
Regularization on graphs with function-adapted diffusion

processes

Arthur D Szlam aszlam@math.ucla.edu

Department of Mathematics
U.C.L.A., Box 951555
Los Angeles, CA 90095-1555

Mauro Maggioni mauro.maggioni@duke.edu

Department of Mathematics
and Computer Science
Duke University, Box 90320
Durham, NC, 27708

Ronald R Coifman coifman@math.yale.edu

Program in Applied Mathematics

Department of Mathematics

Yale University, Box 208283

New Haven,CT,06510

Editor:

Abstract

The use of data-adapted kernels has been shown to lead to state-of-the-art results in ma-
chine learning tasks, especially in the context of semi-supervised and transductive learning.
We introduce a general framework for analysis both of data sets and functions defined on
them. Our approach is based on diffusion operators, adapted not only to the intrinsic
geometry of the data, but also to the function being analyzed. Among the many possible
applications of this framework, we consider two apparently dissimilar tasks: image denois-
ing and classification in a graph transductive setting. We show that these tasks can be
tackled within our framework both conceptually and algorithmically. On benchmarks for
transductive learning, our results are better than state of the art on most data sets.

Keywords: Diffusion processes, diffusion geometry, spectral graph theory, image denois-
ing, transductive learning, semi-supervised learning.

1. Introduction

Recently developed techniques in the analysis of data sets and machine learning use the
geometry of the data set in order to study functions on it (Zhu et al., 2003b; Coifman
and Maggioni, 2006; Coifman et al., 2005a,b; Belkin and Niyogi, 2003a; Mahadevan and
Maggioni, 2006; Maggioni and Mhaskar, 2006). In particular the idea of analyzing the
data set and functions on it intrinsically has lead to novel algorithms with state-of-the-
art performance in various problems in machine learning (Szummer and Jaakkola, 2001;

1

Belkin and Niyogi, 2003a; Mahadevan and Maggioni, 2006; Maggioni and Mahadevan, 2006;
Mahadevan and Maggioni, 2005; Maggioni and Mhaskar, 2006).

They are based on the construction of a diffusion, or an averaging operator K on the
data set, dependent on its local, fine scale geometry. K, its powers, and the special bases
associated to it (such as its eigenfunctions (Belkin and Niyogi, 2003a; Coifman et al., 2005a;
Coifman and Lafon, 2006a) or its diffusion wavelets (Coifman and Maggioni, 2006)) can be
used to study the geometry of and analyze functions on the data set. Among other things,
“diffusion analysis” allows us to introduce a notion of smoothness in discrete settings that
preserves the relationships between smoothness, sparsity in a “Fourier” basis, and evolution
of heat that are well-known in Euclidean spaces.

One of the main contributions of this work is the observation that the geometry of
the space is not the only important factor to be considered, but that the geometry and
the properties of the function f to be studied (denoised/learned) should also affect the
smoothing operation of the diffusion. We will therefore modify the geometry of a data set
with features from f , and build K on the modified f -adapted data set. The result is non-
linear in the sense that it depends on the input function f , in contrast with methods which
consider the geometry of the data alone, independently of f . On the other hand, on the
modified data set, K will be linear, and very efficiently computable. One could generalize
the constructions proposed to various types of processes (e.g. nonlinear diffusions).

We will demonstrate these techniques in the context of two problems: the analysis and
denoising of images and graph transductive learning. We tackle these two seemingly very
different problems in a unified framework. We find it remarkable that the general framework
of f -adapted diffusions on graphs allows one to link such apparently dissimilar tasks, and
leads to algorithms achieving state-of-the-art, or better, performance in such different tasks,
even when compared to state-of-the-art algorithms which are very application specific. We
test the performance of this approach, and compare it to state-of-the-art methods, on a
standard database, where it outperforms comparable methods on the large majority of the
data sets. We also explain the under-performance on some data sets by observing that in
those examples (which are in fact the only artificial ones!), the geometry of the data suffices
for learning the function of interests.

2. Diffusion on graphs associated with data-sets

An intrinsic analysis of a data set, modeled as a graph or a manifold, can be developed by
considering a natural random walk K on it (Chung, 1997; Szummer and Jaakkola, 2001;
Ng et al., 2001; Belkin and Niyogi, 2001; Zha et al., 2001; Lafon, 2004; Coifman et al.,
2005a,b; Zhou et al., 2004; Sindhwani et al., 2005; Chapelle et al., 2002; Joachims, 2003;
Belkin et al., 2006). The random walk allows to construct diffusion operators on the data
set, as well as associated basis functions. For an initial condition δx, Ktδx(y) represents
the probability of being at y at time t, conditioned on starting at x.

2.1 Setup and Notation

We consider the following general situation: the space is a finite weighted graph G =
(V, E, W), consisting of a set V (vertices), a subset E (edges) of V ×V , and a nonnegative
function W : E → R

+ (weights). We say that there is an edge from x to y ∈ V , denoted
by x ∼ y if and only if W (x, y) > 0. Notice that in this work W will usually be symmetric;
that is the edges will be undirected. The techniques we propose however do not require
this property.

We interpret the weight W (x, y) as a measure of similarity between the vertices x and
y. A natural filter acting on functions on V can be defined by normalization of the weight

2

matrix as follows: let
d(x) =

∑

y∈V

W (x, y) , (1)

and let1 the filter be
K(x, y) = d−1(x)W (x, y) , (2)

so that
∑

y∈V K(x, y) = 1, and so that multiplication Kf of a vector from the left is a local
averaging operation, with locality measured by the similarities W . It can also be interpreted
as a generalization of Parzen window type estimators to functions on graphs/manifolds.
There are other ways of defining averaging operators. For example one could consider the
heat kernel e−tL (where L is defined in (7), see (Chung, 1997)), or a bi-Markov matrix
similar to W (see Sinkhorn (1964); Sinkhorn and Knopp (1967); Soules (1991); Linial et al.
(1998); A. Shashua and Hazan (2005); Zass and Shashua (2005)).

In general K is not column-stochastic2, but the operation fK of multiplication on the
right by a (row) vector can be thought of as a diffusion of the vector f . This filter can be
iterated several times by considering the power Kt.

2.2 Graphs associated with data sets

From a data set X we construct a graph G: the vertices of G are the data points in X ,
and weighted edges are constructed that connect nearby data points, with a weight that
measures the similarity between data points. The first step is therefore defining these local
similarities. This is a step which is data- and application-dependent. It is important to
stress the attribute local. Similarities between far away data points are not required, and
deemed unreliable, since they would not take into account the geometric structure of the
data set. Local similarities are assumed to be more reliable, and non-local similarities will
be inferred from local similarities through diffusion processes on the graph.

2.2.1 Local Similarities

Local similarities are collected in a matrix W , whose rows and columns are indexed by
X , and whose entry W (x, y) is the similarity between x and y. In the examples we con-
sider here, W will usually be symmetric, that is the edges will be undirected, but these
assumptions are not necessary.

If the data set lies in R
d, or in any other metric space with metric ρ, then the most

standard construction is to choose a number σ and let

Wσ(x, y) = h

(

ρ(x, y)2

σ

)

, (3)

for some function h with, say, exponential decay at infinity. A common choice is h(a) =
exp(−a). The idea is that we expect that very close data points (with respect to ρ) will be
similar, but do not want to assume that far away data points are necessarily different.

Let D be the diagonal matrix with entries given by d as in (1). Suppose the data
set is, or lies on, a manifold in Euclidean space. In Lafon (2004) (see also (Belkin, 2003;
von Luxburg et al., 2004; Singer, 2006)), it is proved that in this case, the choice of h in
the construction of the weight matrix is in some asymptotic sense irrelevant. For a rather

generic symmetric function h, say with exponential decay at infinity, (I −D
− 1

2

σ WσD
− 1

2

σ)/σ,

1. Note that d(x) = 0 if and only if x is not connected to any other vertex, in which case we trivially define
d
−1(x) = 0, or simply remove x from the graph.

2. In particular cases K it is a scalar multiple of a column-stochastic matrix, for example when D is a
multiple of identity, which happens for example if G is regular and all the edges have the same weight.

3

approaches the Laplacian on the manifold, at least in a weak sense, as the number of points
goes to infinity and σ goes to zero. Thus this choice of weights is naturally related to the
heat equation on the manifold. On the other hand, for many data sets, which either are
far from asymptopia or simply do not lie on a manifold, the choice of weights can make a
large difference and is not always easy. Even if we use Gaussian weights, the choice of the
“local time parameter” σ can be nontrivial.

For each x, one usually limits the maximum number of points y such that W (x, y) �= 0
(or non-negligible). Two common modifications of the construction above are to use either
ρǫ(x, y) or ρk(x, y) instead of ρ, where

ρǫ(x, y) =

{

d(x, y) if ρ(x, y) ≤ ǫ;
∞ if ρ(x, y) > ǫ

,

where usually ǫ is such that h(ǫ2/σ) << 1, and

ρk(x, y) =

{

ρ(x, y) if y ∈ nk(x);
∞ otherwise.

and nk(x) is the set of k nearest neighbors of x. This is for two reasons: one, often
only very small distances give information about the data points, and two, it is usually
only possible to work with very sparse matrices 3. This truncation causes W to be not
symmetric; if symmetry is desired, W may be averaged (arithmetically or geometrically)
with its transpose.

