
IEEE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATRANSACTIONS ON ACOUSTICS. SPEECH, AND SIGNAL PROCESSING. VOL 38. NO 7. JULY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1990 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 I55 

Regularization Theory in Image Restoration-The 
Stabilizing Functional Approach 

NICOLAOS B. KARAYIANNIS, STUDENT MEMBER, IEEE, AND 

ANASTASIOS N. VENETSANOPOULOS, FELLOW, IEEE 

Abstract-This paper presents several aspects of the application of 
regularization theory in image restoration. This is accomplished by ex- 
tending the applicability of the stabilizing functional approach to 2-D 
ill-posed inverse problems. Image restoration is formulated as the con- 
strained minimization of a stabilizing functional. The choice of a par- 
ticular quadratic functional to be minimized is related to the a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori 
knowledge regarding the original object through a formulation of im- 
age restoration as a maximum a posteriori estimation problem. This 
formulation is based on image representation by certain stochastic par- 
tial differential equation image models. The analytical study and com- 
putational treatment of the resulting optimization problem are subse- 
quently presented. As a result, a variety of regularizing filters and 
iterative regularizing algorithms are proposed. A relationship between 
the regularized solutions proposed and optimal Wiener estimation is 
also identified. The filters and algorithms proposed are evaluated 
through several experimental results. 

I. INTRODUCTION 

HE image formation process is commonly formulated 
by the following linear model [ 11, [2]: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A f + n = g  (1 .1)  

T 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf is the original object, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg is the observed image, 
and n is the additive noise due to the image recording 
system. A is a linear operator describing the degradation 
associated with the image formation. Image restoration is 
the process of inferring the best possible estimate for the 
original object f ,  given the observed image g. When the 
image formation is described by a continuous space- 
variant linear model, (1.1) corresponds to the following 
integral equation [ 11 :  

ss h ( u ,  U ,  x ,  Y ) f ( X ,  Y )  dY + n ( u ,  U )  = g ( u ,  U )  

(1 .2)  

where h ( * ) is a function of four variables, describing po- 
sitions in both object and image spaces, also known as 
point spreadfuncrion (PSF) in the literature [l]. In the 
case of a space-invariant continuous formulation, (1.2) 
corresponds to 2-D convolution. When the image forma- 
tion is described by a discrete model, (1. l )  corresponds 
to the following matrix-vector equation [ 11: 

A f +  n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg.  (1 .3)  
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In (1.3), fand  g are vectors consisting of the lexicograph- 
ically ordered elements of the object and image, respec- 
tively, and n is the noise vector. The degradation asso- 
ciated with the image formation is described in (1.3) by 
the matrix A ,  also referred to as point spread matrix 
(PSM) in the literature [I]. 

An inverse problem is characterized as ill-posed when 
there is no guarantee for the existence, uniqueness, and 
stability of the solution based on direct inversion. The 
solution of an inverse problem is not guaranteed to be sta- 
ble if a small perturbation of the data can produce a large 
effect in the solution. Image restoration belongs to a gen- 
eral class of problems that were rigorously classified as 
ill-posed problems in [3]. An even more intuitive reason- 
ing about the ill-posed nature of the problem can be found 
in [4]. Regularization theory (RT) provides a formal basis 
for the development of regularized solutions of ill-posed 
problems. The basic elements of RT were presented by 
Tikhonov et al. in [3]. In [ 5 ] ,  Nashed emphasized the 
relationship between regularization and generalized in- 
verses. The stabilizing functional approach is one of the 
basic methodologies for the development of regularized 
solutions [3]. According to this approach, an ill-posed 
problem can be formulated as the constrained minimiza- 
tion of a certain functional, called stabilizing functional. 

The specific constraints imposed by the stabilizing func- 
tional approach on the solution depend on the form and 
the properties of the stabilizing functional used. From the 
nature of the problem, these constraints are necessarily 
related to the a priori information regarding the expected 
regularized solution. 

Although the basic concepts within RT are well de- 
fined, there exists some confusion in the literature regard- 
ing RT. The use of the word “regularization” by some 
authors generates often the false impression that RT is 
restricted to the minimum norm solution of ill-posed in- 
verse problems only. On the other hand, it seems to be 
commonly believed that RT is restricted to the stabilizing 
functional approach only. However, a variety of alterna- 
tive regularized solutions can be determined on the basis 

of the general and even more abstract concept of the reg- 
ularizing operator (RO) [3]. In fact, the stabilizing func- 
tional approach is a particular methodology in construct- 
ing RO’s. An extensive study of the application of the RO 
approach in image restoration was presented by the au- 
thors in [6]. 
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One of the earliest image restoration approaches moti- 
vated by RT was the application of cubic splines in image 
restoration, presented by Hou and Andrews in [7]. Some 
remarks regarding the application of RT in image resto- 
ration were also reported by Hunt in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. More recently, 
Katsaggelos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. presented an image restoration ap- 
proach using some elements of RT [8]. However, the 
number of image restoration approaches that were directly 
motivated by RT is only a small portion of the image res- 
toration approaches that can be related to RT. In fact, 
there exist several constrained image restoration ap- 
proaches that can be classified as special applications of 
the stabilizing functional approach. The simplest, and 
rather primitive, one is the minimum norm image resto- 
ration approach. In this case, the stabilizing functional is 
simply the norm of the original object. It is shown in this 
paper that the entire family of constrained least squares 
approaches [9] can be related to the stabilizing functional 
approach. More specifically, any constrained least squares 
formulation of the image restoration problem can be ob- 
tained from the stabilizing functional approach by using 
a quadratic stabilizing functional of a special form. Fi- 
nally, the relationship between maximum entropy (ME) 
image restoration [lo], [ 1 11 and the stabilizing functional 
approach is of particular interest. The stabilizing func- 
tional approach amounts to the ME formulation of the im- 
age restoration problem, provided that the negative en- 
tropy functional is used as stabilizing functional. The 
above relationship is a clear indication that, in general, 
the stabilizing functional approach amounts to nonlinear 
regularized solutions of image restoration. The computa- 
tional requirements associated with the implementation of 
ME image restoration, in conjunction with the huge 
amount of data typically involving in image restoration, 
provide an indication of the computational difficulties that 
could arise from the use of global nonquadratic stabilizing 
functionals. 

Image restoration is not the only inverse problem that 
can be formulated as the minimization of a certain func- 
tional, or equivalently, as variational principles. Vari- 
ational principles recently attracted the attention of many 
researchers in the area of image processing and low level 
computer vision [ 121. Some of the problems formulated 
using variational principles were edge detection [ 131-[ 151, 
determination of optical flow [16], and the shape from 
shading problem [ 171. The use of variational principles in 
visual surface interpolation, originally proposed by Grim- 
son in [ 181 and [19], is of particular interest here. In [ 191, 
the visual surface interpolation problem was formulated 
as the constrained minimization of a certain quadratic 
functional. A computational treatment of the resulting op- 

timization problem was reported by Crimson in [20]. The 
role of quadratic functionals based on rotationally sym- 
metric differential operators was studied by Brady and 
Horn in [21]. In [22] and [23], Terzopoulos presented the 
study of several analytical and computational aspects re- 
garding the application of variational principles in visual 
surface interpolation. 

The minimization of a quadratic functional is the com- 
mon point of all the above approaches. In [24], Terzo- 

poulos presented some arguments regarding the undesir- 
able effects caused by the use of quadratic functionals in 
visual reconstruction problems that arise in early vision. 
One of the basic ones was that the global smoothness con- 
straints imposed by the use of quadratic functionals can- 
not guarantee the preservation of certain discontinuities 
that play an important role in vision. Based on this argu- 
ment, he proposed a class of stabilizing functionals for 
piecewise continuous regularization, called controlled- 
continuity stabilizers. In addition to a general analytical 

study regarding the use of such stabilizers, he also dis- 
cussed several alternatives related to the computational 
treatment of the resulting optimization problem. Although 
the original idea is an attractive alternative to standard 
regularization, it seems that there exist certain difficulties 
in the application level. In other words, the derivation of 
clearly specified and easily reproducible algorithms based 
on such stabilizers is still an open problem. In particular, 
a possible use of such stabilizers in image restoration 

should necessarily overcome certain problems related to 
the local nature of the constraints imposed by such a for- 
mulation, given the representation of the image formation 
by a global model. 

In a recent publication [25], Pavlidis reported some 
useful comments on the use of variational principles in 
image processing and low level computer vision. Accord- 
ing to this author, one of the most important problems to 
be investigated is the justification of the choice of a par- 
ticular functional in a given application. The necessary 
constraint in choosing the functional to be minimized is 
the one imposed by the mathematical problem itself, that 
is, the requirement that the functional to be chosen pos- 
sesses a minimum. Another important factor that usually 
affects the choice of a particular functional relates to the 
analytical difficulties and computational requirements re- 
sulting from this particular choice. However, there are not 
generally accepted rules for the particular choice of a 
functional that reflects the nature of the given physical 
problem. To date, the formulation of certain problems as 
variational principles was mostly based on the constrained 
minimization of quadratic functionals. The only attempt 
to introduce nonquadratic functionals emphasizing local 
features of the image was the one, mentioned above, by 
Terzopoulos. On the other hand, ME image restoration 
can be interpreted as the only image restoration approach 
that is based on the minimization of a global nonquadratic 
functional. In general, there exist several problems asso- 
ciated with the use of global nonquadratic functionals. 
One of the most important problems is the justification of 
the use of a particular nonquadratic functional. In fact, 
there is no guarantee that the use of a global nonquadratic 
functional can efficiently prevent local discontinuities in 
the image. This seems to be one of the reasons for the 
lack of a generally accepted nonlinear theory in image 
restoration. On the other hand, the global model that de- 
scribes the image formation clearly distinguishes image 
restoration from other similar problems as, for instance, 
the problem of image filtering when there is no distortion 
associated with the image formation but additive noise. 
Most of the proposed nonlinear filtering techniaues were 
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based on local processing by employing certain nonlinear 
operators that can effectively reduce the noise, while 
simultaneously preserve local discontinuities [26]. Such 
nonlinear techniques provided remarkable results, at least 
for some kinds of non-Gaussian noise. However, the ap- 
plication of local nonlinear processing in image restora- 
tion is restricted by the requirement that the resulting res- 
toration technique should also efficiently deal with the 
global nature of the inversion problem. Not surprisingly, 
it is particularly difficult to identify in the literature any 
particular nonlinear image restoration technique that is 
widely accepted, or used as a reference by the researchers 
in the area. 

This paper is organized as follows: In Section 11, image 
restoration is formulated on the basis of the stabilizing 
functional approach as the constrained minimization of a 

certain stabilizing functional. The remainder of this sec- 
tion presents a systematic search for stabilizing function- 
als among the elements of a general class of functionals. 
The study of a certain class of quadratic functionals is 
particularly emphasized. Section I11 presents an extensive 
study of the unconstrained minimization problem, ob- 
tained from the original constrained one using the method 
of Lagrange multipliers. The minimization problem re- 
sulting from the continuous formulation of the image res- 
toration problem is initially studied. The remainder of this 
section is devoted to the discrete formulation of the prob- 
lem. The discrete approximation of a certain class of 
quadratic functionals is obtained by using the finite ele- 
ment method. In Section IV, the selection of specific sta- 
bilizing functionals is based on a particular formulation 
of image restoration as a maximum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa posteriori (MAP) 
estimation problem. This formulation allows a stochastic 
interpretation of the strictly deterministic stabilizing func- 

tional approach. As a result, the choice of stabilizing 
functionals is related to the image representation by sto- 
chastic partial differential equation (SPDE) image models. 
Section V presents the derivation of a class of Regular- 
izing Filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(RF’s) based on the stabilizing functional ap- 
proach. A generalization of this class of filters is subse- 

quently proposed, resulting in a class of generalized 
regularizing filters (GRF’s). Section VI presents the de- 
rivation of several well-determined and easily reproduc- 
ible algorithms for discrete image restoration. Section VI1 
investigates the relationship between the class of regular- 
ized solutions proposed in this paper and optimal Wiener 

estimation. In Section VIII, several experimental results 
are presented, compared, and discussed. Section IX con- 
tains concluding remarks. 

