
Regularisation Path for Ranking SVM

Karina Zapien1, Thomas Gärtner2, Gilles Gasso1, and Stephane Canu1

1- LITIS - INSA De Rouen, St. Etienne du Rouvray, France

2- Fraunhofer IAIS, Schloß Birlinghoven, 53754 Sankt Augustin, Germany

Abstract. Ranking algorithms are often introduced with the aim of auto-

matically personalising search results. However, most ranking algorithms

developed in the machine learning community rely on a careful choice of

some regularisation parameter. Building upon work on the regularisation

path for kernel methods, we propose a parameter selection algorithm for

ranking SVM. Empirical results are promising.

1 Introduction

Ranking algorithms are typically introduced as a tool for personalising the order
in which (web) search results are presented, i.e., the more important a result is
to the user, the earlier it should be listed. To this end, one can consider two
possible settings: (i) the algorithm tries to interactively rearrange the results
of one search such that relevant results come the closer to the top the more
(implicit) feedback the user provides and (ii) the algorithm tries to generalise
over several queries and presents the results of one search in an order depending
on the feedback obtained from previous searches. Here, this problem is tackled
using the ranking SVM algorithm [1].

Kernel methods like the SVM or the ranking SVM solve optimisation prob-
lems of the form f̂λ = argminf V [f] + λΩ [f] where V is a loss function, λ ∈ R

+

is a regularisation parameter, Ω is the regulariser. Although a key bottleneck for
applying such algorithms in the real-world is choosing λ, research often ignores
this. As empirical results, however, strongly depend on the chosen λ, runtime
intensive repeated cross-validations have to be performed. Hence, in this paper
we concentrate on speeding up and automating this choice by building on the
regularisation path for SVMs [2].

In fact, similar to SVM classification, it turns out that f̂λ as a function of λ
is piecewise linear and hence forms a regularisation path. The breakpoints of this
path correspond to certain events. Points of the regularisation path which are
not breakpoints can not be distinguished in terms of margin-errors of the training
data. To choose a particular solution to the ranking problem, an evaluation of
f̂λ on a validation set is performed for each breakpoint of the path.

In Section 2 we describe the ranking SVM and in Section 3 its regularisation
path. Experiments are shown in Section 4. Finally, Section 5 concludes.

2 Ranking SVM

In ranking problems like (i) and (ii) from the introduction, user preferences can
be modelled by a (typically acyclic) digraph (V,E) with E ⊆ V 2. For (i) the set

of webpages forms the vertex set V of the digraph and we are also given some
further information about the webpages (like a bag-of-words representation).
For (ii) each vertex of the graph is a pair containing a query (q ∈ Q) and a
document (d ∈ D). Hence, the vertex set is V ⊆ Q × D and edges of the form
((q, d), (q, d′)) with d, d′ ∈ D; q ∈ Q represent that d was more relevant than
d′ for an user asking query q. In addition one typically assumes some joint
representations of queries and web pages.

In both cases, the ranking algorithms aim to find an ordering (permutation)
of the vertices π : V → [[n]] where n = |V | and [[n]] = {1, . . . , n} such that similar
documents are ranked as closely together as possible, while as few as possible
preferences are violated by the permutation.

Ranking SVM approaches such learning problems by solving the following
primal optimisation problem:

f̂λ = argmin
f∈H

ξ⊤1I + λ
2
‖f‖

2

H

subject to: f(v) − f(u) ≥ 1 − ξvu ξvu ≥ 0 ∀(u, v) ∈ E.

(1)

Here, H ⊆ {h : V → R} is a reproducing kernel Hilbert space (RKHS), λ ∈ R
+

is a regularisation parameter, and the square norm ‖f‖2
H

in the Hilbert space
serves as the regulariser. The final permutation π is then obtained by sorting
V according to f and resolving ties randomly. Now, let k : V × V → R be the
reproducing kernel of H and denote the vertices by xi such that V = {xi | i ∈
[[n]]}. The set of violated constraints is {(xi,xj) ∈ E | π(xi) < π(xj)}.