A location-dependent approach for selecting the similarity measure is suggested in
(Zelnik-Manor and Perona, 2004a). A number m is fixed, and the distances at each
point are scaled so the m-th nearest neighbor has distance 1; that is, we let ρx(y, y′) =
ρ(y, y′)/ρ(x, xm), where xm is the m-th nearest neighbor to x. Now ρx depends on x, so
in order to make the weight matrix symmetric, they suggest to use the geometric mean of
ρx and ρy in the argument of the exponential, i.e. let

Wσ(i, j) = h

(

ρxi
(xi, xj)ρxj

(xi, xj)

σ

)

, (4)

with h, as above, decaying at infinity (typically, h(a) = exp(−a)), or truncated at the k-th
nearest neighbor. This is called the self-tuning weight matrix. There is still a timescale
in the weights, but a global σ in the self-tuning weights corresponds to some location
dependent choice of σ in the standard exponential weights.

2.2.2 The averaging operator and its powers

The normalized matrix K as in (2) can be iterated to generate a Markov process {Kt}t≥0,
and can be used measure the strength of all the paths between two data points, or the
likelihood of getting from one data point to the other if we constrain ourselves to only
stepping between very similar data points. For example one defines the diffusion or spectral
distance (Bérard et al., 1994; Coifman et al., 2005a; Coifman and Lafon, 2006a) by

D(t)(x, y) = ||Kt(x, ·) − Kt(y, ·)||2 =

√

∑

z∈X

|Kt(x, z) − Kt(y, z)|2 . (5)

3. However, methods of Fast Multipole type (Greengard and Rokhlin, 1988) may make it possible to work
with dense matrices implicitly, with complexity proportional to the number of points. See (Raykar et al.,
2005) for a recent reference with applications to machine learning.

4

The term diffusion distance was introduced in (Lafon, 2004; Coifman et al., 2005a; Coifman
and Lafon, 2006a) and is suggested by the formula above, which expresses D(t) as some
similarity between the probability distributions Kt(x, ·) and Kt(y, ·), which are obtained
by diffusion from x and y according to the diffusion process K. The term spectral distance
was introduced in (Bérard et al., 1994) (see also references therein). It has recently inspired
several algorithms in clustering, classification and learning (Belkin and Niyogi, 2003a, 2004;
Lafon, 2004; Coifman et al., 2005a; Coifman and Lafon, 2006a; Mahadevan and Maggioni,
2005; Lafon and Lee, to appear, 2006; Maggioni and Mhaskar, 2006; Zhou et al., 2004;
Sindhwani et al., 2005; Chapelle et al., 2002; Joachims, 2003; Belkin et al., 2006).

2.3 Fourier Analysis

The eigenfunctions {φi} of K, satisfying

Kφi = λiφi , (6)

are related, via multiplication by D− 1

2 , to those of the graph Laplacian (Chung, 1997),
since

L = I − D− 1

2 WD− 1

2 = I − D
1

2 KD− 1

2 . (7)

They lead to a natural generalization of the Fourier analysis: any function f ∈ L
2(X) can

be written as f =
∑

i∈I〈f, φi〉φi, since {φi} is an orthonormal basis 4. The larger is i, the

more oscillating the function φi is, and λ−1
i measures the frequency of φi.

The Laplacian is positive semidefinite, and hence defines a (quasi-)norm, related to a
notion of smoothness. For a function f on G, we define its gradient as the function on
the edges of G defined by ∇f(i, j) = W (i, j)(f(i) − f(j)) if there is an edge e connecting
i to j and 0 otherwise. The smoothness of a function on a graph, can be measured by the
Sobolev norm

||f ||2H1 = ||f ||2
L2(X,d) + 〈f,Lf〉 =

∑

x

|g(x)|2 +
∑

x∼y

|g(x) − g(y)|2W (x, y) , (8)

where g(x) = d−
1

2 (x)f(x), and as before, the density d(x) =
∑

y W (x, y). The first term
in this norm measures the size of the function f , and the second term measures the size of
the gradient. The smaller ||f ||H1 , the smoother is f . Thus projecting a function onto the
first few terms of its expansion is a smoothing operation. However it is well known that
if f does not have uniform smoothness everywhere, the approximation by eigenfunctions
is poor not only in regions of lesser smoothness, but the poor approximation spills to
regions of smoothness as well. This lack of localization can be avoided with the multiscale
constructions in Coifman and Maggioni (2006) and Maggioni and Mhaskar (2006).

Spectral graph theory (Chung, 1997) studies the properties of the Laplacian on a graph
and of its eigenfunctions, and has been applied to a wide range of tasks in the design of
computer networks, in parallel computation, clustering (Ng et al., 2001; Belkin and Niyogi,
2001; Zelnik-Manor and Perona, 2004b; Kannan et al., 2004; Coifman and Maggioni, 2005),
manifold learning (Bérard et al., 1994; Belkin and Niyogi, 2001; Lafon, 2004; Coifman et al.,
2005a; Coifman and Lafon, 2006a), image segmentation (Shi and Malik, 2000), classification
(Coifman and Maggioni, 2005), regression and function approximation (Belkin and Niyogi,
2004; Mahadevan and Maggioni, 2005; Mahadevan et al., 2006; Mahadevan and Maggioni,
2006; Coifman and Maggioni, 2005).

4. When I is countable, the series converges at least in L
2(X).

5

3. Denoising and Regularization by Diffusion

3.1 Data-dependent kernels

A basic task is to denoise or regularize a function f on a data set X . We are given X ,
and we measure f + η, where f : X → R, and η is stochastic noise, e.g. Gaussian noise.
The task is to yield a function f̃ : X → R which approximates the unknown f .

It is often natural to assume that f is smooth with respect to the geometry of X ,
and that the noise is concentrated in high-frequency components. An expansion on the
eigenfunctions {φi} of a similarity kernel K associated with X is a natural tool since the
assumption that f is smooth implies that {|〈f, φi〉|}i decays rapidly with i, so that most of
the energy of f can be reconstructed from the lowest frequency components; moreover the
assumption that the noise is high-frequency implies that |〈η, φi〉| is small for small i. The
algorithms we just described use the geometry to construct the kernel K, and the analysis
is performed with respect the notion of smoothness associated with this kernel. We refer
the reader to (Smola and Kondor, 2003; Chapelle et al., 2006; Maggioni and Mhaskar, 2006)
and references therein.

Hence one can let
f̃ =

∑

i

αi〈f, φi〉φi (9)

for some sequence {αi} which tends to 0 as i → +∞. Typical examples are:

(i) αi = 1 if i < I, and 0 otherwise (pure low-pass filter); I usually depends on a priori information
on η, for example on the variance of η. This is a band-limited projection (with band I).

(iii) αi = P (λi), for some polynomial (or rational function) P . For example if P (x) = xt, for some
t > 0, this corresponds to letting f̃ = Kt(f), i.e. kernel smoothing on the data set, with a
data-dependent kernel.

We can interpret the Ktf as evolving a heat equation on the graph with an initial condition
specified by f . If we would like to balance smoothing by K with fidelity to the original
noisy function, we can choose β > 0 and set f0 = f and ft+1 = (Kft + βf)/(1 + β); the
noisy function is treated as a heat source. This corresponds at equilibrium to

(iv) αi = β/(1 + β − λi).

One can also consider families of nonlinear denoising techniques, of the form

f̃ =
∑

i

m(〈f, φi〉)φi , (10)

where for example m is a (soft-)thresholding function (see e.g. (Donoho and Johnstone,
1994)). In fact, m may be made even dependent on i. While these techniques are classical
and well-understood in Euclidean space (mostly in view of applications to signal process-
ing), it is only recently that research in their application to the analysis of functions on
data sets has begun (in view of applications to learning tasks, see in particular Maggioni
and Mhaskar (2006)).

All of these techniques clearly have a regularization effect. This can be easily measured
in terms of the Sobolev norm defined in (8): the methods above correspond to removing
or damping the components of f (or f + η) in the subspace spanned by high-frequency φi,
which are the ones with larger Sobolev norm.

6

3.2 Data and Function-adapted kernels

We propose to incorporate the geometry of the function f (or a family of functions F) in
the construction of the kernel K. The basic idea is that in order to smooth a function, we
should take averages between points where f has similar structure. One could let

W f (x, y) = exp

(

−
||x − y||2

σ1
−

|f(x) − f(y)|2

σ2

)

. (11)

So for example when σ2 << σ1, the associated averaging kernel K will average locally, but
much more along the level sets of f than across them (see Yaroslavsky (1985); Smith and
Brady (1995) and Coifman et al. (2005a)). The motivation is clear: we could denoise/learn
f very well if we would average along level sets of f . Since these are not known everywhere,
the technique above constructs a kernel that approximately averages along level sets of f .
In fact, as the technique above allows to average/infer among small sets of level sets of f
with similar structure, rather than a single level set. More generally, we let

W f (x, y) = exp

(

−
h1(ρ1(x, y))

σ1
−

h2(ρ2(F(f)(x),F(f)(y)))

σ2

)

, (12)

where F(f)(x) is a set of features associated with f , evaluated at the data point x, ρ1

is a metric on the data set, ρ2 is a metric on the set of features, h1 and h2 are (usually
exponentially) decaying functions, and σ1 and σ2 are “local time” parameters in data and
feature space respectively. Such a similarity is usually further restricted as described above
at the end of Section 2.2.1. The associated averaging kernel Kf can then be used for
regularizing, denoising and learning tasks, as described above. We call such a kernel a
function-adapted kernel.

The way the function f affects the construction of K will be application and data
specific, as we shall see in the application to image denoising and graph transductive
learning. For example, in the application to image denoising, F(f)(x) may be a set of
filter responses applied to the image f at location x. In the application to transductive
classification, we are given C functions χi, defined by χi(x) = 1 if x is labeled as a point
in class i, and 0 otherwise (either the point is not labeled, or it is not in class i). We
let f = (χi)

N
i=1. Then F(f)(x) can be obtained by evaluating Kt(χi) at x, where K is a

diffusion operator which only depends on the data set, and not on the χi’s.

