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REGULARIZATION OF SOME LINEAR ILL-POSED PROBLEMS
WITH DISCRETIZED RANDOM NOISY DATA

PETER MATHÉ AND SERGEI V. PEREVERZEV

Abstract. For linear statistical ill-posed problems in Hilbert spaces we in-
troduce an adaptive procedure to recover the unknown solution from indirect
discrete and noisy data. This procedure is shown to be order optimal for a
large class of problems. Smoothness of the solution is measured in terms of
general source conditions. The concept of operator monotone functions turns
out to be an important tool for the analysis.

1. Introduction

In this study we analyze the numerical solution of operator equations Ax = y
under the presence of noise, which means we are given

(1) yδ = Ax + δξ,

where A : X → Y acts compactively and injective between Hilbert spaces X and
Y . The noise ξ is assumed to be centered and (weak) Gaussian in Y . Further
restrictions will be imposed later on.

When processing data, several decisions have to be made. First one has to agree
upon the method of reconstruction. Our analysis will be carried out for Tikhonov’s
regularization, because this is most often used in practice. Then, and this is the
heart of the present study, several parameters have to be chosen.

Typically the a priori information on the solution is not precise, so decisions must
be made on the basis of some adaptive procedure. Here we shall analyze a Lepskĭı-
type procedure. We stress that this procedure is only suited for one-parameter
families of estimators, as this is the case for kernel-type statistical estimators with
varying bandwidth. Within the present context, the approximation obtained by
discretized regularization depends on at least two parameters; the regularization
parameter, and the amount of discrete data to be used. To apply the Lepskĭı strat-
egy it is thus necessary to relate both parameters, independent of the underlying
true smoothness. This is one of the accomplishments of the present paper, and is
exhibited in Theorem 3 by estimating the impact of each parameter upon accuracy.

The question arises as to which conditions of the described procedure may achieve
the best possible (order of) reconstruction of the true solution. To this end we shall
present an analysis for the case when the smoothness is measured in terms of general
source conditions, an approach which recently became attractive. It is more flexible
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to describe smoothness than just the usual scales of Hilbert spaces. In particular
severely ill-posed problems can be well described and analyzed within this frame-
work. To achieve tight upper bounds a new concept is introduced into the analysis
of statistical ill-posed problems, the notion of operator monotone functions. This
class of functions allows us to analyze discretization particularly well. The upper
bounds are accompanied with lower bounds, and are presented as a specification of
Pinsker’s results.

The outline of the paper is as follows. First we shall provide the setup under
which the analysis is carried out. Then we shall present the adaptive procedure
to be analyzed in this study. The theoretical properties of it will be given in an
Appendix.

In Section 4 we introduce smoothness in terms of general source conditions and
prove uniform error bounds for Tikhonov regularization for smoothness classes given
through operator monotone functions. We close this section with proving lower
bounds. Finally we prove the optimality (up to a logarithmic factor) of the adaptive
procedure for such smoothness classes.

2. Setup

The description of the problem as given by (1) must be completed with infor-
mation on the available data and the nature of the noise.

2.1. Discrete data. Our focus shall be on the regularization of problem (1), based
on discrete data, given through some orthonormal system. Precisely, instead of (1)
we shall limit ourselves to a one-sided discretization of the form B := QA with a
finite rank orthogonal projection Q in Y . The interpretation is natural. Turning
from (1) to

Qyδ = QAx + δQξ

means that instead of complete data, generically expressed as yδ, we turn to a finite
set {yδ,1, . . . , yδ,n} of data given by

(2) yδ,i = 〈Ax, ψi〉 + δξi, i = 1, . . . , n,

where Q is the orthogonal projection onto the linear span of {ψ1, . . . , ψn}.
At this point it is important to note that we assume to have observations without

repetitions, which means that each of the functionals yδ,i = 〈yδ, ψi〉 is observed only
once.

Remark 1. Let us briefly discuss a similar, although different, model which has
been studied elsewhere, and which is related to repeated observations. Indeed, if
for each i = 1, . . . , n we are given repetitions

yk
δ,i = 〈Ax, ψi〉 + δξk

i , i = 1, . . . , n, k = 1, . . . , M,

where for each i the noise ξk
i , k = 1, . . . , M is zero-mean, independent and iden-

tically distributed (i.i.d.), then we may decrease the variance at functionals ψi by
letting

(3) ŷδ,i : =
1
M

M∑
k=1

yk
δ,i = 〈Ax, ψi〉 +

δ

M

M∑
k=1

ξk
i .

Observations that are modified in such a way now correspond to the model (2)
studied here, but with noise level E |〈Ax, ψi〉 − ŷδ,i|2 ∼ δ2/M .
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REGULARIZATION OF STATISTICAL ILL-POSED PROBLEMS 1915

Under these circumstances and asymptotically one can even achieve arbitrary
accuracy. Observation models including repetitions have been discussed in [6, 17].
For example, the observation model from [17, Chapt. 7] can be interpreted as the
model with M =

√
n repetitions, and the analog of (2) appears as

yδ,i =
√

n〈Ax, ψi〉 + δξi, i = 1, . . . , n.

It can thus be considered as an observation model without repetitions, as studied
here, but with the noise level δ/

√
n.

2.2. The noise. As mentioned in the Introduction, we will further impose restric-
tions on the nature of the random noise ξ. Most importantly we assume that it is
centered and has second weak moments, i.e., for all (functionals) a ∈ Y the expec-
tations E |〈ξ, a〉|2 < ∞ are finite. Thus we can introduce the covariance operator
K by 〈Ka, b〉 := E〈ξ, a〉〈ξ, b〉, a, b ∈ Y .