A ranking function can be defined as f̂λ(x) =
∑n

i=1
βik(xi,x) with βi ∈ R,

i ∈ [[n]], therefore, ‖f‖2
H

= β⊤Kβ. With a slight notation abuse we will write

k(x) = (k(x,x1), k(x,x2), ..., k(x,xn))⊤, so that f(xi) = β⊤
k(xi). Using this,

the ranking problem (1) with m preferences E = {(xki
,xli) | i ∈ [[m]]} is:

β̂(λ) = argmin
β∈Rn,ξ∈Rm

ξ⊤1I + λ
2
β⊤Kβ

s. t. β⊤(k(xki
) − k(xli)) ≥ 1 − ξi, ξi ≥ 0 ∀i ∈ [[m]]

(2)

with Kij = k(xi,xj). The Lagrangian L of this problem then becomes:

L = ξ⊤1I +
λ

2
β⊤Kβ −

m
∑

i=1

αi

(

β⊤
(

k(xki
) − k(xli)

)

− 1 + ξi

)

−
m

∑

i=1

γiξi

with αi ≥ 0, γi ≥ 0. A matrix P ∈ R
m×n can be defined with entries

Pij =

+1 if j = ki

−1 if j = li
0 otherwise

=⇒ PK =

k(xk1
)⊤ − k(xl1)

⊤

k(xk2
)⊤ − k(xl2)

⊤

...
k(xkm

)⊤ − k(xlm)⊤

(3)

so that the Lagrangian can be expressed as:

L = ξ⊤1I +
λ

2
β⊤Kβ − β⊤KP⊤α + 1I⊤α − ξ⊤α − ξ⊤γ

with α and γ vectors containing respectively αi, γi. Using the KKT conditions,
we obtain: ∂L

∂ξ
= 0 ⇒ 0 = 1I−α−γ together with ∂L

∂β
= 0 ⇒ 0 = λKβ−KP⊤α,

resulting in conditions, 0 ≤ αi ≤ 1 and β = 1

λ
P⊤α, so that

f(x) =
1

λ
α⊤Pk(x). (4)

Finally, the dual of Problem (2) is a QP problem:

α̂(λ) = argmax
α∈Rn

α⊤1I − 1

2λ
α⊤PKP⊤α

s.t. 0 ≤ α ≤ 1I.
(5)

3 Regularisation Path for Ranking SVM

According to [3], the solution α̂(λ) of the above problem is a piecewise linear
function of λ. A regularisation path has breakpoints λ1 > λ2 > . . . such that for
an interval (λt+1, λt) (i.e., with no breakpoint) the optimal solutions α̂(λ) and

β̂(λ) can easily be obtained for all λ ∈ (λt+1, λt).
Following Hastie’s work [2] we now derive the regularisation path of ranking

SVM. For given λ let α and f(x) be the optimal solution and the decision
function for problem (2), respectively. Then, the following partition derived
from the KKT optimality conditions can be made:

• Iα = {i ∈ [[m]] | f(xki
) − f(xli) = 1} = {i ∈ [[m]] | 0 < αi < 1},

• I0 = {i ∈ [[m]] | f(xki
) − f(xli) > 1} = {i ∈ [[m]] | αi = 0}, and

• I1 = {(i ∈ [[m]] | f(xki
) − f(xli) < 1} = {i ∈ [[m]] | αi = 1}.

Similarly, we will denote by αt and f t(x) the optimal solution of (2) corre-
sponding to λt. Assume that the above sets (It

α, It
1, I

t
0) induced by the solution

of the optimisation problem for λt remain unchanged for λ ∈ (λt+1, λt), i.e.
(It

α, It
1, I

t
0) = (Iα, I1, I0). Hence, in the intervall (λt+1, λt), αi ∈ Iα depends

linearly on λ, This can be seen by writing f(x) as follows:

f(x) =

[

f(x) −
λt

λ
f t(x)

]

+
λt

λ
f t(x) =

1

λ

[

(α − αt)⊤Pk(x) + λtf t(x)
]

f(x) =
1

λ

[

(αIα
− αt

Iα
)⊤PIα

k(x) + λtf t(x)
]

(6)

with PIα
being the submatrix of P containing the rows corresponding to Iα

and all columns. The last line is true as αi − αt
i = 0 for all i /∈ Iα.

