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Abstract. In this article, we motivate, derive, and test effective preconditioners to be used with
the Minres algorithm for solving a number of saddle point systems which arise in PDE-constrained
optimization problems. We consider the distributed control problem involving the heat equation
and the Neumann boundary control problem involving Poisson’s equation and the heat equation.
Crucial to the effectiveness of our preconditioners in each case is an effective approximation of the
Schur complement of the matrix system. In each case, we state the problem being solved, propose
the preconditioning approach, prove relevant eigenvalue bounds, and provide numerical results which
demonstrate that our solvers are effective for a wide range of regularization parameter values, as well
as mesh sizes and time-steps.
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1. Introduction. The development of fast iterative solvers for saddle point
problems from a variety of applications is a subject attracting considerable atten-
tion in numerical analysis [12, 46, 57, 14]. As such problems become more complex, a
natural objective in creating efficient solvers is to ensure that the computation time
taken by the solver grows as close to linearly as possible with the mesh parameter of
the discretized problem. In more detail, it is desirable that if the problem size doubles
due to refinement of the mesh, then the computation time roughly doubles as well.

Recently, due to the development of efficient algorithms and increased computing
power, the solution of optimal control problems with PDE constraints has become an
increasingly active field [55, 27, 29]. The goal is to find efficient methods that solve the
discretized problem with the objective in mind of creating preconditioners that again
scale linearly with decreasing mesh size. The interested reader is referred to [48, 22, 40,
44, 50] and the references therein for steady (time-independent) problems and to [52,
53, 39, 51, 4] for unsteady (time-dependent) problems. There are also multigrid [20]
approaches to both time-dependent and time-independent optimal control problems
[25, 26, 54, 6, 7, 1, 19, 18].

Often, designing solvers that are insensitive to the mesh size is found to com-
promise the performance of the solver for small values of the regularization parame-
ter inherent in PDE-constrained optimization problems, unless the approximation of
the Schur complement of the matrix system is chosen carefully. Therefore, recently
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PRECONDITIONERS AND PDE-CONSTRAINED OPTIMIZATION 1127

research has gone into developing preconditioners which are insensitive to the regu-
larization as well as the mesh size; see [37, 48] for instance for such solvers for the
Poisson control problem.

Here, we consider whether it is possible to build solvers for the time-dependent
analogue of this problem, that is, the optimal control of the heat equation. We con-
sider the distributed control problem and attempt to minimize a functional that is
commonly used in the literature [55]. We also investigate solvers for the boundary
control problem, first in the time-independent Poisson control case and then in the
time-dependent heat equation control case. Further, we develop a solver for a dis-
tributed subdomain problem of this type.

This paper is structured as follows. In section 2, we outline some prerequisite
saddle point theory, state the problems that we consider the iterative solution of,
and describe a solver for the distributed Poisson control problem (originally detailed
in [37]) that we base our methods on. In section 3, we motivate and derive the
preconditioners that we apply for the problems stated, proving relevant eigenvalue
bounds of the preconditioned Schur complements of the matrix systems when our
recommended approximations are used. In section 4, we provide numerical results for
a variety of test problems to demonstrate the effectiveness of our approaches, and in
section 5 we make some concluding remarks.

2. Problems and discretization. This section is structured as follows. In sec-
tion 2.1, we briefly detail elements of saddle point theory that we utilize throughout
the remainder of this paper. In section 2.2, we describe work that has been undertaken
on the (time-independent) distributed Poisson control problem and state the formu-
lations of the time-dependent problem that we consider. In section 2.3, we describe
the time-independent and time-dependent Neumann boundary control problems we
consider in this paper.

2.1. Saddle point theory. The problems we discuss in this paper are all of
saddle point structure, i.e., of the form

[
A BT

B 0

]

︸ ︷︷ ︸
A

[
x1

x2

]
=

[
b1

b2

]
,(2.1)

where A ∈ R
m×m is symmetric and positive definite or semidefinite, B ∈ R

p×m with
m ≥ p and the matrix A is nonsingular. The properties and solution methods for
such systems have been an active field of research for two decades. State-of-the-art
numerical methods for solving saddle point problems can be found in [3, 12] and the
references therein.

Throughout this paper, we consider block diagonal preconditioners for such saddle
point systems of the form

P =

[
Â 0

0 Ŝ

]
,

which is symmetric and positive definite. To apply this preconditioner, we therefore
require a good approximation Â to the (1, 1)-block of the matrix system, A, and Ŝ

as an approximation to the (negative) Schur complement, S := BA−1BT . Note that

in general we are only interested in the application of Â−1 and Ŝ−1, which allows the
use of multigrid [20] or algebraic multigrid (AMG) [45, 13] methods, for example.
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1128 J. W. PEARSON, M. STOLL, AND A. J. WATHEN

Such a preconditioner is known to be effective because the spectrum of the matrix
P−1A is given by

λ(P−1A) =

{
1,

1

2
(1±

√
5)

}
,

provided P−1A is nonsingular, when Â = A, and Ŝ = S (see [34] for details). In
this case, an appropriate Krylov subspace method applied to the system (2.1) will
converge in three iterations with this preconditioner. Throughout the remainder of
this paper, we apply the Minres algorithm of Paige and Saunders [35] to saddle point
systems of the form A, with preconditioner P as in (2.2).

Note that many other preconditioners are possible such as block triangular pre-
conditioners [34, 8, 42, 49] or constraint preconditioners [11, 30, 59]. These usually
have to be combined with different iterative solvers, either symmetric ones [8, 16] or
nonsymmetric ones such as Gmres [47].

2.2. Distributed control problems. One of the most common problems em-
ployed in PDE-constrained optimization for the study of numerical techniques is the
distributed Poisson control problem with Dirichlet boundary conditions [55]. This is
written as

min
y,u

1

2
‖y − ȳ‖2L2(Ω1)

+
β

2
‖u‖2L2(Ω2)

(2.2)

s.t −∇2y = u in Ω,

y = f on ∂Ω,

where y is referred to as the state variable with ȳ some known desired state and u

as the control variable. Here Ω1 and Ω2 are subsets of the domain Ω ⊂ R
d, where

d ∈ {2, 3}, on which the problem is defined with boundary ∂Ω, and β > 0 is the
(Tikhonov) regularization parameter. Note that we will limit ourselves to the cases
Ω2 = Ω and Ω2 = ∂Ω—the boundary control problem is addressed in the next section.

There are two common approaches for solving this optimization problem. One
can consider the infinite-dimensional problem, write down the Lagrangian, and then
discretize the first order conditions, which is referred to as the optimize-then-discretize

approach, or one can first discretize the objective function and then build a discrete
Lagrangian with corresponding first order conditions. The latter is the discretize-

then-optimize approach. Recently, the paradigm that both approaches should coincide
was used to derive discretization schemes for PDE-constrained optimization (see, for
example, [25]).

The problem (2.2) represents a steady problem, i.e., y = y(x), where x denotes the
spatial variable. Using a Galerkin finite element method [12] and a discretize-then-
optimize strategy, with the state y, control u, and adjoint state or Lagrange multiplier
p all discretized using the same basis functions [40, 37], leads to the following first
order system:

⎡
⎣

M1 0 K

0 βM −M

K −M 0

⎤
⎦
⎡
⎣

y

u

p

⎤
⎦ =

⎡
⎣

M ȳ

0

c

⎤
⎦ ,(2.3)

where y, u, and p denote the vectors of coefficients in the finite element expansion in
terms of the basis functions {φj , j = 1, . . . , n} of y, u, and p, respectively, ȳ is the

D
o
w

n
lo

ad
ed

 0
1
/3

1
/1

3
 t

o
 1

9
3
.1

7
5
.5

3
.2

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PRECONDITIONERS AND PDE-CONSTRAINED OPTIMIZATION 1129

vector corresponding to ȳ, and c corresponds to the Dirichlet boundary conditions
imposed. Here, M denotes a finite element mass matrix over the domain Ω; similarly,
M1 is the finite element mass matrix for the domain Ω1 and K a stiffness matrix over
Ω. The matrices are of dimension n × n with n being the degrees of freedom of the
finite element approximation. These are defined by

M = {mij , i, j = 1, . . . , n}, mij =

∫

Ω

φiφj dΩ,(2.4)

K = {kij , i, j = 1, . . . , n}, kij =

∫

Ω

∇φi · ∇φj dΩ.