We mention the following extreme cases; see [16, Chapt. 3.2]. Each bounded
symmetric nonnegative operator K induces a random element with weak second
moment. For Gaussian random elements and K := I we thus obtain the Gaussian
white noise model. If the operator K has a finite trace, then the random element
possesses a strong second moment, i.e., E‖ξ‖2 < ∞. In this case, the theory
of statistical ill-posed problems does not distinguish from the classical ill-posed
ones with bounded deterministic noise, as can be seen from the results below in
Section 4.3.

Here we shall study classes of statistical ill-posed problems, for noise with co-
variance K which has the following property.

Assumption 1. There are a parameter 1 ≤ p ≤ ∞ and a constant Cp, such that
for any discretization projection Q it holds true that

(4) traceQKQ ≤ Cp(rank(Q))1/p.

This class of covariance operators is denoted by Kp. Note that the noisy pertur-
bations {ξ1, . . . , ξn} form a random vector having covariance QKQ, if K was the
original covariance of the random element ξ, thus E‖Qξ‖2 = traceQKQ.

Remark 2. If the covariance operator K belongs to some Schatten class Sq of op-
erators containing all operators with q-summable singular numbers, i.e., ‖K‖q

Sq
:=∑∞

j=1 sq
j(K) < ∞, then (4) is fulfilled for arbitrary projections Q and with dual

index p, i.e., 1/p + 1/q = 1. (We agree to let S∞ denote the space of all bounded
linear operators in Y .) We refer to [12, 2.11.23] for more details.

Summarizing, in our study the reconstruction xα,δ of the solution x will be
based on noisy data yδ,1, yδ,2, . . . , yδ,n, with the assumptions made above. It will
be obtained from Tikhonov regularization as

xα,δ = (α I +B∗B)−1B∗yδ

with parameter α to be chosen adaptively. If the observation functionals {ψi}
form an orthonormal system in Y , then the regularized approximation xα,δ can
be represented in the form xα,δ =

∑n
k=1 ζkA∗ψk, where the vector (ζ1, ζ2, ..., ζn)

constitutes the solution to the system of linear equations

αζi +
n∑

j=1

〈A∗ψj , A
∗ψi〉ζj = yδ,i, i = 1, . . . , n.
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1916 PETER MATHÉ AND SERGEI V. PEREVERZEV

Thus, to construct xα,δ one needs to know the observations yδ,i and the inner prod-
ucts 〈A∗ψj , A

∗ψi〉. The covariance operator itself is not used in the regularization
procedure. As we will see in the sequel, to accomplish the regularization one needs
to know only two numbers p and Cp from Assumption 1, or reliable estimates
for them. This allows us to apply Tikhonov regularization in situations when the
covariance structure of the noise is not completely known.

3. The adaptive procedure

Within the present approach we shall use an adaptation procedure similar to the
one introduced by Lepskĭı [5]. It is based on a finite number of approximations at
different levels of the regularization parameter. Since 1990 Lepskĭı’s approach has
found many applications, there are many results, either generalizing the scope of
applicability or modifying it for specific applications. We only mention [2, 15], where
the same approach has been applied to inverse problems. Within our approach
the variance term may be quite general and a suitable reference is not available.
Therefore we outline the procedure in some general form, providing details and
proofs in the Appendix.

3.1. An abstract oracle principle. Suppose we are given a finite set {x1, . . . , xm}
of random elements in some metric space (M, d), given on some probability space
(Ω,F , P ) and a decreasing function Ψ : {1, . . . , m} → R

+. Let x ∈ M be any
(deterministic) element.

Definition 1. A nondecreasing function Φ: {1, . . . , m} → R
+ is called admissible

for x if there exists a family of nonnegative random variables ρ(j), j = 1, 2, . . . , m,
for which

d(x, xj) ≤ Φ(j) + ρ(j), j = 1, 2, . . . , m,(i)

Eρ2(j) ≤ Ψ2(j), j = 1, 2, . . . , m,(ii)

and

Φ(1) ≤ Ψ(1).(iii)

Furthermore we assume the following concentration inequality for ρ: there are con-
stants 0 < b < 1 ≤ a for which uniformly in j = 1, 2, . . . , m it holds true that

(5) P (ρ(j) ≥ tΨ(j)) ≤ a exp(−bt2), t > 0.

Remark 3. As can be drawn from item (i), the functions Φ and ρ correspond to
an error estimate with ρ being the noise term, the second moment of which is
controlled by Ψ2.

The adaptive procedure as well as their properties are stated in

Theorem 1 (Statistical oracle inequality). Let {x1, . . . , xm} be a finite set of ran-
dom elements in (M, d) and let Ψ: {1, . . . , m} → R

+ be decreasing. Furthermore
we assume that there is D ≥ 1 for which Ψ(i) ≤ DΨ(i + 1), i = 1, . . . , m − 1.

Given some κ ≥ 1, let us consider the (random) index

j̄ := max {j, d(xi, xj) ≤ 4κΨ(i) for all i ≤ j} .
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For every admissible Φ, with concentration (5), the following estimate holds true:

(6)
(
Ed2(x, xj̄)

)1/2

≤ 6Dκ min {Φ(j) + Ψ(j), j = 1, 2, . . . } +
15
b

Ψ(1)
√

ma exp(−b/4κ2).

The proof is carried out in the Appendix.

3.2. Description of the procedure. In the application below, the adaptive pro-
cedure is based on Tikhonov regularization of some projection scheme. Precisely,
for a discretization Q, corresponding B := QA, and parameter α, we let

xα,δ := (α I+B∗B)−1B∗Qyδ.

