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Abstract

Regularized iterative reconstruction algorithms for imaging inverse problems require selection of
appropriate regularization parameter values. We focus on the challenging problem of tuning
regularization parameters for nonlinear algorithms for the case of additive (possibly complex)
Gaussian noise. Generalized cross-validation (GCV) and (weighted) mean-squared error (MSE)
approaches (based on Stein's Unbiased Risk Estimate— SURE) need the Jacobian matrix of the
nonlinear reconstruction operator (representative of the iterative algorithm) with respect to the
data. We derive the desired Jacobian matrix for two types of nonlinear iterative algorithms: a fast
variant of the standard iterative reweighted least-squares method and the contemporary split-
Bregman algorithm, both of which can accommodate a wide variety of analysis- and synthesis-
type regularizers. The proposed approach iteratively computes two weighted SURE-type
measures: Predicted-SURE and Projected-SURE (that require knowledge of noise variance σ2),
and GCV (that does not need σ2) for these algorithms. We apply the methods to image restoration
and to magnetic resonance image (MRI) reconstruction using total variation (TV) and an analysis-
type ℓ1-regularization. We demonstrate through simulations and experiments with real data that
minimizing Predicted-SURE and Projected-SURE consistently lead to near-MSE-optimal
reconstructions. We also observed that minimizing GCV yields reconstruction results that are
near-MSE-optimal for image restoration and slightly sub-optimal for MRI. Theoretical derivations
in this work related to Jacobian matrix evaluations can be extended, in principle, to other types of
regularizers and reconstruction algorithms.

Index Terms

Regularization parameter; generalized cross-validation (GCV); Stein's unbiased risk estimate
(SURE); image restoration; MRI reconstruction

I. Introduction

Inverse problems in imaging invariably need image reconstruction algorithms to recover an
underlying unknown object of interest x from measured data y. Reconstruction algorithms
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typically depend on a set of parameters that need to be adjusted properly for obtaining good
image-quality. Choosing suitable parameter values is a nontrivial, application-dependent
task and has motivated research on automated parameter selection based on quantitative
measures [1]–[31]. Quantitative parameter optimization methods can be broadly classified as
those based on the discrepancy principle [1], the L-curve method [2]–[5], generalized cross-
validation (GCV) [6]–[17] and estimation of (weighted) mean-squared error (MSE) [18]–
[30]. Recently, a new measure of image-quality (different from GCV and MSE) was
introduced in [31] but its applicability has been demonstrated only for denoising
applications [31].

In inverse problems, typically, image reconstruction is performed by minimizing a cost
function composed of data-fidelity term and (one or more) regularization terms. Image
quality in such cases is governed by regularization parameters that control the bias-variance
trade-off (or equivalently, the balance between image-smoothing and amplification of noise)
in the reconstruction. Using discrepancy principle requires minimizing the difference
between the data-fidelity term and the noise variance [1] and can lead to over-smoothing
[22]. In the L-curve method, parameters are chosen so as to maximize the curvature of a (L-
shaped) parametric curve (constructed from the components of the cost function) [2]–[4].
This method can be computationally expensive and sensitive to curvature evaluation [5],
[25]. GCV is a popular criterion used for parameter selection in a variety of inverse
problems, especially for linear reconstruction algorithms [7]–[16]. The advantage of GCV is
that it does not require knowledge of noise variance and is known to yield regularization
parameters for linear algorithms that asymptotically minimize the true MSE [7]. Some
extensions of GCV are also available for nonlinear algorithms [15]–[17] but they are
computationally more involved (see Section III-A) than for linear algorithms.

MSE-estimation-based methods can be attractive alternatives to GCV since image quality is
often quantified in terms of MSE in image reconstruction problems. For Gaussian noise,
Stein's unbiased risk estimate (SURE) [18] provides a practical means of unbiasedly
assessing MSE for denoising problems. Unlike GCV, SURE requires knowledge of noise
statistics but is optimal even in the nonasymptotic regime. SURE has been successfully
employed for optimally adjusting parameters of a variety of denoising algorithms [32]–[36].
For ill-posed inverse problems, it is not possible to estimate MSE (except in some special
instances [22]–[25]) since y may only contain partial information about x [24, Sec. IV]. In
such cases, the principles underlying SURE may be extended to estimate weighted variants
of MSE (e.g., by evaluating the error only on components of x that are accessible from y)
[19], [25], [26]. Several weighted SURE-type approaches have been proposed and employed
for (near) optimal parameter tuning in ill-posed inverse problems, e.g., linear restoration
[19], nonlinear noniterative restoration [26], image reconstruction using sparse priors [29],
[30], noniterative parallel magnetic resonance image (MRI) reconstruction [27], nonlinear
restoration [25], [28] and nonlinear image upsampling [25] using iterative shrinkage-
thresholding type algorithms that specifically apply to synthesis formulations [25], [28],
[37], [38] of image reconstruction problems. Synthesis formulations preclude popular
regularization criteria such as total variation (TV) and smooth edge-preserving regularizers
(e.g., Huber [39], smoothed-Laplacian [40]) that belong to the class of analysis formulations.
Bayesian methods [41]–[45] have been employed for parameter tuning in image restoration
problems involving analysis-type quadratic regularizers [41], [42] and TV [43]–[45].

This paper focusses on computing the nonlinear version of GCV (denoted by NGCV) [16],
[17] and weighted SURE-type measures [20], [24] for nonlinear iterative reconstruction
algorithms that can tackle a variety of nonquadratic regularization criteria including
synthesis- and analysis-type (e.g., TV) regularizers. Both NGCV and weighted SURE-
measures require the Jacobian matrix of the reconstruction operator (representative of the
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iterative algorithm) evaluated with respect to the data [16], [17], [24] (see Section III). We
derive the desired Jacobian matrix for two types of computationally efficient algorithms: the
contemporary split-Bregman (SB) algorithm [46] and IRLS-MIL [47], [48] that uses the
matrix inversion lemma (MIL) to accelerate standard iterative reweighted least squares
(IRLS) [47], [48]. Our work can be interpreted as an extension to previous research [25]–
[30] that focussed on applying weighted SURE-type measures to inverse problems with
noniterative algorithms [26], [27] and to iterative image reconstruction based on sparsity
priors [29], [30] and synthesis formulations [25], [28].

In this paper, we compute Predicted-SURE [20], [21], Projected-SURE [24] and NGCV
[16], [17] for nonlinear image restoration and MRI reconstruction (from partially sampled
Cartesian k-space data) using TV and an analysis-type ℓ1-regularization. We also illustrate
using simulations (for image restoration and MRI reconstruction) and experiments with real
data (for MRI reconstruction) that both Predicted-SURE and Projected-SURE provide near-
MSE-optimal selection of regularization parameters in these applications. We also observed
that NGCV yielded near-MSE-optimal selections for image restoration and slightly sub-
optimal parameter values for MRI reconstruction.

The paper is organized as follows. Section II describes the problem mathematically and
presents our notation and mathematical requisites essential for theoretical derivations.
Section III briefly reviews (N)GCV and weighted SURE-type measures. Section IV
describes in detail the derivation of Jacobian matrices for the considered algorithms. We
present experimental results for image restoration and MRI reconstruction in Section V and
discuss reconstruction quality and memory / computational requirements of the considered
algorithmsin Section VI. Finally, we draw our conclusions in Section VII.

