38 .34

sh′4 -.37 .02 .33

sh′5 .03 .44 .30

sh′6 .31 -.28 .28

sh′7 0 0 .55

Hence for this heptahedron the transformation (1) is scale invariant. Similarly, we can
show that the transformation (2) is also scale invariant.

Example 2. In this example, we use the transformation (3) and then try to investi-
gate the property of (sH)′ = sH ′. We use the same heptahedron which is used in example
(1) with s = 0.5 and then applying the transformation (3) both on (sH)′ and sH ′ and
after calculations we get the following table

Vertex Coordinates of (sH)′

x y z

(sh1)
′ .15 -.15 .40

(sh2)
′ -.15 -.15 .40

(sh3)
′ -.11 .15 .40

(sh4)
′ .13 .07 .39

(sh5)
′ .03 .04 .37

(sh6)
′ .01 .40 .36

(sh7)
′ 0 .0 .85

Vertex Coordinates of sH ′

x y z

sh′1 .15 -.15 .40

sh′2 -.15 -.15 .40

sh′3 -.11 .15 .40

sh′4 .13 .07 .39

sh′5 .03 .04 .37

sh′6 .01 .40 .36

sh′7 0 .0 .85

Hence for this heptahedron the transformation (3) is scale invariant. One can also
show that the transformation (4) is also scale invariant.

Example 3. In this example, we use the transformation (5) and then try to investi-
gate the property of (sH)′ = sH ′. We use the same heptahedron which is used in example
(1) with s = 0.5 and then applying the transformation (5) both on (sH)′ and sH ′ and
after calculations we get the following table
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Vertex Coordinates of (sH)′

x y z

(sh1)
′ -.32 0.24 .3

(sh2)
′ .4 0 .3

(sh3)
′ 0 -.4 .3

(sh4)
′ -.4 0 .3

(sh5)
′ 0 .4 .3

(sh6)
′ .32 -.24 .3

(sh7)
′ 0 0 .85

Vertex Coordinates of sH ′

x y z

sh′1 -.32 0.24 .3

sh′2 .4 0 .3

sh′3 0 -.4 .3

sh′4 -.4 0 .3

sh′5 0 .4 .3

sh′6 .32 -.24 .3

sh′7 0 0 .85

Hence for this heptahedron the transformation (5) is scale invariant.

4.2 Transformations (1), (2), (3), (4) and (5) do not preserve the centroid
of the heptahedron:

Proof: The transformations given by (1), (2), (3), (4) and (5) do not preserve the
centroid of the heptahedron,that is 1

7

∑7
i=1 hi 6= 1

7

∑7
i=1 h

′
i, where h1, h2, h3, h4, h5, h6,

h7 are the vertex coordinates of original heptahedron and h′1, h
′
2, h

′
3, h

′
4, h

′
5, h

′
6, h

′
7 are the

vertex coordinates of the transformed heptahedron. As the scale normals ni/
√

|ni| have
been used to ensure the scale invariance of the transformation, so the transformations (1),
(2), (3), (4) and (5) do not preserve the centroid of the heptahedron.

We verify it by an examples.

Example 4. Let (h1, h2, h3, h4, h5, h6, h7)
t be call heptahedron where h1 ≡ (1, 0, 1),

h2 ≡ (1, 5, 1), h3 ≡ (4, 1, 1), h4 ≡ (4, 6, 1), h5 ≡ (0, 3, 1), h6 ≡ (5, 3, 1), h7 ≡ (5, 0, 2) and
after using transformation(1), we get h′1 ≡ (1.02, .06, .9), h′2 ≡ (.9, 5, 1.1), h′3 ≡ (4, .9, .9),
h′4 ≡ (.4, 6.03, 1.1), h′5 ≡ (−.02, 3.03, 1.1), h′6 ≡ (5.02, 3, .9), h′7 ≡ (5, 0, 2.1)

