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1 Introduction 

Reg;ularization is becoming a popular framework for describing and solving many ill-posed 
problems of computer vision. Of course, a generalized framework h; only useful if it pro
vides additional insights or benefits unavailable without it. This paper discllsses some of 
the benefits promised by the regula.rization framework. Additionally, as a mathematical 
paradigm for vision, regularization presents many difficulties for the vision researcher, and 
some of these difficulties are discussed in this paper. The paper then discusses the lack of 
development of most of the "promises of regularization" theory, and gives a. brief look as 
some of the promises which have been realized. 

In the context of smooth surface reconstruction, the paper addresses one of t.he most 
difficult problems with the use of regularization: the problem of determining an appropri
ate fu nctional class, norm, and regularization stabilizing functional. I n particular, results 
are discussed from an experiment which subjectively orders various functional classes and 
stabilizing functionals for a regularization-based formulation of the surface reconstruction 
problem. The conclusions drawn include the fact that there exist non-traditional formula
tions of this regularization problem which provide better results. 

The paper concludes with a brief mention of two more general frameworks and their 
relationship to regularization. 
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2 What a unifying lllathenlatical fonllulation should do. 

If a ma thematical parad igm is to be useful as a unifying framework for a class of problems, 
it should hawl at least olle of three basic properties: 

1. provide new insights and/or better intuition into the structure or nature of the prob
lems (this is often the case when the mathematical paradigm is borrowed [rom a well 
studied area), 

2. provide new (mathematical) tools to simplify the analysis of the problems and aid in 
their solution, 

3. predict new, experimentally verifiable, properties of the problems and/or variations 
of the problems. 

If none of these properties is provided by a unifying mathematical formulation of a class of 
problems. it is. at best, an exercise in mathematics, and more likely, a useless attempt to 
import a mathematical framework into an area. 

Using these as the basic criterion for the usefulness of a mathematical framework. we 
will examine the usefulness of regularization theory in computer vision. The specialization 
of the first two properties to vision problems is straight forward, and the last one requires 
either a relation to the physical world or psychological world to determine what one means 
be "experimen tally" verifiable. 

3 The probleills with Regularization? 

In recent years, a few vision researchers have put forth regularization as a. fra.mework for 
the solution of many low-level vision problems, e.g., [1] and [2]. In this section we will deal 
only with papers which have used "pure" regularization theory, e.g., [1] and the references 
therein, [3], and [4] Many other "regularization" papers actually have to do with either 
optimal approximation theory, e.g., [5], [6] or with extensions to regularization which render 
them as a class of Bayesian modeling, e.g., [7], [8], [9]. These extensions will be briefly 
mentioned ill the final section of this paper. 

Regularization is a term applied to three related techniques for turning an ill-posed 
mathematical problem into a well-posed one. A formal definition can be found in [10]. Let 
y be the data and let z be the "solution" such that Sz = y where S is a linear operator. 
Because the problem is ill-posed z does not exist, is not unique, and/or does not depend 
continuously on the data y. Regularization techniques work by restricting the space of 
problems/solutions so as to insure a solution which is exists, is unique and does depend 
continuously on the data. To do this they require the choice of a stabilizing Junction P. a 
norm II· lis on the space of stabilized solutions (Le., IIPzll, this measure is often called the 
stabilizing functional), and a norm II . II D on the space of data elements (for vision almost 
always the L2 norm Oil a finite dimensional Euclidean space). And use these terms to define 
the restrictions, e.g .. they may seek the z which minimizes IISz - YII D + Allpzlls. 
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The choice of stabilizing function and norms is rarely unique and far from trivial. As 
pointed out ill [lO][p.59] "The choice of the stabilizing functional is often prompted by the 
nature of the problem. However, in a number of cases, more than one choice is possible". 
In that book over a. dozen different methods are presented to deriving different "stabilizing 
functions", bu t no techniques are presented for determining which stabilizers are the "best". 

Their are five main problems with regularization: 

1. How smooth (regular) should the solution be, so as to be realistic? Also, should this 
smoothness be the same everywhere? 

2. What should the tradeoff between error a.nd smoothness be? 

3. If the realistic solution requires non-convex stabilizers, can one still show that solving 
the regularized formulation is possible? 

,1. How does one incorporate other information into the solution process? 

.5. How does one derive meaningful error estimates? 

All but the last problem really have to do with the question: How does one chose the 
function spaces, norms and stabilizing functions? 

4 Failed Prolllises?? 

The promises of a unified framework for low-level vision problems are really the promises 
of any useful mathematical framework. So let us look at each of the til ree main promises of 
a. mathematical formulation and comment on whether the promise was kept or failed when 
regularization theory is considered as a unifying framework for early vision problems. 

4.1 Does it provide new insights and/or better intuition? 

To date, there have been many "regularized" solutions to vision problems, e.g., [1] list eight 
problems. U llfortunately, few, if any, of these problems were actually solved using regular
ization. Instead, almost all were problems that had already been solved, using calculus of 
variations, smoothness assumptions, and/or approximation theory, and were reformulated, 
after the fact, into the terminology of regularization. 