Due to the nature of the noise, the elements xα,δ are random in X. The elements
for the abstract oracle principle will be obtained along a sequence α1, α2, . . . , αm

of regularization parameters.
Precisely, for a given q > 1 and α1 = δ2, let αj := qjα1, j = 2, . . . , m, where m is

determined from qm−1α1 ≤ 1 < qmα1. In particular 2 logq 1/δ ≤ m ≤ 1+2 logq 1/δ.
Corresponding to α = αj we choose n = n(α) and a projection Q = Qn(α), hence

B = Qn(α)A, and use

xj := xαj ,δ := (αj I +B∗B)−1B∗yδ, j = 1, 2, . . . , m.

Remark 4. As will be seen below, the interplay between α and Q = Qn is important.
Two scenarios are natural.

First, we may successively choose α and then let n = n(α) be chosen appropri-
ately. This presumes that potentially we are able to use an arbitrary amount of
data.

Second, we may encounter the situation when the amount of data is given. Then
one may wish to successively reduce the amount of data used and adapt α accord-
ingly to finally arrive at the α which is best for the data at hand.

The choice of the best parameters is dependent on the actual smoothness of
the true solution. This is well known and within the framework of general source
conditions; it has recently been studied by the authors in [9].

As mentioned above the decreasing function Ψ is obtained from a valid bound
on the variance term for Tikhonov regularization.

Lemma 1. Let B := QA. Under Assumption 1 it holds that

E‖(α I +B∗B)−1B∗ξ‖2 ≤ Cp
(rankQ)1/p

4α
.

Proof. Because B∗ξ = B∗Qξ we can bound the expectation

E‖(α I+B∗B)−1B∗ξ‖2 ≤ ‖(α I +B∗B)−1B∗‖2E‖Qξ‖2 ≤ Cp
(rankQ)1/p

4α
by Assumption 1 and a simple norm bound. �

For the procedure to work we shall assume that the amount of used data n = n(α)
is a decreasing function of α, which is very natural and not restrictive. Moreover, we
assume that the bound Cp for the covariance from (4) is available. If n = n(α) ≥ 1
is decreasing, then the function

(7) Ψp(α) := Cp
(n(α))1/p

4α
, α > 0,

is decreasing.
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ADAPT(q, δ):

α := δ2;

κ :=
√

m;

n := n(α);

B := Bn = QnA;

x1,δ := (α I+B∗B)−1B∗yδ;

k := 1;

Do:

k := k + 1;

αk := q ∗ α; / ∗ geom. progression ∗ /

n := n(α);

B := Bn = QnA;

xk,δ := (α I+B∗B)−1B∗yδ; / ∗ regularize ∗ /

While: ( ‖xj,δ − xk,δ‖ ≤ 4κδ
√

Ψp(αqj−k), j ≤ k and α ≤ ‖A∗A‖);
Return: xk−1,δ;

Figure 1. The adaptive strategy

Finally we let Ψ(j) := δ
√

Ψp(αj), j = 1, 2, . . . , m, which is decreasing as j
increases from 1 to m. To apply Theorem 1 we shall assume that n does not decrease
too fast, which is reasonable if one wants to retain the best possible accuracy, which
will be seen from Theorem 3. Precisely, we suppose that n decreases such that for
some D̄ it holds true that

(8) n(t) ≤ D̄n(qt), t > 0.

Under (8) the function Ψ used in the adaptive procedure obeys Ψ(j) ≤ DΨ(j + 1)
for D :=

√
q(D̄)1/p.

The numerical procedure is shown schematically in Figure 1. We let κ :=
√

m ∼
log1/2

q (1/δ), which can be seen to be best. Finally we observe that for the present
setup of α1, α2, . . . , there are δ0 > 0 and C = C(D, q) > 6D such that for δ ≤ δ0 it
holds true that

15
b

Ψ(1)
√

ma exp(−b/4m) ≤ (C − 6D)Ψ(m).

Applying Theorem 1 with the functions and parameters above we obtain

Theorem 2. Suppose we have chosen the parameter q > 1 and that n = n(α) obeys
(8). For any x ∈ X the resulting approximation xᾱ,δ of the adaptive strategy yields

(
E‖x − xᾱ,δ‖2

)1/2 ≤ C
√
�2 logq(1/δ)�

× min
{

Φ(j) + δ
√

Ψp(αj), j = 1, 2, . . . , Φ admiss. for x

}

for δ ≤ δ0 and for some constant C = C(D, q).

Remark 5. The above strategy has only one parameter to choose. If q is large, then
there are only a few comparisons to be made, but the approximation to the true
value of α can only be rough. A choice of q > 1 close to 1 will result in a large
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REGULARIZATION OF STATISTICAL ILL-POSED PROBLEMS 1919

number of possible terminal values, thus allowing us to recover the best one more
accurately, but the additional log-factor in the estimate will be large.

As seen from Theorem 2, the adaptive strategy provides the best possible choice
among the approximations xα,δ and all functions for admissible x in the sense of
Definition 1, where Ψ(j) = δ

√
Ψp(αj), j = 1, 2, . . . , m. Two questions arise:

(1) Given x, can we infer something about admissible functions for x and the
given Ψ?

(2) How does the error bound from Theorem 2 relate to the best possible ac-
curacy?

4. General source conditions

In this section we shall describe a large class of functions ϕ and corresponding
sets Aϕ(R) ⊂ X which possess the following property. If x ∈ Aϕ(R), then the
functions ϕ provide Φ, which are admissible.

Because we want to bound the distance of xᾱ,δ to the true solution x,
this amounts to proving error estimates for Tikhonov regularization xα,δ :=
(α I +B∗B)−1B∗yδ in which δ2Ψp(α) is an estimate for the variance.