Centroid of the heptahedron
Before transformation (17Σ

7
i=1hi) After transformation (17Σ

7
i=1h

′
i)

(2.8,2.6,1.1) (2.8,2.5,1.1)

Hence from the above we can say that the transformation (1) does not preserve the cen-
troid of the transformation, provided after transformation the base of the heptahedron
must also be coplanar. Similarly, we can also show that the transformation (2) does not
preserve the centroid of transformation by the following table

Centroid of the heptahedron
Before transformation (17Σ

7
i=1hi) After transformation (17Σ

7
i=1h

′
i)

(2.8,2.6,1.1) (2.8,2.6,1.2)
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Example 5. In this example, we show that transformation (3) does not preserve cen-
troid of transformation, provided after transformation the base of the heptahedron must
also be coplanar. We take same co-ordinates of heptahedron as taken as example (1), we
get the following table

Centroid of the heptahedron
Before transformation (17Σ

7
i=1hi) After transformation (17Σ

7
i=1h

′
i)

(2.8,2.6,1.1) (3.2,2.2,1.2)

Similarly, we can also show that transformation (4) does not preserve the centroid of
transformation.

Example 6. Here, we show that transformation (5) does not satisfy the preserving
property of centroid of transformation. We take same co-ordinates of heptahedron as
taken as example (1), we get the following table

Centroid of the heptahedron
Before transformation (17Σ

7
i=1hi) After transformation (17Σ

7
i=1h

′
i)

(2.8,2.6,1.1) (2.5,3,1)

4.3 Characterization of Mean Ratio Quality of a heptahedron:

To define mean ratio quality for heptahedron, first we use BDAMe to get six tetra-
hedra and then choose any tetrahedron. Let T := (h1, h2, h3, h4) denote a tetrahedron
with the four pairwise disjoint nodes hi ∈ R3, i ∈ {1, ..., 4}, which is positively oriented.
That is det(A) > 0 with A := (h2 − h1, h3 − h1, h4 − h1) representing the (3× 3) Jacobian
matrix of the difference vectors, which span the tetrahedron. In [4, 7, 14–16], authors
have discussed how to get mean ratio quality of a tetrahedron and using this procedure
we define the mean ratio quality for heptahedron,

q(H) :=
1

6

6
∑

k=1

3det(Sk)
2/3

‖S‖F

, where ‖S‖ := trace
√

(StS) denote the Frobenious norm of the matrix Sk = AkW
−1 and

W =





1 1/2 1/2

0
√
3/2

√
3/6

0 0
√
3/
√
2





denotes the difference matrix of a regular reference tetrahedron. Now in the case of hep-
tahedron, the criterion of q(H) is not same as in [15, 16]. In that case, if H is regular
then q(H) ∈ [0, 1], where very small values indicate nearly degenerated elements and large
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values element good quality. Now, if the transformation is applied iteratively, the result-
ing heptahedron became more and more regular. In order to assess the regularity of a
heptahedron H numerically, the mean ratio quality criterion will be used. Now, we give
an example of a heptahedron which is regular base heptahedron but q(H) 6= 1.

Example 7. Let (h1, .........., h7)
t be call heptahedron where h1 ≡ (5, 4, 5), h2 ≡

(5, 9, 5), h3 ≡ (0, 9, 5), h4 ≡ (0, 4, 5), h5 ≡ (3, 8, 5), h6 ≡ (8, 8, 5), h7 ≡ (4, 9, 11). Here,
q(H) = 0.417.

4.4 Significance of the scaling factor σ:

σ is playing a important role to regularize a heptahedron and the speed of the regu-
larization.The resulting iteration numbers are totally depended upon the scaling factor σ.

Also the important fact is that there is no specific choice of σ, for which the transfor-
mation given exactly once to any arbitrary heptahedron results a regular one. To show
this, we give an example.