Note that we often consider M to be a lumped mass matrix, that is,

M = diag(mii), mii =

n∑

j=1

∣∣∣∣
∫

Ω

φiφj dΩ

∣∣∣∣ .

The matrix M1 can be obtained analogously to the above by replacing Ω by Ω1.
In literature such as [37, 48], solvers are designed which solve (2.3) in computa-

tional time independent of the mesh size h and any choice of regularization parameter
β. The solver that we consider is based on the block diagonal preconditioner discussed
in [37], in which the system (2.3) is written in classical saddle point form (2.1) with

A =
[

M 0
0 βM

]
and B =

[
K −M

]
. The (1, 1)-block is then approximated by

the application of Chebyshev semi-iteration to each mass matrix for consistent mass
matrices [58] or by simple inversion for lumped mass matrices, and the (negative)
Schur complement

S = BA−1BT = KM−1K +
1

β
M

is approximated by

Ŝ =

(
K +

1√
β
M

)
M−1

(
K +

1√
β
M

)
.

It is shown in [37] that λ(Ŝ−1S) ∈ [ 12 , 1] for any choice of step-size h and regular-
ization parameter β when this approximation is used. Using a multigrid process to
approximate the inverse of the matrix K + 1√

β
M gives a viable solution strategy.

In this paper, we attempt to extend this preconditioning framework to time-
dependent analogues of the above problem. Specifically, we will consider the optimal
control of the heat equation. This problem may be written as

min
y,u

J(y, u)(2.5)

s.t yt −∇2y = u, for (x, t) ∈ Ω× [0, T ],

y = f on ∂Ω,

y = y0 at t = 0

for some functional J(y, u), where f and y0 may depend on x but not t. The functional
that we consider here is a functional where we have observations (desired state) on
the whole time-interval

J1(y, u) =
1

2

∫ T

0

∫

Ω1

(y(x, t)− ȳ(x, t))
2
dΩ1dt+

β

2

∫ T

0

∫

Ω2

(u(x, t))
2
dΩ2dt.(2.6)
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Note that it is also possible to consider a problem where the desired state is only
defined at a more limited set at times, for example, at only t = T , which would
correspond to a functional of the form [36]

J2(y, u) =
1

2

∫

Ω1

(y(x, T )− ȳ(x))2 dΩ1 +
β

2

∫ T

0

∫

Ω2

(u(x, t))2 dΩ2dt.

We consider here only the problem relating to the functional J1(y, u), which we refer
to as the “all-times case.” Note that the state, control, and adjoint state are all now
time-dependent functions. For now we again assume that Ω2 = Ω.

As illustrated in [52], the matrix system arising from solving the problem (2.5)
with J(y, u) = J1(y, u) varies according to whether a discretize-then-optimize or
optimize-then-discretize strategy is applied. Applying the discretize-then-optimize
approach, using the trapezoidal rule and the backward Euler scheme with Nt time
steps of (constant) size τ to discretize the PDE in time, gives the matrix system [52]

⎡
⎣

τM(1)
1/2 0 KT

0 βτM1/2 −τM
K −τM 0

⎤
⎦
⎡
⎣

y

u

p

⎤
⎦ =

⎡
⎣

τM(1)
1/2ȳ

0

d

⎤
⎦ ,(2.7)

where y, u, ȳ, and p are vectors corresponding to the state, control, desired state,
and adjoint at all time-steps 1, 2, . . . , Nt, and

M1/2 =

⎡
⎢⎢⎢⎢⎢⎣

1
2M

M

. . .

M
1
2M

⎤
⎥⎥⎥⎥⎥⎦
, M =

⎡
⎢⎢⎢⎢⎢⎣

M

M

. . .

M

M

⎤
⎥⎥⎥⎥⎥⎦
,(2.8)

M(1)
1/2 =

⎡
⎢⎢⎢⎢⎢⎣

1
2M1

M1

. . .

M1
1
2M1

⎤
⎥⎥⎥⎥⎥⎦
,

K =

⎡
⎢⎢⎢⎢⎢⎣

M + τK

−M M + τK

. . .
. . .

−M M + τK

−M M + τK

⎤
⎥⎥⎥⎥⎥⎦
, d =

⎡
⎢⎢⎢⎢⎢⎣

My0 + c

c
...
c

c

⎤
⎥⎥⎥⎥⎥⎦
.

Note that if n is the number of degrees of freedom in the spatial representation only,
then each of the matrices in (2.8) belongs to R

nNt×nNt with blocks as indicated, where
M,M1,K ∈ R

n×n. The overall coefficient matrix in (2.7) is of dimension 3nNt×3nNt.
If, alternatively, the optimize-then-discretize approach is used with J(y, u) =

J1(y, u), the matrix system becomes [52]

⎡
⎣

τM0 0 KT

0 βτM1/2 −τM
K −τM 0

⎤
⎦
⎡
⎣

y

u

p

⎤
⎦ =

⎡
⎣

τM0ȳ

0

d

⎤
⎦ ,(2.9)
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where

M0 =

⎡
⎢⎢⎢⎢⎢⎣

M1

M1

. . .

M1

0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

nNt×nNt .

The matrix systems (2.7) and (2.9) are the systems corresponding to the time-
dependent distributed control problem. The efficient solution of these saddle point
systems will be considered in this paper.

2.3. Neumann boundary control problems. Another important problem in
the field of PDE-constrained optimization is the class of Neumann boundary control

problems. Note that this problem corresponds to Ω2 = ∂Ω in (2.2). In practical
applications, these are perhaps the most useful class of problems. We start once more
by considering the boundary control of Poisson’s equation written as

min
y,u

1

2
‖y − ȳ‖2L2(Ω) +

β

2
‖u‖2L2(∂Ω)(2.10)

s.t −∇2y = f in Ω,

∂y

∂n
= u on ∂Ω,

where f is the known source term, which may be zero, and the control, u, is applied
in the form of a Neumann boundary condition. As for the distributed control case,
we discretize y, u, and p using the same finite element basis functions.

The first order optimality conditions of a discretize-then-optimize approach yield
the following matrix system:

⎡
⎣

M 0 K

0 βMb −NT

K −N 0

⎤
⎦
⎡
⎣

y

u

p

⎤
⎦ =

⎡
⎣

M ȳ

0

f

⎤
⎦ ,(2.11)

where M and K are as before (see (2.4)), Mb here denotes the boundary mass ma-
trix over ∂Ω, and N corresponds to entries arising from terms within the integral∫
∂Ω utr(v)ds (with u the boundary control and tr(v) denoting the trace function act-
ing on a member of the Galerkin test space). The vector f corresponds to f , the
source term of Poisson’s equation. The matrix in (2.11) is essentially of dimension
(2n+ nb)× (2n+ nb), where n is the number of degrees of freedom for y and nb the
number of degrees of freedom for the boundary control, u.