4.1. The error criterion. For any covariance structure K ∈ Kp of the noise and
for any estimator x̂ of the true solution x based on data yδ,1, yδ,2, . . . , yδ,n the error
is given by

e(x, K, x̂, δ) :=
(
E‖x − x̂‖2

)1/2
,

where expectation is with respect to the noise. The worst-case error over a class F
of problem instances is given as

e(F, K, x̂, δ) := sup
x∈F

e(x, K, x̂, δ).

The best possible order of accuracy is defined by minimization over all estimators,
i.e.,

e(F, K, δ) := inf
x̂

e(F, K, x̂, δ).

Lower bounds are of interest only for noise which is not degenerate, so we shall
study

e(F,Kp, δ) := sup
Kp

inf
x̂

e(F, K, x̂, δ).

4.2. Smoothness in terms of general source conditions. Here we are going
to specify the class F of problem instances. In contrast to the usual approach,
where smoothness is given by (finite) differentiability properties, we want to keep
the class of admissible functions for the adaptive strategy as large as possible.

To this end we start with the description of the Moore–Penrose generalized
solution of the equation Ax = y for a compact injective operator A : X → Y . Under
this assumption there is a singular value decomposition Ax =

∑√
sk〈x, uk〉vk,

for orthonormal systems u1, u2, . . . in X and v1, v2, . . . in Y , and a (decreasing)
sequence of singular numbers sj = sj(A∗A) > 0, j = 1, 2, . . . . Throughout we shall
denote a := s1(A∗A) = ‖A∗A‖. The Moore–Penrose solution is then given through

x+ :=
∞∑

j=1

1
√

sj
〈y, vj〉uj .
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Picard’s criterion asserts that x+ ∈ X iff
∑

|〈y, vj〉|2 /sj < ∞. This implies
a minimal decay of the Fourier coefficients 〈y, vj〉. Therefore it seems natural
to measure smoothness of x by enforcing some faster decay. This is achieved
through an increasing function ϕ : (0, a] → R+, limt→0 ϕ(t) = 0, by requiring∑

|〈y, vj〉|2 /(sjϕ
2(sj)) < ∞. Then

v :=
∞∑

j=1

1
√

sjϕ(sj)
〈y, vj〉uj ∈ X

and

x+ =
∞∑

j=1

ϕ(sj)〈v, uj〉vj = ϕ(A∗A)v ∈ X.

Therefore we shall seek solutions to (1) in terms of general source conditions, given
by

(9) Aϕ(R) := {x ∈ X, x = ϕ(A∗A)v, ‖v‖ ≤ R} ,

where the symbol A refers to the underlying operator. The function ϕ is called
an index function. In such a form inverse problems have been studied by several
authors; we mention [3, 14, 11] and previous study by the present authors [10, 9].

There is good reason to further restrict the class of admissible index functions. In
general, the smoothness expressed through general source conditions is not stable
with respect to perturbations in the involved operator A∗A. But regularization
is carried out for a nearby operator B, and it is desirable that the class Aϕ(R) is
robust with respect to this type of discretization. This can be achieved by requiring
ϕ to be operator monotone. For a detailed exposition of this concept we refer the
reader to [1]. In the context of numerical analysis for ill-posed problems this was
introduced by the authors in [8].

As in [8] we introduce the partial ordering B1 ≤ B2 for self-adjoint operators B1

and B2 on some Hilbert space X, by 〈B1u, u〉 ≤ 〈B2u, u〉 for any u ∈ X.

Definition 2. A function ϕ : (0, b) → R is operator monotone on (0, b), if for any
pair of self-adjoint operators B1, B2 : X → X with spectra in (0, b), the relation
B1 ≤ B2 implies ϕ(B1) ≤ ϕ(B2).

The important implication of the concept of operator monotonicity in the context
of discretization is as follows.

Lemma 2 (see [8]). Suppose ϕ is an operator monotone index function on (0, b),
b > a. Then there is M < ∞, depending on b−a, such that for any pair A, B, ‖A‖,
‖B‖ ≤ a of nonnegative self-adjoint operators on some Hilbert space X, it holds
that

‖ϕ(A) − ϕ(B)‖ ≤ Mϕ(‖A − B‖).

Assumption 2. We assume that the source condition is given by an increasing
operator monotone on (0, b) index function ϕ, ϕ(0) = 0, for some b > a = ‖A∗A‖.

The following monotonicity property will be used below.

Lemma 3. Under Assumption 2 there is T ≥ 1 such that

ϕ(t)/t ≤ Tϕ(s)/s, whenever 0 < s < t ≤ a < b.
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Proof. As used in [8], such ϕ admit a decomposition ϕ = ϕ0 + ϕ1 into a concave
part ϕ0 and a Lipschitz part ϕ1 with Lipschitz constant, say c1. Moreover, ϕ0(0) =
ϕ1(0) = 0 such that ϕ0(s)/s ≥ ϕ0(t)/t whenever 0 < s < t ≤ a. Thus for t > s we
estimate

ϕ(t)/t = (ϕ0(t) + ϕ1(t))/t ≤ ϕ0(t)/t + c1.

Now, for T := c1a/ϕ0(a) + 1 we conclude ϕ(t)/t ≤ Tϕ(s)/s. �

4.3. The error of Tikhonov regularization. We start with the following obvi-
ous bias-variance decomposition at the true solution x:

(10) E‖x − (α I+B∗B)−1B∗Qyδ‖2

= ‖x − (α I +B∗B)−1B∗QAx‖2 + δ2E‖(α I +B∗B)−1B∗Qξ‖2.

The noise term was bounded in Lemma 1 as

δ2E‖(α I +B∗B)−1B∗Qξ‖2 ≤ Cpδ
2(rankQ)1/p/4α.