If all sets remain fixed for λ ∈ (λt+1, λt), we have that 1 = f(xki
)− f(xli) =

f t(xki
) − f t(xli) for all i ∈ Iα, so, if we use Eq. (4), it leads to

λ − λt =
(

αIα
− αt

Iα

)⊤
PIα

(

k(xki
) − k(xli)

)

∀i ∈ Iα. (7)

Therefore, the latter set of equations can be simplified by transposing Eq. (7)
and using Eq. (3) in it, getting:

(λ − λt)1IIα
= PIα

KP⊤
Iα

(

αIα
− αt

Iα

)

(8)

If we define η = (PIα
KP⊤

Iα
)−11IIα

, with 1IIα
a vector of ones of size |Iα|,

then it can finally be seen that αi, i ∈ Iα changes piecewise linear in λ as follows:

αi = αt
i − (λt − λ)ηi i ∈ Iα. (9)

For all λ ∈ (λt+1, λt), the optimal solution α can be easily obtained until the
sets change, i.e., an event occurs. From any given optimal solution αt for λt, the
corresponding sets It

α, It
0, and It

1 can be deduced and thereon the corresponding
λt+1 that generates an event together with the optimal solution.

3.1 Initialisation

If λ is very large, β = 0 minimises Problem (2). This implies that ξi = 1 and
because of the strict complementary and KKT conditions, γi = 0 ⇒ αi = 1.
To have at least one element in Iα, we need a pair (xki

,xli) that β⊤(k(xki
) −

k(xli)) = 1. We know that β = 1

λ
P⊤α and therefore α = 1I solves, for all pairs,

the equation λi = α⊤P (k(xki
) − k(xli)). Hence, initially all pairs will be in I1

and we take λ0 = max{λi}, i ∈ [[m]]. Iα contains the pairs maximizing λ0.

3.2 Event Detection

At step t the optimal solution αt defines a partition Iα, I1, I0. If these sets
remain fixed for all λ in a given range then the optimal solution α(λ) is a linear
function of αt. If an event occurs, i.e., the sets change, then the linear equation
has to be readjusted. Two types of events have to be determined: a) a pair in
Iα goes to I1 or I0 and b) a pair in I1 or I0 goes to Iα.

3.2.1 Pair in Iα goes to I1 or I0

This event can be determined by analysing at which value of λ the corresponding
αi turns zero or one. Eq. (9) is used and the following systems are solved for λi:

1 = αt
i − (λt − λi)ηi i ∈ Iα (10)

0 = αt
i − (λt − λi)ηi i ∈ Iα. (11)

Using this last equation, the exact values for λi that produce an event on pairs
in Iα moving to I0 ∪ I1 can be determined.

3.2.2 Pair in I1 or I0 goes to Iα

To detect this event, note that Equation (8) can also be written as follows:

(

αIα
− αt

Iα

)

= (λ − λt)
[

(

PIα
KP⊤

Iα

)−1
1IIα

]

= (λ − λt)η. (12)

Plugging Eq. (12) in Eq. (6), we can write f(x) in a convenient manner:

f(x) =
1

λ

[

λtf t(x) +
(

λ − λt
)

ht(x)
]

with ht(x) = η⊤PIα
k(x). (13)

An event on pair (xki
,xli) ∈ I0 ∪ I1 −→ Iα means that f(xki

) − f(xli) = 1
and can be detected by using Equation (3.2.2). The corresponding λi that
generates this event is calculated as follows:

λi =
λt [(f(xki

) − f(xli)) − (ht(xki
) − ht(xli))]

1 − (ht(xki
) − ht(xli))

(14)

λt+1 will be the largest resulting λi < λt from Eqs. (10), (11) and (14).
Experimentally, it has been seen that, in general, if the validation set has

the same distribution as the training set, there is a very weak probability that
the validation error is a lot lower between two break points. In any case, vali-
dation error can be easily calculated by making a tiny grid search between two
breakpoints of interest.