II. Notation and Problem Description

We use the following linear data model

(1)

that is appropriate for many imaging inverse problems including image restoration and MRI
reconstruction from partially sampled Cartesian k-space data. In (1), y ∈ ΩM is the observed
data, A ∈ ΩM×N is a known (rectangular) matrix (typically M ≤ N), and Ω is either ℝ or ℂ
depending on the application. We assume x ∈ ΩN is an unknown deterministic quantity. For
image restoration, Ω = ℝ, M = N and we assume that A is circulant, while for MRI with
partial Cartesian k-space sampling,1 Ω = ℂ and A = MQ, where Q ∈ ℂN×N is the
orthonormal DFT matrix, M is the M × N downsampling matrix that satisfies MM⊤ = IM
and IM is the identity matrix of size M.

Throughout the paper, (·)⊤ denotes the transpose of a real vector or matrix, (·) ⋆ denotes the
complex conjugate, (·)H is the Hermitian-transpose, (·)ℜ and (·)  indicate the real and
imaginary parts, respectively, of a complex vector or matrix. The m-th element of any vector
y is denoted by ym and the mn-th element of any matrix A is written as [A]mn.

For simplicity, we model ξ ∈ ΩM as an i.i.d. zero-mean Gaussian random vector with
covariance matrix Λ = σ2IM and probability density gΩ(ξ). For Ω = ℝ,

, while for Ω = ℂ, we assume ξ is an i.i.d. complex

1Partial k-space sampling on Cartesian grids is relevant for accelerating 3-D MR acquisition in practice, where undersampling is
typically applied in the phase-encode plane [49].
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Gaussian random vector (which is a reasonable model for MRI applications), so gℂ(ξ) =
(πσ2)−M exp(−ξHξ/σ2). SURE-type methods discussed in this paper (see Section III-B) can
be readily extended to more general cases (such as ξ with non-zero mean and covariance Λ
≠ σ2IM) using the generalized SURE (GSURE) methodology developed in [24].

Given data y, we obtain an estimate of the unknown image x by minimizing a cost function
based on (1) composed of a data-fidelity term and some regularization that is designed using
“smoothness” penalties or prior information about x:

(2)

where ║ · ║2 represents the Euclidean norm, Ψ represents a suitable regularizer that is
(possibly nonsmooth, i.e., not differentiable everywhere) convex and uθ : ΩM → ΩN may be
interpreted as a (possibly nonlinear) mapping or an algorithm, representative of the
minimization in (2), that acts on y to yield the estimate uθ(y). In practice, the mapping uθ
depends on one or more parameters θ that need to be set appropriately to obtain a
meaningful estimate uθ(y). In problems such as (2), typically, θ = λ is a scalar known as the
regularization parameter that plays a crucial role in balancing the data-fidelity and
regularization terms: small λ-values can lead to noisy estimates while a large λ results in
over smoothing and loss of details. Quantitative criteria such as GCV [6], [16], [17] and
(weighted) SURE-type measures [24], [25] can be used for tuning θ of a nonlinear uθ, but
they require the evaluation of the Jacobian matrix [16], [17], [24], J(uθ, y) ∈ ΩN×M for Ω =
ℝ, ℂ (see Sections III-A and III-B), consisting of partial derivatives of the elements

 of uθ(y) with respect to .

Definition 1

Let uθ : ℝM → ℝN be differentiable (in the weak sense of distributions [50, Ch. 6]). The
Jacobian matrix J(uθ, y) ∈ ℝN×M evaluated at y ∈ ℝM is specified using its elements as

(3)

Definition 2

Let uθ : ℂM → ΩN (with Ω = ℝ or ℂ) be individually analytic [51] with respect to yℜ and y
(in the weak sense of distributions [50, Ch. 6]). The Jacobian matrices J(uθ, y), J(uθ, y⋆) ∈
ℂN×M are specified using their respective elements as [51, Eq. 13], [52]

(4)

(5)
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Remark 1

When uθ : ℂM → ΩN is prescribed in terms of y and y⋆, J(uθ, y) is evaluated treating y as a
variable and y⋆ as a constant [52], [53]. Similarly, J(uθ, y⋆) is evaluated treating y as
constant [52], [53].

For common (and some popular) instances of  in (2), uθ satisfies the hypotheses in
Definitions 1 and 2 and in turn allows the computation of GCV and weighted SURE-type
measures for reliable tuning of θ as illustrated in our experiments.

III. Generalized Cross-Validation and Weighted SURE-Type Measures

A. Generalized Cross-Validation (GCV)

GCV is based on the “leave-one-out” principle [7] that leads to a simple expression in the
case of linear algorithms: for a generic linear mapping uθ(y) = Fθy, the GCV measure
(denoted by LGCV) is given by [7]

(6)

For nonlinear estimators uθ(y), we consider the following GCV measure (denoted by
NGCV)

(7)

adapted from [17, Sec. 3] that was originally derived using the standard “leave-one-out”
principle for nonlinear algorithms [16]. We take the real part, ℜ{·}, in the denominator of
(7) specifically for the case of Ω = ℂ to avoid spurious complex entries while evaluating
NGCV(θ) numerically.

LGCV has been more widely used [7]–[11], [13], [14] (for linear algorithms) than NGCV
(for nonlinear algorithms), perhaps because NGCV is computationally more involved than
LGCV. Recently, Liao et al. proposed GCV-based automatic nonlinear restoration methods
using alternating minimization in [54], [55]. Although their methods are nonlinear overall,
they rely on linear sub-problems arising out of alternating minimization and employ LGCV
for parameter tuning. In contrast, we propose to tackle NGCV (7) directly and demonstrate
its use in nonlinear image restoration and MRI reconstruction.

B. Weighted SURE-Type Measures

In the context of image reconstruction, the mean-squared error (risk) measure,

(8)

is often used to assess image quality and is an attractive option for optimizing θ. However,
MSE(θ) cannot be directly computed since the cross-term xHuθ(y) depends on the unknown

x (  is an irrelevant constant independent of θ) and needs to be estimated in practice. For
denoising applications, i.e., A = IN in (1), the desired cross-term can be manipulated as
xHuθ(y) = (y – ξ)Huθ(y) and the statistics of ξ may then be used to estimate ξHuθ(y). In the
Gaussian setting, ξ ∼ (0, σ2IN), Stein's result [18] (for Ω = ℝ) can be used for this purpose
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and leads to Eξ{ξ⊤uθ(y)} = σ2Eξ{tr{J(uθ, y)}}, where Eξ{·} represents expectation with
respect to ξ. Replacing ξ⊤uθ(y) in MSE(θ) with σ2 tr{ J(uθ, y)} thus yields the so-called
Stein's unbiased risk estimate (SURE) [18],

(9)

that is an unbiased estimator of MSE(θ), i.e., Eξ{MSE(θ)} = Eξ{SURE(θ)}. The accuracy
of SURE(θ) generally increases with N (law of large numbers), so it is appealing for image-
processing applications (where N is large, typically N ≥ 2562) [36]. Using SURE(θ) as a
practical alternative to MSE(θ) requires (in addition to σ2) the evaluation of tr{J(uθ, y)} that
can be performed analytically for some special types of denoising algorithms [32]–[35] or
numerically using the Monte-Carlo method in [36, Th. 2] for a general (iterative /
noniterative) denoising algorithm uθ.