11. THE STABILIZING FUNCTIONAL APPROACH 

A. Stabilizing Functionals 

A continuous functional is a mapping from a space of 
functions to the real numbers. In particular, a nonnegative 
functional is a mapping to the nonnegative real numbers. 
It was proposed in [3] that the solution of ill-posed inverse 
problems can be achieved by the constrained minimiza- 
tion of a functional satisfying certain properties, called 

stabilizing @fictional. Consider the inverse problem de- 

fined by (1. l). The concept of the stabilizing functional 
is now introduced [3]. 

Let Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ f ] be the continuous nonnegative functional de- 
fined on a subspace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF of a certain space F, and 

a) the solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf* of (1.1) belongs to the domain of 
definition of Q [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ] ; 

b) for every positive E ,  the set of elementsfof F for 
which Q [ f ] 5 E is a compact subset in F .  

Any functional Q [ f ] defined on F and satisfying the 
above two properties is called stabilizing functional. Ac- 
cording to the stabilizing functional approach, the prob- 
lem of determining regularized solutions of (1.1) can be 
formulated as follows. Determine thef = f * in F,  which 
minimizes the functional Q [ f ] , under the condition that 
the element f = f * satisfies the equation 

IIAf* - = 6 (2.1) 

where 11 . 11 is the L2-norm and 6 is a positive constant to 
be chosen. 

The definition of the stabilizing functional given above 
is very general. However, an open question remains un- 
answered concerning the choice of stabilizing functionals 
for 2-D ill-posed problems. Since the choice of the sta- 
bilizing functional or the class of stabilizing functionals 
is the key issue in this approach, the problem is further 
investigated. In the analysis which follows, a general and 
very broad class of functionals is considered as the source 

of possible stabilizing functionals. 
Let C‘K-L ’  [RI be the space of all continuous smooth 

functions (i.e., continuous functions with continuous par- 
tial derivatives up to order ( K ,  L ) )  in the region of inter- 
est R. Throughout the paper, the partial derivatives will 
be denoted as follows: 

Let r be the boundary of the region of interest R. In ad- 
dition, consider the space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC&K,L’ [ RI defined as follows: 

The space CbK,L’ [RI  consists of continuous smooth func- 
tions in R, whose partial derivatives vanish at the bound- 
ary J? of R. For any function f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE C‘K-L’ [ R I ,  consider the 
class of functionals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 consisting of elements of the fol- 
lowing form: 

Q [ f  1 

(2.4) 
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In (2.4), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF (  . ) can be any twice continuously differenti- 
able function with respect to f and its partial derivatives 
up to any desired order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( K ,  L )  . 

The necessary condition for a function f = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf to an ex- 
tremum for Q [ f ] is that it satisfies the equation 

6 Q [ h ]  = 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv h E CiK3L' [RI (2.5) 

where 6Q [ * ] is the jirst variation of Q [ f ] [27], [28]. 
Equation (2.5) results in what is known as the Euler-La- 
grange equation [28]. It was shown in [29] that the first 
variation of any functional of the form (2.4) is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P P  

6 Q [ h ]  = 2 ( h ,  Q ' [ f ] )  = 2 11 h Q ' [ f ]  d r d y  (2 .6)  

where h is any admissible function, i.e., h E CbK9L' [ R I ,  
and 

(2 .7)  

The necessary condition for an extremum to be a min- 
imum depends on the sign of the second variation of 

Q [ f ] , denoted here as 6 2  Q [ ] . That is, the necessary 
conditio? for a functional Q [ f ] E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 t: have a minimum 
forf = f~ C'K.L'[R] is that, forf = f 

6 2 Q [ h ]  1 0 V h E CbKq" [R ] .  (2.8) 

The condition for the existence of a minimum given by 
(2.8) is very general; however, it cannot be easily applied 
in practical situations. Therefore, for a certain class of 
functionals, it should be replaced by a more specific and 
applicable condition. This can be achieved by appropri- 
ately developing the definition of the second variation of 
functionals [27], [28]. A basic, although simple, example 
is the necessary condition for one-variable functionals of 
a specific form known as Legendre theorem [27]. An 

analogous condition, appropriate for the class of function- 
als defined by (2.4), was presented in [29]. 

The condition (2.8) is crucial for the selection of the 
stabilizing functionals among the elements of 9. Let 9, 
be the subclass of 9 defined as follows: 

9, = { Q / Q [ f ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 9: 6 * Q [ h ]  1 0 v h E Ci"."' [ R I }  

(2 .9)  

That is, 9s consists of all functionals in 9 whose second 
variation is nonnegative. In general, the search among the 
elements of 9 for the functionals belonging also to as is 
a particularly complicated problem. The interested reader 
can find a more detailed and elaborate treatment of this 
problem in [29]. For the sake of analytical simplicity, this 
search is restricted here to a particular type of functionals 
within 9, called quadratic functionals. 

B. Quadratic Stabilizing Functionals 

whose elements are of the following form: 
Consider the general class of quadratic functionals 

(2.10) 

where qk,/;m,n; 1 I k ,  m I K ,  1 I 1, n I L are real 
constant coefficients. Obviously, any functional defined 
by (2.10) is an element of the class 9 of functionals. Some 
important properties of the class of quadratic functionals 
defined by (2.10) are presented by the following theorem. 

7'heorem I: Consider any quadratic functional of the 
form (2.10). For any h E C'K9L'  [RI  

S2Q[h l  = Q [ h l .  (2.11) 

(2.12) 

If qk,[;m,n = qrn,n;k, l ,  then for anyfE c ' ~ , ~ ' [ R ]  

Q ' [ f l  = B(D,, D y ) f ( x ,  Y )  

where B ( . ) is the following linear partial diferential op- 
erator (PDO) 

K L  

(2.13) 

[ R I ,  the quadratic functional of the 

Q [ f l  = (f3 Bf> (2.14) 

where B ( . ) is the PDO defined by (2.13). 
Proof: The proof of this theorem is given in Appen- 

dix A. 
Among the mathematical properties of quadratic func- 

tionals, a particularly important one is the simplicity of 
the necessary condition for the existence of a minimum 
of such functionals. This condition can be derived as a 
special application of the general condition presented in 
[29]. The same condition can also be derived by using the 
results of the above theorem. Suppose that a certain quad- 
ratic functional of the form (2.10) is nonnegative definite, 
i.e., 

Q [ f ]  2 O v f ~  CcK3" [ [R] .  (2.15) 

Since CiKqL' [RI is a subspace of C'KqL' [ R I ,  (2.15) im- 
plies that 

Q [ h ]  1 0 V h E CbK3" ' [R ] .  (2.16) 

Finally, i f f €  
form (2.10) can be written as follows: 

Taking into account (2.11) 

S 2 Q [ h ]  1 0 V h E C i K - " ) [ R ] .  (2.17) 

This is exactly the necessary condition for the existence 
of a minimum of a quadratic functional of the form (2.10). 
As a result, the extremum of any nonnegative quadratic 

functional is guaranteed to be a minimum. Therefore, the 
above theorem indicates the close relationship between the 
necessary condition for the existence of a minimum of a 
quadratic functional and its nonnegative definition. It can 
easily be seen that any quadratic functional of the form 
(2.10) is nonnegative if the matrix formed by lexico- 
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graphically ordering the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqk, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. is nonnega- 

tive definite. 
A very useful class of nonnegative quadratic function- 

als is now introduced. Suppose that 

q k . 1 ; m . n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= X k , l X m . n *  (2 .18 )  

Then, (2.10) amounts to the following class of nonnega- 
tive quadratic functionals: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q ~ [ f l  = IILf)12 = ( L f ) 2 h d ~  (2 .19 )  

where 

K L  

K ,  L > 0, XK,L # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (2 .20 )  

is a 2-D linear PDO with real constant coefficients. 
The functional (2.19) is a norm only in the trivial case 

that Lf = f. This particular functional leads to the well- 
known minimum norm solution of inverse problems [ I ] .  
Any other functional defined by (2.19) is a seminorm. 
This can-easily be verified by showing that any nontrivial 
functional defined by (2.19) fails to satisfy the following 
property that characterizes any norm: 

11 L ~ I I  > o iff # 0. (2 .21 )  

Obviously, there exists an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf* # 0 that satisfies the fol- 
lowing partial differential equation (PDE): 

L(D,, D,Jf(., Y )  = 0 (2 .22 )  

for which 11 Lf 11 = 0. In fact, any solution of the PDE 
(2.22) belongs to the null space of the functional (2 .19) ,  
consisting of a l l f e  C'K3L '  [RI for which 11 Lf I( = 0. 

The functionals defined by (2.19) can be seen as the 
direct extension into two variables of the one-variable 
functionals, whose minimization amounts to the so-called 
1-D L-generalized splines [30 ] .  Such functionals have 
been proposed in the formulation of the 1-D smoothing 
and interpolation problem [ 31 ] .  The minimization of a 
functional of the form (2.19) was mentioned in [32] as the 
generalization of the L-generalized splines approach into 
2-D interpolation. Some useful comments on the formu- 

lation proposed in [32] were reported by the authors in 
[33 ] .  Finally, the minimization 'of certain functionals of 
the form (2.19) was successfully used by the authors in 
formulating the image interpolation problem [ 34 ] .  

Another useful class of nonnegative quadratic function- 
als is obtained by assuming that 

q k . 1 , m . n  = rk ,16h.m6/ .n  (2 .23 )  

where Tk.1  are nonnegative real coefficients, and h,,, is the 
conventional Kronecker delta. Then, (2.10) amounts to 
the following class of nonnegative quadratic functionals: 

\ 

These functionals can be seen as the direct extension into 
two variables of the corresponding one-variable function- 
als proposed by Tikhonov to be used as stabilizing func- 
tionals in 1-D problems [ 3 ] .  A particular class of Tik- 
honov-type functionals, also known as spline functionals, 
was used in a variety of engineering applications [24 ] .  A 
spline functional of order M can be obtained from (2.24) 
i f M  = K + Land 

i f p  + q = M 

i f p  + q # M 
(2 .25 )  7P.S  - 

as follows: 

( 2 . 2 6 )  

Functionals of this type were used for interpolation of 
scattered data [351, [ 36 ] .  In addition, such functionals ap- 
pear very often in theory of elasticity, particularly in 
problems associated with a thin plate [ 37 ] .  In particular, 
for M = 2 

r r  

Q , [ f l  = 1 ( f ;  + 2f:,, + f ; y )  h d ~ .  (2 .27 )  

This is the functional used by Grimson in the formulation 
of the visual surface reconstruction problem [ 191. The use 
of this functional in this particular application was based 
on the proposed analogy between the smoothness of a vi- 
sual surface and the equilibrium state of a thin plate [ 22 ] .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

111. THE MINIMIZATION PROBLEM 

A.  Continuous Formulation 
Consider the continuous formulation of the image res- 

toration problem based on the stabilizing functional ap- 
proach. In general, the stabilizing functional can be any 
element of as. According to Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI, the regularized 
solution is the functionf = f *  E C'K3L '  [RI which mini- 

mizes Cl [ f ] E GS, under the constraint (2 .1 ) .  Since the 
problem formulated is a conditional extremum problem, 
it can be solved by the method of Lagrange multipliers. 

