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1. Introduction

A Poisson data-noise model arises in many inverse problems applications. In image

processing, in particular, a CCD camera is often used to measure image intensity via

the counting of incident photons. Counting processes are known to have error that is

well-modeled by a Poisson distribution, and so a Poisson data-noise model is natural in

this setting [23].

If the correct noise model is taken into account, the maximum likelihood estimator

of the underlying true image is the minimizer of a negative-log Poisson likelihood

function (with a penalty term when the underlying problem is sufficiently ill-posed).

The computation of this estimator is made difficult by the fact that a constraint is

needed and that the cost function is non-quadratic.

The approach taken by many researchers is to ignore the Poisson data-noise model

and compute instead the minimizer of a least squares function (with penalty if needed)

[27]. This approach is attractive for a number of reasons. First, for images with high

and smoothly varying intensities, the results are as good as when the correct noise

model is assumed [26]. Perhaps more importantly, however, is that fact that regularized

least squares problems have been studied extensively, both from the theoretical and

computational points of view. So the user has many tools at his or her disposal.

On the other hand, there is sometimes benefit to be gained by using a more accurate

noise model, and recent work of the authors has shown that efficient and convergent

computational methods exist for the resulting minimization problem [8, 6]. Moreover,

a rigorous theoretical (functional analytic) justification of the approach, akin to that

developed for least squares problems, has been developed [3, 4, 5].

But one of the most important problems remains: the development of methods for

choosing the regularization parameter. While the problem of regularization parameter

selection has been discussed in very general settings (even encompassing the Poisson

noise case), here we present a concrete (theoretical) tie between the negative-log Poisson

likelihood function and a certain weighted least squares function. Using this link, we

are able to motivate the use of the several standard regularization parameter selection

techniques for least squares problems for use on regularized negative-log Poisson

reconstruction problems. Our approach is different from other schemes for estimating

the value of the regularization parameter in the case of non-quadratic likelihood (see

e.g., [9, 13]).

The existing regularization parameter selection methods of interest to us in this

paper are the discrepancy principle (DP), generalized cross validation (GCV), and

unbiased predictive risk estimate (UPRE). DP uses an approximation which implies that

the optimal value of the parameter should yield a solution for which the sum of squares

of the weighted residuals is equal to the mean of a Chi-square distribution [17, 21, 27].

GCV selects the value of the parameter that minimizes GCV functional, which is

an adaptation of the leave-one-out cross-validation functional to large-scale problems

[27, 28]. UPRE chooses the value of the regularization parameter that minimizes the
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predictive risk [27].

1.1. Preliminary Mathematical Development

In this subsection, we present the mathematical, statistical, and computational models

of focus. We begin with the mathematical model.

The following problem is very common in imaging science: given a blurred, noisy

N ×N image array z, obtain an estimate of the underlying N ×N true object array ue

by approximately solving a linear system of the form

z = Au + γ, (1)

where z has been column-stacked so that it is N2 × 1; A is a known, and often ill-

conditioned, N2 × N2 matrix; and γ corresponds to the known, positive background

intensity of the image being viewed. Moreover, we assume that Au ≥ 0 for all u ≥ 0.

For the remainder of the manuscript, we will use the convention n
def
= N2.

In both astronomical and medical imaging applications, the elements of z

correspond to noisy photon counts. A statistical model that is used to model stochastic

errors in both astronomical and medical imaging [19, 23] is

z = Poiss(Aue + γ), (2)

where Poiss(λ) is an independent and identically distributed (iid) Poisson random vector

with Poisson parameter vector λ. (See [23] for a detailed discussion of this statistical

model in the astronomical imaging case.)

The probability density function for the data z given (2) has the form

p(z;u) :=
n∏

i=1

([Au]i + γi)
zi exp[−([Au]i + γi)]

zi!
, (3)

where [Au]i, γi, and zi are the ith components of Au, γ, and z, respectively.

Given image data z arising from model (2), the maximum likelihood estimate of ue

is obtained by maximizing p(z;u) with respect to u, subject to the constraint u ≥ 0,

or more commonly, by solving

uML = arg min
u≥0

{
T0(u; z)

def
=

n∑
i=1

{([Au]i + γi)− zi ln([Au]i + γi)}
}

. (4)

Note that T0 is equal, up to an additive constant, to − ln p(z;u).