For inverse problems modeled by (1), xHuθ(y) can be manipulated in terms of y (and ξ and
thus allows the estimation of MSE(θ) using statistics of ξ) only in some special instances,
e.g., when uθ(y) ∈ R{AH}, the range space of AH [24, Sec. IV],2 or when A has full column
rank [25, Sec. 4].2 In many applications, A has a nontrivial null-space N{A}: information
about x contained in N{A} is not accessible from y (and statistics of ξ) and it is impossible
to estimate MSE(θ) [24] in such cases. An alternative is to compute the error using only the
components of x that lie in the orthogonal complement of N(A): N(A)⊥ = R{AH} [24], [25];
these components are in turn accessible from y (and ξ). Such an error measure corresponds
to projecting3 the error (x – uθ(y)) on to R{AH} and is given by [24], [25]

(10)

where P = AH(AAH)†A is the projection operator and (·)† represents pseudo-inverse.

Another quadratic error measure for inverse problems that is amenable to estimation (using
statistics of ξ)3 is Predicted-MSE [20], [21] that corresponds to computing the error in the
data-domain:

(11)

Both (10) and (11) can be interpreted as particular instances of the following general
weighted form:

(12)

where , and W is a Hermitian-symmetric, W = WH, positive definite, W ≻ 0,
weighting matrix. For (11), W = IM and the overall weighting is provided by the eigenvalues
of AHA, while for (10) it is easy to see that W = Winv ≜ (AAH) † since PHP = P. For image
restoration with circulant A, Winv can be easily implemented using FFTs. For MRI with
partial Cartesian k-space sampling, A = MQ (see Section II) leads to Winv = (MQQHMH)†

2If uθ ∈ R{AH}, we can write uθ = AH gθ for some operator gθ, so that xHuθ(y) = (y – ξ)Hgθ(y) [23, Sec. 3.1]. Alternatively, if A
has full column rank, then xHuθ(y) = (y – ξ)H A(AH A)−1uθ(y).
3Since PHP = P, the cross-term xHPHPuθ(y) in Projected-MSE(θ) (10) is nothing but xHAH(AAH)†Auθ(y) = (y–
ξ)H(AAH)†Auθ(y). For Predicted-MSE(θ) (11), we have that xHAHAuθ(y) = (y – ξ)HAuθ(y).
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= IM, so Projected-MSE and Predicted-MSE are equivalent and correspond to evaluating
squared-error at the sample locations in k-space.

Similar to SURE(θ), an estimator for WMSE(θ) can be derived under the Gaussian
assumption as summarized in the following results.

Lemma 1—Let uθ : ΩM → ΩN be differentiable (for Ω = ℝ) or individually analytic (for Ω
= ℂ with respect to real and imaginary parts of its argument), respectively, in the weak sense
of distributions [50, Ch. 6]. Then, for any deterministic T ∈ ΩM×N satisfying Eξ{|[T
uθ(y)]m|} < ∞, m = 1 … M, we have that

(13)

The proof is very similar to those in [34, Lemma 1] [24, Th. 1] for Ω = ℝ, while it
constitutes a straightforward extension of [24, Th. 1] for Ω = ℂ and is presented as
supplementary material (due to page limits).4

Theorem 1—Let uθ and T = WA satisfy the hypotheses in Lemma 1 for A ∈ ΩM×N in (1)

and for a Hermitian-symmetric, positive definite matrix W ∈ ΩM×M. Then for Ω = ℝ or ℂ,
the random variable

(14)

is an unbiased estimator of WMSE(θ) in (12), i.e., Eξ{WMSE(θ)} = Eξ{WSURE(θ)}.

The proof is straightforward and uses (13) to estimate ξHWAuθ(y) in WMSE(θ). Similar to
SURE(θ), WSURE(θ) is independent of x and depends purely on the noise variance σ2, the
data and the reconstruction algorithm. The Monte-Carlo scheme [36, Th. 2] that uses
numerical differentiation for a general nonlinear uθ may be adapted to iteratively estimate
tr{WAJ(uθ, y)} in (14) for the case of Ω = ℝ by considering WAuθ instead of uθ in [36, Eq.
14]. In this paper, we propose to evaluate J(uθ, y) analytically for Ω = ℝ and ℂ This process
depends on the choice of the estimator uθ, the regularization Ψ in (2) and the nature of
application (e.g., Ω = ℝ for restoration and Ω = ℂ for MRI), and therefore needs to be
accomplished on a case-by-case basis.

IV. Evaluation of the Jacobian Matrix J(uθ, y)

For nonquadratic regularizes, there is no closed-form expression for the estimator uθ in (2),
so it is not possible to evaluate J(uθ, y) in (14) directly. In this section, we show how to
compute J(uθ, y) recursively for two types of iterative algorithms used for minimizing  in
(2). Henceforth, we leave implicit the dependence of uθ (y) on y and drop the subscript θ
when necessary, so that u represents either the estimator or the iteratively-reconstructed
estimate depending on the context.

We focus on IRLS-MIL [47], [48] that is a fast variant of the standard iterative reweighted
least-squares (IRLS) and the split-Bregman (SB) algorithm [46] that is based on variable
splitting. Both algorithms are computationally efficient,5 and can be employed for image

4Supplementary material containing a proof of Lemma 1 and additional illustrations for experimental results is available at http://
tinyurl.com/supmat.
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restoration and MRI reconstruction [46]–[48], [56]. Furthermore, they can accommodatea
general class of regularization criteria of the form

(15)

where λ > 0 is the regularization parameter, Φl are potential functions, R ∈ ℝR×N with

, Rp ∈ ℝL×N are regularization operators (e.g., finite differences, frames,
etc.) and R = PL. We consider the following convex instances of (15) that are popularly used
for image restoration and MRI reconstruction:

• Analysis ℓ1-regularization (Φl(x) = x, q = 1):

(16)

• Total variation (TV) :

(17)

We derive J(uθ, y) for image restoration with the IRLS-MIL algorithm (see Sections IV-A–
IV-B) and MRI reconstruction with the SB algorithm (see Sections IV-C–IV-D).
Derivations of J(uθ, y) for other combinations (i.e., image restoration with the SB algorithm
and MRI reconstruction with the IRLS-MIL algorithm) can be accomplished in a similar
manner and are not considered for brevity.

The derivations in Sections IV-A–IV-D can also be extended, in principle, to other instances
of (15) such as smooth convex edge-preserving regularizers for q = 1, e.g., Huber [39], Fair
or smoothed-Laplacian [48] and synthesis forms, e.g., by considering a variable w to be
estimated such that x = Sw and ASw in (1) and Φ(w) in (15), for some potential function Φ
and synthesis operator S [25], [28], [37], [38].