That is, determine thef = f: E C ' K q L ' [ R ]  which mini- 
mizes the functional 

Ma[f, SI = lkf- 8112 + aQ[fI ( 3 . 1 )  

which is known as smoothing functional. The Lagrange 
parameter a is called here regularizing parameter. The 
equivalence between the minimization of (3 .1 )  and the 
constrained minimization problem depends on the choice 
of a.  If the particular minimum f = f,* of the smoothing 
functional (3 .1 )  also satisfies 

llAf: - gII = 6 ( 3 . 2 )  

the original constrained minimization problem is equiva- 
lent to the minimization of the smoothing functional (3 .1 ) .  
The necessary condition for the minimization of the 
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smoothing functional (3.1) is given by the following theo- 
rem. 

7'heorem 2: Consider that a functional zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ] E 'P, is 
used as a stabilizing functional. The necessary and suffi- 
cient condition that a function fo E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACbK*L' [R I  minimizes 
the smoothing functional (3.1) is that it satisfies the fol- 
lowing integro-differential equation: 

A*Af  + a Q ' [ f ]  = A * g  (3 .3 )  

where A* is the adjoint operator for A ,  and Q' [ f ] is given 
by (2.7). 

Proof: The proof of this theorem is given in Appen- 
dix B. 

Theorem 2 can be the source of many regularized so- 
lutions of ( 1 .  l),  depending on the specific choice of the 
stabilizing functional. However, the solution of (3.3) in 
practice is not a simple task. The analytical complexity 
of this problem is mainly deterhined by the form of the 
stabilizing functional chosen. For the sake of both ana- 
lytical simplicity and statistical justification, this paper 
focuses on the constrained minimization of a quadratic 
stabilizing functional. 

Suppose that a nonnegative quadratic functional Q [ f ] 
of the form (2.10) is used as a stabilizing functional in 
the formation of the smoothing functional (3.1). It is 
shown in Appendix B that a functionfo E [RI min- 
imizes this smoothing functional if and only if it satisfies 
the following equation: 

( A * A  + a B ) f =  A*g (3 .4 )  

where B (  ) is the PDO defined by (2.13). 
Suppose that a quadratic functional given by (2.19) and 

(2.20) is used as a stabilizing functional. The necessary 
and sufficient condition for the minimization of the cor- 
responding smoothing functional is given by (3.4), where 

In ( 3 . 3 ,  where L (  ) is the PDO defined by (2.20), and 

L* ( ) is the adjoint operator for L ( ) defined as follows: 

L*(D,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADJ = L(-D,, -0J 

In conclusion, the continuous formulation of the prob- 
lem using a quadratic functional leads to the integro-dif- 
ferential equation (3.4). The particular quadratic func- 

tional used determines the form of this integro-differential 
equation. For a given quadratic stabilizing functional, the 
analytical treatment of (3.4) depends on the model de- 
scribing the image formation process. Under the assump- 
tion that the image formation process can be described by 
a space-invariant model, (3.4) can be treated using Fou- 
rier transform techniques [38]. In general, the solution of 
(3.4) can be attempted using approximation methods. An 
obvious and rather simple approach is the discrete ap- 
proximation of (3.4) using the finite difference method 
[39]. However, the solution of (3.4) using the finite dif- 
ference method entails certain disadvantages. A qualita- 
tive evaluation of this method can be found in [23]. In 
this paper, the general problem is alternatively formulated 
directly in its discrete form. 

B. Discrete Formulation 

The problem of determining the discrete approximation 
of any quadratic functional of the form (2.10) is particu- 

larly complicated, even for a given finite difference ap- 
proximation of the partial derivatives. However, the gen- 
eral form of the discrete approximation for this general 
class of functionals can be specified, regardless of the fi- 

nite difference approximation used. In the analysis which 
follows, the form of this discrete approximation is deter- 
mined using the finite element method, which is the most 

appropriate one for this type of problems [40]. A brief 
qualitative evaluation of the finite element method, as well 
as the mathematical arguments supporting its superiority 
over the finite difference method, can be found in [23]. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZR be the image region, and consider its uniform 
separation by an operator S .  Without loss of generality, 
consider that S separates the image region ZR into identical 
square elements E of side h .  Then any quadratic func- 
tional of the form (2.10) can be written as follows: 

( 3 . 9 )  K L  

= C C ( - i ) p + y 4 , , ~ ' : ~ p .  (3 .6)  
p - 0  y = o  Assuming that ( i ,  j ) is the index for the upper-right-hand 

node of E ,  the quadratic functional (3.9) can be approxi- 

mated as follows: 
The operator L* L is called self-adjoint operator for L ( ) . 

When a Tikhonov-type functional of the form (2.24) is 
used as a stabilizing functional, the PDO B (  * ) is of the 

following form: 
N N  K L 

Q d [ f l  = C C C f,k,/(i, j )  ~ ~ , / . , ~ ~ . ~ ~ ~ ~ ~ ~ , ~ ~ ( i ~  j )  
K L  I =  I J =  I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 f u = O  / . f i = O  

B(D,,  D,.) = c c ( - l )k+ /Tk , /  Ok Dt'. 
k = O  / = o  

(3 .7 )  (3.10) 

Finally, the use of a spline functional of order M as a 

stabilizing functional implies that 

wheref,l,l , ,l(i,j  1 ;  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI z!,j I Ndenotes the approximation 

of jx,,r,tj at the node ( i ,  j ) in the image, obtained using a 
finite difference approximation as described in the analy- 

B(D, ,  D,) = ( - l ) " ( D t  + D:)". (3 .8)  sis which follows. 
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Consider the specific element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,  whose upper right- 
hand node corresponds to the image pixel indexed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) . Define 

f -  ‘.J = f ( i h , j h ) .  (3.11) 

L e t f ( i ,  j )  be the vector consisting of the image pixels 
surrounding the pixel indexed by ( i ,  j ) , defined as fol- 
lows: 

f ( i , j )  = 

* . , i + m * .  

(3.12) 

The integers m*, n* are determined by the highest order 
of the derivative with respect to x and y, respectively, 
appearing in the functional to be approximated. Using a 
finite difference approximation for the partial derivatives 
at ( i ,  j )  node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( m .  n )  = (0 ,  O ) ,  * * .  , ( K ,  L )  

(3 .13)  

where 5m.n is a vector of appropriate coefficients, depend- 
ing on the specific finite difference approximation chosen. 
Substituting in (3. IO)f,,,,,.,, ( i ,  j ) from (3.13), the discrete 
approximation of Q [ f ] becomes 

N N  K L 

Q d [ f ]  = c c c 
r = l  J = I  k , m = O  / . n = O  

N N  

where Q is the following symmetric matrix: 

K L  

Letfbe an N 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 1 vector whose elements are the lex- 
icographically ordered elements of the image matrix. The 
vectors f ( i ,  j ) ; 1 I i ,  j I N consist of elements lying 
inside the image region and, therefore, belonging to the 
image matrix, as well as elements lying outside the image 
region, called boundary elements. To separate the bound- 
ary elements from the elements of the image matrix, de- 

I161 

fine the following set: 

swt*,t* ( f ) = { sP { fl - m*,j ; f N  + m*.j ; f ; .  I - f t* ;  f ; ,  N + , t *  } : 
1 - m * % i ~ N + m * ,  

1 - n* I j  I N + n * )  

where sp { zI; z 2 ;  ; zL 1 denotes the linear span of the 
variables z , ;  i = 1, . . - , L. Now consider the N’ X 1 
vectorf’ whose elementsf,’; i = 1, . . . , N 2  belong to 

the set Sm*,,* ( f ) , that is, 

(3.16) 

Taking into account the above definitions, there always 
exists an N 2  X N 2  matrix B ,  such that 

f t ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE S,,*,,*(f) V i = 1, * * , N 2 .  

N N  

I =  I j =  I 
@ [ f ]  = c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC f ( i , j )TQf( i , j )  = f T B f  + B ’ f ’  

(3 .17)  

where B’ is an N 2  X N 2  matrix whose elements b:,] ; 1 I 
i, j 5 N 2  are formed as linear combinations of the bound- 
ary elements, that is, b,’,] E S , * , * ( f ) .  In practice, the 
highest order of the partial derivatives appearing in quad- 
ratic functionals used is a small integer; thus, the effect 
of the boundary elements on the approximation can be 
neglected. Under this assumption, the discrete approxi- 
mation of Q [ * 3 becomes 

Qd[fl = (f7 Bf> (3.18) 

wherefis an N 2  X 1 vector, and B is a symmetric N 2  X 

N 2  matrix, depending on the specific quadratic functional 
considered and the finite difference approximation used. 
In fact, the condition that guarantees the validity of (3.18) 
is the following: 

B’f’ = 0. (3.19) 

This boundary condition is related to the assumption that 
f € cbK.L’ [ R I ,  which guarantees the validity of the rep- 
resentation of a continuous quadratic functional by (2.14). 

The discrete approximation of the class of quadratic 
functionals defined by (2.19) is of particular interest, ow- 

ing to the existence of a unique correspondence between 
any functional given by (2.19) and a certain PDE. Given 
the discrete approximation of this PDE, the discrete ap- 
proximation of its corresponding functional can be ex- 
plicitly determined, as described by the following prop- 
osition. 

Proposition I : Consider any quadratic functional given 
by the combination of (2.19) and (2.20). Furthermore, 
consider the corresponding PDE 

L(Q,  D,)f(X? Y )  = Y )  (3.20) 

and let its discrete approximation, obtained using a finite 
difference approximation of the partial derivatives, be the 
following : 

Lf = U (3.21) 
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where f is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 1 vector defined above, and L is an 
N 2  X N 2  matrix, depending on the specific PDO and the 
finite difference approximation used. The discrete approx- 

imation of the functional QL [ * ] , obtained using the finite 
element method and the same finite difference approxi- 
mation of the partial derivatives, is given by 

Qf[.fl = IILf 1 1 ’  (3.22) 

where L is the matrix appearing in (3.21). 
Proofi The proof of this proposition is given in Ap- 

pendix C. 
The discrete approximation of the class of quadratic 

functionals defined by (2.19) can also be written as fol- 
lows: 

(3.23) 

Therefore, the discrete approximation of any quadratic 
functional defined by (2.19) can be seen as the special 
case of the approximation given by (3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA18) for which 

B = LTL.  (3.24) 

The discrete formulation of the image restoration prob- 
lem on the basis of the stabilizing functional approach is 
now presented. The image formation is described in this 
case by the discrete model (1.3). In addition, it is as- 
sumed that an admissible quadratic functional of the form 
(2.10) is used as a stabilizing functional. On the basis of 
the analysis presented above, the problem of obtaining 
regularized solutions of (1.3) can be formulated as fol- 
lows. Determine f E R N 2  such that 

(f, Bf) + min (3.25) 

Q ? [ f l  = IILf 1 1 ’  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(U, L f )  = (f, LTLf ) .  

under the constraint that 

IIAf- gI) = 6 (3.26) 

where 6 is a positive constant. Using the method of La- 
grange multipliers, the above problem amounts to the 
minimization of the following quadratic form: 

Md,[f7gl = llAf - glI2 + a(f7 B f )  (3.27) 

where ( . , . , ) : R N 2  x R N Z  -+ R is the Euclidean inner 
product and 11 * 11 is the corresponding norm. 