Similar to the case for least squares estimation, solutions of (4) can be noise-

corrupted when A is ill-conditioned, in which case regularization is needed. This can

be motivated statistically within a Bayesian setting. In particular, a probability density

p(u) for u is specified and the posterior density

p(u; z) :=
p(z;u)p(u)

p(z)
, (5)
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given by Bayes’ Law, is maximized with respect to u. The maximizer of the posterior

density function p(u; z) is called the maximum a posteriori (MAP) estimator. We note

that maximizing (5) with respect to u is equivalent to minimizing

T (u) = T0(u; z)− ln p(u). (6)

The function − ln p(u) is the regularization term from classical inverse problems.

Thus we see that in using the Bayesian formulation above, a statistically rigorous

interpretation of regularization follows. Note, in particular, that p(u) is the probability

density function – known as the prior – from which the unknown u is assumed to arise.

In this paper, we will consider regularization functions (negative-log priors) of the

form

− ln p(u) =
α

2
〈Cu,u〉, (7)

where 〈·, ·〉 denotes the Euclidean inner product, C ∈ RN×N is symmetric, positive semi-

definite, and the regularization parameter α controls the magnitude of the eigenvalues of

the covariance. Note in particular that larger α yields larger eigenvalues of αC, which

yields a more restrictive (or informative) prior, since p(u) is a (possibly degenerate)

Gaussian with mean 0 and covariance matrix α−1C†, where “ † ” denotes pseudo-

inverse.

Thus the computational problem of interest has the form

uα = arg min
u≥0

{
Tα(u)

def
= T0(u; z) +

α

2
〈Cu,u〉

}
. (8)

In this setting, the presence of the regularization α is more familiar. We make the

additional assumption that the null-spaces of A and C intersect only trivially so that

Tα is a strictly convex function. In this case, uα exists and is unique [8]. Methods for

estimating the value of α in (8) have not been developed and are the focus of this paper.

The remainder of the paper is organized as follows. In Section 2, three regularization

parameter selection methods are presented. Then in Section 3, we test our methods on

two synthetic data examples at a number of different noise levels and find that effective

recommendations can be obtained. We end the paper with conclusions.

2. Regularization Parameter Choice Methods

In this section, we motivate the use of three existing regularization parameter selection

methods on problems of the type (8).

2.1. A Weighted Least Squares Approximation of T0(u, z)

Existing methods for estimating the regularization parameter in the least squares case

can not be directly applied to our problem. However, in [7], a Taylor series argument is

used to obtain a quadratic approximation of T0. Using this approximation, existing



Poisson Regularization Parameter Selection 5

regularization parameter selection methods can be extended to (8). We present a

corrected and extended derivation of this approximation now.

First, we compute various derivatives of T0. The gradient and Hessian of T0 with

respect to u are given by

∇uT0(u; z) = AT

(
Au− (z− γ)

Au + γ

)
, (9)

∇2
uuT0(u; z) = AT diag

(
z

(Au + γ)2

)
A, (10)

where division – here and for the remainder of the manuscript – is computed component-

wise, and diag(v) indicates the diagonal matrix with the non-zero entries given by the

components of v. The gradient and Hessian of T0 with respect to z are given by

∇zT0(u; z) = − ln(Au + γ), (11)

∇2
zzT0(u; z) = 0. (12)

The second order mixed partial derivatives of T0 are given by

∇2
uzT0(u; z) = −AT diag

(
1

Au + γ

)
, (13)

∇2
zuT0(u; z) = − diag

(
1

Au + γ

)
A. (14)

Now, let ue be let the exact object and ze = Aue +γ the background shifted exact

data. Then, letting k = z − ze and h = u − ue and expanding T0 in a Taylor series

about ue and ze, we obtain from (9)-(14)

T0(u; z) = T0(ue + h; ze + k),

= T0(ue; ze) + kT∇zT0(ue; ze) +
1

2
hT∇2

uuT0(ue; ze)h

+
1

2
hT∇2

uzT0(ue; ze)k +
1

2
kT∇2

zuT0(ue; ze)h (15)

+ O(‖h‖3
2, ‖h‖2

2‖k‖2, ‖h‖2‖k‖2
2, ‖k‖3

2)

=
n∑

i=1

{[Aue]i − [ze]i ln[Aue]i} − (z− ze)
T ln(Aue)

+
1

2
(Au−Aue)

T diag

(
1

Aue + γ

)
(Au−Aue)

− 1

2
(z− ze)