A. Image Restoration with IRLS-MIL Algorithm

IRLS-MIL uses matrix-splitting [57, pp. 46-50] and the matrix inversion lemma (MIL) for
efficient preconditioning and fast solving of iteration-dependent linear systems arising in the
standard IRLS scheme [47], [48]. We summarize the IRLS-MIL iterations below (detailed
derivation of IRLS-MIL can be found in [47], [48]) for image restoration (Ω = ℝ in (1)): for
any matrix C such that C ≻ A⊤ A, i.e.,

(18)

at outer i-iteration of IRLS-MIL, we perform inner j-iterations involving the following two-
steps:

5IRLS-MIL has been demonstrated to converge faster than conventional methods (e.g., nonlinear conjugate gradient) [47], [48], while
SB is more versatile and computationally efficient than fixed-point continuation and graph-cuts-based solvers [46].
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(19)

(20)

Where

(21)

G(i) ≜ Γ(i) + R C−1R⊤ and Γ(i) ≜ diag{γ(i)} is a diagonal matrix constructed from γ(i) ∈ ℝR

with . The l-th element of  for (15) is given by

(22)

where Φ′ denotes the first derivative of Φ. For instance,

(23)

for the ℓ1-regularization in (16), while for TV-regularization (17),

(24)

where 1p = [1 ⋯ 1] ⊤ is a P × 1 vector, ⊗ denotes the Kronecker product and the l-th

element of γ̆(i) ∈ ℝL is given by .

When R is composed of sparsifying operators (e.g., finite differences, wavelets, frames,
etc.), Rpu(i,0) tends to become sparse for sufficiently large i, so for practically appealing
instances of Ψ (e.g., when 1 ≤ m < 2 and Φ is an edge-preserving potential function or for
nonsmooth instances such as those based on the ℓ1-norm or TV), Γ(i) will become sparse too.
So in the standard IRLS scheme (which utilizes [Γ(i)]−1 rather than Γ(i) [47, Eqs. 3-6]), a
small positive additive constant is included in Γ(i) for maintaining numerical stability of
[Γ(i)]−1—this is often referred to as corner-rounding [47]. However no such corner-rounding
is required for the IRLS-MIL scheme [47], [48] as it only utilizes Γ(i).

To solve (20), we apply a matrix-splitting strategy (similar to [47, Eq. 7]) to G(i) that leads
to an iterative scheme for (20) (with iteration index k) with the following update step:

(25)

where DΓ(i) ≜ Γ(i) + ρIR is an invertible diagonal matrix, Hp ≜ ρIR – R C−1R⊤ and

(26)
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depends only on A (via C) and R and can therefore be precomputed. In practice, we perform
K iterations of (25) and apply the final update v(i+1,j,K) in place of v(i+1,j) in (19). We prefer
(25) over a PCG-type solver for (20) as (25) is linear in both b(·) and v(·) and decouples the
shift-variant component Γ(i) from the rest of terms in G(i): these features simplify the
analytical derivation of J(uθ, y) for IRLS-MIL as demonstrated next.

B. Jacobian Matrix Derivation for IRLS-MIL Algorithm

Since b(·) and v(·) are functions of y (via u(·)), using linearity of (3), at the end of K iterations
of (25), we get the Jacobian matrix update corresponding to u(i+1,j+1) from (19) as

(27)

From (21), we get that J(b(i+1,j), y) = C−1A⊤ + (IN − C−1A⊤A) J(u(i+1,j), y). To obtain
J(v(i+1,j,K), y), we derive a recursive update for J(v(i+1,j,k+1), y) from (25) using a
straightforward application of product rule for Jacobian matrices and the fact that (25)

involves only a diagonal matrix :

(28)

where Dv ≜ diag{R b(i+1,j) + Hρ v(i+1,j,k)}. Using chain rule for Jacobian matrices [52], we
have that

(29)

where J(γ(i), u(i+1,0)) ∈ ℝR×N constitutes derivatives of  with respect to ,
evaluated at u(i+1,0) and can be computed readily analytically for the regularizers in (15)
using (22). For the ℓ1-regularization6 Ψℓ1 in (16),

(30)

where the elements of τ(i) ∈ ℝR are .

For TV-regularization ΨTV in (17), we get (using tedious, but elementary calculus) that

(31)

where the elements of  are given by

6The derivatives are interpreted in the weak sense of distributions [50, Ch. 6] whenever conventional differentiation does not apply.
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(32)

with the assumption that  whenever [Rpu(i+1,0)]l = 0, p = 1 … P.

Thus, in addition to running (19), (25) for obtaining u(i,j), we propose to run the sequence of
iterations (27)-(28) using (29)-(32) for iteratively evaluating J(u(i,j), y), (and thus, NGCV(θ)
and WSURE(θ)) at any stage of IRLS-MIL.

C. MRI Reconstruction with Split-Bregman Algorithm

The split-Bregman (SB) algorithm [46] for solving (2) is based on a variable splitting
strategy [46], [49], [56], where an auxiliary variable v ∈ ℂR is used to artificially introduce
the constraint v = Ru and separate Ru from Ψ leading to

(33)

that is equivalent to (2). The above constrained problem is then solved using the so-called
Bregman-iterations [46, Eqs. (2.9)-(2.10)] that consists of alternating between the
minimization of an augmented Lagrangian (AL) function,7

, jointly with respect to (u, v) [46, Eq. (3.7)]
and a simple update step [46, Eq. (3.8)] for a Lagrange-multiplier-like vector, η ∈ ℂR, for
the constraint in (33). The penalty parameter μ > 0 does not influence the final solution of
(33) and (2), but governs the convergence speed of the Bregman-iterations [46]. In practice,
the joint-minimization step is often replaced by alternating minimization [46, Sec. 3.1], i.e.,
ℒ is minimized with respect to u and v one at a time, which decouples the minimization step
and simplifies optimization. We summarize the SB algorithm below for solving (33) (and
equivalently (2), for MRI reconstruction):

(34)

(35)

(36)

where Bμ ≜ AHA + μR⊤R. Step (35) corresponds to a denoising problem to which we
associate a denoising operator dΨ : ℂR → ℂR that acts on

(37)

7For (33), ℒ is equivalent to the sum of the Bregman-distance [46] and a quadratic penalty term for the constraint in (33) up to
irrelevant constants.
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to yield v(i+1). For a general Ψ such as (15), (35) can be solved iteratively in which case dΨ
is representative of the iterative scheme used for (35). However, for several special instances
of Ψ [58, Sec. 4] including (16)-(17), one can solve (35) exactly and dΨ admits an analytical
closed-form expression. Specifically for (16)-(17), it can be shown that (35) further

decouples in terms of the elements  of v, i.e., dΨ is a point-wise operator such that

, r = 1 … R.

Before proceeding, it is helpful to introduce β(i) ≜ 1P ⊗ β̆(i), where the l-th element of β̆(i) ∈

ℝL is given by . Then dΨ for (16)-(17) can be obtained as [46], [49]:

(38)

(39)

where 1(·) is an indicator function that takes the value 1 when the condition in its argument
is satisfied and is 0 otherwise.