Note that this is exactly the function δ2Ψp(α) with Ψp as in (7).
We turn to bounding the noise-free term. To this end the following result is

used.

Proposition 1. Let α → (α I +B∗B)−1B∗ be the family of operators from Tikhonov
regularization. The following assertions hold true:

(1) ‖(α I+B∗B)−1B∗ : Y → X‖ ≤ 1/(2
√

α).
(2) ‖(α I+B∗B)−1B∗B : X → X‖ ≤ 1.
(3) If ϕ obeys Assumption 2, then

‖
(
I−(α I +B∗B)−1B∗B

)
ϕ(B∗B) : X → X‖ ≤ Tϕ(α),

with T from Lemma 3.

Proof. The first two assertions follow from spectral calculus. To prove item (3), we
mention that the estimate may be rewritten as

(11) sup
0<t≤a

∣∣∣∣ α

α + t
ϕ(t)

∣∣∣∣ ≤ Tϕ(α).

For t ≤ α, (11) holds trivially with T = 1. Otherwise we use Lemma 3 to derive

sup
α<t≤a

∣∣∣∣ α

α + t
ϕ(t)

∣∣∣∣ ≤ sup
α<t≤a

∣∣∣∣ αt

α + t
ϕ(t)/t

∣∣∣∣ ≤ T sup
α<t≤a

∣∣∣∣ αt

α + t
ϕ(α)/α

∣∣∣∣ ≤ Tϕ(α),

which completes the proof. �

Furthermore, the following remark is important. Because we are given a finite
set of data in (2), corresponding to a projection Q, the error of any reconstruction
based on (2) must depend on the quality with which QA is close to the original
operator A, i.e., it will depend on

(12) η := ‖(I−Q)A : X → Y ‖.
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Under Assumption 2, in particular using the bound from Lemma 2, we obtain
uniformly in x ∈ Aϕ(R) the estimate

‖x − (α I +B∗B)−1B∗QAx‖ = ‖(I−(α I +B∗B)−1B∗B)ϕ(A∗A)v‖
≤ RTϕ(α) + R‖ϕ(A∗A) − ϕ(B∗B)‖

≤ R(T + M)(ϕ(α) + ϕ(η2)).

To obtain best possible rates of reconstruction with Tikhonov regularization, we
further impose restrictions on the operator and on the power of the design, given
by the projection Q.

Assumption 3. There exists r > 0 such that the singular values sj(A) of A obey

(13) sj(A) � j−r, j = 1, 2, . . . .

As a consequence sj(A∗A) � j−2r, j = 1, 2, . . . . Furthermore, we restrict our
analysis to projections Q which at least by order realize the best possible approxi-
mation.

Assumption 4. There is a constant C ≥ 1 such that

‖(I−Q)A : X → Y ‖ ≤ C(rankQ)−r.

Remark 6. In many applications the design may be chosen independent of the
operator. This is for instance the case for Y = Y 0 belonging to some scale {Y r}
of Sobolev Hilbert spaces and ‖A : X → Y r‖ ≤ C1, where the n-widths an(Y r, Y )
of Y r in Y obey an(Y r, Y ) ≤ C2n

−r, n = 1, 2, . . . . Then any family of projections
Qn, n = 1, 2, . . . , with

‖ I−Q : Y r → Y ‖ ≤ C(rankQ)−r

obeys Assumption 4 with C := C1C2. This is known for many spline approxima-
tions, finite element schemes and wavelet expansions.

We mention the study [7], where such analysis was carried out for Abel’s integral
equation and piecewise constant (histogram) design.

We can formulate the main result on error estimation under a known source
condition. Let Θp(t) := t

2rp+1
4rp ϕ(t), 0 < t ≤ a.

Theorem 3. Suppose that the reconstruction xα,δ of the solution x based on data
yδ,1, yδ,2, . . . , yδ,n will be given through

xα,δ = (α I +B∗B)−1B∗yδ,

where B := QA is a projection method with accuracy η from (12). Under Assump-
tions 1–4 the following assertions hold true:

(1) For any choice of α and η we have uniformly for K ∈ Kp

e(Aϕ(R), K, xᾱ,δ, δ) ≤ R(M + T )
(
ϕ(α) + ϕ(η2)

)
+ δ

√
Ψp(α).

(2) There is a constant C < ∞ such that for

(14) α∗ := inf
{

α, Θp(α) ≥ δ

R

}

and n � �(α∗)−1/2r�, it holds uniformly for K ∈ Kp,

e(Aϕ(R), K, xα∗,δ, δ) ≤ CRϕ(Θ−1
p (δ/R)).
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Proof. The first statement follows immediately from the bias-variance decomposi-
tion above and the definition of η.

Note that Θp is increasing and limt→0 Θp(t) = 0, such that there is a unique
choice for α∗. Furthermore, from n � �α−1/2r� we deduce that for some C1, C2 ≥ 1
it holds true that Ψp(t) ≤ C1 (1/t)(2rp+1)/(2rp) and η2 ≤ C2α. Furthermore, by the
choice from (14) the variance term is dominated by a multiple of the bias. Also,
by Lemma 3 it holds true that ϕ(C2t) ≤ C2Tϕ(t), t > 0, such that uniformly for
K ∈ Kp we can bound

e(Aϕ(R), K, xα∗,δ, δ) ≤ RC̃ (ϕ(α∗) + Mϕ(C2α
∗)) ≤ CRϕ(α∗),

which proves assertion (2). �

Remark 7. The above rate of reconstruction will be seen to be optimal in Sec-
tion 4.4, and it is worthwhile to note that this best possible rate for reconstruc-
tion under random noise is always worse than for deterministic noise. Indeed, as
can be seen in [10], for bounded deterministic noise the respective function re-
placing Θp is Θ̄(t) :=

√
tϕ(t), t > 0, and it is an easy exercise to see that then

ϕ(Θ̄−1(t)) ≤ ϕ(Θ−1
p (t)), t > 0. Only for p = ∞, i.e., for K of finite trace, do these

rates formally coincide.