T diag

(
1

Aue + γ

)
(Au−Aue)

− 1

2
(Au−Aue)

T diag

(
1

Aue + γ

)
(z− ze)

+O(‖h‖3
2, ‖h‖2

2‖k‖2, ‖h‖2‖k‖2
2, ‖k‖3

2) (16)

= T0(ue; z) +
1

2
(Au− (z− γ))T diag

(
1

ze

)
(Au− (z− γ))

+ O(‖h‖3
2, ‖h‖2

2‖k‖2, ‖h‖2‖k‖2
2, ‖k‖2

2). (17)
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The final equality was obtained using the linearity of the inner-product and the fact

that ze = Aue + γ. Thus the quadratic Taylor series approximation of T0(u; z) about

the points (ue; ze)—modulo an additive constant—is given by

1

2
(Au− (z− γ))T diag

(
1

ze

)
(Au− (z− γ)). (18)

Note that this derivation differs from the one present in [7] in that an error present

in the expression for 1
2
hT∇2

uuT0(ue; ze)h has been corrected. Furthermore, the accuracy

in (17) has been revised to account for the fact that obtaining (17) from (16) requires

the addition and subtraction of a term of the form (z− ze)
T diag

(
1
ze

)
(z− ze).

And finally, in [7], ze is simply replaced by z motivated by the fact that E(z) = ze.

However, we now go one step further and obtain the same approximation from an

application of the mean value theorem. The mean value theorem is used by considering

the ith component of 1
z−k

as a function of ki. Let r = Au − (z − γ), then (18) can be

rewritten

1

2
rT

[
r¯

(
1

z− k

)]
=

1

2
rT

[
r¯

(
1

z
+ diag

(
1

(z− k̂)2

)
k

)]

=
1

2
rT

(r

z

)
+

1

2
rT

(
r¯ k

(z− k̂)2

)
, (19)

where “¯” indicates component-wise multiplication and 0 < |k̂i| < |ki| for all i. Noting

that r = Ah− k and that z is bounded away from zero, we obtain

1

2
rT

(
r¯ k

(z− k̂)2

)
= O(‖h‖2

2‖k‖2, ‖h‖2‖k‖2
2, ‖k‖3

2), (20)

Thus finally, recalling (17), we have the approximation

T0(u; z) = T0(ue; z)+Twls
0 (u; z)+O(‖h‖3

2, ‖h‖2
2‖k‖2, ‖h‖2‖k‖2

2, ‖k‖2
2),(21)

where

Twls
0 (u; z)

def
=

1

2
‖Z−1/2(Au− (z− γ))‖2, Z = diag(z). (22)

By exploiting the connection present in (21) between T0 and Twls
0 , we now derive some

regularization parameter selection methods for the Poisson likelihood problem. The

least squares form of (22) provides a means of extending the standard methods of the

discrepancy principle, generalized cross validation, and unbiased predictive risk [27] to

(8). We begin with the discrepancy principle.

2.2. The Discrepancy Principle

From (21) and (22) we have

E(T0(u; z)) ≈ T0(ue; ze) + E
(
Twls

0 (u; z)
)
, (23)
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where E is the expected value function. Thus it is reasonable to say that acceptable

values of the regularization parameter α in (8) will be those for which

Twls
0 (uα; z) ≈ E

(
Twls

0 (ue; z)
)
. (24)

In order to obtain an estimate of E
(
Twls

0 (ue; z)
)

we first approximate (2) as is often

done in practice (see, e.g., [12, 21]):

z− γ = Aue + e, (25)

where e is a Gaussian random variable with mean 0 and covariance matrix Z (i.e.

e ∼ N(0,Z)) with Z defined in (22). This in turn implies

r(ue) ∼ N(0, In), (26)

where

r(u)
def
= Z−1/2(Au− (z− γ)). (27)

A standard statistical result then tells us that given (26),

‖r(ue)‖2
2 ∼ χ2(n), (28)

where “ ∼ ” means “is distributed as”, and χ2(n) denotes the chi-squared distribution

with n degrees of freedom, which has mean and variance n and 2n, respectively. And

hence we have E
(
2Twls

0 (ue; z)
) ≈ n.