D. Jacobian Matrix Derivation for Split-Bregman Algorithm

We note that u(·), v(·), η(·) and ϱ(·) are implicit functions of y and y⋆. Therefore, we evaluate8

J(u(i), y) using (34) and the linearity of (4) to get that

(40)

For the complex-valued case (Ω = ℂ), we also need to evaluate J(u(i+1), y⋆) as explained
next. For J(u(i+1), y⋆), we treat y as a constant in (34) (see Remark 1) so that

(41)

For brevity, henceforth we use z to represent either y or y⋆ as required. From (35)-(36), we
have that

(42)

(43)

Using chain rule for J(dΨ(ϱ(i)), z) [53, Th. 1], we get that

(44)

where J(ϱ(i), z)=RJ(u(i+1), z) − J(η(i), z) from (37). Thus, due to (44), both J(u(·), y) and
J(u(·), y⋆) are required as mentioned earlier.

8The derivatives are interpreted in the weak sense of distributions [50, Ch. 6] whenever conventional differentiation does not apply.
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For the case of ℓ1-regularization (16), dℓ1 in (38) depends only on  and , so J(dℓ1, ϱ(i))
and J(dℓ1, ϱ(i)⋆) become diagonal matrices:

(45)

(46)

where

(47)

(48)

(49)

For the case of TV-regularization (17), we apply (tedious, but elementary) product rule to
obtain

(50)

(51)

(52)

(53)

(54)

(55)

Thus, similar to the case of IRLS-MIL, we propose to run (34)-(36) for obtaining u(i) and
(40)-(55) for iteratively evaluating J(u(i), y) (and thus, NGCV(θ) and WSURE(θ)) at any
stage of the SB algorithm.
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E. Monte-Carlo Trace Estimation

The Jacobian matrices J(·, ·) in Sections IV-B and IV-D have enormous sizes for typical
reconstruction settings and cannot be stored and manipulated directly to compute the desired
traces, tr{AJ(uθ, y)} in (7) and tr{WAJ(uθ, y)} in (14). So we use a Monte-Carlo method to
estimate tr{AJ(uθ, y)} and tr{WAJ(uθ, y)} that is based on the following well-established
identity [12], [59]-[61].

Proposition 1—Let  ∈ ℝM be an i.i.d. zero-mean random vector with unit variance and

T ∈ ΩM×M (for Ω = ℝ or ℂ) be deterministic with respect to . Then

(56)

For practical applications, E {·} in (56) can be replaced by sample mean, ,

with Nr independent realizations . In image-processing applications where, typically,
M is large and T has a sparse off-diagonal structure, tT̂ ≜ ⊤ T  (corresponding to Nr = 1)
provides a reliable estimate of tr{T} [11], [12], [25], [28]. To use this type of stochastic
estimation for tr{AJ(uθ, y)} and tr{WAJ(uθ, y)}, we adopt the procedure applied in [25],
[28]: we take products with  in (27)-(29), (40)-(44) and store and update vectors of the
form J(u(·), ·) , J(v(·), ·) , J(η(·), ·)  in IRLS-MIL and SB algorithms, respectively. At
any point during the course of the algorithms, the desired traces in (7) and (14) are
stochastically approximated, respectively, as

(57)

(58)

To improve accuracy of (57)-(58),  can be designed to decrease the variance of tN̂GCV and
tŵsure: it has been shown [59], [61] that variance of a Monte-Carlo trace estimate (such as
tN̂GCV or tŴSURE) is lower for a binary random vector ±1 whose elements are either +1 or
−1 with probability 0.5 than for a Gaussian random vector  ∼ (0, IM) employed in [25],
[28]. So in our experiments, we used one realization of ±1 in (57)-(58). Figs. 1, 2 present
outlines for implementing IRLS-MIL and SB algorithms with recursions for J(·, ·) ±1 to
compute and monitor NGCV(θ) and WSURE(θ) as these algorithms evolve.

F. Implementation of IRLS-MIL and Split-Bregman Algorithms

The convergence speed of IRLS-MIL (19), (25) depends primarily on the “proximity” of C
to A⊤ A while ensuring (18) [47], [48]. Ideally, we would like to choose the circulant matrix
Copt = QHdiag{αopt}Q, where Q is the DFT matrix and

 for some matrix norm |||·|||, e.g., the
Frobenius norm. However, αopt can be both challenging and computationally expensive to
obtain for a general A. For image restoration, typically, A⊤A ∈ ℝN×N is circulant, so αopt is
simply the eigenvalues of A⊤ A. In our experiments, we used C = Cν ≜ A⊤A+νIN and

implemented  using FFTs. The parameter ν > 0 was chosen to achieve a prescribed
condition number of Cν, κ(Cν), that can be easily computed as a function of ν. In general,

setting κ(Cν) to a large value can lead to numerical instabilities in  and IRLS-MIL, while
a small κ(Cν) reduces convergence speed of IRLS-MIL [47], [48]. In our experiments, we
found that ν leading to κ(Cν) ∈ [20, 100] yielded good convergence speeds for a fixed
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number of outer (i.e., index by i) iterations of IRLS-MIL, so we simply set ν such that
κ(Cν) = 100.

For MRI reconstruction from partially sampled Cartesian k-space data, AHA ∈ ℂN×N is

circulant [49]. We chose  in (16)-(17) to be shift-invariant with periodic boundary
extensions so that R⊤R, and thus Bμ in (34), are circulant as well. Then we implemented

 in (34) using FFTs. One way to select the penalty parameter μ for the SB algorithm is to
minimize the condition number κ(Bμ) of Bμ: μ = μmin ≜ argminμ κ(Bμ) [46]. We found in
our experiments that the empirical selection μ = μmin × μfactor with μfactor ∈ [10−5, 10−2]
yielded favorable convergence speeds of the SB algorithm for a fixed number of iterations
compared to using μmin, so we set μfactor = 10−4 throughout.

V. Experimental Results

A. Experimental Setup

In all our experiments, we focussed on tuning the regularization parameter λ (16)-(17) for a
fixed number of (outer) iterations for both IRLS-MIL and SB algorithms, although in
principle, we can apply the greedy method9 of Giryes et al. [25, Sec. 5.2] to minimize
WSURE and NGCV as functions of both the number of iterations and λ. For IRLS-MIL, we
used J = K = 1 (J iterations of (19)-(25) and K iterations of (25), see Fig. 1) and set the
maximum number of iterations (indexed by i) to 100 for both algorithms. We used 2 levels
of the undecimated Haar wavelet transform (excluding the approximation level) for R in Ψℓ1
(16) and horizontal and vertical finite differences for  in ΨTV (17), all with periodic
boundary extensions.

Both NGCV (7) and WSURE (14) require the evaluation of J(uθ, y), therefore their
computation costs are similar for a given reconstruction algorithm. We evaluated NGCV(λ)
in (7) for image restoration and MRI reconstruction and the (oracle) MSE using (8). We
assumed that σ2 (the variance of noise in y) was known10 in all simulations to compute the
following WSURE-based measures: Predicted-SURE(λ) with W = IM in (14) and Projected-
SURE(λ) with W = (AAH)† in (14) that correspond to Predicted-MSE(λ) (11) and
Projected-MSE(λ) (10), respectively. For image restoration, we computed W = (AAH)† for
Projected-SURE using FFTs.11 For MRI reconstruction from partially sampled Cartesian k-
space data, Predicted-SURE and Projected-SURE are equivalent (since W = IM, see Section
III-B) and correspond to evaluating the error at sample locations in the k-space.