The necessary and sufficient condition for the minimi- 

zation of (3.27) is now presented [29]. Consider the quad- 
ratic form (3.27), where B is a nonnegative definite, real 
symmetric matrix. The necessary and sufficient condition 
thatf = f ,* E R N 2  minimizes the quadratic form (3.27) is 
that f , *  satisfies the following set of linear equations: 

ARf = ATg (3.28) 

AR = ATA + CYB. (3.29) 

In the particular case that the stabilizing functional con- 
sidered belongs to the class of quadratic functionals de- 
fined by (2.19), the quadratic form to be minimized is the 
following: 

where 

M d , [ f ,  81 = llAf - gl12 + .IIILf I12. (3.30) 

Taking into account (3.24), the necessary condition for 
the minimization of (3.30) can be directly obtained as a 
special case of the above minimization problem. The nec- 
essary and sufficient condition that f = f ,* E R N 2  mini- 
mizes the quadratic form (3.30) is that f ,* satisfies the set 
of linear equations (3.28), where 

A, = ATA + aLTL .  (3.31) 

This particular formulation of the problem is known in 
the literature as constrained least squares image restora- 

tion [9], [4 11, [42]. This formulation of the problem de- 
fines a very broad class of solutions to the image resto- 
ration problem, in the sense that for any L the 
minimization of (3.30) amounts to a different solution. On 
the other hand, the minimization problem resulting from 
the previous analysis can also be obtained by formulating 
the problem in a different way. In fact, the minimization 
of the quadratic form given by (3.30) is the result of the 
following formulation [8], [42]: 

IIAf - gII zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 E (3.32) 

and 

IILfII E (3.33) 

where E is a “fixed” number and E is a “small” number. 
The only information existing about L ,  called “constraint 
operator” in this approach, is that it is a bounded linear 
operator. The approach itself, however, neither provides 
information as to what operator L should be, nor of a gen- 
eral procedure to form such operators. In most of the ap- 
proaches which have appeared to date, L is an operator to 
be chosen. Although several operators L have been pro- 
posed, the problem of choosing such operators in a phys- 
ically meaningful manner still remains an open one. Ac- 
cording to the formulation proposed here, the operator L 
is clearly related to the minimization of the quadratic 
functional defined by (2.19), whose discrete approxima- 
tion is given by (3.22). The physical meaning of choosing 

a specific functional to be minimized, or equivalently an 
operator L in (3.30), is investigated in the sequel. 

IV. REGULARIZED SOLUTIONS BASED ON MAP 

ESTIMATION 
This section presents the MAP estimation interpretation 

for a class of regularized solutions based on the stabilizing 
functional approach. The analysis which follows relates 
the stabilizing functional used in the minimization prob- 
lem with the description of the a priori knowledge re- 
garding the original image [43]. The importance of this 
analysis is twofold. First, it provides a stochastic inter- 
pretation for the entire family of constrained least squares 
approaches which have appeared in the literature. On the 
other hand, it constructs the necessary background for the 
development of a variety of regularized solutions reflect- 
ing the stochastic nature of the image restoration problem. 

The concept of the MAP estimation has already been 
used in an attempt to solve the image restoration problem 
[ I ] .  There exist two main points which can be underlined 
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Causal 1 (Cl) 

about the existing MAP estimation approaches in image 

restoration. In terms of the formulation of the MAP esti- 
mation problem followed, the key issue is the description 
of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori knowledge assumed for the original object. 
In terms of the algorithms produced, the key issue is the 
statistical information required for the object and the 
noise. 

Let f be the object to be estimated and g the observed 
data, i.e., the recorded image. Th,e MAP estimate of the 
object is defined [44] as that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf = fMAP for which 

I n p ( g / f )  + l .P( f )  + max (4 .1 )  

wherep( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg / f )  is the pdf for the data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg given the original 
object and p ( f )  is the pdf of the object. In (4.1), In 
p (  g / f )  expresses the probabilistic dependence of g onf, 
while In p ( f ) is the a priori knowledge regarding the 
original object. 

The description of the a priori knowledge regarding the 
original object is very crucial in the MAP estimation ap- 
proach [43]. The specific pdf of the object chosen deter- 
mines the statistical information that is necessary for the 
implementation of the resulting MAP restoration algo- 
rithm. The pdf which is frequently used for the descrip- 
tion of the a priori knowledge existing for the object is 
the following [I]: 

( 0, + a 2  ) ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, + ai ) Hyperbolic Hyperbolic Wave 1 1 quat ion 

wherefis the mean and A is the covariance matrix of the 
object f. When the a priori knowledge regarding the orig- 
inal object is described by (4.2), the second-order statis- 
tics of the object are assumed to be known. However, this 
assumption is far away from the reality in most practical 
situations. 

Jain, looking beyond the conventional covariance 
models used to approximate the second-order statistics of 
the image, proposed in [45] that the images can be rep- 
resented by SPDE image models. Without entering into a 
detailed discussion, the general concept of image repre- 
sentation using SPDE models is briefly described here. 
Consider the following PDE: 

L ( 4 n  0.J U ( X >  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY> = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU(X, Y >  (4 .3 )  

where L (  * ) is the PDO defined in (2.20) and U (  . ) is a 
specified function. On the basis of the necessary condition 
for any PDE given by (4.3) to be a well-posed Cauchy 
problem [45], the PDE’s are distinguished into three main 
categories; namely, hyperbolic, parabolic, and elliptic 
PDE’s. Reference [45] established the correspondence 
between the three above categories of PDE’s and the na- 
ture of the image representation in terms of causality. 
Consider now the following SPDE: 

L ( D X 9  q,>f(., Y) = 4 x 3  Y )  (4 .4 )  

where L(  ) is, in general, a 2-D linear PDO defined in 
(2.20), f (  * ) is a process defined in a 2-D random field 
which represents the image, and E (  ) is a white noise 

process defined in a 2-D random field as well. It was 

Noncausal 1 (NCI) 
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Ox2 + Dy2 + a  Ell~ptic Poisson Equation 

TABLE 1 
STOCHASTIC PARTIAL DIFFERENTIAL EQUATION IMAGE MODELS 

SPDE Partial Differential Kind of Comments 

Image Model I L ( D x , D y )  I PDE 1 onPDEs 

Operator 

Noncausal 3 (NC3) ( DZ2 f a )  ( Dy2 + a )  Elliptic Separable Elliptic 1 1 muation 

Parabolic Parabolic Diffi- ’ 1 D y - D x 2 + a  1 sionEquauon 
Semicausal 
(SCI) 

I I I 

;;a&ausal 
2 1 ( Ox2 + at ) ( D, + a2) Parabolic Separable Pam- i i  bolic Equation 

Noncausal 2 (NC2) ( Ox2 + Dy2 )2 ~ Elliptic ~ Blharmoruc Equa- 
tion 

shown in [45] that the SPDE image model given by (4.4) 
corresponds to a causal, semicausal, or noncausal image 
representation, given that the corresponding PDO defines 
a hyperbolic, parabolic, or elliptic PDE, respectively. 
Certain SPDE image models were also proposed in [45] 
and evaluated in terms of their performance in represent- 
ing different kinds of images. These models are presented 
in Table I. 

In image restoration, it is commonly considered that the 
recorded image is contaminated by additive noise due to 
the image formation system, that is, 

n = Af- g. (4.5) 

Given that the object fand the degradation operator A are 
fixed, the conditional pdf of the recorded image g given 
the original object f can be equivalently expressed as the 
pdf of the noise process n associated with the image for- 
mation system. Assuming that the noise due to the image 
formation system is a white Gaussian process with vari- 
ance U:,  p (  g / f )  is given by 

where k l  is a positive constant depending on on. 
Assume now that the a priori knowledge existing for 

the image is that it can be described by the SPDE model 
given in (4.4). Assume, in addition, that the white noise 
process E ( ) is also Gaussian with variance u f .  Given the 
PDO L (  . ) used for the representation of the image, the 
image processf ( * ) is uniquely related with the noise pro- 
cess E ( * ) by (4.4). Therefore, under this assumption, the 
pdf p (  f ) of the image is in fact the pdf of the noise pro- 

cess E ( - ) associated with this specific image representa- 
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tion. Taking into account the assumption that E (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* ) is a 
Gaussian white noise process 

Combining (4.6) and (4.7) with (4.1), it can easily be 
shown that the MAP estimate is the particular ?MAP E 

C‘K*L’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[RI which minimizes the following functional: 

M , [ f ,  81 = 114- gl12 + a/JLfl12 (4 .8)  

where a is a positive constant given by 

(4 .9)  

In the discrete case, the MAP estimation interpretation 
is based on the assumption that the image can be repre- 
sented by the discrete approximation of a certain SPDE 
image model, given by 

Lf = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (4 .10)  

where f is the image vector, L is a model dependent ma- 
trix, and E is a vector consisting of zero-mean white noise 
elements. Following a similar reasoning (see also [431), 
it can be shown that the MAP estimate is the fMAP E R N 2  
which minimizes the following quadratic form: 

Md,[f, gl = IIAf - g112 + +f I12. (4.11) 

In conclusion, given that the a priori knowledge about 
the image can be described by an SPDE image model, the 
MAP estimate of the object is the result of the minimi- 
zation problem (4.8) or (4.11). This is exactly the min- 
imization problem developed on the basis of the stabiliz- 
ing functional approach, given that the stabilizing 
functional used belongs to the class of stabilizing func- 
tionals defined by (2.19). The MAP interpretation of the 
stabilizing functional approach can therefore be described 
as follows. Given that the stabilizing functional used is 
based on a certain PDO, the regularized solution obtained 
is the MAP estimate of the object assuming that the a 
priori knowledge for the image can be described by the 
corresponding SPDE image model. Conversely, given that 
an image can be represented by a certain SPDE model, 
the MAP estimate of the object is the result of the min- 
imization problem (4.8) or (4.11). 

According to this analysis, there exists a one-to-one 

correspondence between the image representation by an 
SPDE model assumed and the stabilizing functional to be 
chosen in the minimization problem. In other words, the 
problem of selecting the “optimum” stabilizing func- 
tional for a given application is equivalent with the prob- 
lem of determining the “optimum” SPDE representation 

image restoration. In fact, any constraint operator pro- 
posed can be related to the description of the a priori 
knowledge existing for the image by the discrete approx- 

imation of a certain SPDE image model. In this paper, a 
number of models proposed in [45] to represent images 
are considered to be the source of constraint operators. 

V.  REGULARIZING FILTERS 
This section presents the derivation of a variety of fil- 

ters resulting from the application of RT in continuous 
image restoration. In general, the image formation pro- 
cess is described by the space-variant model (1.2). To 
simplify the solution of the integro-differential equation 
(3.4), it is now assumed that the image formation process 
can be described by a space-invariant model. Fortunately, 
this assumption is realistic in many image restoration ap- 
plications. The physical meaning of such an assumption 
is that the image formation process has a uniform effect 
on both the object and the image plane. The direct ana- 

lytical implication of the above assumption is that the PSF 
is a function of the differences between the variables be- 
longing to the image and the object plane. In the case of 
space-invariant formulation, the image formation process 
is described by the following equation: 

S S h ( U  - x , U - y ) f ( x , Y ) d x d Y  + n ( u , v )  

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( u ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU). (5.1) 

In this case, the image formation is described by 2-D con- 
volution. Therefore, image restoration corresponds to de- 
convolution, well known as ill-posed inverse problem in 
the literature. 