Our acceptability criterion for a given regularization parameter α is then that

2Twls
0 (uα; z) ≈ n. (29)

Or more specifically, we can say that the appropriate choices of α are those values for

which ‖r(uα)‖2 lies within two standard deviations of n; that is, if

n− 2
√

2n ≤ 2Twls
0 (uα; z) ≤ n + 2

√
2n. (30)

If a specific value of α is desired, which is typical, it is natural to choose the

value that maximizes the likelihood that ‖r(uα)‖2 has arisen from χ2(n), i.e. for which

‖r(uα)‖2 = E(χ2(n)) = n. We note that this is equivalent to Morozov’s discrepancy

principle [27] applied to the problem of finding the optimal regularization parameter for

the minimization problem

arg min
u≥0

{
Twls

0 (u; z) +
α

2
〈u,Cu〉

}
. (31)

The difference here is that we are computing uα from (8).

In order to automate this approach, as well as to handle the case in which there is

no α for which ‖r(uα)‖2 = n, we define the desired regularization parameter to be the

one that solves

αDP = arg min
α>0

(
2T̃wls

0 (uα; z)− n
)2

, (32)

where uα is computed from (8),

T̃wls
0 (uα; z) =

1

2
‖Z−1/2

α (Auα − (z− γ))‖, (33)

and Zα = diag(Auα + γ). Note the change in the weighting term Zα. This change was

implemented because we found that it yielded a better result than using Z.
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2.3. Generalized Cross Validation

The method of leave-one-out cross validation for regularization parameter selection

applied to (8) can be described as follows. Define

uk
α

def
= arg min

u≥0

{∑

i6=k

([Au]i + γ)− zi ln([Au]i + γ) +
α

2
〈u,Cu〉

}
, (34)

and then choose α to be the minimizer of

CV(α) =
1

n

n∑

k=1

{
([Auk

α]k + γ)− zk ln([Auk
α]k + γ)

}
. (35)

For large-scale problems, minimizing (35) is intractable. The method of generalized

cross validation—first introduce by Wahba [28] for regularized least squares problems—

approximates CV(α) by a function that can be much more efficiently minimized.

To extend this approach to the case where the fit-to-data function is T0, the Taylor

series approximation (21) must be called upon once again:

CV(α) ≈ 1

n
T0(ue; z) +

1

2n

n∑

k=1

[r(uk
α)]2k

=
1

n
T0(ue; z) +

1

2n

n∑

k=1

(
[r(uα)]k

1− [Z−1/2AAα]kk

)2

. (36)

Here r(u) is defined as in (27), and (36) follows from arguments found in [1] assuming

Aα is a matrix satisfying uα = AαZ
−1/2(z− γ).

However, for (8), the data-to-regularized-solution (or regularization) operator is

nonlinear, and so Aα must be a linear approximation satisfying uα ≈ AαZ
−1/2(z− γ).

To derive such an approximation, we define Dα to be a diagonal matrix with diagonal

entries [Dα]ii = 1 if [uα]i > 0 and [Dα]ii = 0 otherwise, then since Tα is a strictly convex

function, uα will be the minimum norm solution of (see [18])

Dα∇Tα(Dαu; z) = 0. (37)

Now, using the approximation (31) for Tα (motivated by (21)) we can approximate (37)

by

DαA
TZ−1(ADαu− (z− γ)) + αDαCDαu = 0, (38)

which has minimum norm solution

(Dα(ATZ−1A + αC)Dα)†DαA
TZ−1(z− γ). (39)

Thus we define

Aα = (Dα(ATZ−1A + αC)Dα)†DαA
TZ−1/2. (40)

Recall that we wanted uα ≈ AαZ
−1/2(z− γ).

GCV requires still another approximation, as even with (40), minimizing (36)

remains impractical for large-scale problems. The approximation is given by

1− [Z−1/2AAα]kk ≈ trace(In − Z−1/2AAα)/n. (41)
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Then, finally, we have the following (approximate) GCV function for (8):

GCV(α) = n Twls
0 (uα; z) / trace(In − Z−1/2AAα)2, (42)

where Aα is given by (40). We note that this is very similar to the GCV function for

the weighted least squares problem (31). The difference is that uα is computed from

(8), which is also used to define Dα in (40).

Due to the size of the matrix Aα and the presence of the matrices Dα and Z in

(40), the Trace Lemma must be used to approximate the value of trace(In−Z−1/2AAα).