B. Results for Image Restoration

We performed three sets of experiments with simulated data corresponding to the setups
(with standard blur kernels [37]) summarized in Table I. In each simulation, data was
generated corresponding to a blur kernel and a prescribed BSNR (SNR of blurred and noisy
data) [43]. IRLS-MIL was then applied for varying λ and the quality of the deblurred
images was assessed by computing Projected-SURE(λ), Predicted-SURE(λ) and NGCV(λ).
We also included the following GCV-measure adapted from [25, Eq. 11] in our tests:

9The Jacobian matrix J(u(·), y) is updated at every (outer) iteration of IRLS-MIL and SB algorithms (see Figs. 1, 2), so (57)-(58) can
be used to monitor NGCV(θ) and WSURE(θ), respectively, during the course of the algorithms as elucidated in Figs. 1, 2.
10In practice, σ can be estimated fairly reliably using, e.g., the techniques proposed in [22, Sec. V].
11We set the eigenvalues of AAH below a threshold of 10−5 to zero for numerical stability of (AAH)†.
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(59)

where ± is the binary random vector specified in Section IV-E. RLGCV in (59) is a
randomized version of LGCV in (6) that applies to linear algorithms but has been suggested
for use with nonlinear algorithms as well in [25]. We minimized these measures over λ
using golden-section search and calculated the improvement in SNR (ISNR) [43] of
corresponding deblurred images (after minimizing the various measures).

Tables II and III summarize the ISNR-results for Experiments IR-A and IR-B, respectively,
for varying BSNR. Minimization of Projected-SURE(λ) yields deblurred images with ISNR
(reasonably) close to the corresponding minimum-MSE (oracle) result in all cases.
Surprisingly, data-domain predicted-type measures Predicted-SURE and NGCV, which are
known to undersmooth linear deblurring algorithms [22], [24], also consistently yield ISNRs
that are remarkably near the corresponding oracle-ISNRs. These observations are also
substantiated by Fig. 3 where we plot ISNR(λ) versus λ for specific instances of
Experiments IR-A and IR-B: ISNRs corresponding to the optima of Projected-SURE(λ),
Predicted-SURE(λ) and NGCV(λ) are close to the oracle-ISNR. Accordingly, the deblurred
images (corresponding to an instance of Experiment IR-A) obtained by minimizing
Projected-SURE(λ) (Fig. 4d), Predicted-SURE(λ) (Fig. 4e) and NGCV(λ) (Fig. 4f) closely
resemble the corresponding minimum-MSE result (Fig. 4c) in terms of visual appearance.
We present additional illustrations (for Experiments IR-A and IR-B) that corroborate these
inferences as supplementary material.4

To further investigate the potential of Predicted-SURE and NGCV, we generated y
corresponding to uniform blur of varying sizes (for a fixed BSNR of 40 dB: Experiment IR-
C) and minimized the various measures (using golden-section search) in each case. The
ISNR-results summarized in Table IV for this experiment indicate that minimization of
Predicted-SURE(λ) and NGCV(λ) (and also Projected-SURE(λ)) lead to deblurred images
with ISNRs close to that of the corresponding MSE-optimal ones. We obtained similar
promising results at varying (BSNR = 20, 30 dB) levels of noise (results not shown). These
observations suggest that Predicted-SURE and NGCV may be reasonable alternatives to
Projected-SURE for tuning λ for nonlinear restoration.

In all image-restoration experiments, the RLGCV-measure (59) yielded λ-values that were
larger (by at least an order of magnitude, e.g., see Fig. 3) than corresponding oracle-
optimum-λ, leading to over-smoothing and loss of details (e.g., see Fig. 4g), and thus
reduced ISNR (see RLGCV-column in Tables II-IV). These results are perhaps due to the
fact that RLGCV (based on LGCV in (6)) is primarily designed for linear algorithms and is
therefore unable to cope with nonlinearity of (2) for the strongly nonquadratic regularizers in
(16)-(17). On the contrary, NGCV (7), which is specifically designed to handle nonlinear
algorithms [16], [17], provides a reliable means of selecting λ for nonlinear restoration. We
do not show results for RLGCV hereafter.

C. Results for MRI Reconstruction

We conducted experiments with both synthetic and real MR data (setups summarized in
Table V) for MRI reconstruction. In the synthetic case, we considered two test images (of
size 256 × 256): the Shepp-Logan phantom (Experiments MRI-A) and a noisefree T2-
weighted MR image (Experiment MRI-B, see Fig. 6a) from the Brainweb database [62].
Partial sampling of k-space was simulated by applying a sampling mask (confined to a
Cartesian grid)12 on the Fourier transform (FFT) of test images. We considered two types of
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masks corresponding to a near uniform (less than Nyquist rate) but random sampling of k-
space with a 8 × 8 fully sampled13 central portion (see Fig. 6b) and radial patterns that
densely sample the center13 but sparsely sample the outer k-space (e.g., see Fig. 7b).
Complex (i.i.d., zero-mean) Gaussian noise of appropriate variance was added at sample
locations to simulate noisy data of prescribed SNR in Experiments MRI-A and MRI-B.

For experiments with real MR data, we acquired 10 independent sets of fully-sampled 2-D
data (256 × 256) of a GE-phantom using a GE 3T scanner (gradient-echo sequence with flip
angle = 35°, repetition time = 200 ms, echo time = 7 ms, field of view (FOV) = 15 cm and
voxel-size = 0.6 × 0.6 mm2). These fully-sampled datasets were used to reconstruct (using
iFFT) 2-D images that were then averaged to obtain a reference image that served as the true
“unknown” x (see Fig. 7a) for computing the oracle MSE (8). We separately acquired 2-D
data from a dummy scan (with the same scan setting) where no RF field was applied. We
used this dummy-data to estimate σ2 by the empirical variance. We retrospectively
undersampled data from one of the 10 sets by applying radial sampling patterns (confined to
a Cartesian grid)13 with varying number of spokes in Experiment MRI-C.

We ran the SB algorithm and minimized Predicted-SURE(λ) and NGCV(λ) using golden-
section search for each instance of Experiments MRI-A, MRI-B, and MRI-C, respectively.

Tables VI-VIII present PSNR (computed as  of
reconstructions obtained after minimization of Predicted-SURE(λ) and NGCV(λ). In almost
all experiments, NGCV-based selections resulted in worse PSNRs than those corresponding
to Predicted-SURE-selections. This is also corroborated by Fig. 5 where we plot PSNR(λ)
as a function of λ for specific instances of Experiment MRI-B and MRI-C. NGCV-based
selections are away (approximately, by an order of magnitude) from both Predicted-SURE-
and oracle-selections. As the PSNR-profile in Fig. 5a exhibits a plateau14 over a large range
of λ-values, NGCV-based reconstruction in Fig. 6d is visually similar to the corresponding
minimum-MSE reconstruction in Fig. 6f. However, this is not the case with Fig. 5b and
correspondingly, the NGCV-based reconstruction in Fig. 7f exhibits slightly more artifacts
at the center and around the object's periphery compared to Predicted-SURE-based, Fig. 7e,
and minimum-MSE, Fig. 7d, reconstructions. These results indicate that NGCV may not be
as consistently robust for MRI reconstruction from partially sampled Cartesian data (which
is a severely ill-posed problem where AHA has a lot of zero-eigenvalues) as for image
restoration (where only fewer eigenvalues of AHA are zero, especially for the blurs
considered in Section V-B).