As well as this problem, we also investigate the time-dependent analogue, that is,
the Neumann boundary control of the heat equation. We write the problem that we
consider as

min
y,u

1

2

∫ T

0

∫

Ω

(y(x, t)− ȳ(x, t))
2
dΩdt+

β

2

∫ T

0

∫

∂Ω

(u(x, t))
2
dsdt,(2.12)

s.t. yt −∇2y = f for (x, t) ∈ Ω× [0, T ],

∂y

∂n
= u on ∂Ω.
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Note that this is related to the distributed control problem (2.5) with J(y, u) =
J1(y, u). Although we could seek to solve the optimize-then-discretize formulation
of this problem in a similar way as for the distributed control problem, we focus
our attention on the discretize-then-optimize formulation. In this case, applying the
backward Euler scheme in time and the trapezoidal rule, we obtain the matrix system

⎡
⎣

τM1/2 0 KT

0 βτM1/2,b −τN T

K −τN 0

⎤
⎦
⎡
⎣

y

u

p

⎤
⎦ =

⎡
⎣

τM1/2ȳ

0

g

⎤
⎦ ,(2.13)

where M and K are as defined in (2.8), and

M1/2,b =

⎡
⎢⎢⎢⎢⎢⎣

1
2Mb

Mb

. . .

Mb
1
2Mb

⎤
⎥⎥⎥⎥⎥⎦
,

N =

⎡
⎢⎢⎢⎢⎢⎣

N

N

. . .

N

N

⎤
⎥⎥⎥⎥⎥⎦
, g =

⎡
⎢⎢⎢⎢⎢⎣

My0 + f

f
...
f

f

⎤
⎥⎥⎥⎥⎥⎦
.

We will consider the iterative solution of the matrix systems (2.11) and (2.13), in
addition to the distributed control problems previously stated, in section 3.

2.4. Possible extensions. In this section we wish to introduce some extensions
of the above problems that in one form or another frequently appear in the field of
optimization with PDE constraints. In many applications so-called box constraints
for the state and/or the control have to be included. Here we highlight pointwise
control constraints

ua(x) ≤ u(x) ≤ ub(x)

as well as pointwise state constraints

ya(x) ≤ y(x) ≤ yb(x).

These additional constraints can be handled very efficiently by so-called semismooth
Newton methods [27, 23, 56, 28], whereas due to the reduced regularity of the Lagrange
multiplier the state-constrained problem presents a more difficult problem [9]. It is
also possible to include different or additional regularization terms in the objective
function. A popular choice is the inclusion of a so-called sparsity term where the
control u is given in the L1-norm for which we write ‖u‖1 . This term can efficiently
be treated as part of the semismooth Newton method (see [22]). Another possibility
is to have differential operators acting on the control as part of the objective function,
for which we write ‖Lu‖2. In this case efficient preconditioning depends on the nature
of the operator L and how well it can be approximated. Recent examples for this can
be found in [43, 4]. Combinations of all the above are of course possible and we
address some possibilities in the next section.
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3. Preconditioning. In this section, we motivate and discuss our proposed pre-
conditioners for the matrix systems stated in section 2. These will be applied within
the Minres algorithm [35]. This section is structured as follows. In section 3.1.1,
we propose a preconditioner for the matrix system (2.7) corresponding to a time-
dependent distributed control problem, minimizing (2.6) and using a discretize-then-
optimize formulation. We start with the case Ω1 = Ω and discuss the subdomain
case next. In section 3.1.2, we motivate a preconditioner for (2.9), which is the same
problem except with an optimize-then-discretize strategy employed. We then consider
Neumann boundary control problems for the case Ω1 = Ω; in section 3.2, we discuss
the time-independent case corresponding to (2.11), and in section 3.3 we extend this
theory to the time-dependent case, relating to (2.13). We only discuss the subdomain
case Ω1 ⊂ Ω for the time-dependent problem in section 3.4. In section 4, we present
numerical results to demonstrate that all our proposed solvers are effective in practice.

3.1. Time-dependent distributed control.

3.1.1. Minimizing J1 with discretize-then-optimize. We start by consid-

ering the case Ω1 = Ω, which gives M(1)
1/2 = M1/2. Equation (2.7), which is the

discretize-then-optimize formulation of (2.5) with J(y, u) = J1(y, u), can be written
as a saddle point system with

A =

[
τM1/2 0

0 βτM1/2

]
, B =

[
K −τM

]
,

in the notation of (2.1). The (negative) Schur complement of this system is therefore
given by

S =
1

τ
KM−1

1/2KT +
τ

β
MM−1

1/2M.(3.1)

For this matrix system, we seek a (symmetric block diagonal) preconditioner of
the form

P̂ =

[
Â 0

0 Ŝ

]
(3.2)

to be used with Minres.
For the approximation Â, we apply a similar approach as for the Poisson control

problem and take

Â =

[
τM̂1/2 0

0 βτM̂1/2

]
,(3.3)

where M̂1/2 denotes the approximation of M1/2. Here a Chebyshev semi-iteration
process is again taken to approximate consistent mass matrices or a simple inversion
for lumped mass matrices.

We now wish to develop a result which enables us to find an accurate approxima-
tion to (3.1), as well as to approximate Schur complements that we will consider in
section 3.1.2.

We start by noting that the matrix system (2.7) is of the form
⎡
⎣

Φ1 0 KT

0 βΦ1 −Φ2

K −Φ2 0

⎤
⎦
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with Schur complement given by

S = KΦ−1
1 KT +

1

β
Φ2Φ

−1
1 Φ2,(3.4)

where Φ1 and Φ2 are symmetric positive definite, as they are block matrices solely
consisting of mass matrices. (In section 3.1.2, we will consider approximations of Schur
complements of the form (3.4), where Φ1 and Φ2 have the same such properties.)

We note that in all the cases we consider, the matrix Φ−1
1 Φ2 simply involves scaled

(positive) multiples of identity matrices. That is, all the relevant blocks are scalings
of the same matrix I ∈ R

n×n. We may use the straightforward resulting observation
that MΦ−1

1 Φ2 = Φ−1
1 Φ2M with M defined as in (2.8) to demonstrate one further

property that we will require in our analysis: that KΦ−1
1 Φ2 + Φ−1

1 Φ2KT is positive
definite. We show this by applying Theorem 1 below with ∆ = Φ−1

1 Φ2.
Theorem 1. The matrix K∆ + ∆KT , where ∆ = blkdiag(α1I, α2I, . . . , αNtI),

α1, . . . , αNt > 0, I ∈ R
n×n, and K is as defined in (2.8), is positive definite.

Proof. We show thatwT (K∆+∆KT )w > 0 for allw :=
[
wT

1 wT
2 · · · wT

Nt−1 wT
Nt

]T
with w1, . . . , wNt ∈ R

n, and

∆ =

⎡
⎢⎣

∆1

. . .

∆Nt

⎤
⎥⎦ , ∆j ∈ R

n×n, j = 1, . . . , Nt,

with ∆j = αjI, j = 1, . . . , Nt.
Using the symmetry of the mass and stiffness matrices M and K,

K∆+∆KT =

⎡
⎢⎢⎢⎢⎢⎣

Λ1 −∆1M

−M∆1 Λ2 −∆2M

. . .
. . .

. . .