Suppose that a nonnegative quadratic functional of the 
form (2.10) is used as a stabilizing functional. The nec- 
essary and sufficient condition for the minimization of the 
corresponding smoothing functional is obtained from (3.4) 
as follows: 

=z(x ,  Y )  ( 5 . 2 )  

where 

% Y )  = j j j l (E - x ,  I - Y )  h ( E ,  l-) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdE & zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5.3) 

g(x, Y )  = s j  h(E - x, l- - Y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( t >  I) 4 dl- (5 .4)  

and B (  - ) is the PDO defined by (2.13). 
It is proven in Appendix D that the solution of the in- 

tegro-differential equation of the form (5.2) can be ob- 
tained by passing the data through a filter, called regulur- 
izing jilter (RF). For a given PDO B (  * ) , the transfer 
function of this filter is given by 

for the given original image, or the class of images. On 
the other hand, the above interpretation provides a link 
between MAP estimation and constrained least squares in 

H * ( w , ,  w2)  
H R ( w , ,  w2,  a )  = ( 5 . 5 )  

I H ( w , ,  W ? ) I Z  + a R ( w , ,  w2) 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* ) is a polynomial, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAregularizing polyno- 
mial, defined uniquely in terms of the quadratic functional 
considered by 

R(w1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2) = B ( j W l , j % ) .  (5.6) 

The parameter a ,  which is the Lagrange multiplier in the 
minimization problem formulated, is called regularizing 
parameter. When a quadratic functional given by (2.19) 
and (2.20) is used as a stabilizing functional 

R(w1, w2) = (L(jLL’19jw2)(2.  ( 5 . 7 )  

Table I1 presents a variety of regularizing polynomials 
based on the SPDE image models proposed in [45]. When 
a Tikhonov-type quadratic functional of the form (2.24) 

is used as a stabilizing functional 

K L  

Finally, the use of a spline functional of order M as a 
stabilizing functional amounts to 

(5.9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM 
R ( w , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU * )  = <a: + U ; )  . 

By its definition, the regularizing polynomial is non- 
negative definite, i.e., 

I?(@,, 02) 2 0 V w I ,  ~2 E ( -03 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a). (5.10) 

The nonnegative definition of all the regularizing poly- 
nomials obtained is closely related to the nonnegativeness 
of the quadratic stabilizing functionals and, therefore, to 
the existence of a minimum for this class of functionals 
considered. The transfer function given by (5.5) depends 
on the specific PDO chosen. In this sense, (5 .5 )  deter- 
mines a very broad class of regularizing filters. Since the 
relation between the PDO B ( * ) and the regularizing poly- 
nomial R( * ) is unique, there is one-to-one correspon- 
dence between any quadratic stabilizing functional cho- 
sen, and the RF obtained [38]. 

The RF defined by (5.5) can also be written as follows: 

where 

Clearly, the effect of regularization is carried by the func- 
tion P (  * ) , defined by (5.12). This is an indication that 
the generalization of the filter (5.11) can be achieved by 
determining a more general class of functions P (  * ) in 
such a way that the corresponding filter defined by (5.1 1)  
amounts to regularized solutions of the image restoration 
problem. The existence of such functions was proven in 
[29] by extending the concept of the RO into 2-D prob- 
lems. Some elements of this analysis were reported by the 
authors in [46]. According to this analysis, any filter of 
the form (5.11) amounts to regularized solutions of the 

TABLE 11 
REGULARIZING POLYNOMIALS BASED ON SPDE IMAGE MODELS 

Operator 

L( 0,. D, ) Image Model SPDE I 

image restoration problem, provided that the correspond- 
ing function P (  * ) satisfies the following conditions: 

a) P ( w l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2, a )  is defined on the region { c y  2 0, -03 

b) For every a 2 0, 0 5 P ( w l ,  w2, a )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1 .  
c) P ( q ,  w2, 0)  = 1 .  
d) Forevery a > 0 and -a < wI, w2 < fa, P ( w l ,  

e) For every a > 0, P ( w l ,  w 2 ,  a )  -+ 0 when wI, w2 

f )  P ( w l ,  U ? ,  a )  + 1 nondecreasingly as a + 0, and 
this convergence is uniform on every interval I w, 1 
5 w,. ( i  = 1 ,  2 ) .  

g) For every a > 0, 

< W I ,  U2 < + m } .  

U?,  a )  = P (  -a ] ,  -U?,  a ) .  

+ 03.  

P(w1, w2. a )  
E L 2 ( - 0 3 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+a). 

H(w1, 

h) For every w ,  # 0 ( i  = 1 ,  2 ) ,  P ( w , ,  w?, a )  + 0, 
when a + 03, and this convergence is uniform on 
every interval of the form [U,., , U,.?] where 0 < U, ,  

< W,.?. 

In conclusion, given that the image formation process 
can be described by a space-invariant model, any function 

P (  ) satisfying the above conditions determines a filter 
with transfer function given by (5.11). With the observed 
data being the input of such a filter, the output is a regu- 
larized solution to (5.1). Therefore, the problem of de- 
veloping alternative regularized solutions to (5. l )  leads to 

the equivalent problem of appropriately selecting the 
functions P ( * ) . 

Consider the following function: 

(5.13) 

where y E (0, 1 ] , a > 0 and R ( ) is a polynomial which 
satisfies the following conditions: 

a) It is piecewise continuous on every finite interval. 
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b) It is nonnegative and, in addition, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ( w , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 2 )  > 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV 

c) It is symmetric with respect to the origin, that is, 

d) R ( w , ,  w 2 )  L M > 0 for sufficiently large 1 w ,  1 ; 

It can easily be verified that any function defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW I ,  w2 # 0. 

R ( w l ,  ~ 2 )  = R ( - w i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-a?). 

i = 1,  2 .  

(5.13) satisfies the above conditions, provided that 

1 [H(uf, U2,1: ' [ ,H(% w 2 ) /  2 + a R ( o 1 ,  U ? )  

H*(Ul, U?) 

E L z ( - O o ,  + m ) .  (5.14) 

Having already introduced the class of functions P (  * ) de- 
scribed by (5.13), a class of regularizing filters can be 
subsequently defined. The transfer function of this class 
of filters is obtained by combining (5.11) and (5.13) as 
follows: 

H R ( w I ,  U29 a)  

VI. REGULARIZED SOLUTIONS I N  DISCRETE IMAGE 
RESTORATION 

A .  Regularized Solutions Based on Noncausal SPDE 
Image Models 

Many of the early image restoration approaches based 

on constrained optimization were motivated by the use of 
cubic splines in 2-D problems [ 13, [2], [7]. The resulting 
algorithms were based on two 1-D cubic splines, each one 
corresponding to the horizontal and vertical directions. 
The relationship between cubic splines and the minimi- 
zation of a quadratic functional is now investigated. It is 
well known that the 1-D cubic splines result from the min- 
imization of the following functional of one variable: 

The direct generalization of the functional (6.1) amounts 
to the following functional of two variables: 

(5.15) 

The filters defined by (5.15) are called generalized regu- 
larizing j l ters (GRF's). 

The class of GRF's defined by (5.15) consists of an 
infinite number of elements for a given combination of a 
and R (  ) and for all y E (0, 1 1 .  By definition, the value 

y = 0 is not an allowable one for the free parameter y. 
In such a case, (5.13) amounts to P ( o l ,  w2,  a) = 1. 

Therefore, y = 0 is the limiting and, in fact, trivial case 
where there is no regularization applied on the derivation 
of the solution. Not surprisingly, in this case, the transfer 
function given by (5.15) amounts to the transfer function 
of the ill-behaved inverse filter. The case of y = 1 is also 
of special interest here. In this case, the class of GRF's 
defined by (5.15) amounts to ( 5 . 3 ,  which is exactly the 
class of RF's derived on the basis of the stabilizing func- 
tional approach. Under this consideration, the stabilizing 
functional approach can be seen as a special methodology 
in constructing RO's. 

Among all values of y E (0, 1 ) , the specific value 

y = is of special interest. In this case, the transfer func- 
tion given by (5.15) amounts to 

This is the functional chosen to be minimized in [7]. Ob- 
viously, the functional defined by (6.2) is a special case 
of the class of quadratic functionals defined by (2.19), 
corresponding to a separable, elliptic PDO L (  . ) . 

The interpretation traditionally associated with quad- 
ratic functionals is that they control the smoothness of the 
resulting image. However, on the basis of the analysis 
presented in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV, their interpretation can be more 
elaborate and selective. In fact, the use of a separable 
quadratic functional of the form (6.2) implies the repre- 
sentation of the image by a separable noncausal SPDE 
image model. This statement determines the limited effi- 
ciency of such functionals, given the limitation of sepa- 
rable SPDE image models in representing images. In fact, 
it has been shown [45] that the nonseparable SPDE image 
models are more suitable in representing real world im- 
ages. Several operators corresponding to noncausal 
models are presented here [45]. 

The discrete approximation of any noncausal SPDE im- 
age model can be written in a matrix form as follows: 

(5 .16)  

If, in addition, H * ( w l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw2) = H ( w , ,  w 2 ) ,  which is the 
case in most of the image formation systems, then 

]I-:. 

1 

H ( w , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO?)I' + aR(w1, U?)  

(5 .17)  

HR(wI, a?, a )  = 

where E,, is an N X N matrix consisting of zero-mean 
white noise elements, and F,, denotes the original N X N 
image matrix F. The subscript "n" is used here to indi- 
cate that (6.3) is the discrete approximation of a non- 
causal image model. In general, P, and Q,;  1 = 1 ,  . . * , 
L are N X N symmetric, m-diagonal, Toeplitz matrices 
which depend on the specific SPDE image model consid- 
ered and the finite difference approximation used in ob- 
taining its discrete approximation. Assuming that J l  ( q I )  
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SPDE Panial Differential 
Operator 

Image Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, D, ) 

is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN’ x 1 vector consisting of the lexicographically 
ordered elements of the matrix F t ( E f l ) ,  (6.3) can be 
equivalently written as 

L , , L  = &f l  (6 .4 )  

(6 .5 )  

where 
L 

4, = C P/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 Q/ 
I =  I 

while 0 denotes the Kronecker product between matri- 
ces. 

Among noncausal SPDE image models, the separable 
ones possess the simplest discrete approximation. In fact, 
in the case of separable noncausal SPDE models, L, con- 
sists of only one term. The discrete approximation of var- 
ious noncausal SPDE image models is presented in Table 
I11 [45]. In this approximation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ is the N x N identity 
matrix, and Q is a tridiagonal, symmetric, Toeplitz matrix 
whose elements are given by 

qo if i = j 

qc = -ql if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI i  - j l  = I (6 .6 )  i 0 otherwise 

where qo = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and ql = a are model dependent coeffi- 
cients. In addition, H is a 5-diagona1, symmetric, Toe- 
plitz matrix with elements 

Discrete Appmximation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L. 

otherwise. 

Finally, Qj ;  i = 1 ,  2 ,  are matrices of the form given in 
(6.6) with qo = 1 .  The parameters q1 = ai are model 
dependent coefficients. 