On the other hand, Predicted-SURE-based tuning consistently yields PSNRs close to the
corresponding (minimum-MSE) oracle-PSNRs as seen from Tables VII-VIII and Fig. 5.
Predicted-SURE also leads to reconstructions (see Figs. 6e, 7e) that are visually similar to
the respective minimum-MSE reconstructions (see Figs. 6d, 7d). These results demonstrate
the potential of Predicted-SURE for selection of λ for MRI reconstruction.

12Cartesian undersampling is more appropriate for 3-D MRI in practice and is applied here retrospectively for 2-D MRI for
illustration purposes.
13Partial k-space sampling schemes typically involve dense sampling of the central portion (as that contains most of the signal
energy) and undersampling of outer portions of k-space [49], respectively.
14This is perhaps because the problem is less ill-posed in Experiment MRI-B as the k-space is sampled in a nearly uniform (but
random) fashion (see Fig. 6b) compared to other setups, MRI-A and MRI-C, respectively, that use radial sampling (e.g., see Fig. 7b)
where the corners of k-space are sparsely sampled.

Ramani et al. Page 17

IEEE Trans Image Process. Author manuscript; available in PMC 2013 September 07.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



VI. Discussion

A. Reconstruction Quality

Reconstruction quality in inverse problems of the form (1)-(2) is mainly governed by (a) the
cost criterion  in (2), and (b) the choice of associated regularization parameter(s). In this
work, we have only addressed the latter aspect, i.e., (b), for specific (but popular)
regularizers such as TV and those based on the ℓ1-norm. As we achieve near-MSE-optimal
tuning of the regularization parameter for these regularizers, our TV-based image restoration
results are comparable to those in [43], [45], [54]. It should be noted that this optimality
(achieved by considering (b) alone) however is only over the set of solutions prescribed by
the minimization problem in (2) for a given regularizer. It is possible to further improve
quality by considering more sophisticated regularizers, e.g., higher-degree total variation
[63], Hessian-based [64] and nonlocal regularization [65]. Extending the applicability of our
current parameter selection techniques to these advanced regularizers requires more
investigation and is a possible direction for future research.

B. IRLS-MIL and Split-Bregman Algorithms

Both IRLS-MIL and split-Bregman (SB) algorithms can tackle general minimization
problems of the form (2) with arbitrary convex regularizes. However, the inner-steps of the
SB algorithm (34)-(35) may not admit exact updates for a general A and / or general
regularizer Ψ such as (15) or those in [63], [64]. In such cases, iterative schemes may be
needed for the updates in (34)-(35), and correspondingly, evaluation of J(u(·), y) has to be
performed on a case-by-case basis depending on the type of iterative schemes used for (34)-
(35). In this respect, IRLS-MIL is slightly more general: as it is based on the standard
gradient-descent IRLS scheme [47], [48], it may be more amenable to tackle sophisticated
regularizers [63], [64] and / or a data model involving a more general15 A.

C. Memory and Computation Requirements

Evaluating reconstruction quality through quantitative measures generally involves
additional memory and computational requirements [31]. In our case, it is clear from (27)-
(32) that storing and manipulating J(u(·), y) , J(v(·), y) , J(γ(·), y)  and evaluating
NGCV(λ), Predicted-SURE(λ) and Projected-SURE(λ) for one instance of the parameter
vector λ demand similar memory and computational load as the IRLS-MIL iterations (19),
(25) themselves. These requirements are also comparable to those of the iterative risk
estimation techniques in [25], [28] and the Monte-Carlo divergence estimator in [36, Th. 2]
(that needs two algorithm evaluations for one instance of λ). The complex-valued case (Ω =
ℂ) demands even more memory and computations (compared to the real-valued case Ω = ℝ
as one has to tackle Jacobian matrices evaluated with respect to y and y⋆. This additional
requirement is purely a consequence of complex-calculus. In general, the exact amount of
storage and computation necessary for evaluating NGCV and WSURE depends on how the
reconstruction algorithm is implemented.

Furthermore, in our experiments, we optimize NGCV(λ), Predicted-SURE(λ) and
Projected-SURE(λ) using golden-section search that necessitates multiple evaluations of
these performance measures for several instances of λ. To save computation time, it is
desirable to optimize λ simultaneously during reconstruction. Designing such a scheme is
not straight-forward when the reconstruction problem is posed as (2) since intermittently
changing λ affects the cost function  and alters the original problem (2).

15The matrix C needs to be chosen in accordance with (18), but since it depends only on A (and AH), it can be predetermined for a
given problem.
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To avoid this difficulty, image reconstruction can be formulated as a penalty problem using
variable splitting and penalty techniques [66]. Alternating minimization can then be
employed to decouple the original penalty problem into simpler linear and nonlinear
subproblems [66]. The advantage of this approach is that it provides the option for
optimizing parameters based on the subproblems, which can be achieved relatively easily.
Liao et al. [54], [55] demonstrated the practicability of this approach for TV-based image
restoration, but they optimized regularization parameters only based on linear subproblems
(using LGCV) and used continuation techniques to adjust other parameters associated with
nonlinear subproblems. Since the techniques developed in this paper can handle nonlinear
algorithms, they may be adapted to optimize parameters (e.g., using NGCV) associated with
the nonlinear subproblems in the penalty formulation. As part of future work, we plan to
investigate the penalty approach for biomedical image reconstruction with simultaneous
optimization of penalty parameters.

VII. Summary & Conclusions

Proper selection of the regularization parameter (λ) is an important part of regularized
methods for inverse problems. GCV and (weighted) MSE-estimation based on the principle
of Stein's Unbiased Risk Estimate [18]—SURE (in the Gaussian setting) can be used for
selecting λ, but they require the trace of a linear transformation of the Jacobian matrix, J(uθ,
y), associated with the nonlinear (possibly iterative) reconstruction algorithm represented by
the mapping uθ. We derived recursions for J(uθ, y) for two types of nonlinear iterative
algorithms: the iterative reweighted least squares method with matrix inversion lemma
(IRLS-MIL) [47] and the variable splitting-based split-Bregman (SB) algorithm [46], both
of which are capable of handling (synthesis-type and) a variety of analysis-type regularizers.

We estimated the desired trace for nonlinear image restoration and MRI reconstruction
(from partially sampled Cartesian k-space data) by applying a Monte-Carlo procedure
similar to that in [25], [28]. We implemented IRLS-MIL and SB along with computation of
NGCV(λ), Predicted-SURE(λ), and Projected-SURE(λ) for total variation and analysis ℓ1-
regularization. Through simulations, we showed for image restoration that selecting λ by
minimizing NGCV(λ), Predicted-SURE(λ), and Projected-SURE(λ) consistently yielded
reconstructions that were close to corresponding minimum-MSE reconstructions both in
terms of visual quality and SNR improvement. For MRI (with partial Cartesian k-space
sampling), we conducted experiments with both synthetic and real phantom data and found
that NGCV-based reconstructions were slightly sub-optimal in terms of SNR improvement,
while minimizing Predicted-SURE(λ) (equivalent to Projected-SURE(λ) in this case)
consistently yielded near-MSE-optimal reconstructions both in terms of SNR improvement
and visual quality. These results indicate the feasibility of applying GCV- and weighted
SURE-based selection of λ for iterative nonlinear reconstruction using analysis-type
regularizers. The philosophy underlying theoretical developments in this work can also be
extended, in principle, to handle other regularizers, reconstruction algorithms and inverse
problems involving Gaussian noise.
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Fig. 1.