−M∆Nt−2 ΛNt−1 −∆Nt−1M

−M∆Nt−1 ΛNt

⎤
⎥⎥⎥⎥⎥⎦
,

where Λj = (M + τK)∆j +∆j(M + τK) for j = 1, . . . , Nt and therefore by straight-
forward manipulation that

wT (K∆+∆KT )w =

Nt∑

j=1

wT
j [M∆j +∆jM + τK∆j + τ∆jK]wj

−
Nt−1∑

j=1

wT
j (M∆j)wj+1 −

Nt∑

j=2

wT
j (∆j−1M)wj−1

= 2τ

Nt∑

j=1

wT
j (K∆j)wj +

Nt−1∑

j=1

(wj −wj+1)
T (M∆j)(wj −wj+1)(3.5)

+wT
1 (M∆1)w1 +wT

Nt
(M∆Nt)wNt ,

where we have used the facts that M∆j = ∆jM and K∆j = ∆jK for j = 1, . . . , Nt,
which are clear by the definition of ∆.

As we now have that wT (K∆+∆KT )w is a sum of positive multiples of (symmet-
ric positive definite) mass and stiffness matrices, we deduce thatwT (K∆+∆KT )w > 0
and hence that K∆+∆KT is positive definite.
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Having demonstrated the properties required, we are now in a position to prove
a result bounding the eigenvalues of Ŝ−1S, where

Ŝ =

(
K +

1√
β
Φ2

)
Φ−1

1

(
K +

1√
β
Φ2

)T

(3.6)

and S is given by (3.4). To do this, we consider the Rayleigh quotient R := v
TSv

vT Ŝv
.

This may be written as

R =
aTa+ bTb

aTa+ bTb+ aTb+ bTa
,(3.7)

where

a = Φ
−1/2
1 KTv, b =

1√
β
Φ

−1/2
1 Φ2v.

Now, as aTb + bTa = 1√
β
vT [KΦ−1

1 Φ2 + Φ2Φ
−1
1 KT ]v > 0 due to Theorem 1 with

∆j = Φ−1
1 Φ2 = Φ2Φ

−1
1 , it is clear from (3.7) that R < 1.

Further, showing that R ≥ 1
2 is a simple algebraic task, which requires only the

fact that bTb > 0 because of the positive definiteness of Φ1 and Φ2. (See [38] for
further details.)

We have hence proved the next theorem.
Theorem 2. If S and Ŝ are of the form stated in (3.4) and (3.6) respectively,

with Φ1, Φ2 symmetric positive definite and Φ−1
1 Φ2 = blkdiag(α1I, α2I, . . . , αNtI),

α1, . . . , αNt > 0, I ∈ R
n×n, then

λ(Ŝ−1S) ∈
[
1

2
, 1

]
.

We note that Theorem 2 is an extension to a result discussed in [38] concerning
convection-diffusion control.

We may now apply Theorem 2 with Φ1 = τM1/2 and Φ2 = τM, as Φ1 and
Φ2 defined in this way are clearly symmetric and positive definite and are such that
∆ = Φ−1

1 Φ2 is symmetric positive definite and satisfies M∆ = ∆M. We therefore
deduce that

Ŝ =
1

τ

(
K +

τ√
β
M
)
M−1

1/2

(
K +

τ√
β
M
)T

(3.8)

is an effective approximation to the Schur complement of the matrix system (2.7).
We note that applying the inverses of the matrix K+ τ√

β
M and its transpose would

not be feasible as this essentially means solving the PDE directly, which in itself is
a computationally expensive task. Hence, for a practical algorithm we approximate
Ŝ using multigrid techniques for K + τ√

β
M and its transpose, that is, we require

a multigrid process for each of the diagonal blocks M + τK + τ√
β
M ∈ R

n×n. We

apply a few cycles of such a multigrid process Nt times to approximate the inverse of

K + τ√
β
M and Nt times to approximate the inverse of

(
K + τ√

β
M
)T

.

In conclusion, for an effective iterative method for solving (2.7), we recommend

a Minres method with a preconditioner of the form (3.2), with Â and Ŝ as in (3.3)
and (3.8). In section 4, we provide numerical results to demonstrate the effectiveness
of our proposed preconditioner.
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3.1.2. Minimizing J1 with optimize-then-discretize. We now turn our at-
tention to (2.9), the optimize-then-discretize formulation of (2.3) with J(y, u) =
J1(y, u). Again, we may write this as a saddle point system of the form (2.1) with

A =

[
τM0 0
0 βτM1/2

]
, B =

[
K −τM

]
.

We note that the (1, 1)-block of this system, A, is not invertible, due to the rank-
deficiency of M0, so when prescribing an approximation for a preconditioner, we
recommend considering a perturbation of the matrix M0

Mγ
0 =

⎡
⎢⎢⎢⎢⎢⎣

M

M
. . .

M

γM

⎤
⎥⎥⎥⎥⎥⎦

for some constant γ such that 0 < γ ≪ 1, and taking as our approximation to A the
following:

Â =

[
τM̂0 0

0 βτM̂1/2

]
,(3.9)

where M̂0 and M̂1/2 denote approximations to Mγ
0 and M1/2, generated by using

Chebyshev semi-iteration in the case of consistent mass matrices, or, in the case of
lumped mass matrices, themselves.

Now, due to the noninvertibility of M0, the Schur complement of the matrix
system (2.9) does not exist. Therefore it is less obvious what the (2, 2)-block of our
block diagonal preconditioner of the form (3.2) should be. The heuristic we use is

to examine the perturbed saddle point system
[

Â BT

B 0

]
and consider the Schur

complement of this matrix system. This is given by the quantity

S̃ :=
1

τ
KM̂−1

0 KT +
τ

β
MM−1

1/2M.

Now, by simple manipulation, we observe that

S̃ =
1

τ
KM̂−1

0 KT +
τ

β
Γ1M̂−1

0 Γ1,

where

Γ1 =

⎡
⎢⎢⎢⎢⎢⎣

√
2M

M

. . .

M √
2γM

⎤
⎥⎥⎥⎥⎥⎦
.

By applying Theorem 2 with Φ1 = τM̂0 and Φ2 = τΓ1, we therefore deduce that

Ŝ =
1

τ

(
K +

τ√
β
Γ1

)
M−1

0

(
K +

τ√
β
Γ1

)T

(3.10)
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satisfies

λ(Ŝ−1S̃) ∈
[
1

2
, 1

]
,

which tells us that Ŝ is a good Schur complement approximation to the perturbed
matrix system we have considered. As the matrix system (2.9) is very similar in
structure to this perturbed system, it seems that this would also be a pragmatic
choice for the (2, 2)-block of our block diagonal preconditioner for this system.

Therefore, within the Minres algorithm for solving (2.9), we again recommend a

preconditioner of the form (3.2) with Â and Ŝ as in (3.9) and (3.10). The numerical
results of section 4 demonstrate that this is indeed an effective approach.

3.2. Time-independent Neumann boundary control. We now consider
preconditioning the system (2.11), which arises when solving the time-independent
Poisson boundary control problem. If we write the saddle point system in the form
(2.1) with

A =

[
M 0
0 βMb

]
, B =

[
K −N

]
,

then constructing an approximation Â to the (1, 1)-block A is relatively straightfor-
ward, as we treat both mass matrices M and Mb as before. However, an issue arises
when we consider the effective approximation of the Schur complement of (2.11)

S = KM−1K +
1

β
NM−1

b NT .

Because of the rank-deficiency of the 1
βNM−1

b NT term of the Schur complement, it

is not as simple to find a clean and easy-to-invert approximation Ŝ to S such that
the eigenvalues of Ŝ−1S may be pinned down into an interval independent of both
h and β, as for the distributed control case in section 2.2. We therefore seek an
approximation which is robust for a range of h and β. We first wish to motivate our
choices before analyzing them in more detail.