4. Application I: Denoising of Images

We apply function-adapted kernels to the task of denoising images. Not only this will
be helpful to gain intuition about the proposed approach in a setting where other types
of anisotropic diffusions have been well-studied, but it also leads to state-of-art results
or better, at the same time unifying several approaches traditionally considered different.
Gray-scale images are often modeled as real-valued functions, or distributions, on the square
Q = [0, 1]2, and they are often analyzed, denoised, compressed, inpainted, de-blurred as
such, see for example Tschumperle (2002); Perona and Malik (1990); Rudin et al. (1992);
Chan and Shen (2005); Perona and Malik (1990); Tomasi and Manduchi (1998); Elad
(2002); T. Boult and Stojmenovic (1993); Chin and Yeh (1983); Davis and Rosenfeld (1978);
Graham (1961); T.S. Huang and Tang (1979); Lee (1980); Yin and references therein.

We apply the function-adapted diffusion framework above to the problem of denoising
a noisy image. We construct an image-adapted graph and an associated diffusion kernel as
described in Section 3.2, then we view the image as a function on this graph and denoise
it by using small powers of the diffusion kernel balanced by a fidelity term, as described

7

in Section 3. We build a graph G(I) whose vertices are the pixels of the image and whose
weights are adapted to the image structure, and use the diffusion on the graph to smooth
the image, considered as a function on the graph. If we are able to encode image structure
in the geometry of the graph in such a way that the image is actually smooth as a function
on the graph, so that Fourier analysis on the graph will successfully denoise the image. Of
course, we have shifted part of the problem to feature extraction, but we will see that very
simple techniques work very well.

4.1 Image-adapted graphs and diffusion kernels

To build the image-adapted graph we first associate a feature vector to each location x in
the image I, defined on a square Q. A simple choice of d + 2 dimensional feature vectors
is obtained by setting two of the coordinates of the feature vector to be scaled versions of
the coordinates of the corresponding pixel in the image αx, where α ≥ 0 is a scalar, and
x ∈ Q. The remaining d features are the responses to convolution with d different filters
g1, · · · , gd, evaluated at location x. More formally, we pick a d-vector g = (g1, · · · , gd) of
filters (i.e. real valued functions on Q), fix α ≥ 0, and map Q into R

d+2 by a feature map

Fg,α(I) : Q → R
d+2

x �→ (αx, f ∗ g1(x), · · · , f ∗ gd(x))
(13)

This is an extremely flexible construction, and there are many interesting choices for
the filters {gi}. One could take a few wavelets or curvelets at different scales, or edge
filters, or patches of texture, or some measure of local statistics. Also note there are many
other choices of feature maps that are not obtained by convolution, see section 4.1.2 for
examples.

The graph G(I) will have vertices given by Fg,α(x), x ∈ Q. To obtain the weighted
edges, let

ρ(x, y) = ρg,α(x, y) = ||Fg,α(f)(x) −Fg,α(f)(y)|| ,

where || · || is a norm (e.g. Euclidean) in R
d+2. The parameter α specifies the amount of

weight to give to the original 2-d space coordinates of the pixels, and may be 0. Alterna-
tively, instead of using a weight α, one can choose sets S = S(x) ⊂ Q so that

ρ(x, y) = dg,S(x, y) =

{

ρg,0(x, y) if y ∈ S(x);
∞ otherwise.

. (14)

In the discrete case, if we choose S(x) to be the n nearest neighbors of x in the 2 space
coordinates: we will write ρg,n, and if the filters are understood, just ρn.

For a fixed choice of metric ρ as above, and a “local time” parameter σ, we construct
the similarity matrix Wσ as described in Section 2.2.1, and the associated diffusion kernel
K as in (2). The rows of the image-adapted diffusion kernel K, or of any of its powers,
are indexed by points x ∈ Q. Each row Kt(x, ·) is an image itself, that represents the local
diffusion filter at location x, showing which pixel values are being locally averaged by Kt.
In Figure 1 and 2 we represent some of the rows of Kt at different locations. It is interesting
to observe how the averaging operator K is tuned to the local geometry. In particular it
is highly anisotropic along edges, a property that is clearly crucial in view of denoising,
as well in the analysis of images in general. In our framework this happens automatically,
through a simple process based on comparison and linkage among parts of the image with
similar features; this may be compared with other approaches based on the analysis of
approximation in spaces of cartoon images, empirically and theoretically ((Donoho and
Flesia, 2001; Candès and Donoho, 1999, 2004a,b; Field, 1987) and references therein). It is

8

Figure 1: Left: image of Lena, with two locations highlighted. Center: row of the diffusion
kernel corresponding to the upper-left highlighted area in the image on the left.
Right: row of the diffusion kernel corresponding to the bottom-left highlighted
area in the image on the left. The diffusion kernel averages according to differ-
ent patterns in different locations. The averaging pattern on the right is also
“non-local”, in the sense that the averaging occurs along well-separated stripes,
corresponding to different strikes of hair in the original picture.

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

50

100

150

200

250

Figure 2: Left to right: image of Barbara, with several locations pi highlighted; Kt(pi, ·),
for t = 1, 2.

also interesting to notice, in Figure 2, how the powers of Kt average along coarser geometric
features of the image, and could be used to produce a multiscale analysis of the image,
which is image dependent, instead of universal and a posteriori, as in representations such
as wavelets or curvelets. It has been suggested in (Coifman and Maggioni, 2006; Coifman
et al., 2005c) that such a multi-scale process may help explaining the formation of complex
features (such as curved edges, larger textures etc...) from simpler features measured by
sensors (the feature map F(I)). See also (Coifman et al., 2006).

In Figure 3 we explore the local geometry in patch space by projecting the set of patches
around a given patch onto the principal components of the set of patches itself. Geometric
structures of the set of patches, dependent on local geometry of the image (e.g. texture vs.
edge) are apparent.

9

We now describe some interesting choices for the feature maps F(I).

4.1.1 Patch graph

Let gN be the set of N2 filters {gi,j}i,j=1,...,N , where gi,j is a N × N matrix with 1 in
the i, j entry and 0 elsewhere. Then FgN ,0 is the set of patches of the image embedded
in N2 dimensions. The diffusion one gets from this choice of filters is the NL-means filter
of Buades et al. (2005). “NL” stands for Non-Local; in the paper, they proposed setting
α = 0. In a later paper they add some locality constraints; see (A. Buades and Morel,
2005) and (Mahmoudi, 2005).

Note the embedding into 5×5 patches is the same embedding (up to a rotation) as into
5× 5 DCT coordinates, and so the weight matrices constructed from these embeddings are
the same. On the other hand, if we attenuate small filter responses, the weight matrices
for the two filter families will be different.

4.1.2 Bootstrapping a denoiser; or denoised images graph

Different denoising methods often pick up different parts of the image structure, and create
different characteristic artifacts. Suppose we have obtained denoised images f1, ..., fd, from
a noisy image f . To make use of the various sensitivities, and rid ourselves of the artifacts,
we could embed pixels x ∈ Q into R

d+2 by x �→ (αx, f1(x), ..., fd(x)). In other words we
interpret (fi(x))i=1,...,d’s as a feature vector at x. This method is an alternative to “cycle
spinning”, that is, averaging the different denoisings.

In practice, we have found that a better choice of feature vector is fσ(1)(x), ..., fσ(d)(x),
where σ is a random permutation of {1, ..., d} depending on x. The idea is to mix up the
artifacts from the various denoisings. Note that this would not affect standard averaging,
since

∑

fi(x) =
∑

fσ(i).

4.2 Image graph denoising

Once we have the graph W and normalized diffusion K, we use K to denoise the image.
The obvious bijection from pixels to vertices in the image graph induces a correspondence
between functions on pixels (such as the original image) and functions on the vertices of
the graph. In particular the original image can be viewed as a function I on G(I). The
functions KtI are smoothed versions of I, since the diffusion process {Kt} is smoothing.
If the graph was simply the standard grid on Q, then K would be nothing other than a
discretization of the standard two-dimensional heat kernel, and KtI would be the classical
smoothing of I induced by the Euclidean two-dimensional heat kernel, associated with the
classical Gaussian scale space (we refer the reader to Witkin (1983); Koenderink (1984);
Lindeberg (1994) and references therein). In our context Kt is associated with a scale
space induced by G(I), which is thus a nonlinear scale space (in the sense that it depends
on the original image I). In fact G(I), as described above, is often a point cloud in high-
dimensional space, where closeness in those high-dimensional space represents similarity of
collections of pixels, and/or of their features, in the original two-dimensional domain of I.