Iterative computation of WSURE(θ) and NGCV(θ) for image deblurring using IRLS-MIL
algorithm (with J iterations of (19)-(25) and K iterations of (25)). We use a pregenerated
binary random vector  = ±1 for Monte-Carlo computation (57)-(58) of the required traces
in (7) and (14), respectively. Vectors of the form J(·(·), ·)  are stored and manipulated in
place of actual matrices J (·(·), ·).
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Fig. 2.

Iterative computation of WSURE(θ) and NGCV(θ) for MRI reconstruction with split-
Bregman algorithm. We use a pregenerated binary random vector  = ±1 for Monte-Carlo
computation (57)-(58) of the required traces in (7), (14), respectively. Vectors of the form
J(·(·), ·)  are stored and manipulated in place of actual matrices J(·(·), ·).
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Fig. 3.

Plot of ISNR(λ) as a function of regularization parameter λ. Left: Experiment IR-A
corresponding to third row of Table II; Right: Experiment IR-B corresponding to third row
of Table III. The plots indicate that λ's that minimize Projected-SURE, Predicted-SURE,
NGCV and the (oracle) MSE are very close to each other. RLGCV-based selection (59) is
far away from that of oracle MSE-based selection and leads to over-smoothing and loss of
details, e.g., see Fig. 4g.
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Fig. 4.

Experiment IR-A corresponding to third row of Table II: Zoomed images of (a) Noisefree
Cameraman; (b) Blurred and noisy data; and TV-deblurred images with regularization
parameter λ selected to minimize (c) (oracle) MSE (8.50 dB); (d) Projected-SURE (8.50
dB); (e) Predicted-SURE (8.49 dB); (f) NGCV (8.49 dB); (g) RLGCV in (59) (2.41 dB).
Projected-SURE-, Predicted-SURE- and NGCV-based results (d)-(f) visually resemble the
oracle MSE-based result (c) very closely, while the RLGCV-based (59) result is
considerably over-smoothed.
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Fig. 5.

Plot of PSNR(λ) as a function of regularization parameter λ: (a) Experiment MRI-B
corresponding to second row of Table VII; (b) Experiment MRI-C corresponding to fourth
row of Table VIII. The plots indicate that λ's that minimize Predicted-SURE and the
(oracle) MSE are very close to each other and lead to almost identical PSNRs. NGCV-based
selection is away from the MSE-based selection in both plots: in case of (a) it still yields a
reconstruction Fig. 6f that is agreeably close to the oracle in terms of PSNR and visual
quality Fig. 6d, but in (b) it leads to a slight reduction in PSNR and correspondingly the
reconstruction Fig. 7f exhibits slightly more artifacts at the center and around the object.
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Fig. 6.

Simulations corresponding to Experiment MRI-B and second row of Table VII: (a)
Noisefree T2-weighted MR test image; (b) Retrospective random undersampling (black dots
indicate sample locations on a Cartesian grid, 60% undersampling); (c) Magnitude of zero-
filled iFFT reconstruction from undersampled data (-2.88 dB db); and magnitude of
reconstructions obtained (using analysis ℓ1-regularization with 2 levels of undecimated Haar
wavelet) with regularization parameter λ selected to minimize (d) (oracle) MSE (10.58 dB);
(e) Predicted-SURE (10.53 dB); (f) NGCV (10.38 dB). Regularized reconstructions (d)-(f)
have reduced noise and artifacts compared to the zero-filled iFFT reconstruction (c). Both
Predicted-SURE-based and NGCV-based results (e) and (f) closely resemble the oracle
MSE-based result (d) in this experiment.
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Fig. 7.

Experiment MRI-C with real MR GE-phantom data (corresponding to fourth row of Table
VIII): (a) Magnitude of reference image reconstructed (using iFFT) and averaged over 10
fully-sampled acquisitions; (b) Retrospective sampling along radial lines (50 lines on a
Cartesian grid with 82% undersampling, black lines indicate sample locations); (c)
Magnitude of zero-filled iFFT reconstruction from undersampled data (22.51 dB); and
magnitude of TV-regularized reconstructions with regularization parameter λ selected to
minimize (d) (oracle) MSE (33.03 dB); (e) Predicted-SURE (33.03 dB); (f) NGCV (32.30
dB). Regularized reconstructions (d)-(f) have reduced artifacts compared to the zero-filled
iFFT reconstruction (c). Predicted-SURE-based result (e) closely resembles the oracle MSE-
based result (d), while NGCV-based result (f) exhibits slightly more artifacts at the center
and around the object's periphery.
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TABLE I

Setup for image restoration (IR) experiments

Experiment Test image (256 × 256) Blur Regularization

IR-A Cameraman Uniform 9 × 9 ΨTV

IR-B House (1 + x1 + x2)−1, −7 ≤ x1, x2 ≤ 7 Ψℓ1

IR-C Cameraman Uniform (with varying sizes) ΨTV
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TABLE V

Setup for experiments with simulated and real MR data

Experiment Test image / Real MR data (256 × 256) Retrospective (Cartesian) undersampling Regularization

MRI-A Shepp-Logan phantom Radial (30 lines, 89% undersampling) ΨTV

MRI-B Noisefree T2-weighted MR image Random (60% undersampling) Ψℓ1

MRI-C Real GE-phantom dataset Radial (with varying number of lines) ΨTV
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TABLE VI

PSNR† (in dB) of MRI reconstructions for Experiment MRI-A and varying Data SNR

Data SNR (in dB) σ2 MSE (oracle) Predicted-SURE NGCV

30 2.69e+01 13.69 13.66 12.72

40 2.69e+00 22.28 22.21 21.68

50 2.69e-01 31.90 31.86 30.74

60 2.69e-02 42.33 42.33 42.12

†
PSNR values within 0.1 dB of the oracle are indicated in bold in Tables VI-VIII.
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TABLE VII

PSNR† (in dB) of MRI reconstructions for Experiment MRI-B and varying Data SNR

Data SNR (in dB) σ2 MSE (oracle) Predicted-SURE NGCV

30 1.33e+01 7.77 7.33 7.33

40 1.33e+00 10.58 10.53 10.38

50 1.33e-01 11.62 11.62 11.58

60 1.33e-02 11.83 11.81 11.83

†
PSNR values within 0.1 dB of the oracle are indicated in bold in Tables VI-VIII.
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TABLE VIII

PSNR† (in dB) of MRI reconstructions for Experiment MRI-C and varying

undersampling rates

Number of radial lines % undersampling MSE (oracle) Predicted-SURE NGCV

20 93 26.19 26.16 25.82

30 89 30.08 30.06 29.42

40 85 31.71 31.69 31.09

50 82 33.03 33.03 32.16

60 78 33.65 33.56 32.85

†
PSNR values within 0.1 dB of the oracle are indicated in bold in Tables VI-VIII.
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