4.4. Lower bound: Reduction to regression. It will be convenient to rewrite
(1) (see [10] for details) by using the expansion as in Section 4.2. Precisely, we
obtain from (1) the system of equations

ỹδ,k =
√

skθk + δξ̃k, k = 1, 2, . . . ,

where θ1, θ2, . . . are the corresponding Fourier coefficients θk := 〈x, uk〉 and where
ξ̃1, ξ̃2, . . . are centered. The error criterion is uniform for covariances which obey
Assumption 1, and we shall establish a lower bound for statistical noise induced by

Kx := Cp

∞∑
j=1

j−1/q〈x, uj〉uj , x ∈ X.

Because for any projection Q we can bound sj(QKQ) ≤ sj(K), j ≤ rank(Q),
and sj(QKQ) = 0, j > rank(Q), we can bound trace(QKQ) ≤ Cp

∑n
j=1 j−1/q ≤

Cpn
1/p, such that this defines an admissible covariance operator.

To give this set of equations a final form we will actually consider

zδ,k = θk + ξk, k = 1, 2, . . . ,

which is the standard regression problem under covariance K with independent
(Gaussian) noise and variances σ2

k = δ2E|ξ̃k|2/sk, k = 1, . . . .
This regression problem is only complete after fixing assumptions on the un-

known θ := (θ1, θ2, . . . ). In terms of Fourier coefficients the assumption (9) rewrites
as

θ ∈ B(R) :=

⎧⎨
⎩(θ1, θ2, . . . ),

∞∑
j=1

θ2
k

ϕ2(sk)
≤ R2

⎫⎬
⎭ .

This is exactly the setup of the seminal paper [13] by M. S. Pinsker. It will be con-
venient to recall Pinsker’s results, which aimed at providing the exact asymptotics.
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1924 PETER MATHÉ AND SERGEI V. PEREVERZEV

The Pinsker result (see [13, Thm. 1]). Let µ be the solution to

(15) δ2
∑

j; ϕ(sj)>
√

µ

E|ξ̃j |2
sj

1
√

µϕ(sj)

(
1 −

√
µ

ϕ(sj)

)
= R2,

and put

ν2 := δ2
∑

j; ϕ(sj)>
√

µ

E|ξ̃j |2
sj

(
1 −

√
µ

ϕ(sj)

)
.

There is a universal constant c1 > 0 for which the error e(Aϕ(R), K, δ) of the best
estimator can be bounded from above and below by

ν ≥ e(Aϕ(R), K, δ) ≥ c1ν.

Remark 8. Under additional assumptions Pinsker is even able to show that

lim
δ→0

e(Aϕ(P ), K, δ)/ν(δ) = 1.

For our purposes we may argue as follows. Let µ be any solution to (15). A
simple estimate yields

R2 = δ2
∑

j; ϕ(sj)>
√

µ

E|ξ̃j |2
sj

1
√

µϕ(sj)

(
1 −

√
µ

ϕ(sj)

)

≤ ν2 max
j; ϕ(sj)>

√
µ

1
√

µϕ(sj)
≤ ν2

µ
.

This may be rephrased: if µ solves (15), then e(Aϕ(R), K, δ) ≥ c1R
√

µ. Therefore,
any lower bound for solutions to (15) will provide an estimate for the best possible
error from below. This will be used in the proof of Theorem 4.

Before turning to the main lower bound we emphasize that by the asymptoticity
assumption (13) on the singular numbers there is a constant C0 for which

∑
sj>α

j−1/q

s2
j

≥ C2
0α−(4rp+1)/(2rp).

Recall that sj = sj(A∗A) � j−2r and Θp(t) := t
2rp+1
4rp ϕ(t), t > 0.

Theorem 4. Suppose the index function ϕ is operator monotone on (0, b). Let α∗
be chosen as

(16) α∗ := inf
{

α, Θp(α) ≥ δC0√
TR

}
.

Under assumptions (1)–(3) there is c2 > 0 such that the error of the best estimator
for any reconstruction can be bounded from below by

e(Aϕ(R),Kp, δ) ≥ c1Rϕ(α∗) ≥ c2Rϕ(Θ−1
p (δ/R)

(c1 is the constant from Pinsker’s result).

Proof. Given δ, let α∗ be from (16).
We shall show that for ᾱ, which is obtained from the solution µ from (15) via

ϕ2(ᾱ) = 4µ, necessarily ᾱ ≥ α∗.
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By Lemma 3 we have for any 0 < s < t ≤ a that ϕ(t)/t ≤ Tϕ(s)/s. Thus if
ϕ(sj) > 2

√
µ, then sj ≥ ᾱ and we conclude that

R2 = δ2
∑

j; ϕ(sj)>
√

µ

j−1/q

sj

1
√

µϕ(sj)

(
1 −

√
µ

ϕ(sj)

)

≥ δ2ᾱ

4Tµ

∑
j; ϕ(sj)>2

√
µ

j−1/q

s2
j

≥ C2
0δ2ᾱ−(2rp+1)/(2rp)

4Tµ
.