Let the original PSM A be denoted here as A,.  Once 
again, the subscript “n” stands for noncausal. On the 
other hand, the operator L, is given by (6.5) and the im- 
age is represented by the vectorf, = f. In this case, the 
restored image is obtained as the solution of the following 
set of linear equations: 

ARfri = A:g (6 .8 )  

(6 .9 )  

where 
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 

A ,  = A;A,, + (Y C C P ~ P ,  8 QTQ,. 
; = I  j =  I 

The resulting image can be directly obtained by convert- 
ing the vectorf, into a matrix form. 

B. Regularized Solutions Based on Semicausal SPDE 
Image Models 

This section deals with the discrete image restoration 
based on the representation of the image by semicausal 
SPDE image models. In this case, the formulation of the 
image restoration problem is slightly different from the 

Noncausal 1 (NCI) 

Noncausal 2 (NC2) 

D: +D;  I Q  Q + Q Q  I 

(D:+D;)’  I Q  H + H Q  I + 2 Q Q  Q 

Noncausal 3 (NC3) ( 0: +al  ) ( 0: + a2 ) I Q i Q  Qz 
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conventional one, used in the case where the image is rep- 
resented by noncausal SPDE image models. The new for- 
mulation of the problem is mainly dictated by the form of 
the discrete approximation of the semicausal SPDE image 

models. The discrete approximation corresponding to 
semicausal SPDE image models is examined here. 

L e t f , ; j  = 1 ,  2 ,  . . . , N be the N X 1 vectors corre- 
sponding to the N columns of the image matrix 

(6.10) 

According to [45], the discrete approximation of any sem- 
icausal SPDE image model can be expressed by the fol- 
lowing set of matrix-vector equations: 

PIA - P , f , - ,  = E,; j = 2, 3, * , N (6.11) 

where E,: j = 2, 3 ,  , N are N X 1 vectors consisting 
of zero-mean white noise elements and PI is the N X N 
symmetric, tridiagonal, Toeplitz matrix defined by (6.6). 
The difference between the discrete approximation of the 
two semicausal SPDE image models proposed in [45] lies 

on the form of the matrix P2.  In the case of the nonsepar- 
able semicausal SPDE image model, known as semicau- 
sal 1 (SCl), 

P2 = yz (6.12) 

where y is a model dependent coefficient and Z is the 
N x N identity matrix. In the case of the separable semi- 
causal SPDE image model, known as semicausal 2 (SC2), 

P2 = PI. (6.13) 

Given the above discrete approximation of the semi- 
causal SPDE image models, one possibility is to develop 
a restoring algorithm estimating each pair of the image 
columns separately. Using such an approach, the corre- 
lation existing in one of the two directions, in fact the 
horizontal one, is lost. Therefore, even if the algorithm 
to be developed is optimum in some sense, the entire pro- 
cedure will be suboptimum. The objective here, there- 
fore, is to develop a restoring algorithm working on the 
whole image, instead of covering the image estimating the 
adjacent image columns in successive steps. Therefore, 
an alternative form of the discrete approximation of semi- 
causal SPDE image models is required; this is now de- 
rived. 

Fn = fl f 2  . . . f N  1 . 

* 
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Panial Differential Discrete Approximation 
Operator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U Dx. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) L, 

Combining the N - 1 equations given by (6.1 I), the 

discrete approximation of any semicausal SPDE image 
model can be equivalently written in the following form: 

L, j-, = 6,. (6.14) 

In (6.14), the image is represented by a new N2 X 1 vec- 
tor defined as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

fs'= [fT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfT . * .  f i l  (6.15) 

wheref , ; j  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1,  2, . . , N are the image columns. The 

white noise process associated with any SPDE image 
model representation participates in (6.14) by means of 
the following vector: 

ET = [ O T  E; E; . . .  E ; ]  (6.16) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE , ; J  = 2, 3 ,  , Nare vectors consisting of white 
noise elements and 0 is the N x 1 null vector. Finally, L, 
is the N2 X N 2  matrix which carries the identity of the 
specific SPDE image model, defined as follows: 

0 0 0  ' ' '1 
0 0  0 0  

-P2 PI 0 0 

-P2 PI 0 

. . .  

-P2 P I  0 

0 O *  O -P2 P ,  0 1  L s = I  0 0 * 0 0  * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 0 -Pz PI 

0 0 0 0  

(6 .17)  

L, consists of N X N matrix elements, and N x N null 
matrices denoted here by 0. In fact, the notation used can 
be significantly simplified because of the special form of 
the matrix L,T. Assuming that I ,-  I is the ( N  - 1 ) x ( N  
- 1 )  identity matrix, define the following N x N matri- 
ces: 

(6.18) 

and 

where 0 is the ( N  - 1 )  X 1 null vector. Taking these 
definitions into account, it is obvious that L, can be writ- 
ten more elegantly, using the Kronecker product notation, 
as follows: 

L, = I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 PI - 1 2  8 P2. (6.20) 

In conclusion, the discrete approximation of the semi- 
causal SPDE image models proposed in [45] is presented 

TABLE 1V 
DISCRETE APPROXIMATION OF SEMICAUSAL SPDE I M A G E  MODELS 

Semicausal 1 (SCI) Dy -D: + a I , @  Q - Y I ~ ~  I 

in Table IV. The importance of this equivalent discrete 
representation is that the new operator L, operates on the 
entire image. On the other hand, the discrete image rep- 
resentation model given by (6.14) is of a similar mathe- 
matical form with the one corresponding to noncausal 
SPDE image representation. The only difference is that 
the image is now represented by the new image vector f,, 
formed from the image matrix as indicated by (6.15). 

The general formulation of the image restoration prob- 

lem is based on the assumption that the image is repre- 
sented by the same vector in both the discrete approxi- 
mation of the stabilizing functional as well as the model 

describing the image formation process. Therefore, the 
model (1.3) describing the image formation process 
should be appropriately modified in such a way that the 
image be again represented in the model by the new vec- 
tor f s .  The image vector f,,, conventionally used to rep- 
resent an image, consists of N subvectors which corre- 
spond to the ordered rows of the image matrix. On the 
other hand, the image vector fs consists of subvectors 
which correspond to the columns of the image matrix. 
Given the form of the new image vectorf,, the modifi- 
cation of the model describing the image formation pro- 
cess amounts to the appropriate modification of the PSM 
associated with the image formation model. This modifi- 
cation is described by the following proposition. 

Proposition 2: Let f,, be the conventional image vector 
andf ,  the vector defined by (6.15). Also, let A,, be the N 2  
x N 2  matrix and a,;  i = 1, 2, , N2 its columns. Now 
consider the matrix 

A,  = [ U ;  U ;  * U,!, ,>]  (6.21) 

whose column vectors a : ;  i = 1, - , N2 are related 
with the column vectors of the original PSM A,, as fol- 

lows: 

* 

a , ! , , ( , - l )+ ,  - - u ~ ( , - ~ , + ,  V 1 5 i , j  5 N. (6.22) 

Then 

Asf ,  = At7fn. (6.23) 

Proof: The proof of this proposition is given in Ap- 

The image formation process can be equivalently de- 

A d  + = g (6.24) 

pendix E. 

scribed by the following discrete model: 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, is the new PSM, while f ,  is the new image vector 
introduced by (6.15). On the other hand, the operator L, 
is given by (6.20). In this case, the restored image is ob- 
tained as the solution of the following set of linear equa- 
tions: 

ARfs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A Tg (6.25) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 2  

AR = ATA, + CY c plJZ:J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 PTPJ (6.26) 
,=I J = I  

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 fo r i  = j 

-1 fo r i  # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj .  
Pij = (6.27) 

The restored image is obtained in this case by converting 
the image vector f 7  into a matrix form on the basis of its 
definition. 

C. Discrete Image Restoration Algorithms 

According to the discrete formulation of the image res- 
toration problem, the restored image is the solution of the 
following set of linear equations: 

ARx = A T g .  (6.28) 

Serious computational problems arise, in practice, caused 
by the dimensionality of the resulting set of linear equa- 
tions. In fact, AR is an N 2  X N 2  matrix while N = 256 or 
512 is a common situation in many of the existing image 
display systems. Therefore, the direct solution of (6.28), 
either by evaluating the inverse of A ,  or by applying any 
direct method, is impossible for small or medium size 
computer systems, while impractical, if not impossible, 
even for large size computer systems. The specific prob- 
lem of solving a set of linear equations is equivalent with 
the minimization of a certain quadratic form. A suitable 
class of iterative methods capable of performing this min- 
imization is the class of gradient methods [47], The trade- 
off existing in choosing iterative algorithms is between 
the computing requirements, both arithmetic operations 
per iteration and storage space required, and the rate of 
convergence. The conjugate gradient algorithm is cer- 
tainly the most demanding among the existing gradient 
algorithms, in terms of the computing requirements. 
However, its rate of convergence is satisfactory in the 
sense that it converges after a certain number of itera- 
tions. In addition, the conjugate gradient algorithm pro- 
vides very fast convergence in comparison to other gra- 
dient algorithms. 

The implementation of the conjugate gradient algo- 

rithm appears to be rather straightforward [47]. However, 
the huge size of the matrix AR which needs to be stored 
makes the applicability of the algorithm in its present form 
doubtful. The assumption that the image formation pro- 
cess can be described by a separable PSM is particularly 
important with regard to the implementation of the algo- 
rithm. Fortunately, many kinds of distortion appearing in 

practical situations can be described by a separable PSM 
as, for instance, linear motion and atmospheric turbulence 
blur [ 11, [2]. It is shown in the sequel that assuming a 
separable PSM, and regardless of the specific SPDE im- 
age representation, the original algorithm presented above 
can be converted into a matrix form. 

Consider now the image restoration algorithms based 
on noncausal SPDE image models, under the assumption 

that the PSM A ,  is separable, that is 

A,, = C 0 D (6.29) 

where C and D are N X N matrices. In such a case, (6.9) 
becomes 

L L  

(6 .30)  

Since A,  is a summation of separable matrices, the algo- 
rithm can be converted into a matrix form. This algorithm 
is presented in Table V. The only equations which are 

affected by the image model used are the equations for the 
evaluation of Ro in the initialization stage of the algo- 
rithm, and Wk at every iteration. 

In the case of image restoration algorithms based on 
semicausal SPDE image models, the image formation 
process is described by (6.24). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, is the new image vector 
given by (6.15), while A, is related with the original PSM 
A,  as described in Proposition 2. Under the assumption 
that A,  is separable, the form of A,  is given by the follow- 
ing proposition. 

Proposition 3: Consider that the original PSM A ,  is 
separable, given by (6.29). Then, A,, defined in Propo- 
sition 2, can be equivalently written as 

(6.31) 

LD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc;-l 

where c ; ;  i = 1, . . - ,  N are the rows of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC. 

pendix E. 

rather straightforward to show that 

Proof: The proof of this proposition is given in Ap- 

Taking into account that A,? is given by (6.31), it is 

ATA,  = D ~ D  o cTc. (6.32) 

Combining (6.26) and (6.32) 

2 2  

(6 .33)  

Finally, given that the original PSM is separable, AR is 
once again a summation of separable matrices. The final 
step is the expression of the vector ATg in a matrix form, 
given by the following proposition. 
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TABLE V 

MODELS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1hlACE RESTORATION ALGORITHM BASED zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAON NONCAUSAL SPDE IMAGE 

L L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RO = C' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC (Fn)o DT D + a C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC P,' PI (F"),, Q,' Q, - Cr G D 

, = I 1 = i  

S1=-RO 

Initialization 

F&: Iniual Estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
kLh ileration 

Image Estimate 

TABLE VI 
I M A G ~  RESTORATION ALGORITHM BASFII ON S F M I C A U S A L  SPDE ~ M A G F  

MODELS 

2 2  
R o = D r D ( F , ) , C ' C + a  C C ~ , l I , r I l (F , )oP , 'P , -DrC 'C  

, = l l = i  

Si =-RI, 

2 2  

1 = 1 1 = 1  

WX = D' D S t  CT C + (1 C p,, 1,' I, Sk P,' P, 

Initialization 

?$),,: Initial Estunate, 

k th  iterauon 

Image Estimate 

Proposition 4: Consider the vector gR, given in terms 

g R  = A,Tg. (6.34) 

Let g (  g R )  be formed by lexicographically ordering the 
elements of the N X N matrix G (  GR) . Then 

GR = D T G T C .  ( 6 . 3 5 )  

Proof: The proof of this proposition is given in Ap- 
pendix E. 