We can balance smoothing by K with fidelity to the original noisy function by setting
ft+1 = (Kft+βf)/(1+β) where β > 0 is a parameter to be chosen, and large β corresponds
to less smoothing and more fidelity to the noisy image. This is a standard technique in PDE
based image processing, see (Chan and Shen, 2005) and references therein. If we consider
iteration of K as evolving a heat equation, the fidelity term sets the noisy function as a
heat source, with strength determined by β. Note that even though when we smooth in
this way, the steady state is no longer the constant function, we still do not usually wish

10

11

2

1

2

3

1

2

3

4

50 100 150 200 250

50

100

150

200

250

5 10 15 20 25

0.5

1

1.5

2

2.5

3

x 10
7

1

2

3

4

−100

0

100

200

−100
0

100

−100

−50

0

50

100

−500

0

500

−400

−200

0

200

−100

0

100

−400

−200

0

200

400 −200

0

200

−200

0

200

−200
0

200
−20

−10

0

10

20

30

−20

−10

0

10

Figure 3: Top left: image of Barbara, with 4 square 10× 10 pixel regions highlighted. The
5×5 patches in each region are considered as 25 dimensional vectors, and top right
we plot the singular values of their covariance matrix. At the bottom, we project
the 25-dimensional points in each region on their top 3 principal components,
and the color is the value of the image at each point. In region 1, note how the
(approximate) periodicity of the texture in region 1 is reflected in the tubular
shape of the projection; in region 2, the portions of the image on different sides of
the edge are disconnected in the feature space, and note the higher dimensionality,
as measured by the singular values; for region 3, note the higher dimensionality
(slower decay of the singular values) compared to regions 1 and 4; for region 4
note the very small dimensionality, and that the image, viewed as a function on
the patches, is smooth with respect to the instrinsic geometry of the patches.

to smooth to equilibrium. We refer the reader to Figure 4 for a summary of the algorithm
proposed.

11

Ĩ ← DenoiseImage(I, t)

// Input:
// I : an image
// t : amount of denoising

// Output:
// Ĩ : a denoised version of I.

1. Construct a graph G associated with I, in any of the ways discussed in Section 4.

2. Compute the associated I-adapted diffusion operator KI .

3. Let Ĩ ← (KI)tI.

Figure 4: Pseudo-code for denoising an image

4.3 Examples

Figure 5 displays examples of denoising with a diffusion on an image graph. On the top
left of the figure we have the noisy image f0; the noise is N(0, .0244). On the top right of
Figure 5, we denoise the image using a 7×7 NL-means type patch embedding as described
in section 4.1.1. We set

W (k, j) = e− ˜ρ81(k,j)2/.3

where ρ̃81 is the distance in the embedding, restricted to 81 point balls in the 2-d metric;
that is we take S(k) in equation (14) to be the 81 nearest pixels to pixel k in the 2-d metric.
We then normalize K = D−1W and denoise the image by applying K three times with a
fidelity term of .07; that is, ft+1 = (Kft + .07f0)/(1.07), and the image displayed is f3.
The parameters were chosen by hand.

In the bottom row of figure 5: on the bottom left, we sum 9 curvelet denoisings. Each
curvelet denoisings is a reconstruction of the noisy image f0 shifted either 1, 2, or 4 pixels
in the vertical and/or horizontal directions, using only coefficients with magnitudes greater
than 3σ. To demonstrate bootstrapping, or cycle spinning by diffusion, we embed each
pixel in R

9 using the 9 curvelet denoisings as coordinates. We set

W (k, j) = e− ˜ρ81(k,j)2/.03

where ρ̃81 is the distance in the embedding, and again we take S(k) in equation (14) to
be the 81 nearest pixels to pixel k in the 2-d metric. We then normalize K = D−1W
and denoise the image by applying K ten times with a fidelity term of .1; that is ft+1 =
(Kft + .1f0)/(1.1), and f10 is displayed. The results are on the bottom right of Figure 5.
We are able to greatly reduce the artifacts from a simple average of the curvelet denoisings.

5. Application II: graph transductive learning

In a transductive learning problem one is given a few “labeled” examples X̃ × F̃ =
{(x1, y1), . . . , (xp, yp)} and a large number of “unlabeled” examples X\X̃ = {xp+1, . . . , xn}.
The goal is to estimate the conditional distributions F (y|x) associated with each available
example x (labeled or unlabeled).

12

Figure 5: 1) Lena with Gaussian noise added. 2) Denoising using a 7x7 patch graph. 3)
Denoising using hard thresholding of curvelet coefficients. The image is a sum
over 9 denoisings with different grid shifts. 4) Denoising with a diffusion built
from the 9 curvelet denoisings.

13

For example F̃ may correspond to labels for the points X̃, or the result of a measurement
at the points in X̃ . The goal is to extend F̃ to a function F defined on the whole X , that
is consistent with unseen labels/measurements at points in X \ X̃.

This framework is of interest in applications where it is easy to collect samples, i.e. X
is large, however it is expensive to assign a label or make a measurement at X , so only a
few labels/measurements are available, namely at the points in X̃ . The points in X \ X̃,
albeit unlabeled, can be used to infer properties of the structure of the space (or underlying
process/probability distribution) that is potentially useful in order to extend F̃ to F . Data
sets with internal structures or geometry are in fact ubiquitous.

An intrinsic analysis on the data set as the one possible by the use of diffusion pro-
cesses, and the associated Fourier and multi-scale analyses, fits very well in the transductive
learning framework. The diffusion process can be constructed on all of X , and in several
papers it has been used to either build adapted basis functions on the set, such as the
eigenfunctions of the Laplacian (Coifman and Lafon, 2006a,b; Lafon, 2004; Coifman et al.,
2005a,b; Belkin and Niyogi, 2003b; Maggioni and Mhaskar, 2006), or diffusion wavelets
(Coifman and Maggioni, 2006; Mahadevan and Maggioni, 2006; Maggioni and Mahadevan,
2006; Mahadevan and Maggioni, 2005; Maggioni and Mahadevan, 2005)), or for other types
of function approximation (see for example (Zhu et al., 2003b; Kondor and Lafferty, 2002;
Zhu et al., 2003a)).

5.1 Diffusion for classification

We consider here the case of classification, i.e. F takes only a small number of values
(compared to the cardinality of X), say {1, . . . , k}. Let Ci, i ∈ {1, ...k}, be the classes,
let Clab

i be the labeled data points in the ith class, i.e. Ci = {x ∈ X̃ : F̃ = i}, and let
χlab

i be the characteristic function of those Ci, i.e. χlab
i (x) = 1 if x ∈ Ci, and χlab

i (x) = 0
otherwise.

A simple classification algorithm can be obtained as follows:

(i) Build a geometric diffusion K on the graph defined by the data points X , as described in
Section 2.2.1.

(ii) Use a power of K to smooth the functions χlab
i , exactly as in the denoising algorithm described

above, obtaining functions χlab
i :

χlab
i = Ktχlab

i .

The parameter t can be chosen by cross-validation.

(iii) Assign each point x to the class

argmaxiχ
lab
i (x) .

This algorithm takes into account the influence of the labeled points on the unlabeled
point to be classified, where the measure of influence is based on the weighted connectivity
of the whole data set. If we average with a power of the kernel we have constructed, we
count the number and strength of all the paths of length t to the various classes from a given
data point. As a consequence, this method is more resistant to noise than, for example,
a simple nearest neighbors (or also a geodesic nearest neighbors) method, as changing the
location or class of a small number of data points does not change the structure of the
whole network, while it can change the class label of a few nearest neighbors (Szummer
and Jaakkola, 2001).

For each i, the “initial condition” for the heat flow given by χlab
i considers all the

unlabeled points to be the same as labeled points not in Ci. Since we are solving many
one-vs-all problems, this is reasonable; but one also may want to set the initial condition

14

χlab
i (x) = 1 for x ∈ Clab

i , χlab
i (x) = −1 for x ∈ Clab

j , j �= i, and χlab
i (x) = 0 for all

other x. It can be very useful to change the initial condition to a boundary condition by
resetting the values of the labeled points after each application of the kernel. For large
powers, this is equivalent to the harmonic classifier of Zhu et al. (2003b), where the χlab

i is
extended to the “harmonic” function with given boundary values on the labeled set. Just
as in the image denoising examples, it is often the case that one does not want to run
such a harmonic classifier to equilibrium, and we may want to find the correct number of
iterations of smoothing by K and updating the boundary values by cross validation.

We can also use the eigenfunctions of K (which are also those of the Laplacian L)
to extend the classes. Belkin (2003) suggests using least squares fitting in the embedding
defined by the first few eigenfunctions φ1, ..., φN of K. Since the values at the unlabeled
points are unknown, we regress only to the labeled points; so for each χlab

i , we need to solve

argmin{al}

∑

x labeled

∣

∣

∣

∣

∣

N
∑

l=1

ailφl(x) − χlab
i (x)

∣

∣

∣

∣

∣

2

,

and extend the χlab
i to

χlab
i =

N
∑

l=1

ailφi.

The parameter N controls the bias-variance tradeoff: smaller N implies larger bias of the
model (larger smoothness5) and decreases the variance, while larger N has the opposite
effect. Large N thus corresponds to small t in the iteration of K.

5.2 Function adapted diffusion for classification

If the structure of the classes is very simple with respect to the geometry of the data set,
then smoothness with respect to this geometry is precisely what is necessary to generalize
from the labeled data. However, it is possible that the classes have additional structure
on top of the underlying data set, which will not be preserved by smoothing geometrically.
In particular at the boundaries between classes we would like to filter in such a way that
the “edges” of the class function are preserved. We will modify the diffusion so it flows
faster along class boundaries and slower across them, by using function-adapted kernels as
in (12). Of course, we do not know the class boundaries: the functions {χi} are initially
given on a (typically small) subset X̃ of X , and hence a similarity cannot be immediately
defined in a way similar to (12).

We use a bootstrapping technique. We first use one of the algorithms above, which
only uses similarities between data points (“geometry”), to generate the functions χi. We
then use these functions to design a function-adapted kernel, by letting

F({χi})(x) := (ci(x))i=1,...,k ,

and then define a kernel as in (12). Here the ci’s are normalized confidence functions
defined by

ci(x) =
χi(x)

∑

i |χi(x)|
.

In this way, if several classes claim a data point with some confidence, the diffusion will
tend to average more among other points which have the same ownership situation when

5. On the other hand, extending with small numbers of eigenfunctions creates “ripples”; that is, the Gibbs
phenomenon. Techniques for avoiding the Gibbs phenomenon are discussed in Maggioni and Mhaskar
(2006).