We assume now that all mass matrices are lumped. It is then easy to see that
NM−1

b NT is a diagonal matrix with nonzero entries on the diagonal for every bound-
ary node. For simplicity we assume the degrees of freedom are ordered in such a way
that the nodes located on the boundary can be found in the lower right corner of
NM−1

b NT , i.e.,

NM−1
b NT =

[
0 0
0 Mb

]
.

Now our task is to approximate the Schur complement S via

Ŝ =

(
K +

1√
β
M̂

)
M−1

(
K +

1√
β
M̂

)

for some matrix M̂ in such a way that the structure of the original Schur complement
is maintained as much as possible. If we look at the last equation we see this gives
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Ŝ = KM−1KT +
1

β
M̂M−1M̂ +

1√
β

(
KM−1M̂ + M̂M−1K

)
.

We now look at the terms separately. The first one is part of the original Schur
complement. The second one needs to be looked at more carefully. Hence

[
0 0
0 αMb

] [
M−1

y,i 0

0 M−1
y,b

] [
0 0
0 αMb

]
=

[
0 0
0 α2MbM

−1
y,bMb

]

with i and b denoting interior and boundary, respectively, and for some constant α.
This tells us now that if

α2MbM
−1
y,bMb ≈ Mb,

we have found a good approximation to the Schur complement of the original matrix,
which can be evaluated efficiently. A simplification will now motivate our choice of α
as, if we approximate Mb = hIb (where Ib is the identity matrix of dimension equal
to the number of boundary nodes) and My,b = h2I, we obtain that

α2MbM
−1
y,bMb = Mb ⇐⇒ α2hh−2hI = α2I ≈ hI,(3.11)

and hence a good choice for α seems to be α =
√
h. As a result, our recommended

Schur complement approximation is now defined as

Ŝ1 =

(
K +

√
h

β
MΓ

)
M−1

(
K +

√
h

β
MΓ

)
,

i.e., the matrix M̂ introduced earlier is given by
√
hMΓ. We note that because of

the diagonal nature of the mass matrices the matrix MΓ = NM−1
b NT is simple to

evaluate. Another choice with a similar motivation is given by

Ŝ2 =

(
K +

√
h

β
MΓ

)
(hM̂Γ)

−1

(
K +

√
h

β
MΓ

)
.

Here M̂Γ is given by the matrix Mb in the boundary components and a small scalar
of order h for all nodes corresponding to the degrees of freedom on the interior, i.e.,

M̂Γ = MΓ + hIi,

with Ii a diagonal matrix with ones on the diagonal for all interior degrees of freedom
and zeros elsewhere. We now wish to analyze these two preconditioners in more
detail by considering the eigenvalue distributions of Ŝ−1

1 S and Ŝ−1
2 S. Our analysis

is based on the two-dimensional problem, however it can be easily extended to the
three-dimensional case.

Eigenvalues of Ŝ
−1

1
S. Here we must consider the Rayleigh quotient

vTSv

vT Ŝ1v
=

vTKM−1Kv + 1
βv

TMΓv

vTKM−1Kv + h
βv

TMΓM−1MΓv +
√

h
βv

T [MΓM−1K +KM−1MΓ]v

=
vTKM−1Kv+ vT

(
1
βMΓ

)
v

vTKM−1Kv + h
βv

TMΓM−1MΓv + 2
√

h
βv

TMΓM−1Kv
,

which will provide us with the eigenvalues of Ŝ−1
1 S.
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PRECONDITIONERS AND PDE-CONSTRAINED OPTIMIZATION 1139

If v ∈ null(MΓ), then
v
TSv

vT Ŝ1v
= 1. If not, then we can write the above also as

vTSv

vT Ŝ1v
=

1

vTKM−1Kv+h
β vTMΓM−1MΓv

vTKM−1Kv+ 1

β vTMΓv
+

2
√

h
β vTMΓM−1Kv

vTKM−1Kv+ 1

β vTMΓv

.(3.12)

Using the fact thatMΓ

(
1
hM

)−1
MΓ = hMΓM

−1MΓ andMΓ are spectrally equivalent,
we can see that

0 <
vTKM−1Kv + h

βv
TMΓM

−1MΓv

vTKM−1Kv + 1
βv

TMΓv
=: D1 = O(1),

where D1 is a mesh and β-independent constant.
We now examine the term

2
√

h
βv

TMΓM
−1Kv

vTKM−1Kv + 1
βv

TMΓv
=:

T1

T2
,

in particular its maximum and minimum values, more carefully. We assume now
that M ≈ h2I and MΓ ≈ hI, ignoring all multiplicative constants. Furthermore,
we note that the eigenvalues of K are within the interval

[
cKh2, CK

]
, where cK and

CK are constants independent of h and β (apart from a single zero eigenvalue with a
corresponding eigenvector of ones—this corresponds to an arbitrary constant being a
solution of the continuous Neumann problem for Poisson’s equation).

As we work with lumped mass matrices throughout our work on Neumann bound-
ary control, we observe that T1 ≥ 0, as it relates to a positive constant multiplied by
the product of two matrices (MΓM

−1, which we have assumed to be approximately
h−1I, and K, which is symmetric positive definite). We also note that T2 must be
strictly positive.1

We now consider the maximum and minimum values of T1

T2
. We consider the

maximum such value by writing

T1

T2
=

β−1/2h1/2h1h−2c

h−2c2 + β−1h
=

β−1/2h−1/2c

h−2(c2 + β−1h3)
=

ac

c2 + a2

with a = h3/2β−1/2 and c corresponding to the relevant eigenvalue of K. Here, both
a and c are positive. Therefore, in this case, ac

c2+a2 ≤ 1
2 by straightforward algebraic

manipulation. This means that the denominator in (3.12) will be bounded above by
a constant independent of h, β, and τ , as both terms are of O(1). This gives us a
lower bound for λmin.

As T1 and T2 are both nonnegative, we may write that T1

T2
≥ 0 and hence that

v
TSv

vT Ŝ1v
≥ 1

D1
, giving us an upper bound for λmax.

Putting our analysis together, and reinstating multiplicative constants, we con-
clude that

λmin(Ŝ
−1
1 S) = c1, λmax(Ŝ

−1
1 S) = C1,

where c1 and C1 are positive constants independent of h, β, and τ .

1This may be argued as follows. Both vTKM−1Kv and 1
β
vTMΓv are nonnegative terms. The

former will be strictly positive unless v is the vector of ones, which corresponds to the zero eigenvalue
of K. In this case, it is clear that the vTMΓv term will be strictly positive, as none of the entries of
MΓ are negative. So for each v, at least one term will be strictly positive.
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Eigenvalues of Ŝ
−1

2
S. We may carry out a similar analysis for the approxima-

tion Ŝ2 of S by considering the Rayleigh quotient

vTSv

vT Ŝ2v
=

vTKM−1Kv + vT
(

1
βMΓ

)
v

vTK(hM̂Γ)−1Kv+ h
βv

TMΓ(hM̂Γ)−1MΓv + 2
√

h
βv

TMΓ(hM̂Γ)−1Kv
,

and writing that M ≈ h2I, M̂Γ ≈ hI, and MΓ ≈ blkdiag(0, hIb).

Proceeding as we did for the analysis of Ŝ1, we obtain that

λmin(Ŝ
−1
2 S) = c2, λmax(Ŝ

−1
2 S) = C2,

where c2 and C2 are positive constants independent of h, β, and τ , provided we use
lumped mass matrices.

We emphasize that due to the rank-deficient nature of the 1
βNM−1

b NT term of the
Schur complement S, it is more difficult to obtain a complete picture of the eigenvalue
distributions of Ŝ−1

1 S and Ŝ−1
2 S than for the preconditioned Schur complement in

the distributed control case. Consequently, the bounding of λ(Ŝ−1
1 S) and λ(Ŝ−1

2 S)
by constants of O(1) is less descriptive than the more specific bound outlined for
distributed control in [37] and discussed in section 2.2.