The Trace Lemma has the form [27]: given B ∈ Rn×n,

v ∼ N(0, In) implies E(vTBv) = trace(B). (43)

Thus given a realization v from N(0, In),

trace(In − Z−1/2AAα) ≈ vTv − vTZ−1/2AAαv. (44)

Finally, the GCV method for choosing α in (8) is defined as follows: choose the α

that minimizes

˜GCV(α) ≈ nTwls
0 (uα; z)

/
(vTv − vTZ−1/2AAαv)2, (45)

where v is a realization from N(0, In).

In practice, due to the large-scale nature of the problems of interest, Aαv in (45)

must be approximated by applying a truncated conjugate gradient iteration with x0 = 0

to

Dα(ATZ−1A + αC)Dαx = DαA
TZ−1/2v. (46)

In the case of large-scale least squares estimation problems, an efficient method

for approximating the GCV when randomized trace estimation is used is presented in

[11]. This method does not require finding the solution of (46), something which for

large-scale problems can be very computationally expensive.

Before continuing, we acknowledge that the number of approximations used above

is bordering on the ridiculous. However, we will see later that the approach is effective

nonetheless.

2.4. The Unbiased Predictive Risk Estimate

The motivation behind the UPRE [27] of α is straightforward: we seek the value of

α that minimizes the predictive risk E(T0(uα; ze)). However since ze is unknown, the

execution of the method requires some work.

Once again, we use the Taylor series approximation (21). From it, we have

T0(uα; ze) ≈ T0(ue; ze) + Twls
0 (uα, ze), (47)

which we will call the predictive error, whereas

T0(uα; z) ≈ T0(ue; z) + Twls
0 (uα, z). (48)
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Taking the expected value of these two equations yields, respectively,

E(T0(uα; ze)) ≈ T0(ue; ze) + E
(
Twls

0 (uα, ze)
)
, (49)

E(T0(uα; z)) ≈ T0(ue; ze) + E
(
Twls

0 (uα, z)
)
. (50)

Following arguments in [27, Section 7.1] and using the approximate regularization

operator Aα defined by (40), we find that

E
(
Twls

0 (uα, ze)
)

=
1

2

∥∥(Z−1/2AAα − In)Z−1/2Aue

∥∥2
+

1

2
trace((Z−1/2AAα)2), (51)

E
(
Twls

0 (uα, z)
)

=
1

2

∥∥(Z−1/2AAα − In)Z−1/2Aue

∥∥2
+

1

2
trace((Z−1/2AAα)2)

− trace(Z−1/2AAα) +
n

2
. (52)

Thus we have the following estimation of the predictive risk:

E(T0(uα, ze)) ≈ T0(ue; ze) + E
(
Twls

0 (uα, ze)
)

= E
(
Twls

0 (uα, z)
)

+ trace(Z−1/2AAα)− n

2
. (53)

This motivates our choice of the UPRE function

UPRE(α) = Twls
0 (uα; z) + trace(Z−1/2AAα)− n

2
. (54)

We then choose the regularization parameter α in (8) that minimizes UPRE(α). As in

the case of GCV, trace(Z−1/2AAα) must be approximated using the Trace Lemma and

a truncated conjugate gradient iteration.

3. Numerical Tests

In this section we present numerical results using a standard synthetic data example

developed at the US Air Force Phillips Laboratory, Lasers and Imaging Directorate,

Kirtland Air Force Base, New Mexico. The image is a computer simulation of a field

experiment showing a satellite as taken from a ground based telescope. The true image

has 256 × 256 pixels and is shown on the left in Fig. 1. In addition, we simulate star

field data, and due to the fact that we could not visualize it otherwise, plot it on the

right on a log scale in Fig. 1.

Generating corresponding blurred, noisy data requires a discrete PSF a, which we

compute using the Fourier optics PSF physical model [10, 20, 27]

a =
∣∣∣F−1

{
p¯ eı̂φ

}∣∣∣
2

, (55)

where “¯” denotes component-wise multiplication; p is the
√

n × √n indicator array

over the telescopes pupil (usually an annulus); φ is the
√

n×√n array that represents

the aberrations in the incoming wavefronts of light (obtained using the Kolmogorov

turbulence model [20]); ı̂ =
√−1; and F is the two-dimensional discrete Fourier

transform matrix. If periodic boundary conditions are assumed in the image, the n× n

blurring matrix A takes the form

Au = vec((ifft2 (â¯ (fft2(u))))), â = fft2(fftshift(a)), (56)
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True Image
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Figure 1. True image of the satellite on the left and the true image of the star
field, plotted on a log scale, with entries less than 100 set to 0, on the right.

where vec takes
√

n × √
n arrays to n × 1 vectors by stacking columns; fft2 and

ifft2 are the two-dimensional discrete Fourier transform and inverse discrete Fourier

transform, respectively; and fftshift swaps the first and third and the second and

fourth quadrants of the array a. A variety of other boundary conditions can be assumed

in the image, resulting in slightly different formulations for A [16].