15

F ← ClassifyWithAdaptedDiffusion(X, X̃, {χi}i=1,...,N , t1, β, t2)

// Input:
// X := {xi} : a data set
// X̃ : a subset of X , representing the labeled set
// {χi}i=1,...,N : set of characteristic functions of the classes, defined on X̃
// β : weight of the tuning parameter

// Output:
// C : function on X , such that C(x) is the class to which x ∈ X is estimated to belong.

1. Construct a weighted graph G associated with X , in any of the ways discussed.

2. Compute the associated diffusion operator K as in (2).

3. Compute guesses at the soft class functions χi using any of the methods in section
5.1, or any other method, and for multi-class problems, set

ci(x) =
χi(x)

∑

i |χi(x)|
.

4. Using the ci as features, or χi for two class problems, construct a new graph with
kernel K ′ from the similarities as in equation(12), with σ2 = βσ1.

5. Finally, find C(x) using any of the methods in sections 5.1 and the kernel K ′

Figure 6: Pseudo-code for learning of a function based on diffusion on graphs

determining the value of a function at that data point. The normalization, besides having
a clear probabilistic interpretation when the χi are positive, also achieves the effect of not
slowing the diffusion when there is only one possible class that a point could be in, for
example, if a data point is surrounded by points of a single class, but is relatively far from
all of them.

We summarize the algorithm in Figure 6. In the examples below we simply let ρ2 be the
metric of R

k, and also let h2(a) = h1(a) = e−a. The ratio β between σ2 and σ1, however,
is important, since it measures the trade-off between the importance given to the geometry
of X and that of the set of estimates {(χi(x))i=1,...,k}x∈X ⊆ R

k.
We wish to emphasize the similarity between this technique and the techniques de-

scribed in Section 4 and especially subsection 4.1.2. We allow the geometry of the data set
to absorb some of the complexity of the classes, and use diffusion analysis techniques on
the modified data set. The parallel with image denoising should not be unexpected: the
goal of a function-adapted kernel is to strengthen averaging along level lines, and this is as
desirable in image denoising as in transductive learning.

We remark that even if the ci’s are good estimates of the classes, they are not neces-
sarily good choices for extra coordinates: for example, consider a two class problem, and
a function c which has the correct sign on each class, but oscillates wildly. On the other
hand, functions which are poor estimates of the classes could be excellent extra coordinates
as long as they oscillate slowly parallel to the class boundaries. Our experience suggests,
consistently with these considerations, that the safest choices for extra coordinates are very
smooth estimates of the classes. In particular, of the three methods of class extension men-

16

tioned above, the eigenfunction method is often not a good choice for extra coordinates
because of oscillation phenomena; see the examples in section 5.4.

5.3 Relationship between our methods and previous work

In (Coifman et al., 2005a) the idea of using the estimated classes to warp the diffusion is
introduced. They suggest, for each class Cn, building the modified weight matrix Wn(i, j) =

W (i, j)χlab
n (i)χlab

n (j), normalizing each Wn, and using the Wn to diffuse the classes, however
no evaluation of the method was provided. Our approach refines and generalizes theirs,
by collecting all the class information into a modification of the metric used to build the
kernel, rather than modifying the kernel directly. The tradeoff between geometry of the
data and geometry of the (estimated/diffused) labels is made explicit and controllable.

In (Zhu et al., 2003b) it is proposed to adjust the graph weights to reflect prior knowl-
edge. However, their approach is different than the one presented here. Suppose we have
a two class problem. They add to each node of the graph a “dongle” node with tran-
sition probability β, which they leave as a parameter to be determined. They then run
the harmonic classifier (Zhu et al., 2003b) with the confidence function (ranging from 1 to
−1) from a prior classifier as the boundary conditions on all the dongle nodes. Thus their
method sets a tension between the values of the prior classifier and the harmonic classifier.
Our method does not suggest values for the soft classes based on the prior classifier; rather,
it uses this information to suggest modifications to the graph weights between unlabeled
points.

5.4 Examples

We present experiments that demonstrate the use of function-adapted kernels and diffusions
for transductive classification.

We test the performance of the method on the benchmarks of Chapelle et al. and
on the first 10,000 images in the MNIST data set. At the time this article was written,
the respective data sets are available at http://www.kyb.tuebingen.mpg.de/ssl-book/

benchmarks.html, with an extensive review of the performance of existing algorithms avail-
able at http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.pdf, and at http:

//yann.lecun.com/exdb/mnist/.
All the data sets were reduced to 50 dimensions by principal components analysis. In

addition, we smooth the MNIST images by convolving 2 times with an averaging filter (a
3 × 3 all ones matrix). The convolutions are necessary if we want the MNIST data set to
resemble a Riemannian manifold; this is because if one takes an image with sharp edges
and considers a smooth family of smooth diffeomorphisms of [0, 1]× [0, 1], the set of images
obtained under the family of diffeomorphisms is not necessarily a (differentiable) manifold
(see (Donoho and Grimes, 2002), and also (Wakin et al., 2005)). However, if the image
does not have edges, then the family of morphed images is a manifold6.

We do the following:

1. Choose 100 points as labeled. Each of the benchmark data sets of Chapelle et al., has 12 splits
into 100 labeled and 1400 unlabeled points; we use these splits. In the MNIST data set we

6. For the most simple example, consider a set of n×n images where each image has a single pixel set to 1,
and every other pixel set to 0. As we translate the on pixel across the grid, the difference between each

image and its neighbor is in a new direction in R
n
2

, and thus there is no reasonable tangent. The same
thing is true for translates of a more complicated binary image, and translates of any image with an edge.
One could complain that this is an artifact of the discrete grid, but it is easy to convince yourself that
the set of translates of a characteristic function in L

2(R) does not have a tangent anywhere- the tangent
direction of the curve defined by the translates of a function is exactly the derivative of the function.

17

label points 1001 through 1100 for the first split, 1101 to 1200 for the second split, etc, and
used 12 splits in total. Denote the labeled points by L, let Ci the ith class, and let χlab

i be
1 on the labeled points in the ith class, −1 on the labeled points of the other classes, and 0
elsewhere.

2. Construct a Gaussian kernel W with k nearest neighbors, σ = 1, and normalized so the jth
neighbor determines unit distance in the self tuning normalization (equation (4)), where {k, j}
is one of {9, 4}, {13, 9}, {15, 9}, or {21, 15}.

3. Classify unlabeled points x by supi χlab
i (x), where χlab

i (x) are constructed using the harmonic
classifier with the number of iterations chosen by leave-20-out cross validation from 1 to 250.
More explicitly: set g0

i = χlab
i . Let gN

i (x) = (KgN−1
i)(x) if x /∈ L, gN

i (x) = 1 if x ∈ Ci

⋂

L,
and gN

i (x) = 0 if x ∈ L\Ci, and K is the matrix W normalized to be averaging. Finally, let

χlab
i = gN

i (x), where N is chosen by leave-10-out cross validation between 1 and 250 (Ci and
L are of course reduced for the cross validation).

4. Classify unlabeled points x by supi χlab
i (x), where the χlab

i (x) are constructed using least
squares regression in the (graph Laplacian normalized) eigenfunction embedding, with the
number of eigenfunctions cross validated; that is, for each χlab

i , we solve

argmin{al}

∑

x labeled

∣

∣

∣

∣

∣

N
∑

l=1

ailφl(x) − χi(x)

∣

∣

∣

∣

∣

2

,

and extend the χlab
i to

χlab
i =

N
∑

l=1

ailφi.

The φi’s are the eigenfunctions of the normalized Laplacian L associated with the weighted
graph W , and N is chosen by leave-10-out cross validation.

5. Classify unlabeled points x by supi χlab
i (x), where χlab

i (x) are constructed by smoothing χlab
i

with K. More explicitly: set g0
i = χlab

i . Let gN
i = WgN−1

i , where K is W normalized to be

averaging; and finally, let χlab
i = gN

i (x), where N is chosen by leave-10-out cross validation
between 1 and 250 (Ci and L are of course reduced for the cross validation).

We also classify the unlabeled points using a function-adapted kernel. Using the χlab
i from

the harmonic classifier at steady state (N = 250), we do the following:

6. If the problem has more than two classes, set

ci(x) =
g250

i (x)
∑

i |g
250
i (x)|

,

else, set ci(x) = g250
i (x)

7. Using the ci as extra coordinates, build a new weights W̃ . The extra coordinates are normal-
ized to have average norm equal to the average norm of the original spatial coordinates; and
then multiplied by the factor β, where β is determined by cross validation from {1, 2, 4, 8}.
The modified weights are constructed using the nearest neighbors from the original weight
matrix, exactly as in the image processing examples.