Further, most. of the few new results which used regularization, e.g., [4], did not really 
use t.he mathematical properties of regularization, rather it was simply a way of statillg a 
"smoothness" assumption in a mathematically formal way. 

Thus. I would conclude that regularization has not provided better intuition or new 
insights. in fact, people use and understand regularization in terms of more traditional 
Illathematics and heuristics used in computer vision. 
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4.2 Does it provide new mathematical tools? 

I argue that this promise of regularization is also not met. Of the many problems reformu
lated into the regularization framework, few have been analyzed from the poin t of view of 
regularizat.ion, let alone with tools from regularization theory. This does not imply that 110 

mathematical tools exists, they do. For example, [10] provides some mathematical tools for 
the determination of the regularization parameter (i.e., optimal tradeoff between error and 
smoothness) for some classes of problems. Instead, it is either the case that the mathemat
ical overhead encolllltcred when attempting to use these tools has been to high, or tha.t the 
results of applying them to practical problems has been unsatisfactory. 

4.3 Can the framework make interesting predictions? 

Here we finally have a promise that is at least partially kept. Because regularization does not 
determine exactly the function spaces, norms and stabilizing functions, once a problem has 
been formulated in this framework one might ask about similar formulations with variations 
in the norm/class/stabilizer. Thlls regularization theory can predict new variations of the 
problem. However, it provides no means for determining which of the various formulations 
is most appropriate. 

As far a predicting experimentally verifiable properties, regularization does make such 
predictions. but they are identical to the predictions of the mathematica.l formulations 
originally llsed to solve the problem (e.g., the "barber-pole illusion" is predicted by the 
calculus of variations formulation of the optic-flow problem as well as by the regularization 
formulation.) Since regularization does not provide error estimates the predictions are 
qualitative, not quantitative. 

5 Regularized surface reconstruction 

This section briefly discusses the results on determination of the appropriate class, norm 
and stabilizers for the problem of surface reconstruction from sparse depth data. More 
details can be found in [11], [5]. 

As mentioned in the previous section, determining the exact mathematical form of the 
regularization of a problem is troublesome. It seems impossible to determine which of the 
uncountable number of potential formulations is "best" so we settled for a psychological 
(subjective) ranking of various formulations. However, for the results to be meaningfuL 
we needed to be able to determine the relationship between the errors of solutions under 
different formulations. Regularization did not provide the necessa.ry tools and so we turned 
to the reslllts of informa.tion-based complexity. '''Ie were thus able to define "optimal errol''' 
algorithms which solved the regularization problems, and comparisons of the Olltputs of the 
algorithms \\las pursued. 

Since the algorithms had optimal error properties, any errors in the reconstruction of 
the surfa.ces were inherent in the model. Thus by compa.ring the reconstructions generated 
by the algorithms we could draw conclusions about the underlying models. Again, while the 
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models thcmsdves were regularization type models, the experiment was ollly valid beca.llse 
we were able to show the algorithms used were optimal error algorithms. 

For the problem of surface reconstruction, 9 different formulations were tested, and the 
conclusion was that 4-5 of these were "most appropriate". Only one of these, corresponding 
to thin-plate splines, had been previously used in vision research. The remaining classes all 
had smoothness "between" a membrane and the thin-plate spline, and some had "stabiliz
ers" of considerably higher orders. Even more surprising was the conclusion that the order 
of the "stabilizer" was not as important as the effective smoothness of the functional class 
to which it was applied. We note the discrete regularization techniques in [:3] or [9] can not 
deal with these intermediate smoothness classes. 

6 Other related fralueworks 

As mentioned before, the above comments apply only to "traditional regnlal"ization theory". 
However. there are other frameworks in computer vision which include regularization as a 
special case. The two most important are optimal-approximation (generalized splines), and 
Bayesian modeling. \,Ve briefly mention how these extensions allow "regularization" to keep 
some of the promises of a unified framework. (In other words, why the extensiolls are 
themselves viable unified frameworks for early vision). 

Optimal approximation theory (see also information-based complexity [12]) has advan
tages over regularization theory in that it also provides mathematical tools for deriving the 
error of an approximation. Optimal error algorithms derived this way can also allow one 
to use comparisons of the "output" of the algorithms as a means of comparing the models. 
Furthermore, this framework provides for extensions to average case analysis, see [13J. The 
ma.in dra.wback of this approach is that it requires moderately heavy ma.thematics. Fur
thermore, like regularization theory, incorporation of certain types of a priori information 
is difficult. 

Bayesian modeling has as a special case, stochastic solutions to regularization problems. 
However, it has the added advantage that it can handle non-convex stabilizers and can 
easily incorporate additional a priori information, see [7]. Furthermore, it can also be used 
to generate error models, see [9]. The disadvantage here is the class of underlying fUllctional 
classes is greatly restricted if one uses the discritized versions of the functional equations. 
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