In order to generate data that is as accurate as possible, we use the full statistical

model of [23] (rather than (2)) for CCD camera noise for generating our data:

z = Poiss(Aue + γ) + N(0, σ2In), (57)

where the iid Gaussian term N(0, σ2In), with In the n × n identity matrix, models

instrument noise. We assume pixel-wise independence as well as independence among

the two random variable on the right in (57).

We generate the noisy signal in MATLAB using the poissrnd and randn functions,

and we choose the values γ = 10 and σ = 5, which are realistic values for these

parameters. Corresponding blurred, noisy data is plotted in Figure 2. Again, note

that the star field data is plotted on a log scale (as in Figure 1) so that it look much

worse than it is.

In solving the inverse problem, we approximate (57) by (2) because the resulting

maximum likelihood computational problem is much more tractable [24]. This is

accomplished using the approximation N(σ2, σ2) ≈ Poiss(σ2). Then using independence

properties (57) becomes by

z + σ2 = Poiss(Aue + γ + σ2), (58)

where σ2 = σ21. This approximation is used in the implementation of the methods

given in section 2.

In order to test the selection methods on multiple data sets, we vary the intensity

of the true image ue in order to obtain noise at four different levels of SNR, which for
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Blurred, Noisy Data
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Figure 2. Blurred, noisy images of the satellite on the left, and the star field,
plotted on a log scale, with entries less than 100 set to 0, on the right, both with
SNR = 30.

(57) is defined as

SNR =

√
‖Aue + γ‖2

E(‖z− (Aue + γ)‖2)
. (59)

Note that under the square root, the noise-free signal (mean of z) is in the numerator,

whereas the noise power (variance of z) is in the denominator. For model (57), we have

E(‖z− (Aue + γ)‖2) =
n∑

i=1

([Aue]i + γi + σ2). (60)

We note that this is the traditional definition of signal-to-noise ratio. However,

in the context of image processing this definition has its flaws and a more meaningful

definition is possible (see e.g. [22]).

3.1. Regularization Functions

Three choices of regularization matrix C are examined. The most standard is In, yielding

standard Tikhonov regularization, which penalizes reconstructions with large `2-norm.

We tested this regularization matrix on both the satellite and star field examples.

Another standard choice for C is the negative Laplacian, referred to here as L,

which penalizes non-smooth reconstructions. Since the star field is non-smooth, we

tested this regularization only on the satellite example.

The third choice for C is described in [8]. We refer to it as Θ. Like L, Θ is a

discretization of a diffusion operator. However, unlike L, it allows for the formation

of edges in reconstructions when the data/inverse model suggest it and should only be

used in the case that the user knows a priori that the object contains edges. It is defined

as follows:

Θ = DT
x ΛDx + DT

y ΛDy, (61)
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where Dx and Dy are discretizations of the x and y partial derivative operators,

respectively, and Λ is a diagonal matrix with entries near 1 corresponding to pixels

away from an edge and less than 1 for pixels near an edge.

The diagonal matrix Λ in (61) is defined as follows. First, let

v = [Dxuapprox]
2 + [Dyuapprox]

2, (62)

where the square is computed component-wise; uapprox is computed from (8) with C = L

and α chosen using GCV; and MATLAB’s gradient function is used for computing

Dxuapprox and Dyuapprox. We then define

[vε]i =

{
vi vi > ε‖v‖∞
0 otherwise,

}
, (63)

where 0 < ε < 1 (we chose ε = 0.01 for our experiments), and ‖·‖∞ denotes the `∞-norm

on RN . Λ is then given by

Λ = diag

(
max

{
1

1 + vε

,
1

10

})
. (64)

Note that when [vε]i is large, i.e. at or near an edge, Λ has the effect of decreasing the

regularization parameter by an order of magnitude (and hence decreasing smoothing),

whereas when [vε]i ≈ 0 the regularization parameter remains approximately the same.

The result is that for regions in which the existence of an edge is indicated, sharp changes

in intensity will incur a relatively lesser penalty than in regions in which the image is

assumed to be smooth. We note that the value of ε in (63) and, in particular, the value
1
10

in (64) may need to be modified for different applications.