8. Use the function dependent K̃ to estimate the classes as in (3).

18

KS FAKS HC FAHC EF FAEF

digit1 2.9 2.2 2.9 2.5 2.6 2.2
USPS 4.9 4.1 5.0 4.1 4.2 3.6
BCI 45.9 45.5 44.9 44.7 47.4 48.7
g241c 31.5 31.0 34.2 32.7 23.1 41.3
COIL 14.3 12.0 13.4 11.1 16.8 15.1
gc241n 25.5 24.7 27.1 25.9 13.9 35.7
text 25.5 23.7 26.3 24.0 26.4 25.4
MNIST 9.4 8.5 9.0 7.9 9.4 8.7

KS FAKS HC FAHC EF FAEF

digit1 2.8 2.2 2.7 2.1 2.6 2.2
USPS 5.2 4.2 5.2 4.0 4.0 3.3
BCI 47.6 47.4 45.0 45.5 48.2 48.6
g241c 30.7 31.2 33.3 32.0 21.7 31.7
COIL 17.2 16.7 16.0 15.1 21.9 19.0
gc241n 23.1 21.6 25.3 22.8 11.1 24.0
text 25.2 23.0 25.5 23.3 26.9 24.0
MNIST 10.0 9.2 10.1 8.7 9.7 8.5

KS FAKS HC FAHC EF FAEF

digit1 3.0 2.3 2.8 2.2 2.6 1.9
USPS 5.0 4.0 5.2 3.9 3.9 3.3
BCI 48.2 48.0 45.9 46.1 47.6 47.9
g241c 30.5 30.4 32.8 31.2 21.2 29.7
COIL 18.0 17.0 16.2 15.2 22.9 19.9
gc241n 24.5 21.7 26.2 23.1 11.1 17.7
text 25.1 22.4 25.7 22.3 25.6 22.9
MNIST 10.3 9.2 10.0 8.9 9.6 8.3

KS FAKS HC FAHC EF FAEF

digit1 3.1 2.6 2.9 2.6 2.0 2.1
USPS 5.6 4.7 5.6 4.4 4.4 3.7
BCI 48.2 48.5 46.3 46.7 48.9 48.5
g241c 28.5 28.2 32.1 29.4 18.0 23.6
COIL 19.8 19.3 19.2 17.9 26.3 24.1
gc241n 21.8 20.5 24.6 21.7 9.2 14.2
text 25.1 22.3 25.6 22.7 25.4 23.2
MNIST 10.8 10.0 10.7 9.7 10.8 10.0

Figure 7: Various classification results, ci determined by the harmonic classifier. The Gaus-
sian kernel had k neighbors, and the jth neighbor determined unit distance in
the self-tuning construction, where counterclockwise, from the top left, {k, j} is
{9, 4}, {13, 9}, {15, 9}, and {21, 15}. KS stands for kernel smoothing as in (5),
FAKS for function dependent kernel smoothing as in (10), HC for harmonic clas-
sifier as in (3), FAHC for function dependent harmonic classifier as in (8), EF for
eigenfunctions as in (4), and FAEF for function dependent eigenfunctions as in
(9).

9. Use the function dependent L̃ to estimate the classes as in (4).

10. Use the function dependent K̃ to estimate the classes as in (5).

The results are reported in the tables below.
We also repeat these experiments using the smoothed classes as an initial guess, and

using the eigenfunction extended classes as initial guess. These results are reported in
figures 8 and 9

The reader is invited to compare with the extensive comparative results presented in
Chapelle et al. (2006), also available at http://www.kyb.tuebingen.mpg.de/ssl-book/

benchmarks.pdf. The results we obtain are very competitive and in many cases better than
all other methods thereby presented. In Table 10 we attempt one such comparison. For
every data set, we report the performance of the best classifier (with model selection, and
cross-validated performance) among all the ones considered in Chapelle et al. (2006). We
also report the performance of our best classifier (with model selection, and cross-validated
performance), among the ones we considered, corresponding to different choices of the two
parameters for the self-tuning nearest-neighbor graph. Observe that the other tables show
that these parameters do not affect the performance too much. This comparison is unfair
in many respects, considered the large number of algorithms considered in Chapelle et al.
(2006). Nevertheless it demonstrates that the proposed algorithms on 4 out of 7 data sets
(and on 4 out of 5 if we discard the artificial ones) outperform all the algorithms considered
in Chapelle et al. (2006).

19

KS FAKS HC FAHC EF FAEF

digit1 2.9 2.4 2.9 2.4 2.6 2.1
USPS 4.9 4.6 5.0 4.6 4.2 3.3
BCI 45.9 47.0 44.9 45.3 47.4 47.8
g241c 31.5 29.3 34.2 29.2 23.1 33.1
COIL 14.3 13.3 13.4 12.4 16.9 16.8
gc241n 25.5 21.3 27.1 22.5 13.9 23.0
text 25.5 24.5 26.3 25.0 26.4 24.6
MNIST 9.4 7.9 9.0 7.7 9.4 7.3

KS FAKS HC FAHC EF FAEF

digit1 2.8 2.2 2.7 2.1 2.6 2.1
USPS 5.2 4.3 5.2 4.0 4.0 3.5
BCI 47.6 48.7 45.0 46.5 48.2 49.1
g241c 30.7 27.9 33.3 27.7 21.7 28.1
COIL 17.2 17.6 16.0 15.5 22.5 20.3
gc241n 23.1 17.9 25.3 19.3 11.1 21.0
text 25.2 23.8 25.5 23.7 26.9 24.5
MNIST 10.0 8.2 10.1 8.2 9.7 7.7

KS FAKS HC FAHC EF FAEF

digit1 3.0 2.5 2.8 2.2 2.6 1.9
USPS 5.0 4.0 5.2 3.9 3.9 3.4
BCI 48.2 48.6 45.9 46.5 47.6 48.1
g241c 30.5 26.9 32.8 27.9 21.2 27.3
COIL 18.0 17.6 16.2 15.8 22.3 21.0
gc241n 24.5 19.7 26.2 20.8 11.1 19.5
text 25.1 22.8 25.7 23.3 25.6 23.4
MNIST 10.3 8.3 10.0 7.9 9.6 7.7

KS FAKS HC FAHC EF FAEF

digit1 3.1 2.6 2.9 2.6 2.0 2.1
USPS 5.6 4.9 5.6 4.2 4.4 4.2
BCI 48.2 49.0 46.3 47.1 48.9 49.0
g241c 28.5 26.0 32.1 26.5 18.0 22.8
COIL 19.8 19.4 19.2 18.3 26.6 23.1
gc241n 21.8 16.5 24.6 17.4 9.2 14.3
text 25.1 22.9 25.6 23.0 25.4 22.8
MNIST 10.8 9.6 10.7 9.2 10.8 8.2

Figure 8: Various classification results, ci determined by smoothing by K. The table is
otherwise organized as in figure 7.

KS FAKS HC FAHC EF FAEF

digit1 2.9 2.9 2.9 2.6 2.6 2.4
USPS 4.9 4.1 5.0 3.8 4.2 4.1
BCI 45.9 47.1 44.9 46.0 47.4 48.7
g241c 31.5 25.3 34.2 26.7 23.1 23.7
COIL 14.3 13.0 13.4 12.0 16.5 16.6
gc241n 25.5 16.7 27.1 18.2 13.9 14.1
text 25.5 25.1 26.3 25.6 26.4 25.4
MNIST 9.4 7.4 9.0 6.9 9.4 7.9

KS FAKS HC FAHC EF FAEF

digit1 2.8 2.0 2.7 2.1 2.6 2.3
USPS 5.2 3.8 5.2 3.6 4.0 3.4
BCI 47.6 48.1 45.0 46.9 48.2 48.5
g241c 30.7 23.8 33.3 24.7 21.7 21.6
COIL 17.2 17.5 16.0 15.4 22.0 21.5
gc241n 23.1 13.0 25.3 14.1 11.1 11.5
text 25.2 24.8 25.5 24.9 26.9 27.3
MNIST 10.0 7.8 10.1 7.3 9.7 7.4

KS FAKS HC FAHC EF FAEF

digit1 3.0 2.5 2.8 2.2 2.6 2.2
USPS 5.0 4.1 5.2 3.5 3.9 3.2
BCI 48.2 47.5 45.9 45.7 47.6 47.9
g241c 30.5 23.1 32.8 24.1 21.2 21.2
COIL 18.0 17.5 16.2 16.1 22.8 22.1
gc241n 24.5 13.2 26.2 13.9 11.1 11.1
text 25.1 24.3 25.7 24.3 25.6 25.9
MNIST 10.3 8.1 10.0 7.5 9.6 8.6

KS FAKS HC FAHC EF FAEF

digit1 3.1 2.7 2.9 2.5 2.0 2.2
USPS 5.6 4.6 5.6 4.1 4.4 3.6
BCI 48.2 49.0 46.3 47.4 48.9 49.7
g241c 28.5 19.8 32.1 21.5 18.0 18.0
COIL 19.8 19.8 19.2 18.8 26.7 25.8
gc241n 21.8 11.0 24.6 12.0 9.2 9.2
text 25.1 24.1 25.6 24.0 25.4 24.9
MNIST 10.8 8.9 10.7 7.9 10.8 9.4

Figure 9: Various classification results, ci determined by smoothing by eigenfunctions of L.
The table is otherwise organized as in figure 7.

FAKS FAHC FAEF Best of other methods

digit1 2.0 2.1 1.9 2.5 (LapEig)
USPS 4.0 3.9 3.3 4.7 (LapRLS, Disc. Reg.)
BCI 45.5 45.3 47.8 31.4 (LapRLS)
g241c 19.8 21.5 18.0 22.0 (NoSub)
COIL 12.0 11.1 15.1 9.6 (Disc. Reg.)
gc241n 11.0 12.0 9.2 5.0 (ClusterKernel)
text 22.3 22.3 22.8 23.6 (LapSVM)

Figure 10: In the first column we chose, for each data set, the best performing method with
model selection, among all those discussed in Chapelle et al. (2006). In each of
the remaining columns we report the performance of each of our methods with
model selection, but with the best settings of parameters for constructing the
nearest neighbor graph, among those considered in other tables. The aim of
this rather unfair comparison is to highlight the potential of the methods on the
different data sets.