However, the conclusion that the eigenvalues of Ŝ−1
1 S and Ŝ−1

2 S are certainly
real and bounded above and below by constants of O(1), independently of h, β, and
τ , indicates that either S1 or S2 should serve as an effective approximation of S—a
hypothesis which is verified by the numerical results presented in section 4. We note
that in the above analysis, we have assumed that lumped mass matrices are being
used; however, numerical tests indicate that we still obtain a clean bound when using
consistent mass matrices.

3.3. Time-dependent Neumann boundary control. In the case of the time-
dependent boundary control problem, we are interested in approximating the Schur
complement

(3.13) S =
1

τ
KM−1

1/2KT +
τ

β
NM−1

1/2,bN T

of the saddle point matrix A. We want to approximate the above by

(3.14) Ŝ3 = τ−1

(
K +

τ√
β
M̂
)
M−1

1/2

(
KT +

τ√
β
M̂
)
,

and for this to be a good approximation the choice of M̂ is again crucial. We recall
that we assumed M1/2,b to be a block diagonal matrix of lumped boundary mass
matrices and also that M1/2 consists of lumped mass matrices over the domain Ω.

Hence the first term in (3.14) is given by τ−1KM−1
1/2KT , which means that the first

term in the Schur complement (3.13) is well represented in our approximation. We
then obtain the next term from (3.14) as

τ−1ττ√
β
√
β
M̂M−1

1/2M̂ =
τ

β
M̂M−1

1/2M̂.

To understand how this approximatesNM−1
1/2,bN T , we need to study the structure of

both matrix products more carefully. We recall that M1/2,b = blkdiag(12Mb,Mb, . . . ,
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Mb,
1
2Mb) and that with some abuse of notation N = blkdiagrec(N, . . . , N), giving

for the overall structure

NM−1
1/2,bN T =

⎡
⎢⎢⎢⎢⎢⎣

2NM−1
b NT

NM−1
b NT

. . .

NM−1
b NT

2NM−1
b NT

⎤
⎥⎥⎥⎥⎥⎦
.

We see that as M1/2 = blkdiag
(
1
2M,M, . . . ,M, 1

2M
)
and M̂ = blkdiag(M̂, . . . , M̂),

the structure of the large problem looks as follows:

M̂M−1
1/2M̂ =

⎡
⎢⎢⎢⎢⎢⎢⎣

2M̂M−1M̂

M̂M−1M̂

. . .

M̂M−1M̂

2M̂M−1M̂

⎤
⎥⎥⎥⎥⎥⎥⎦
.

This indicates that it is important for M̂M−1M̂ ≈ NM−1
b NT , which we split up even

further now. Consider an ordering of the degrees of freedom on the boundary and in
the interior as before,

M̂M−1M̂ =

[
0 0
0 αMb

] [
M−1

y,i 0

0 M−1
y,b

] [
0 0
0 αMb

]
=

[
0 0
0 α2MbM

−1
y,bMb

]
,

and now note that

NM−1
b NT =

[
0 0
0 Mb

]
,

where My,i and My,b denote the splitting of the mass matrix M into its interior and

boundary parts, respectively. Similar to before, we can show that α =
√
h is a good

choice. A choice not very different from the above is given by the approximation

(3.15) Ŝ4 = τ−1

(
K + τ

√
h

β
M̂
)
(hM̂Γ)

−1

(
K + τ

√
h

β
M̂
)T

,

where M̂Γ consists of block diagonal matrices that have the boundary mass matrix
for the boundary nodes and a suitably scaled identity matrix for the interior nodes.
(See also the time-independent case.)

Eigenvalues of Ŝ
−1

4
S. We now search for the eigenvalues of Ŝ−1

4 S, where

(3.16) Ŝ4 = τ−1

(
K + τ

√
h

β
M̂
)
(hM̂Γ)

−1

(
K + τ

√
h

β
M̂
)T

,

by considering the Rayleigh quotient

vTSv

vT Ŝ4v
=

τ−1vTKM−1
1/2KTv + τβ−1vTM̂v

τ−1vTK(hM̂Γ)−1Kv + τh
β vTM̂(hM̂Γ)−1M̂v + 2

√
h
βv

TK(hM̂Γ)−1M̂v
,
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Fig. 3.1. Singular values of L and K for a small example.

using the fact that M̂Γ = NM−1
1/2,bN T . Assuming that v ∈ null(M̂), we obtain that

vTSv

vT Ŝ4v
= O(1).

So we now consider the case where v is not in this nullspace; we then examine the
term

1

τ−1vTK(hM̂Γ)−1Kv+ τh
β vTM̂(hM̂Γ)−1M̂v

τ−1vTKM−1

1/2
KTv+τβ−1vTM̂v

+
√

h
β

vT (K(hM̂Γ)−1M̂+M̂(hM̂Γ)−1KT )v
τ−1vTKM−1

1/2
KTv+τβ−1vTM̂v

.

So if we now assume (neglecting constants for now) that hM̂Γ ≈ M1/2 ≈ h2I and

M̂ ≈ M̂(hM̂Γ)
−1M̂ ≈ hI, we see that

τ−1vTK(hM̂Γ)
−1Kv + τh

β vTM̂(hM̂Γ)
−1M̂v

τ−1vTKM−1
1/2KTv + τβ−1vTM̂v

= O(1).

In order to simplify the analysis at this stage we simply assume that K is approximated
by its block diagonal, i.e., L ≈ K (see Figure 3.1). We use this to approximate the
above by

√
h

β

vT
(
L(hM̂Γ)

−1M̂+ M̂(hM̂Γ)
−1L

)
v

τ−1vTLM−1
1/2Lv + τβ−1vTM̂v

=:
T1

T2
.

We may proceed as in section 3.2 for the time-independent boundary control case to
obtain (neglecting constants)

T1

T2
=

h1/2β−1/2h−1c

τ−1h−2c2 + τβ−1h
=

β−1/2h−1/2c

h−2τ−1(c2 + τ2β−1h3)
=

τβ−1/2h3/2c

c2 + τ2β−1h3
=

ac

c2 + a2
≤ 1

2
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with a = τβ−1/2h3/2 and c ∈
[
cKτh2 + cMh2, Ckτ + CMh2

]
. This shows that the

results for the time-independent case can be used here as well. For the minimum
value of T1

T2
, we may apply a similar analysis as in the case of Ŝ−1

1 S and working once
more with lumped mass matrices. We obtain that (reintroducing constants)

λmin(Ŝ
−1
4 S) = c4, λmax(Ŝ

−1
4 S) = C4,

where c4 and C4 are positive constants independent of h, β and τ .
A similar analysis can be carried out for Ŝ−1

3 S. As for the time-independent case,
it is more difficult to develop a complete picture of the eigenvalue distribution of the
preconditioned Schur complement than for the distributed control case; however, it is
useful to see that we may bound the eigenvalues by constants of O(1) independently
of the parameters h, β, and τ . Indeed, the results shown in section 4 show that the
performance for the preconditioners for the time-dependent and time-independent
boundary control problems is quite similar, and we find that both approximations Ŝ3

and Ŝ4 are effective for this problem for a wide range of parameters.