Example 8. Let us choose the heptahedron with the same coordinate as given in ar-
ticle (4.2) example 1. According to (1), the nodes of the transformed heptahedron H ′ are
given by h′1 ≡ (1+σ(.8), 0+σ(.6), 1+σ(−.2)), h′2 ≡ (1+σ(−.7), 5+σ(0), 1+σ(.7)), h′3 ≡
(4+σ(.1), 1+σ(−.1), 1+σ(−.9)), h′4 ≡ (4+σ(0), 6+σ(.3), 1+σ(.9)), h′5 ≡ (0+σ(−.2), 3+
σ(.3), 1+σ(.9)), h′6 ≡ (5+σ(.2), 3+σ(0), 1+σ(−.9)) and h′7 ≡ (5+σ(0), 0+σ(0), 2+σ(1))
using an arbitrary scaling factor σ ∈ R+

0 . In order to be regular, all the base lengths of
the transformed heptahedron must be equal.
But, we see that |h′1 − h′2| = |h′2 − h′3| for σ = 55.2, |h′2 − h′3| = |h′3 − h′4| for σ = 8,
|h′3 − h′4| = |h′4 − h′5| for σ = 0.71, |h′4 − h′5| = |h′5 − h′6| for σ = 0.69, |h′5 − h′6| = |h′6 − h′1|
for σ = 5.4. So, we see that there is no specific σ ∈ R+

0 for which the heptahedron H ′

obtained by one step of the transformation is regular.

4.5 Uniqueness of the circumsphere of heptahedron:

Now for any 3-simplex, we can always draw a sphere through the four vertices of the
3-simplex, but for heptahedron and other 3D-figures we always do not get a sphere through
the all vertices of the 3D-figure except tetrahedron. But if we choose a heptahedron so
that its all vertices satisfy some particular sphere equation and then we use the transfor-
mation (1), (2), (3), (4) and (5), we can show that after transformation the transformed
heptahedron may not satisfy some particular sphere equation. Let us give an example
using transformation (2) and (4).

Example 9. Let H := (h1, h2, h3, h4, h5, h6, h7)
t denote the heptahedron with h1 ≡

(−.64, .48, .6), h2 ≡ (.8, 0, .6), h3 ≡ (0,−.8, .6), h4 ≡ (−.8, 0, .6), h5 ≡ (0, .8, .6), h6 ≡
(.64,−.48, .6), h7 ≡ (0, 0, 1). We see that all these points are satisfy the sphere equation
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x2 + y2 + z2 = 1. But after transformation using (1), we see that they do not satisfy the
sphere equation. If we use transformation (2), we get, h′1 ≡ (−.64, .48, .6), h′2 ≡ (.8, 0, .6),
h′3 ≡ (0,−.8, .6), h′4 ≡ (−.8, 0, .6), h′5 ≡ (0, .8, .6), h′6 ≡ (.64,−.48, .6), h′7 ≡ (0, 0, 1.1).
We see that they also do not satisfy the sphere equation. One can show that transfor-
mation (3) does not satisfy the sphere equation. If we use apex transformation (4), we
get the co-ordinates h′1 ≡ (.26,−.26, .73), h′2 ≡ (−.26,−.26, .73), h′3 ≡ (−.26, .26, .73),
h′4 ≡ (.21, .11, .73), h′5 ≡ (0, 0, .73), h′6 ≡ (.05, .16, .73), h′7 ≡ (0, 0, .73) We see that they
also do not satisfy the sphere equation.

Example 10. If we see transformation (5), the transformed heptahedron becomes
h1 ≡ (−.64, .48, .6), h2 ≡ (.8, 0, .6), h3 ≡ (0,−.8, .6), h4 ≡ (−.8, 0, .6), h5 ≡ (0, .8, .6),
h6 ≡ (.64,−.48, .6), h′7 ≡ (0, 0, 1.7). We see that all h′i do not satisfy the sphere equation.