Because 4µ = ϕ2(ᾱ) we can finally rewrite this estimate as

Θ2
p(ᾱ) = ᾱ(2rp+1)/(2rp)ϕ2(ᾱ) ≥ C2

0δ2

TR2
,

from which we easily deduce ᾱ ≥ α∗, completing the proof. �

Example 1. Let us briefly discuss the case when smoothness is given by a monomial
of an operator A having polynomial ϕ(t) := tν/2r, which is operator monotone for
ν ≤ 2r. Moreover assume the noise to be Gaussian white noise, i.e., covariance is
the identity, hence p = 1. By Theorems 3 and 4 the error can be estimated by
e(Aϕ, I, δ) � CRϕ(Θ−1

1 (δ/R)), which amounts to e(Aϕ, I, δ) � CR(δ/R)
ν

ν+r+1/2 .

5. Optimality of the adaptive procedure

In this section we will show that up to a logarithmic factor the bound from
Theorem 2 provides the optimal rate of reconstruction. First note that Theorem 3
has an important implication on the use of the adaptive procedure. As can be seen
from the error bound, the rate depends on the way the regularization parameter
controls the discretization level. In fact the relation η2(α) � α turns out to be ap-
propriate, independent of smoothness assumptions and the nature of the noise. For
more details on the control of the discretization accuracy η along the regularization
parameter α, we refer the reader to [9].

If we incorporate this into the adaptive procedure, then we obtain the following
result.

Theorem 5. Suppose n = n(α) � �α−1/2r�, α > 0. Under Assumptions 1–4 the
following holds true:

(1) There is C ≥ 1 for which η2 ≤ Cα and n(α) obeys (8) with D̄ := q1/2r.
(2) There is δ0 > 0 such that for δ ≤ δ0 the function

Φ(j) := 2R(M + T )ϕ(Cαj), j = 1, 2, . . . ,

is admissible for x ∈ Aϕ(R).
(3) There is C < ∞ such that for the solution xᾱ,δ obtained from the adaptive

procedure and uniformly for K ∈ Kp we have

e(Aϕ(R), K, xᾱ,δ, δ) ≤ C
√
�2 logq(1/δ)�ϕ(Θ−1

p (δ/R)), δ ≤ δ0.

Proof. The first assertion follows from Assumption 4. We turn to the second one.
The initial error decomposition (10) and assertion (1) in Theorem 3 yield that for
ρ(j) := δ‖(αj I +B∗B)−1B∗ξ‖ it holds true that ‖x − xαj ,δ‖ ≤ Φ(j) + ρ(j).

Furthermore, Lemma 1 provides Eρ2(j) ≤ Ψ2(j). For δ > 0 small enough it also
holds true that Φ(1) ≤ Ψ(1). It remains to establish a concentration bound. To
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this end note that ρ(j) = ‖zj‖ and zj is centered Gaussian. By [4, p. 59] we can
bound uniformly in j = 1, 2, . . . , m

P (ρ(j) > tΨ(j)) ≤ P (‖zj‖ > t(E‖zj‖2)1/2) ≤ 4 exp(−t2/8),

such that the concentration bound (5) holds true with a = 4 and b = 1/8. This
establishes assertion (2).

We turn to the last assertion. Observe that for α∗ := αj∗ with index j∗ from (17)
below we can bound

min {Φ(j) + Ψ(j), j = 1, 2, . . . } ≤ 2Ψ(α∗).

Because j → 2R(M + T )ϕ(Cαj) is admissible for δ ≤ δ0 we derive

2R(M + T )ϕ(Cqα∗) ≥ Ψ(qα∗).

Applying Theorem 1 we obtain for δ ≤ δ0 the uniform bound at the true solution
x ∈ Aϕ(R) in the form

(E‖x − xᾱ,δ‖)1/2 ≤ 2C(D, q)
√
�2 logq(1/δ)�Ψ(α∗)

≤ 2DC(D, q)
√
�2 logq(1/δ)�Ψ(qα∗)

≤ 4R(M + T )DC(D, q)
√
�2 logq(1/δ)�ϕ(Cqα∗)

≤ 4R(M + T )DC(D, q)Cq
√
�2 logq(1/δ)�ϕ(α∗)

≤ 4R(M + T )DC(D, q)Cq
√
�2 logq(1/δ)�ϕ(α∗),

where we used the fact that α∗ ≤ α∗ := Θ−1
p (δ/R). The proof is complete. �

Thus up to constants and a logarithmic factor, and for (unknown) smoothness
measured in terms of general source conditions which obey Assumption 2, the
adaptive procedure provides the same accuracy as if the smoothness were known.
This logarithmic factor can be considered as payment for the lack of knowledge of
ϕ under the stochastic nature of noise. It is a common belief that this payment
is necessary under Gaussian white noise. In the case of deterministic noise, which
formally corresponds to Assumption 1 with p = ∞, the additional logarithmic
factor does not appear; see [10].

We mention that additional information about the underlying ill-posed problem
allows us to further reduce such a payment. For example, severely ill-posed prob-
lems are characterized by index functions ϕ such that ϕ(t) ≥ ln−d 1/t, where d > 0
is known. Then it is easy to see that choosing κ =

√
C ln logq 1/δ, C > (4d + 2)/b

in (6), one can obtain an analog of Theorem 5 for severely ill-posed problems with
an additional factor of order

√
ln logq 1/δ instead of

√
logq 1/δ.

Remark 9. In practice the true solution might be smoother than expected. In this
case Assumption 2 might be violated. If instead the index function for the true
source condition satisfies a Lipschitz property for nonnegative operators B1 and
B2, say

‖ϕ(B1) − ϕ(B2)‖ ≤ M‖B1 − B2‖,
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then Tikhonov regularization will still work. However there will be saturation. In
the present framework it can be seen that for δ ≤ δ0 the function

Φ(j) := 2R(M + T )Cαj , j = 1, 2, . . . ,

is admissible for the true solution x if δ ≤ δ0. Therefore, if the remaining assump-
tions hold true, then the adaptive procedure will provide the rate δ(4rp)/(6rp+1),
which is worse than the saturation rate δ2/3 for Tikhonov regularization under
bounded deterministic noise. However, it will be attained for operators with singu-
lar numbers decreasing exponentially fast.