3.4. The subdomain case. We now wish to address the case when the desired
state is only given on a subdomain Ω1 of Ω. The saddle point system is then defined by

A =

[
τM(1)

1/2 0

0 βτM1/2

]
, B =

[
K −τM

]
,

and we note that the matrix A is only positive semidefinite as the matrix M(1)
1/2

is semidefinite. However, we wish to obtain an invertible approximation of A, as
well as an effective Schur complement approximation, as in previous sections. For

that purpose we introduce a parameter γ ∈ R such that the matrix M(1,γ)
1/2 =

blkdiag
(
1
2M

γ
1 ,M

γ
1 , . . . ,M

γ
1 ,

1
2M

γ
1

)
with M

γ
1 defined as

(Mγ
1 )Ω�Ω1

= γI or (Mγ
1 )Ω�Ω1

= γMΩ�Ω1
.

Note that we use the same notation for the small parameter, namely, γ, dealing with
the zero parts of the (1, 1)-block and believe it will be clear from the context what
γ represents. The (1, 1)-block of this perturbed problem may now be approximated

by Â = blkdiag(τM̂(1,γ)
1/2 , βτM̂1/2), where M̂(1,γ)

1/2 now denotes the relevant approx-

imation of mass matrices (Chebyshev semi-iteration or diagonal solves) within the

matrix M(1,γ)
1/2 . The Schur complement of this perturbed problem that we now wish

to approximate is given by

S̃ =
1

τ
K(M(1,γ)

1/2 )−1KT +
τ

β
MM−1

1/2M.

Again our goal is to derive an approximation to the Schur complement that exhibits
robustness with respect to the regularization parameter. For this we consider

Ŝ =
1

τ
(K + M̂)(M(1,γ)

1/2 )−1(K + M̂)T ,

where we have to define M̂. Ideally, we have agreement between the terms
1
τ M̂(M(1,γ)

1/2 )−1M̂ ≈ τ
βMM−1

1/2M. Assuming now that all mass matrices are lumped

we can give an elementwise description of what we wish to achieve, i.e.,

m̂2
ii =

τ2

β

(
m(1,γ)

)
ii
mii,
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that is,

(3.17) m̂ii =
τ√
β

√(
m(1,γ)

)
ii

√
mii.

We now have to distinguish between indices i that represent degrees of freedom within
Ω1 or in Ω� Ω1. In more detail,

(3.18)
(
m(1,γ)

)
ii
=

{
mii if i ∈ Ω1,

γ otherwise.

We have now established an expression for the elements of M̂ in the case of the
distributed control problem. We find that the resulting Schur complement approxi-
mation works well in practice—we demonstrate this once again with numerical results
in section 4.

Choice of γ. We now explain how we select in practice the “perturbation param-
eter” γ that we have utilized in previous sections. We start by deriving the parameter
γ for the case when optimize-then-discretize is used for the distributed control prob-
lem. We assume that we want both terms of the Schur complement

S = KM̂−1
0 KT + τβ−1M2

with M̂0 = blkdiag(M, . . . ,M, γM), M2 = blkdiag(2M,M. . . . ,M, 2M) to be “bal-
anced” (see [4, 52]). We simplify this task by replacing K by its block diagonal
L := blkdiag(L, . . . , L), where L = M + τK. We now wish to balance the terms in
this new approximation with a particular focus on the parameter γ, i.e.,

Ŝ = LM̂−1
0 LT + τβ−1M2.

Comparing the blocks in Ŝ that involve γ, we obtain

(3.19) γ−1h−2L2 ≈ τβ−1h2I,

using the approximation M = h2I for a two-dimensional problem. In this heuristic,
we want to balance the smallest eigenvalues of both terms; for L2 = τ2K2 + τKM +
τMK +M2 these will be of the order τ2h4 (neglecting constants). In order for γ to
balance both terms in (3.19), we get

γ−1h−2τ2h4 ≈ τβ−1h2

and therefore that

(3.20) τβ ≈ γ.

Note that the above heuristic holds for the two-dimensional case. In complete analogy,
we can derive that

(3.21) τβ ≈ γ

is also a good choice for problems in three dimensions. If one wants to balance the
largest eigenvalues in both terms the parameter γ might not be small, depending on
the choice of τ and β. In a very similar way we can derive a heuristic for the parameter
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γ in the subdomain case. To solve the distributed control problem we replace the zero
entries by γ to give

(3.22) γ−1τ2h4 ≈ τβ−1h2 ⇒ γ = τβh2.

Rees and Greif [41] also introduce a similar parameter γ that is part of a perturbation
of the (1, 1)-block of a saddle point problem coming from the treatment of a quadratic
program using interior point methods. They construct a preconditioner with an aug-
mented (1, 1)-block, i.e., A+γ−1BBT , using the classical saddle point notation, where
their parameter γ is chosen to balance the two summands A and BBT , similar to our
heuristic above.

4. Numerical results. The results presented in this section are based on an im-
plementation of the above described algorithms within the deal.II [2] framework using
Q1 finite elements. For the AMG preconditioner, we used the Trilinos ML package [15]
that implements a smoothed aggregation AMG. Within the AMG we typically used 10
steps of a Chebyshev smoother in combination with the application of two V-cycles.
Our implementation of Minres was taken from [12] and was stopped with a tolerance
of 10−4 for the relative pseudoresidual. Our experiments are performed for T = 1 and
τ = 0.05, i.e., 20 time-steps. We consider homogeneous Dirichlet conditions for dis-
tributed control problems, though we are of course not limited to them, and also a
zero forcing term f = 0 for Neumann boundary control problems. We carried out the
examples on the domain Ω = [0, 1]3. Whenever we show the degrees of freedom these
are only the degrees of freedom for one grid point in time (i.e., for a single time-step).
Implicitly, we are solving a linear system of dimension three times the number of time-
steps (Nt) times the degrees of freedom of the spatial discretization (n). For example,
a spatial discretization with 274,625 unknowns and 20 time-steps corresponds to an
overall linear system of dimension 16,477,500. All results are performed on a Centos
Linux machine with Intel Xeon CPU X5650 at 2.67 GHz CPUs and 48 GB of RAM.

4.1. Distributed control. We start by giving results for the distributed control
examples presented earlier. For the distributed control problems we impose a zero
Dirichlet condition. This results in the computed state not matching the desired
state quite as well very close to the boundary. Another option would be to impose a
Dirichlet condition where the state corresponds to the desired state on ∂Ω.

4.1.1. The all-times case—whole domain. The example we consider for the
distributed control problem is given by the all-times case, where the functional J(y, u)
contains observations for all time-steps. We have the choice of using the trapezoidal
rule (which corresponds to the discretize-then-optimize formulation) or the rectan-
gular rule (which corresponds to the optimize-then-discretize formulation) for the
discretization of the state integral. We will show results for both cases that desired
to drive the state close to the desired state given by

ȳ = 64t sin
(
2π
(
(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2

))

with a zero initial value. An illustration of the desired state, the computed state, and
the control is shown in Figure 4.1 for one particular point in time, i.e., one particular
time-step. The results with the Schur complement approximation as presented in
section 3.1.1 (trapezoidal rule) are shown in Table 4.1 and the results for the approach
presented in section 3.1.2 (rectangular rule) are shown in Table 4.2. We can see that
the number of iterations remains constant with varying mesh size and regularization
parameter β.
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4.1.2. The all-times case—subdomain problem. We now show results for
the subdomain problem when the desired state is again defined by

ȳ = 64t sin
(
2π
(
(x0 − 0.5)2 + (x1 − 0.5)2 + (x2 − 0.5)2

))

and the domain Ω1 is defined by

Ω1 =
{
x ∈ [0, 1]3 : 0.4 ≤ x1, x2 ≤ 0.7

}
.