20

6. Some comments on the benchmarks where our methods do not work

well

As mentioned in the explanation of toy example number 2, if the class structure is trivial
with respect to the geometry of the data as presented, then anisotropy will be unhelpful.
This is the case for two of the benchmark data sets, g241c and g241n. In g241c, which
has been constructed by generating two Gaussian clouds, and labeling each point by which
cloud it came from, the best possible strategy (knowing the generative model) is to assign
a point to the cluster center it is nearest to. The boundary between the classes is exactly at
the bottleneck between the two clusters; in other words, the geometry/metric of the data as
initially presented leads to the optimal classifier, and thus modifying the geometry by the
cluster guesses can only do harm. This is clearly visible if one looks at the eigenfunctions
of the data set: the sign of the second eigenfunction at a given point is an excellent guess
as to which cluster that point belongs to, and in fact in our experiments, often two was the
optimal number of eigenfunctions. See figure 11. g241n is very similar; it is generated by

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

−8 −6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 11: Panel on the left. On the left the red and blue points are the two classes for
g241c. On the right is the second eigenfunction. Panel on the right. On the top
left the red and blue points are the two classes for g241n. On the top right is the
second eigenfunction, then on the bottom the third and fourth eigenfunctions.

four Gaussians. However, two pairs of centers are close together, and the pairs are relatively
farther apart. The classes split across the two fine scale clusters in each coarse scale cluster
as in g241c. In this data set, the ideal strategy is to decide which coarse cluster a point is
in, and then the problem is exactly as above. In particular, the optimal strategy is given
by the geometry of the data as presented. This is again reflected in the simplicity of the
classes with respect to eigenfunctions 2, 3, and 4; see figure 11.

While in some sense these situations are very reasonable, it is our experience that in
many natural problems the geometry of the data is not so simple with respect to the classes,
and function-adapted kernels help build better classifiers.

Our method also was not useful for the BCI example. Here the problem was simply
that the initial guess at the classes was too poor.

7. Computational considerations

Let N be the cardinality of the data set X , which is endowed with some metric ρ.

21

The first and most computationally intensive part of the algorithms proposed is the
construction of the graph and corresponding weights. The approach we use is direct, in
the sense that we explicitly store the similarity matrix W . For each point x ∈ X , we
need to find the points in an ǫ-ball, or the k nearest neighbors of x. This problem can be
solved trivially, for any metric ρ, in O(dN2) computations. It is of course highly desirable
to reduce this cost, and this requires more efficient ways of computing near (or nearest)
neighbors. This problem is known to be hard even in Euclidean space R

d, as d increases.
The literature on the subject is vast, rather than a long list of papers, we point the interested
reader to (Datar et al., 2004) and references therein. The very short summary is that for
approximate versions of the k-nearest neighbor problem, there exist algorithms which are
subquadratic in N , and in fact pretty close to linear. The neighbor search is in fact the
most expensive part of the algorithm: once for each point x we know its neighbors, we
compute the similarities W (this is O(k) for the k neighbors of each point), and create the
N ×N sparse matrix W (which contains kN non-zero entries). The computation of K from
W is also trivial, requiring O(N) with a very small constant. Apply Kt to a function f on
X is very fast as well (for t << N , as is the case in the algorithm we propose), because of
the sparsity of K, and takes O(tkN) computations.

This should be compared with the O(N2) or O(N3) algorithms needed for other kernel
methods, involving the computations of many eigenfunctions of the kernel, or of the Green’s
function (I − K)−1.

Note that in most of the image denoising applications we have presented, because of
the 2-d locality constraints we put on the neighbor searches, the number of operation is
linear in the number N of pixels, with a rather small constant. In higher dimensions, for
all of our examples, we use the nearest neighbor searcher provided in the TSTool package,
available at http://www.physik3.gwdg.de/tstool/. The entire processing of an image as in
the examples 256 × 256 takes about 7 seconds on a laptop with a 2.2Ghz dual core Intel
processor (the code is not parallelized though, so it runs on one core only), and 2Gb of
RAM (the memory used during processing is approximately 200Mb).

8. Future work

We mention several directions for further study. The first one is to use a transductive
learning approach to tackle image processing problems like denoising and inpainting. One
has at one’s disposal an endless supply of clean images to use as the “unlabeled data”, and
it seems that there is much to be gained by using the structure of this data.

The second one is to more closely mimic the function regularization in image processing
in the context of transductive learning. In this paper, our diffusions regularize in big steps;
also our method is linear (on a modified space). Even though there is no differential
structure on our data sets, it seems that by using small time increments and using some
sort of constrained nearest neighbor search so that we do not have to rebuild the whole
graph after each matrix iteration, we can use truly nonlinear diffusions to regularize our
class functions.

Another research direction is towards understanding how to construct and use effi-
ciently basis functions which are associated to function-adapted diffusion kernels. The use
of the low-frequency eigenfunctions of the operator, and the associated Fourier analysis of
functions on the set has been considered in several works, as cited above, while the con-
struction and use of multiscale basis functions, which correspond to a generalized wavelet
analysis on data sets Coifman and Maggioni (2006); Szlam et al. (2005); Maggioni et al.
(2005), has been used so far for approximation problems in machine learning (Maggioni
and Mahadevan, 2006; Mahadevan and Maggioni, 2006) but has potential in many other
applications. One can consider the approach that uses diffusion kernels directly, as in this

22

paper, as a sort of “PDE approach” (even if in fact the discreteness and roughness of
the sets considered usually brings us quite afar from PDEs on continua), while one can
investigate “dual” approaches based on representations and bases functions.

9. Conclusions

We have introduced a general approach for associating graphs and diffusion processes to
data sets and functions on such data sets. This framework is very flexible, and we have
shown two particular applications, denoising of images and transductive learning, which
traditionally are considered very different and have been tackled with very different tech-
niques. We show that in fact they are very similar problems and results at least as good
as the state-of-the-art can be obtained within the single framework of function-adapted
diffusion kernels.

We cite a remark in Chapelle et al. (2006) that follows the extensive comparison of
many methods: “semi-supervised learning is possible only due to the special form of the
data distribution that correlates the label of a data point with its situation within the
distribution; therefore it seems much more difficult to design a general semi-supervised
classifier.” In this paper we have attempted to mediate between the geometry of the
distribution and that of the labels, and the experiment show that in several examples this
approach can be quite powerful.

10. Acknowledgements

The authors would like to thank Francis Woolfe and Triet Le for helpful suggestions on how
to improve the manuscript, and to James C. Bremer and Yoel Shkolnisky for developing
code for some of the algorithms. MM is grateful for partial support by NSF under award
DMS-0650413.

References

B. Coll A. Buades and J. M. Morel. Denoising image sequences does not require motion estimation.
CMLA Preprint, (12), 2005.

R. Zass A. Shashua and T. Hazan. Multiway clustering using supersymmetric nonnegative tensor
factorization. Technical report, Hebrew University, Computer Science, Sep 2005.

M. Belkin. Problems of learning on manifolds. PhD thesis, University of Chicago, 2003.

M. Belkin and P. Niyogi. Using manifold structure for partially labelled classification. Advances in
NIPS, 15, 2003a.

M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering.
In Advances in Neural Information Processing Systems 14 (NIPS 2001), page 585, 2001.

M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural Computation, 6(15):1373–1396, June 2003b.

M. Belkin and P. Niyogi. Semi-supervised learning on Riemannian manifolds. Machine Learning, 56
(Invited Special Issue on Clustering):209–239, 2004. TR-2001-30, Univ. Chicago, CS Dept., 2001.

23

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning
from labeled and unlabeled examples. Journal of Machine Learning Research, (7):2399–2434, Nov.
2006.

P. Bérard, G. Besson, and S. Gallot. Embedding Riemannian manifolds by their heat kernel. Geom.
and Fun. Anal., 4(4):374–398, 1994.

A. Buades, B. Coll, and J. M. Morel. A review of image denoising algorithms, with a new one.
Multiscale Model. Simul., 4(2):490–530 (electronic), 2005. ISSN 1540-3459.

E. Candès and D. L Donoho. Curvelets: A surprisingly effective nonadaptive representation of
objects with edges. Technical report, Stanford University, 1999. preprint.

E. Candès and D.L. Donoho. Continuous curvelet transform i: Resolution of the wavefront set.
Technical report, Stanford University, 2004a. preprint.

E. Candès and D.L. Donoho. Continuous curvelet transform ii: Discretization and frames. Technical
report, Stanford University, 2004b. preprint.

T. F. Chan and J. Shen. Image processing and analysis. Society for Industrial and Applied Math-
ematics (SIAM), Philadelphia, PA, 2005. ISBN 0-89871-589-X. Variational, PDE, wavelet, and
stochastic methods.

O. Chapelle, J. Weston, and B. Schölkpf. Cluster kernels for semi-supervised learning. NIPS, 2002.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006. URL http://www.kyb.tuebingen.mpg.de/ssl-book.

R.T. Chin and C.L. Yeh. Quantitative evaluation of some edge-preserving noise-smoothing tech-
niques. Computer Vision, Graphics, and Image Processing, 23:67–91, 1983.

F. R. K. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference Series in Math-
ematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC,
1997. ISBN 0-8218-0315-8.

R.R. Coifman and S. Lafon. Diffusion maps. Appl. Comp. Harm. Anal., 21(1):5–30, 2006a.

R.R. Coifman and S. Lafon. Geometric harmonics: a novel tool for multiscale out-of-sample extension
of empirical functions. Appl. Comp. Harm. Anal., 21(1):31–52, 2006b.

R.R. Coifman and M. Maggioni. Multiscale data analysis with diffusion wavelets. Tech. Rep.
YALE/DCS/TR-1335, Dept. Comp. Sci., Yale University, September 2005.