3.2. Regularization Parameter Selection and Results

In each of DP, GCV, and UPRE, a minimization problem must be solved: for DP it’s

(32); for GCV, GCV(α) defined by (45) must be minimized subject to α > 0; whereas

for UPRE, UPRE(α) defined by (54) must be minimized subject to α > 0. For this we

use MATLAB’s fminbnd function. The input for this function includes lower and upper

bounds for the minimizer. We used a lower bound of zero and an upper bound of 0.01.

The Tolx (step tolerance) parameter was set to 10−8 for the satellite example and 10−10

for the star field example.

Moreover, when DP is used in the examples below and (32) approximately solved,

the minimum value computed by fminbnd is 10−8 in all cases but one, in which case it

is 10−6. Thus we can say that the weighted residuals for the reconstructions computed

using DP are, in all cases, very near to the noise level; that is, assuming that (27) is

correct.

Solving the minimization problems stemming from the three methods requires the

computation of uα. Recall that uα is the solution to (8), which is itself a minimization

problem. The solution of (8) is found by applying the gradient-projection reduced-

Newton method outlined in [27]. This is an iterative method and the iterations are
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stopped if either the step-norm tolerance is satisfied, the gradient-norm tolerance is

satisfied, or the number of iterations grows past a certain value.

For C = In, we perform experiments on both the satellite and star field data with

SNR = 5, 10, 30 and 100. For C = L or C = Θ, we perform experiments on the satellite

data with SNR =10 and 30. In each case, we calculate the relative error,

‖ue − uα‖
‖ue‖ , (65)

over a range of values of α and the points corresponding to the recommendations by the

various selection methods. We use relative error as a measure of the goodness of the

regularized approximation because this is standard (see e.g. [27])
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Figure 3. Satellite Test Case, with C = In. Plot of relative error together with
the values of α chosen by the regularization parameter selection methods GCV,
UPRE, DP.

The results of the satellite test case with C = In are displayed in Fig. 3. The three

methods appear to be quite effective, yielding good recommendations, with DP giving

a slightly better value of α than GCV and UPRE. Note that as α tends toward zero,

uα tends toward the unregularized solution, which is far from the true solution since

our problem is ill-posed. On the other hand, when α is too large, the reconstruction is

also far from the true solution because too little emphasis is given to the data/inverse
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model. Such relative error plots vs. regularization parameter are standard for ill-posed

problems (see e.g. [27]).
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Figure 4. Star Field Test Case. Plot of relative error together with the values
of α chosen by the regularization parameter selection methods GCV, UPRE,
DP.

The results of the star field test case are displayed in Fig. 4. Again, the three

methods yield good recommendations. We note, though, that the methods yielded

better recommendations in the SNR cases of 30 and 100 than in the cases of 5 and 10.

Here, UPRE gave a better recommendation than GCV and DP. The plots indicate that

the optimal value of α is very small and so regularization might not be necessary in

this case. One reason for this is that the nonnegativity constraints coupled with the

point source nature of the object have been shown to have a stabilizing effect on inverse

solution methods [2]. This stabilization shows itself in the relatively flat nature of the

relative error curves as α → 0.

The results of the satellite test case with C = L are displayed in the upper

plots in Fig. 5. The three methods yielded good recommendations. Again, a quality

reconstruction was obtained in the case of SNR = 30, though the recommendation was

somewhat far from the minimizer of the relative error.

The results of the satellite test case with C = Θ are given in the lower plots

in Fig. 5. In order to generate Θ, uinit was obtained by setting C = L and using the
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Figure 5. In the top row, Satellite Test Case, with C = ÃLn. In the bottom row,
Satellite Test Case, with C = Θ. Plot of relative error together with the values
of α chosen by the regularization parameter selection methods GCV, UPRE,
DP.

UPRE recommendation for the value of α. In the case of SNR =10, the GCV and UPRE

methods yielded a slightly better value of α than DP, while for SNR = 30, UPRE gave

the best value of α.

Reconstructions of the satellite at a SNR of 30, and each of the three regularization

functions, are given in Fig. 6. In Fig. 6, we have also plotted the reconstruction of the

star field data with an SNR or 30 with Tikhonov regularization. In addition, in Fig. 7, we

have plotted the weighted residuals (27), which should, ideally, approximate white noise.