5. Regularization of a heptahedron

Here we shall consider a process to regularize a heptahedron. In the case of heptahe-
dron regular means that the base of the heptahedron is regular and the upper all edge
lengths are equal. So, when we consider an arbitrary heptahedron it is quite difficult to
regularize the heptahedron.

Observation 5.1 If the base of the heptahedron is regular and upper portion of the
heptahedron is irregular then we can regularize the heptahedron using any of the transfor-
mations (1), (2), (3), (4) and (5).

This can be verified by some examples where transformations (2), (4) and (5) are used
to regularize the heptahedron whose base is regular.

Example 11. Let H := (h1, h2, h3, h4, h5, h6, h7)
t denote a heptahedron with h1 ≡

(5, 4, 5), h2 ≡ (5, 8, 5), h3 ≡ (1, 8, 5), h4 ≡ (1, 4, 5), h5 ≡ (1, 0, 5), h6 ≡ (5, 0, 5) and
h7 ≡ (4, 8, 10). This heptahedron is not regular because the base edges length h1h2 =
h2h3 = h3h4 = h4h5 = h5h6 = h6h1 = 4 and for the upper portion length of the edges
are h1h7 = 6.48, h2h7 = 5.09, h3h7 = 5.83, h4h7 = 7.07, h5h7 = 9.89, h6h7 = 9.48 which
all are not equal. Now, if we use the transformation (2) on the given heptahedron, then
in first step, length of the edges (upper portion) are h′1h

′
7 = 6.40, h′2h

′
7 = 5, h′3h

′
7 = 5.74,

h′4h
′
7 = 7, h′5h

′
7 = 9.84, h′6h

′
7 = 9.43 and in 2nd step, length of the edges are h′′1h

′′
7 = 6.32,

h′′2h
′′
7 = 4.9, h′′3h

′′
7 = 5.66, h′′4h

′′
7 = 6.93, h′′5h

′′
7 = 9.80, h′′6h

′′
7 = 9.38. Here we observe that

the heptahedron tends to regularize but slowly. The speed of the regularization depends
upon the choice of the scaling factor σ. In this case we take the scaling factor σ = 0.1.

If we use same points on the heptahedron using transformation (3), we get the length of
the edges (upper portion) are h′1h

′
7 = 4.3, h′2h

′
7 = 3.3, h′3h

′
7 = 1.9, h′4h

′
7 = 2.2, h′5h

′
7 = 2.5,

h′6h
′
7 = 3.1. So, we see that upper portion of this polyhedron is not regular. But, we

look after transformation, the base points are regular i.e, h′1h
′
2 = h′2h

′
3 = h′3h

′
4 = h′4h

′
5 =
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h′5h
′
6 = h′6h

′
1. But, if we use the transformation (5) after the 1st step of transformation

(3) on heptahedron, we get, h′′1 = h′1, h
′′
2 = h′2, h

′′
3 = h′3, h

′′
4 = h′4, h

′′
5 = h′5, h

′′
6 = h′6

and h′′7 = (3.45, 5.3, 6.5) and we also see that the length of the edges of the upper portion
of the heptahedron becomes h′′1h

′′
7 = 2.6, h′′2h

′′
7 = 2, h′′3h

′′
7 = 2, h′′4h

′′
7 = 2.6, h′′5h

′′
7 = 2,

h′′6h
′′
7 = 2.2. So, we observe that the given heptahedron converges to regularize and it

becomes a regular heptahedron (approximately).

Now, if we use the transformation (4), we get h′7 = (3, 4, 4.9). And after the first
step, we see that length of the edges (upper portion) of the given heptahedron is not
equal. If we use this transformation after second step, we get h′′7 = (3.3.5.3, 6.6) and we
observe also that the length of the upper portion is not regular. But after third step, we
get h′′′7 = (3.2, 4.9, 6) and we see that h′′′1 h

′′′
7 = .8, h′′′2 h

′′′
7 = .7, h′′′3 h

′′′
7 = .8, h′′′4 h

′′′
7 = 1,

h′′′5 h
′′′
7 = .8, h′′′6 h

′′′
7 = .6. So, we see that it tends to regularize. So the deformed heptahe-

dron becomes a regular heptahedron.