The numerical complexity of the algorithm depends on the number of iter-
ations needed to explore the overall solution path and the mean size of Iα. At
each iteration, a linear system is solved to get η and this involves a complexity
of O(|Iα|

2). It seems experimentally that the number of iterations is of order
2-3 times the number of pair constraints m.

In SVM methods, another key point is the determination of kernel hyper-
parameter. This problem was not tackled here. However, one can seek to com-
bine our regularisation path with the kernel parameter path developed in [4].

4 Experimental Results

Three datasets were used to test the algorithm. A toy example generated from
Gaussian distributions and two more datasets taken from the UCI datasets1.

Experiments were done on a dataset generated by a mixture of densities.
The detailed description of the dataset can be found in Hastie et al. [2].
Though originally designed for binary classification with instances xi and cor-
responding labels yi ∈ {±1}, it can be restated as a ranking problem by letting
E = {(xi,xj) | yi > yj}. The dataset contains 100 positive and 100 negative
points which induce 10000 constraints.

The other two datasets correspond to regression problems which can similarly
be restated as ranking problems by letting E = {(xi,xj) | yi > yj}. Plain
regression problem can be used, no bins are built to get ordinal regression.

Two measures were applied: the number of wrong classified pairs and the
corresponding percentage and the NDCG [5] ranking measure.

The experimental design is as follows: 1

5
of the original dataset was randomly

taken to form a test set. From the 4

5
left data points, a random sampling of

size 100 was done to take a subset and realise cross validation to get a rough
estimation of the appropriate kernel parameter. Using this kernel parameter,
5-fold cross validation was done to choose the λ parameter.

The regularisation path was built for the training set and the chosen model
was the one with the least pair misclassification. Test error with this modal was
measured on the test dataset. Results are summarized in the following tables.

1http://archive.ics.uci.edu/ml/datasets.html

Dataset # Training pairs # Features σ λ∗ value Size of A
Mixture 10000 200 0.5 0.0164 101
Auto 75245 392 16 0.003295 248

Housing 127137 506 5.6667 0.0025 320

Table 1: Experimental data summary

Dataset Misclassified pairs Percentage NDCG
Mixture 42 16.41 0.8032
Auto 209 10.87 0.4341

Housing 221 6.87 0.8784

Table 2: Experiments Results

5 Conclusions

The proposed approach calculates efficiently the optimal solution of the ranking
SVM for all possible regularisation parameters by solving small linear problems.
Then, regularisation parameter search can be efficiently done via the path com-
putation. The advantage of the approach is that it makes the parameter selection
less time consuming. The computational complexity is highly related to the to-
tal number of breakpoints on the path and the mean number of support vectors.
In our experimets, we have seen that the latter number is generally low and the
former be 2-3 times the size of the problem. A possible extension of this work
is the efficient combination of our path and the kernel parameter path [4].

References

[1] T. Joachims. Optimizing search engines using clickthrough data. In ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD),
pages 133–142, 2002.

[2] Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu. The entire
regularization path for the support vector machine. Journal of Machine
Learning Research, 5:1391–1415, October 2004.

[3] Saharon Rosset and Ji Zhu. Piecewise linear regularized solution paths.
Annals of Statistics, 35(3):1012–1030, 2007.

[4] Dit-Yan Yeung Gang Wang and Frederick H. Lochovsky. A kernel path
algorithm for support vector machines. In Proceedings of ICML’2007, 200T.

[5] Stephen Robertson and Hugo Zaragoza. On rank-based effectiveness mea-
sures and optimization. Inf. Retr., 10(3):321–339, 2007.