R.R. Coifman and M. Maggioni. Diffusion wavelets. Appl. Comp. Harm. Anal., 21(1):53–94, July
2006. (Tech. Rep. YALE/DCS/TR-1303, Yale Univ., Sep. 2004).

R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, and S.W. Zucker. Geometric
diffusions as a tool for harmonic analysis and structure definition of data. Part I: Diffusion maps.
Proc. of Nat. Acad. Sci., (102):7426–7431, May 2005a.

R.R. Coifman, S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, and S.W. Zucker. Geometric
diffusions as a tool for harmonic analysis and structure definition of data. Part II: Multiscale
methods. Proc. of Nat. Acad. Sci., (102):7432–7438, May 2005b.

R.R. Coifman, M. Maggioni, S.W. Zucker, and I.G. Kevrekidis. Geometric diffusions for the analysis
of data from sensor networks. Curr Opin Neurobiol, 15(5):576–84, October 2005c.

24

R.R. Coifman, S. Lafon, M. Maggioni, Y. Keller, A.D. Szlam, F.J. Warner, and S.W. Zucker.
Geometries of sensor outputs, inference, and information processing. In John C. Zolper; Eds.
Intelligent Integrated Microsystems; Ravindra A. Athale, editor, Proc. SPIE, volume 6232, page
623209, May 2006.

M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on
p-stable distributions. In SCG ’04: Proceedings of the twentieth annual symposium on Compu-
tational geometry, pages 253–262, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-885-7.
doi: http://doi.acm.org/10.1145/997817.997857.

L.S. Davis and A. Rosenfeld. Noise cleaning by iterated local averaging. IEEE Tran. on Systems,
Man, and Cybernetics, 8:705–710, 1978.

D. L Donoho and Ana G Flesia. Can recent innovations in harmonic analysis ‘explain’ key findings
in natural image statistics? Network: Comput. Neural Syst., 12:371–393, 2001.

D. L. Donoho and C. Grimes. When does isomap recover natural parameterization of families of
articulated images? Technical Report Tech. Rep. 2002-27, Department of Statistics, Stanford
University, August 2002.

D. L Donoho and IM Johnstone. Ideal denoising in an orthonormal basis chosen from a library of
bases. Technical report, Stanford University, 1994.

M. Elad. the origin of the bilateral filter and ways to improve it, 2002. URL citeseer.ist.psu.

edu/elad02origin.html.

D J Field. Relations between the statistics of natural images and the response properties of cortical
cells. J. Opt. Soc. Am., 4:2379–2394, 1987.

R.E. Graham. Snow-removal - a noise-stripping process for picture signals. IRE Trans. on Inf. Th.,
8:129–144, 1961.

L. Greengard and V. Rokhlin. The rapid evaluation of potential fields in particle systems. MIT
Press, 1988.

T. Joachims. Transductive learning via spectral graph partitioning. ICML, 2003.

R. Kannan, S. Vempala, and A. Vetta. On clusterings: good, bad and spectral. J. ACM, 51(3):
497–515 (electronic), 2004. ISSN 0004-5411.

J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, Jan 1984.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete structures. In Proceedings
of the ICML, 2002.

S. Lafon. Diffusion maps and geometric harmonics. PhD thesis, Yale University, Dept of Mathe-
matics & Applied Mathematics, 2004.

Stephane Lafon and Ann B. Lee. Diffusion maps and coarse-graining: A unified framework for
dimensionality reduction, graph partitioning and data set parameterization. To appear in IEEE
Pattern Analysis and Machine Intelligence, to appear, 2006.

J.S. Lee. Digital image enhancement and noise filtering by use of local statistics. IEEE Trans.
Pattern Anal. Mach. Intell., 2(2):165–168, 1980.

T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, 1994.

25

N. Linial, A. Samorodnitsky, and A. Wigderson. A deterministic strongly polynomial algorithm for
matrix scaling and approximate permanents. In STOC ’98: Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pages 644–652, New York, NY, USA, 1998. ACM Press.
ISBN 0-89791-962-9. doi: http://doi.acm.org/10.1145/276698.276880.

M. Maggioni and S. Mahadevan. Multiscale diffusion bases for policy iteration in markov decision
processes. submitted, 2006. submitted.

M. Maggioni and S. Mahadevan. Fast direct policy evaluation using multiscale analysis of markov
diffusion processes. In University of Massachusetts, Department of Computer Science Technical
Report TR-2005-39; accepted at ICML 2006, 2005.

M. Maggioni and H. Mhaskar. Diffusion polynomial frames on metric measure spaces. submitted,
2006.

M. Maggioni, J.C. Bremer Jr., R.R. Coifman, and A.D. Szlam. Biorthogonal diffusion wavelets for
multiscale representations on manifolds and graphs. volume 5914, page 59141M. SPIE, 2005. URL
http://link.aip.org/link/?PSI/5914/59141M/1.

S. Mahadevan and M. Maggioni. Value function approximation with diffusion wavelets and laplacian
eigenfunctions. In University of Massachusetts, Department of Computer Science Technical Report
TR-2005-38; Proc. NIPS 2005, 2005.

S. Mahadevan and M. Maggioni. Proto-value functions: A spectral framework for solving markov
decision processes. submitted, 2006. submitted.

S. Mahadevan, K. Ferguson, S. Osentoski, and M. Maggioni. Simultaneous learning of representation
and control in continuous domains. In submitted, 2006.

G. Mahmoudi, M.; Sapiro. Fast image and video denoising via nonlocal means of similar neighbor-
hoods. IEEE Signal Processing Letters, 12(12):839–842, 2005.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm, 2001. URL
citeseer.ist.psu.edu/ng01spectral.html.

P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans.
Pattern Anal. Mach. Intell., 12(7):629–639, 1990.

V.C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov. Fast computation of sums of gaussians in
high dimensions. Technical Report CS-TR-4767, Department of Computer Science, University of
Maryland, CollegePark, 2005.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms.
Phys. D, 60(1-4):259–268, 1992. ISSN 0167-2789. doi: http://dx.doi.org/10.1016/0167-2789(92)
90242-F.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Tran PAMI, 22(8):888–905,
2000.

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: from transductive to semi-
supervised learning. ICML, 2005.

A. Singer. From graph to manifold Laplacian: the convergence rate. Appl. Comp. Harm. Anal., 21
(1), July 2006.

26

R. Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matrices.
Annals of Mathematical Statistics, 35(2):876–879, 1964.

R. Sinkhorn and P. Knopp. Concerning nonnegative matrices and doubly stochastic matrices. Pacific
Journal of Mathematics, 21(2):343–349, 1967.

S. M. Smith and J. M. Brady. SUSAN – A new approach to low level image processing. Technical
Report TR95SMS1c, Chertsey, Surrey, UK, 1995. URL citeseer.ist.psu.edu/smith95susan.

html.

A. Smola and R. Kondor. Kernels and regularization on graphs, 2003. URL citeseer.ist.psu.

edu/smola03kernels.html.

G. W. Soules. The rate of convergence of sinkhorn balancing. Linear Algebra and its Applications,
150(3):3–38, 1991.

A.D. Szlam, M. Maggioni, R.R. Coifman, and J.C. Bremer Jr. Diffusion-driven multiscale analysis
on manifolds and graphs: top-down and bottom-up constructions. volume 5914, page 59141D.
SPIE, 2005. URL http://link.aip.org/link/?PSI/5914/59141D/1.

M. Szummer and T. Jaakkola. Partially labeled classification with markov random walks. In Ad-
vances in Neural Information Processing Systems, volume 14, 2001. URL citeseer.ist.psu.

edu/szummer02partially.html. http://www.ai.mit.edu/people/szummer/.

F. Skorina T. Boult, R.A. Melter and I. Stojmenovic. G-neighbors. Proc. SPIE Conf. Vision Geom.
II, pages 96–109, 1993.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. Proc. IEEE Inter. Conf.
Comp. Vis., 1998.

G.J. Yang T.S. Huang and G.Y. Tang. A fast two-dimensional median filtering algorithm. IEEE
Trans. Acoustics, Speech, and Signal Processing, 27(1):13–18, 1979.

D. Tschumperle. PDE’s Based Regularization of Multivalued Images and Applications. PhD thesis,
Universite de Nice-Sophia Antipolis, 2002.

U. von Luxburg, M. Belkin, and O. Bousquet. Consistency of spectral clustering. Technical Report
TR-134, Max Planck Insitute for Biological Cybernetics, 2004.

M. Wakin, D. Donoho, H. Choi, and R. Baraniuk. The Multiscale Structure of Non-Differentiable
Image Manifolds. In Optics & Photonics, San Diego, CA, July 2005.

A. P. Witkin. Scale-space filtering. In Proc. 8th int. Joint Conf. Art. Intell., pages 1019–1022, 1983.
Karlsruhe, Germany.

L. P. Yaroslavsky. Digital Picture Processing. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1985. ISBN 0387119345.

R. Zass and A. Shashua. A unifying approach to hard and probabilistic clustering. In International
Conference on Computer Vision (ICCV), Oct 2005.

L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. Eighteenth Annual Conference on
Neural Information Processing Systems, (NIPS), 2004a.

L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Advances in Neural Information
Processing Systems 17 (NIPS 2004), 2004b.

27

H. Zha, C. Ding, M. Gu, X. He, and H.D. Simon. Spectral relaxation for k-means clustering. In
Advances in Neural Information Processing Systems 14 (NIPS 2001), page 1057, 2001.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schlkopf. Learning with local and global
consistency. NIPS, 2004.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic
functions. In Proc. of the ICML, 2003a.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic
functions, 2003b. URL citeseer.ist.psu.edu/zhu03semisupervised.html.

28