The restoring algorithm, originally given in a matrix- 

vector form, can be equivalently implemented in a matrix 
form. This algorithm is presented in Table VI. The only 
equations which are affected by the image model used are 
again the equations for the evaluation of Ro in the initial- 
ization stage of the algorithm, and W, at every iteration. 

VII. REGULARIZATION A N D  OPTIMAL WIENER 
ESTIMATION 

The optimum Wiener estimate in image restoration is 
derived on the basis of the assumption that both the object 

and the noise belong to homogeneous random fields, and 
the noise is uncorrelated with the original object [ 11, [21. 
Another implicit assumption considered is that the sec- 
ond-order statistics of the object and the noise are known. 
However, the a priori knowledge required for the evalu- 
ation of the optimum estimate in the Wiener sense is very 
rarely available [26]. In practical situations, this problem 
is usually overcome using certain covariance models to 
approximate the second-order statistics of the object and 
the noise. 

In continuous image restoration, the Wiener filter can 
be obtained using the additional assumption that the im- 
age formation process is described by a space-invariant 

of A,r and the vector g as follows: 

model as follows [ 11: 

Where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAStt( . ) and S,,,,( . ) are the spectral densities of the 
object and noise, respectively. Let f (x, y )  be a 2-D sto- 
chastic process and t ( x ,  y )  be a 2-D zero-mean white 
noise process with variance 0:. Consider that the stochas- 
tic processesf( * )  and E (  are related by the following 
SPDE: 

Q ) f ( X >  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY )  

Assuming that f ( . ) corresponds to an image, (7.2) is its 
SPDE model representation. The SPDE (7.2) defines a 
2-D linear system with input t ( . ) , output f ( * ) , and sys- 
tem function 

1 
q s , ,  S?) = ~ (7.3) 

L ( S l 9  s2) 

where 
K L  

L ( S I ,  3 2 )  = pFo qz,) ~ p , , s ' M .  (7.4) 

Therefore, an image represented by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( ) can be consid- 
ered as the output of the linear system defined above, 
driven by a white noise process t ( ) . From the funda- 
mental relation concerning linear systems with input and 
output stochastic processes, the spectral densities of the 
input and output of the linear system defined above are 
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related as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

(7 .5)  

According to the assumption regarding the noise process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K,, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo:I. 

Combining (7.12) and (7.13) 

a % I  = LKfL* 

(7.13) 

(7.14) 

or 
Taking into account ( 7 . 3 ,  and also assuming that the 
noise n ( ) associated with the image formation is a zero- 
mean white process with variance a i  

K~ = a : ( ~ * ~ ) - I .  (7.15) 

Taking into account (7.10) and (7.15), it can easily be 

where 
2 

(7.7) 
t1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a = '. 

Consider that an image can be represented by the SPDE 
model (7.2). The relationship determined by (7.6) pro- 
vides a link between the class of RF's defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 .5 )  
and Wiener filtering. The RF of the form (5.5) with re- 
gularizing polynomial given by (5.7) is the optimum Wie- 
ner filter for this image. On the other hand, (7.6) deter- 
mines the relationship between the class of GRF's defined 

by (5.17) and the power spectrum equdizution filter, de- 
rived on the basis of the assumption that the power spec- 
trum of the image estimate is equal to the power spectrum 
of the original image [ 11. The GRF of the form (5.17) 
with regularizing polynomial given by (5.7) is the opti- 
mum power spectrum equalization filter for this image. 

The relationship between Wiener estimation and the re- 
gularized solutions resulting from the image representa- 
tion by SPDE image models is now investigated for the 
discrete image restoration case. The optimum W' iener es- 

timate for the original object is given in this case as fol- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0, 

lows [ I ] ,  [2]: 

f =  KfA* (AKfA*  + K, , , l ) - ' g .  (7.8) 

In (7.8), Kf  and K,,,, are the covariance matrices for the 
object and the noise, respectively. Assuming that the noise 
n is white with variance 0: 

Kflf, = 1. (7 .9)  

Combining (7.8) and (7.9) 

f = KfA* (AKfA*  + a:Z)-'g 

= ( A * A  + o : K j j ' ) - I A * g .  (7.10) 

Assume that the original object can be represented by 
the discrete approximation of an SPDE image model, that 

is 

Lf = & (7.11) 

where L is a model dependent matrix operator and c is a 
white noise process with variance af .  From (7.11) 

K,, = E {  E & * }  = E{L f f  * L * }  

= LE{ f f  * }  L* = LKffL*.  (7.12) 

where L is related to the particular SPDE image model 
representation considered by (7.1 l ) ,  and a is again de- 
fined by (7.7). 

Consider that an image can be represented by the model 
(7.11). The regularized solution given by (7.16) is the 
optimum Wiener estimate for this image. In conclusion, 
the optimality of this class of regularized solutions is re- 
lated to the image representation by an SPDE model. 
Therefore, the problem of determining the specific SPDE 
model which provides the best image representation is of 

particular importance. In other words, the search for sat- 
isfactory regularized solutions is closely related to the 

search for the specific SPDE image models which provide 
satisfactory image representation. 

VIII. EXPERIMENTAL RESULTS 

The Aphrodite of Milos, shown in Fig. 1, was used as 
a test image in the set of experiments based on the regu- 
larizing filters proposed in Section V .  The distorted image 
is shown in Fig. 2. The distortion used is the one corre- 
sponding to horizontal linear motion blur, as modeled in 
[l] .  In addition to blur, the image was contaminated by 
additive Gaussian noise. The SNR determined with re- 
spect to the undegraded image is 25 dB. The restored im- 
ages reported here were obtained by filtering the distorted 
image using the GRF whose transfer function is given by 
(5.17). Figs. 3 and 4 show the restored images which cor- 
respond to the regularizing polynomials based on the NC 1 
and SC 1 image models, respectively. Several experiments 
indicated that the use of different regularizing polyno- 
mials causes a significant variation to the quality of the 
resulting image estimates. The regularizing polynomials 
corresponding to SCl (semicausal 1) and NC1 (Poisson) 
image models result in very good and visually pleasing 
restored images. The regularizing polynomial corre- 
sponding to NC2 (biharmonic) image model results i n  a 
restored image whose visual quality is slightly inferior. 
Finally, several experiments showed that the regularizing 
polynomials corresponding to C 1, SC2, and NC3 image 
models result in restored images of relatively poor visual 
quality. The filters proposed are sensitive to the level of 
the noise in the distorted image. It has been estimated that 
these filters result in visually satisfactory images only for 
SNR greater than 20 dB. In terms of the computational 



1172 I E E E  TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING. VOL 38. NO 7. JULY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1990 

Fig. I .  Original image (the statue of Aphrodite of Milos). Fig. 4. Restored image by the GRF defined by (5.17) which corresponds 
to the SCl image model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 

The GRF's corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = provide the best 
results among all the regularizing filters proposed in Sec- 
tion V. A remarkable case is the experimental perfor- 
mance evaluation of the class of regularizing filters de- 
fined by (5.5). Despite the optimal derivation of this class 
of filters, their performance is not satisfactory. In fact, 
the restored image obtained using this class of filters was 
not found to be pleasing to the human eye, although the 
blur and noise are reduced substantially. This is not sur- 
prising, taking into account the optimality of this class of 
filters in the Wiener sense presented in Section VII. It has 

been pointed out very early that the performance of 
Wiener filtering, when performed in the frequency do- 
main, suffers in terms of the resulting visual quality [ l] .  - .  

Fig. 2. Distorted image. The distortion consists of horizontal linear mo- The Aphrodite of Milos, shown Fig. 5 ,  was again 
the test image in the set of experiments based on the dis- 
Crete algorithms presented in Section VI. The distorted 
image is shown in Fig. 6. The distortion appearing is a 
horizontal linear motion blur, as modeled in [7]. The im- 
age was also contaminated by additive Gaussian noise. 
The experiments indicated that the discrete algorithms 
based on nonseparable SPDE image models result in bet- 
ter restored images than the ones based on separable 
models. The superiority of the nonseparable SPDE image 
models over the separable ones becomes obvious in situ- 
ations of severe degradation and/or noise. Figs. 7 and 8 

show the best restored images, obtained by employing the 
discrete algorithms corresponding to the NCI and SC1 

image models, respectively. 
In these experiments, the iterative algorithms were in- 

itialized bv using an identicallv zero matrix as the initial 

tion blur and additive Gaussian noise. 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  Restored image by the GRF defined by (5.17) which corresponds 
t o t h e N C I  i m a g e m o d e l ( a  = 1 X I O  ' ) .  

requirements, these filters are very fast due to the exis- 
tence of very fast algorithms performing 2-D discrete 
Fourier transform. For example, the time required for the 
restoration of a 256 x 256 image in the Vax Il l780 com- 
puter system was approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 minutes CPU time. The 

time required for restoration, in addition to the simple re- 
alization of such filters, make them ideal for use in small 
and medium size computer systems. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

v 

estimate of the restored image. Such an initial estimate is 
widely used in the application of iterative gradient meth- 
ods in image processing problems [22]. The conjugate 
gradient algorithm used in these experiments converges 
to a satisfactory image estimate after a certain number of 
iterations. It was experimentally found that the number of 
50 iterations satisfies the tradeoff between the visual qual- 

ity of the restored image and the computer time required. 
In fact, there exists some improvement of the restored im- 
age after 50 iterations, in particular, the enhancement of 
some fine details of the image. However, the improve- 
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Fig. 5.  Original image (the statue of Aphrodite of Milos) Fig. 8. Restored image by the algorithm which corresponds to the SC1 
image model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 X 50 iterations). 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Distorted image. The distortion consists of horizontal linear mo- 
tion blur and additivc Gaussian noise. 

Fig. 7.  Restored image by the algorithm which corresponds to the NC1 
image model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 0 1  = 1 x 10 ': 50 iterations). 

ment is not as substantial as to be considered worth the 
computer time required. Another alternative examined 
during the experimental work was to make the algorithms 
independent from a predecided number of iterations. In 
such a case, the algorithm may stop by itself using as a 
criterion that the error measurement provided by the con- 

jugate algorithm be smaller than a given threshold. How- 
ever, the main difficulty arising is the lack of an obvious 
correspondence between any threshold chosen and the vi- 
sual quality of the image. 