Appendix: An abstract oracle principle

In this Appendix we shall prove Theorem 1. To this end we gather some useful
results concerning Lepskĭı’s adaptation procedure. Recall that within the present
general framework the variance term could be quite arbitrary as long as it was
decreasing with the regularization parameter.

For the statistical context the basic ingredients were already introduced in Sec-
tion 3. However, the proof of the statistical estimate uses a deterministic one,
therefore we shall start with the deterministic oracle principle.

Let {x1, . . . , xm} be a finite and deterministic set of elements in the metric space
(M, d) and let Ψ: {1, . . . , m} → R

+ be a decreasing function. Then we may take
ρ(j) ≡ Ψ(j) in Definition 1, and a nondecreasing function Φ: {1, . . . , m} → R

+ is
admissible for x, if and only if

d(x, xj) ≤ Φ(j) + Ψ(j), j = 1, 2, . . . ,

and Φ(1) ≤ Ψ(1).

Lemma 4 (The Lepskĭı principle). Let {x1, . . . , xm} be a finite set of elements in a
metric space (M, d) and let Ψ: {1, . . . , m} → R

+ be a decreasing function. Define

(17) j∗ := max {j, there is admiss. Φ for which Φ(j) ≤ Ψ(j)} .

For j̄ := max {j ≤ m, d(xi, xj) ≤ 4Ψ(i), for all i ≤ j} , we have

d(x, xj̄) ≤ 6Ψ(j∗).

Proof. We first show that j∗ ≤ j̄. If Φ is admissible with Φ(j∗) ≤ Ψ(j∗), then for
i < j∗ it holds true that

Φ(i) ≤ Φ(j∗) ≤ Ψ(j∗) ≤ Ψ(i),

such that for such admissible Φ we obtain

d(xi, xj∗) ≤ d(x, xi) + d(x, xj∗) ≤ Φ(i) + Ψ(i) + Φ(j∗) + Ψ(j∗)

≤ 2Ψ(i) + 2Ψ(j∗) ≤ 4Ψ(i),

hence j∗ ≤ j̄. Using this the proof can be completed as follows:

d(x, xj̄) ≤ d(x, xj∗) + d(xj∗ , xj̄) ≤ Φ(j∗) + Ψ(j∗) + 4Ψ(j∗) ≤ 6Ψ(j∗). �

Corollary 1 (Deterministic oracle inequality). Under the assumptions of Lemma 4
the following assertion is true. If D < ∞ is such that the function Ψ in addition
obeys Ψ(i) ≤ DΨ(i + 1), then

d(x, xj̄) ≤ 6D min {Φ(j) + Ψ(j), j = 1, . . . , m, Φ admiss.} .
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Proof. Let Φ be any admissible function and let us temporarily introduce the fol-
lowing index:

j := arg min {Φ(j) + Ψ(j), j = 1, 2, . . . , m} .

The assertion of the corollary is an immediate consequence of

Ψ(j∗) ≤ D(Φ(j) + Ψ(j)).

But this is evident, because either j∗ ≥ j, in which case Ψ(j∗) ≤ Ψ(j) ≤ Φ(j)+Ψ(j),
or j∗ < j∗ + 1 ≤ j. But then, by the definition of j∗ it holds true that Ψ(j∗ + 1) ≤
Φ(j∗+1), thus Ψ(j∗) ≤ DΨ(j∗+1) ≤ DΦ(j∗+1) ≤ DΦ(j), from which the estimate
follows. �

We turn to the proof of Theorem 1, the main estimate in the statistical context.

Proof of Theorem 1. Let Φ be any admissible function and introduce the random
number

Π(ω) := max
j=1,...,m

ρ(j)
Ψ(j)

.

For κ from above we let Ωκ := {ω, Π(ω) ≤ κ} . For ω ∈ Ωκ the assumptions of
Corollary 1 are fulfilled, such that for such realizations it holds true that

d(x, xj̄) ≤ 6D min {Φ(j) + κΨ(j), j = 1, 2, . . . , m} .

On the complement Ωc
κ we have Π(ω) > κ, such that we can bound

Φ(1) ≤ κΨ(1) ≤ Ψ(1)Π(ω).

Using this estimate we conclude for ω ∈ Ωc
κ that

d(x, xj̄) ≤ d(x, x1) + d(x1, xj̄) ≤ Φ(1) + ρ(1) + 4κΨ(1)

≤ 5Ψ(1)Π(ω) +
ρ(1)
Ψ(1)

Ψ(1) ≤ 6Ψ(1)Π(ω).

Therefore estimate (6) will follow from

(18)
∫

Ωc
κ

Π2(ω)P (dω) ≤ 5
a

b2
m exp(−b/2κ2).

Indeed, we start with
∫

Ωc
κ

Π2(ω)P (dω) ≤
(∫

Π4(ω)P (dω)
)1/2

(P (Ωc
κ))1/2

.

The second term can easily be estimated as

P (Π(ω) > κ) ≤ m max
j=1,2,...,m

P (ρ(j) ≥ κΨ(j)) ≤ am exp(−bκ2).

In the same spirit and making use of the Leibniz formula∫
|f(ω)|4 P (dω) = 4

∫
t3P (|f | > t)dt,

we deduce that ∫
Π4(ω)P (dω) ≤ 24

a

b4
m,

resulting in (18). �
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