As far as that goes, for the satellite case it seems that Tikhonov regularization yields the

least desirable reconstruction, while C = Θ yields the most desirable reconstruction.

These results indicate that the three methods give useful recommendations for the

value of the regularization parameter as well as good corresponding reconstructions of

the unknown object. The three methods yielded values for α that were very similar for

each of the four data sets.

For least squares problems, it is well-known that GCV is slightly more flexible

than UPRE and DP due to the fact that it does not require knowledge of the noise

variance [27]. However this advantage does not extend to the Poisson case if we assume
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Figure 6. Reconstructions of the satellite: on the upper-left with Tikhonov
regularization (C = I), on the upper-right with Laplacian regularization (C =
L), and on the lower-left with C = Θ. Reconstruction of the star field with
Tikhonov regularization is given (on a log scale and with entries less than 100
set to 0) on the lower-right.

a statistical model of the form (2) and use the approximation (21),(22).

The motivation for DP is the simplest, as is its implementation. Moreover, its

connection to the χ2 test and variance matching of the weighted residuals with the

(approximate) true variances is likely appealing to the applied scientist.

On the other hand, theoretical analyses of these three methods in the least squares

case [27] indicate that UPRE has the best asymptotic convergence properties and that

GCV has better asymptotic convergence properties than DP. In order for us to draw

the same conclusions in the Poisson case, we would have to extend these analyses,

which we feel is possible using the Taylor series arguments of this paper. However,

even if this is the case, the implementations of GCV and UPRE require two additional

approximations: that of the (nonlinear) regularization operator by (40), and the use of

(43) for the trace approximation.

Finally, considerations of other statistical properties, such as the bias, of the

estimator uα of ue may lead to different conclusions; see [25] for a discussion of this

subject when the noise is additive Gaussian.



Poisson Regularization Parameter Selection 18

50 100 150 200 250

50

100

150

200

250 −4

−3

−2

−1

0

1

2

3

4

50 100 150 200 250

50

100

150

200

250
−4

−3

−2

−1

0

1

2

3

4

50 100 150 200 250

50

100

150

200

250
−4

−3

−2

−1

0

1

2

3

4

50 100 150 200 250

50

100

150

200

250
−4

−3

−2

−1

0

1

2

3

4

Figure 7. Weighted residuals (27) of the satellite reconstruction in Fig. 6: on
the upper-left with Tikhonov regularization (C = I), on the upper-right with
Laplacian regularization (C = L), and on the lower-left with C = Θ. Weighted
residuals (27) of the star field with Tikhonov regularization on the lower-right.

4. Conclusion

Data collected by a CCD camera array follow Poisson statistics. Obtaining the

maximum likelihood estimate therefore requires solving the problem given in (3). Due

to the fact that the problem is ill-posed and the data is noise corrupted, regularization

is required for computing stable solutions to (3). General Tikhonov regularization is

applied, and the resulting estimate is the solution of (8).

Existing methods for selecting the value of the regularization parameter depend

on (8) having a regular least squares fit-to-data function and hence cannot be

directly applied. However, a Taylor series argument shows that T0(u; z) can be well

approximated by a weighted least squares function, Twls
0 (u; z) (given in (22)). Using

this approximation, we have applied the DP, GCV and UPRE methods for selecting the

regularization parameter in (8).

We performed tests on synthetically generated images of a satellite and a star field.

The data was generated with the statistical model given in (57). Multiple data sets

were generated by varying the intensity of the true images to yield four different signal
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to noise ratios: 1, 5, 10 and 30. Tests of the methods on these data sets using various

regularization operators indicated that all three methods gave good recommendations

for the value of the regularization parameter.

We conclude that DP is a more effective regularization parameter selection method

than GCV and UPRE for the examples considered here, however the recommendations

were very close. The GCV and UPRE methods were very similar for the examples under

consideration.

There are several possibilities for future work along the lines set forth in this

paper. For one, an extension of the theoretical analyses of DP, GCV, and UPRE

found in [27] seems possible using the Taylor series approximation of the negative-

log Poisson likelihood presented here. Secondly, these methods should also be useable

for non-quadratic regularization functions such as total variation, though this extension

is immediate. Thirdly, a more efficient method than MATLAB’s fminbnd for solving

(32) and minimizing (45) and (54) could likely be developed. And finally, using these

methods in the context of positron emission tomography, where (2) is also used, is a

subject of our current work.
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