Results for this case are shown in Table 4.3, where we can again see that the iteration
numbers are small and robust with respect to the mesh parameter and the regulariza-
tion parameter. The timings are slightly higher than in the case for the whole domain.
This is because in our experience the AMG approximation sometimes deteriorates for
small parameters and as we now include γ in our approximation we decided to use
four V-cycles instead of two.

4.2. Boundary control. We now present results for the time-independent and
time-dependent Neumann boundary control problems discussed earlier.

4.2.1. Time-independent boundary control. The time-independent bound-
ary control problem example that we present starts from initial value zero, matching

Fig. 4.1. Control, desired state, and state for distributed control with β = 1e− 4 at grid point

15 in time.

Table 4.1

Results for discretize-then-optimize approach via trapezoidal rule.

DoF Minres(T) Minres(T) Minres(T)

β = 1e− 2 β = 1e− 4 β = 1e− 6
4913 10(2) 12(2) 12(2)
35937 10(14) 12(17) 12(18)
274625 10(148) 12(171) 12(170)

Table 4.2

Results for optimize-then-discretize approach via rectangular rule.

DoF Minres(T) Minres(T) Minres(T)

β = 1e− 2 β = 1e− 4 β = 1e− 6
4913 12(3) 10(2) 8(1)
35937 12(16) 10(14) 10(14)
274625 14(196) 10(152) 10(147)
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Table 4.3

Results for discretize-then-optimize approach via trapezoidal rule for a subdomain problem.

DoF Minres(T) Minres(T) Minres(T)

β = 1e− 2 β = 1e− 4 β = 1e− 6
4913 12(5) 13(5) 15(5)
35937 12(28) 15(35) 17(38)
274625 12(332) 15(386) 19(495)

Table 4.4

Results obtained with Schur complement approximation Ŝ1.

DoF Minres(T) Minres(T) Minres(T)

β = 1e− 2 β = 1e− 4 β = 1e− 6
4913 26(1) 28(1) 22(1)
35937 32(2) 38(2) 30(2)
274625 34(22) 48(31) 46(29)
2146689 38(211) 60(289) 64(314)

the desired state given by

ȳ =

{
sin(x1) + x2x0 if x0 > 0.5 and x1 < 0.5,

1 otherwise.

The desired state, computed state, and control are shown in Figure 4.2. The CPU
times and iteration numbers for the Minres algorithm with varying mesh size and
regularization parameter are shown in Table 4.4 for the Schur complement approx-
imation Ŝ1 and in Table 4.5 for Ŝ2. We see that Ŝ1 performs better in all cases,
although the results for Ŝ2 are not dramatically different. We see for both approaches
a slow growth in the iteration numbers, which is expected when dealing with a pure
Neumann problem (see [5]). We observe some rather small growth with decreasing
β, especially for small meshes, but with the iteration numbers still reasonably small.
We also observe improved preformance when h3 and β are further apart. The results
we experience matched our expectations based on the theory detailed in section 3.2.

4.2.2. Time-dependent boundary control. The setup for the example time-
dependent boundary control problem we present again starts with an initial value of
zero and the following time-dependent desired state:

ȳ =

{
sin(t) + x0x1x2 if x0 > 0.5 and x1 < 0.5,

1 otherwise.

Fig. 4.2. Control, desired state, and state for boundary control with β = 1e− 4.

D
o
w

n
lo

ad
ed

 0
1
/3

1
/1

3
 t

o
 1

9
3
.1

7
5
.5

3
.2

1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1148 J. W. PEARSON, M. STOLL, AND A. J. WATHEN

Table 4.5

Results obtained with Schur complement approximation Ŝ2.

DoF Minres(T) Minres(T) Minres(T)

β = 1e− 2 β = 1e− 4 β = 1e− 6
4913 38(1) 38(1) 30(1)
35937 44(3) 54(3) 44(3)
274625 48(31) 74(48) 70(44)
2146689 54(263) 98(466) 108(513)

Table 4.6

Results obtained with Schur complement approximation Ŝ3.

DoF Minres(T) Minres(T) Minres(T)

β = 1e− 2 β = 1e− 4 β = 1e− 6
4913 34(7) 38(7) 28(6)
35937 38(49) 48(62) 38(48)
274625 48(620) 62(800) 58(725)

Table 4.7

Results obtained with Schur complement approximation Ŝ4.

DoF Minres(T) Minres(T) Minres(T)

β = 1e− 2 β = 1e− 4 β = 1e− 6
4913 40(8) 42(8) 36(7)
35937 50(65) 59(73) 42(54)
274625 62(808) 80(1002) 68(855)

The desired state as well as the computed state and control are depicted for grid
point 20 in time (i.e., the 20th time step) in Figure 4.3 and for grid point 10 (the
10th time step) in Figure 4.4. We again computed results for both Schur complement

approximations presented earlier; the results are given in Table 4.6 for Ŝ3 and in Table
4.7 for Ŝ4. We again see higher iteration numbers for the second approximation Ŝ4

and benign growth with respect to the mesh size, but again with improved results if
h3 and β are far apart. The results here reflect the results for the time-independent
case, which we expect due to our theoretical study presented in section 3.3.

5. Concluding remarks and outlook. We have presented various setups for
the optimal control of the heat equation. We derived the discretized first order condi-
tions for the distributed and boundary control cases and showed that both problems

Fig. 4.3. Control, desired state, and state for boundary control with β = 1e − 6 at grid point

20 in time.
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Fig. 4.4. Control, desired state, and state for boundary control with β = 1e − 6 at grid point

10 in time.

lead to a linear system with saddle point structure. We then extended the analysis for
a regularization-robust preconditioner from the time-independent distributed control
case to the time-dependent distributed control case. We also provided some bounds for
the case of Neumann boundary control for the time-dependent and time-independent
setups. We then gave an extensive numerical study of the preconditioners derived
earlier and showed that the dependence with respect to the mesh size, regularization
parameter, and time-step could be removed for the distributed control case. The nu-
merical results for the pure Neumann control problem illustrated a benign dependence
on the mesh size (similar to the forward problem) and very little dependence with
respect to the regularization parameter β. These results have already been used in a
different work on time-periodic parabolic problems with control constraints (see [51]),
where good numerical results were obtained. The work presented in this paper also
serves as a framework for the consideration of other time-dependent optimal control
problems. The techniques presented could be adapted for the case where the control
is only applied in a subdomain, or examples with additional constraints such as box
constraints being imposed on the state or control.

A possible future extension of this work would be to develop robust precondi-
tioners for more complicated PDEs with respect to all parameters involved. As well,
one could generate solvers for the subdomain case, as discussed in this manuscript,
or the boundary control setting. Furthermore, one drawback of the procedure de-
scribed in this paper, which could be tackled in future work, is the necessary storage
requirement for the vectors corresponding to the control, state, and adjoint. Although
it is possible to condense the system by, for example, eliminating the control, more
research would be required here. Various approaches have been applied to time-
dependent PDE-constrained optimization in the past. For instance, checkpointing
[17], a method which involves storing only certain checkpoints of the state and com-
puting the adjoint state based on these, has been investigated. We note that our
one-shot approach is not ideally suited for this method but rather could be treated
using ideas based on instantaneous control [10, 24, 21], multiple shooting [21], and
parareal schemes [31, 32, 33]. Possibly the simplest idea of all is to split up the interval
into subintervals and use our approach to solve the relevant subproblems, for which all
the analysis presented here carries over. However, we note that the solution obtained
using this approach is suboptimal [21]. Parareal and shooting methods maintain the
splitting into subintervals but ensure agreement of the control and state where the
time-slices meet each other. We believe that the techniques presented here can be
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used within multiple shooting methods such as that presented in [21]—this is another
area of further work which will be investigated.
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a careful reading of the manuscript and helpful comments.
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