If we apply transformation (5) after first transformation of (4) on heptahedron, we
get h′′1 = c1, h

′′
2 = c2, h

′′
3 = c3, h

′′
4 = c4, h

′′
5 = c5, h

′′
6 = c6 and h′′7 = (3.3, 5.3, 6.6). We

observe that the length of the upper portion h′′1h
′′
7 = 2.7, h′′2h

′′
7 = 2, h′′3h

′′
7 = 2, h′′4h

′′
7 = 2.7,

h′′5h
′′
7 = 2, h′′6h

′′
7 = 2. So, it also tends to regularize (approximately). All the above case

the scaling factor σ = .1.

Example 12. Now, we use transformation (5) on the example h1 ≡ (1, 0, 1), h2 ≡
(1, 5, 1), h3 ≡ (4, 1, 1), h4 ≡ (4, 6, 1), h5 ≡ (0, 3, 1), h6 ≡ (5, 3, 1), h7 ≡ (5, 0, 2), the
transformed heptahedron becomes h′1 ≡ (1, 0, 1), h′2 ≡ (1, 5, 1), h′3 ≡ (4, 1, 1), h′4 ≡ (4, 6, 1),
h′5 ≡ (0, 3, 1), h′6 ≡ (5, 3, 1) and h′7 ≡ (2.5, 3, 1.1) taking scaling factor σ = .1 and the length
of the upper portion are h′1h

′
7 = 3.3, h′2h

′
7 = 2.5, h′3h

′
7 = 2.5, h′4h

′
7 = 3.3, h′5h

′
7 = 2.5,

h′6h
′
7 = 2.5. From this it is clear that this transformed heptahedron converges to regular

(approx).
From the above examples we observe that the transformation (5) plays an important

role to regularize the heptahedron.

6. Characterization of energy function of a particular type of

heptahedron using GETMe and BDAMe

The changing cost function, after transforming the heptahedron by GETMe, is given
by

f(σH) = |fHk
(σn) ∼ fHk+1

(σn)|
Now using BDAMe we find the numerical values of changing cost function. We can calcu-
late the changing cost function of the heptahedron provided after transformation the base
points are coplanar. Let us consider an example where h1 ≡ (5, 2, 5), h2 ≡ (5, 7, 5),
h3 ≡ (0, 7, 5), h4 ≡ (4, 4, 5), h5 ≡ (0, 1, 5), h6 ≡ (5, 1, 5) are the base points and
h7 ≡ (4, 5, 8) denote the apex of the the heptahedron. Here, (2.5, 4, 5) be the inter-
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secting point of the base diagonals of the square part of the heptahedron. It has shown in
the following figure

Fig.3: Characterization of heptahedron using BDAMe.

After calculation, we get

Apex Transformations
Initial Step 2nd Step 3rd Step 4th Step

fHk
(σn) 0.6999 0.7251 0.7507 0.7770

By this example we can show that the heptahedron converges to regularize on the
transformation (2). We see in Figure (4) that the values of the changing cost function
f(σH) are 0.0252, 0.0257 and 0.0263.
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0.69 0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78
0.0252

0.0254

0.0256

0.0258

0.026

0.0262

0.0264

0.0266

0.0268

0.027

f
Hk

(σn
)

f(
σ H

)

Fig.4: Changing cost function.

Therefore for this example we see that when it converges to regularize, the changing
cost function also increases. One can also calculate the changing cost function for any
arbitrary heptahedron (using the method (1) and (3)) provided after transformations the
base points are coplanar.

7. Conclusion

One can regularize any 3-D figures, which are not simplex, using GETMe and BDAMe.
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