Discrete image restoration is by its nature computation- 
ally very demanding, due to the huge amount of data in- 
volved in the image formation process. In fact, the im- 
plementation of any discrete algorithm for image 
restoration involves several multiplications of very large- 
size matrices. On the other hand, the conjugate gradient 
algorithm, by itself, requires an excessive amount of stor- 
age space for its implementation. Fortunately, all matri- 
ces involved in the discrete approximation of SPDE im- 
age models are sparse matrices possessing a standard 
form. Therefore, with some additional programming ef- 

fort, a lot of arithmetic operation can be avoided by ig- 
noring all multiplications including zeros. On the other 
hand, due to the implementation of the algorithms in a 
matrix form, the largest matrix to be stored is of size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N X N .  

According to the experiments, the regularizing param- 
eter a controls the tradeoff between noise reduction and 
the restoration of the fine details of the image. The value 
of a is mainly affected from the level of noise in the de- 
graded image. The higher the level of noise in the de- 
graded image is, the larger the parameter QI will be. On 
the other hand, the larger the parameter a is, the higher 
the degree of smoothness in the restored image will be. 
Therefore, the choice of a may be based on a subjective 
quality criterion. 

According to the experimental results, any stabilizing 
functional used amounts to stable image estimates. How- 
ever, the visual quality of the results is not guaranteed by 
the use of any stabilizing functional. This supports the 
argument that regularization theory, although guarantee- 

ing the stability of the image estimates, cannot be used 
alone to solve the image restoration problem. In other 
words, this is an experimental verification of the impor- 
tance of the MAP estimation interpretation and the use of 
SPDE image models proposed in this paper. Finally, this 
set of experimental results can also be used for the qual- 
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itative evaluation of various SPDE image models in rep- 
resenting images. In fact, the resulting evaluation exhibits 
full agreement with the one presented in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 45 ] .  As follows 
from the experiments, the SC1 and NC1 image models 
provide the best image representation. Some additional 
comments are as follows: 

1) Image representation using a causal SPDE image 
model is not realistic. This is not surprising since, using 
such a representation, each pixel is correlated with only 
the “past” pixels in both directions, although every pixel 
is correlated with all its neighbors. 

2) Semicausal and noncausal SPDE image models pro- 
vide the most realistic image representation. 

3) Nonseparable SPDE image models are the most ap- 
propriate for image representation. A direct implication 
of this is that the best stabilizing functionals correspond 

to nonseparable PDO’s as well. 

IX. CONCLUSIONS 
This paper examined several aspects of regularization 

theory in image restoration; this was accomplished by ex- 
tending the applicability of the stabilizing functional ap- 
proach to 2-D inverse problems. It was shown that the 

stabilizing functional approach can be the basis for the 
derivation of a large variety of regularized solutions in 
image restoration, depending on the form of the stabiliz- 
ing functional chosen. A systematic study regarding the 
choice of stabilizing functionals was also presented, with 
particular emphasis on a certain class of quadratic func- 
tionals. The particular class of quadratic functionals 
whose minimization amounts to 2-D L-generalized 
splines was finally considered the source of stabilizing 
functionals. This particular class of quadratic functionals 
was also interpreted as a link between the family of con- 
strained least squares and the stabilizing functional ap- 
proach. The choice of a particular quadratic stabilizing 
functional was related to the a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori information regard- 
ing the expected regularized solution. More specifically, 

the MAP estimation interpretation of the proposed for- 
mulation indicated that there exists a one-to-one corre- 
spondence between any quadratic functional used and a 
certain SPDE image model representation. This MAP es- 
timation formulation also provides the basis for a sto- 
chastic interpretation of the entire family of constrained 
least squares approaches. The optimality of the resulting 
regularized solutions in the Wiener sense was finally dis- 
cussed. The importance of the work presented in this pa- 
per is that several mathematical concepts and statistical 
approaches, which appeared independently toward the so- 
lution of the image restoration problem, converged to the 
derivation of a variety of analytically optimum regular- 
ized solutions that can be related to the stochastic nature 
of the image restoration problem. 

APPENDIX A 
Proof of Theorem I :  The quadratic functional de- 

fined by (2.10) is the particular element of the class of 
functionals defined by (2.4) for which 

K L  

F = C ~r~?lqk,/:,n.nJ;I~I?~~. ( A I )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k . m = O  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/.11=0 

The second variation of any functional of the form (2 .4)  
i s  given by [29] 

S 2 Q [ h ]  = 11 ( c c hxfly,hxiyi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdy. 

(A21 

) 
a2F 

K L  

2 i , k = O  j . r = o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafxt,.,afx~,i 

In the particular case that 
(AI).  Therefore, 

[ f 3 = Q [ f ] , F is given by 

(‘43) a2F - 
- 2 q i . j : k . l .  af,y a f k d  

Hence 

(‘44) 
Assuming that q k , m ; ( , , ,  - - qr ,n ;k ,m,  (2.12) can be ob- 

) 
K L  

hx’v,qi,j;k,lhxky/ Qk dY 
i , k = O j . / = O  

S2Q[h l  = ( 
= Q [ h l .  

tained by combining (2.7) and (A l )  as follows: 

l K  k + /  a k + /  
2 k = O  / = 0  axk ay‘ 

Q t [ f ] = -  C C ( - 1 )  - 

K L  

* j 2  t n = O  c n = O  c qk./;m.n =] axrnayn 

K L  K L  

= c c ( - I f + /  c c qk,/;,,,,nD:+mDI+nf 
m = O  n = O  k = O  / = O  

= B(D.r, Dy)f (x ,  Y )  (‘45) 

where B (  * ) is the PDO defined in (2.13). 

of F (  ) of order higher than two vanish 
Assume now that f E CbK.L’ [R !  . Since all derivatives 

AQ[h ]  = Q [ f +  h ]  - Q [ f l  = SQ[hI + h 2 Q [ h I .  

(A61 

(A7) 

3 Q [ h l .  

( A V  

Since S 2 Q [ h ]  = Q [ h ]  

AQ[hl  = SQ[hl + Q [ h l .  

Forf = h 

AQ[hl  = Q[2hI - Q [ h l  = 4Q[h l  - Q[hI 

Taking into account (A5), the first variation of the func- 
tional defined by (2.10) is given by 

SQ[hl = 2 ( h ,  Q ’ [ f l )  = 2 ( h ,  Bf). (A9) 

The combination of (A7), (A@, and (A9) amounts to 

Q [ h ]  = $SQ[h ]  = ( h ,  Bf). (‘410) 

Equation (2.14) can easily be obtained from (AlO) by 
using the substitution h = f. This substitution is an allow- 
able one, since it was assumed that f E CbK.L’ [RI . The 
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resulting equation (2.14) completes the proof of the theo- 
rem. 

APPENDIX B 

Assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfo minimizes the smoothing functional 
(3.1). Then, forf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

6M,[h, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ]  = 611Ah - + a 6 Q [ h ]  

= 0 V h E CbK.L’ [ R I .  (B1) 

Consider the following increment: 

AIIAh - gl12 = I I A ( f +  h )  - gl12 - ) I @ -  gll’ 

= 2 ( h ,  A * ( A f -  8) )  + llAhI12. (B2)  

By definition [27], the first variation of ) I  Af - g 11 is the 

linear functional with respect to h appearing in (B2). 
Therefore 

6llAh - gll’ = 2 ( h ,  A * ( A f -  8 ) ) .  (B3) 

The first variation of Q [ f ] is given by (2.6). Combining 
(B3) and (2.6), the necessary condition (Bl) amounts to 

( h , A * A f o  + a n ’ [ & ]  - A * g )  = O v h E C ( ; Y . L ) [ R ] .  

(B4 1 

According to the basic lemma of the calculus of variations 
[27], (B4) amounts to 

A*A& + a Q ‘ [ f 0 ]  = A * g .  (B5) 

Suppose that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa nonnegative quadratic functional of the 
form (2.10) is used as a stabilizing functional. For Q [ f 1 
= Q [  f ]  , the smoothing functional (3.1) becomes 

M,[f,  81 = I IA f -  gI / *  + ~ l Q [ f l .  (B6) 

Combining (B5) and (2.12), the necessary condition (B5) 
amounts to 

( A * A  + aB)&  = A * g .  

M,[f> 81 - M,[fo> 81 2 0. 

(B7) 

(B8) 

The condition (B7) is also sufficient if, for any f # fo 

Without loss of generality, assume that for some h E 

C‘K3L’  [ R I ,  f = fo + h .  Then 

A M , [ k  81 = MY[& + h,  81 - M a [ & ,  SI 

= AIIAh - gl/’ + a A Q [ h ] .  (B9) 

According to (B2) 

AIIAh - g1I2 = 611Ah - gl/ ’  + )IAh(I2. (B10) 

Since Q [  ] is a quadratic functional, the terms involving 

derivatives of order higher than two vanish. Therefore 

A Q [ h ]  = S Q [ h ]  + S ’ Q [ h ] .  (B11) 

Taking into account (B10) and (B1 l ) ,  (B9) amounts to 

AM, [h ,  g ]  = 6M,[h, g ]  + (IAhI/’ + ~ 6 ~ Q [ h ] .  

Since 6M, [ h ,  g ]  = 0 V h E CbK,L’ [R I  

AM, [h ,  g ]  = IIAhII’ + a S 2 Q [ h ] .  (B13) 

Taking into account (2.1 I ) ,  the nonnegative definition of 
Q [ . ] implies that 

6 ’ Q [ h ]  = Q [ h ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 0 .  (B14) 

Since a > 0, the combination of (B13) and (B14) indi- 
cates that (B8) is valid. Therefore, (B7) is also a sufficient 
condition. 

APPENDIX C 

Proof of Proposition I :  Consider the PDE which 
corresponds to the PDO L (  ) , that is 

U ( - G  Y )  = L(Q?  R ) f ( X >  Y ) .  (C1) 

The element = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU( ih, j h )  corresponding to the ( i ,  
j ) node of the image can be approximated as follows: 

U,., = C C ~ ~ , / f ~ k , / ( i , j )  v 1 I i , j  I N .  
K L  

( ~ 2 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h = O  / = 0  

Taking into account (3.13), (C2) amounts to 

K L  

= C C ~ ~ , / k { / f ( i , j )  v 1 I i , j  I N .  ( ~ 3 )  
k = O  / = 0  

Let U be the N 2  x 1 vector consisting of all U,,,; 1 5 i, 
j 5 N .  Let also f and f be the vectors defined in Section 
111. Since all elements off ( i ,  j ) ; 1 I i ,  j 5 N belong 
to either f or f I ,  there exists an N 2  X N 2  matrix L such 
that (C3) is equivalent to the following: 

U = Lf + f ’ .  ( c 4 )  

Neglecting the effect of the boundary elements, (C4) can 
be written as follows: 

U = Lf ( c 5 )  

which is, in fact, the discrete approximation of the PDE 

(Cl) .  
The discrete approximation of any quadratic functional 

is given by (3.14). For q h .  ,1 = Ak . /A ln ,n ,  (3.14) amounts 
to 

N N  K I 

(B12) which proves the proposition. 
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APPENDIX D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Derivation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Regularizing Filters 

Taking the Fourier transform of both sides of (5.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ ( ~ 1 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ 2 )  ~ ( ~ 1 9  ~ 2 )  + aS{B(D. r ,  9 \ . ) f ( x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY ) }  

- 
= G(% w2) (D1)  

where H( ) and c( ) denote the Fourier transform of 

z( ) and g( * ) , respectively. In the derivation which fol- 
lows, H (  - )  and G (  . ) denote the Fourier transform of 
h ( * ) and g (  * ) , respectively. By definition 

- 
H ( w , ,  w 2 )  = i i  h ( x ,  y )  e-JW'"e-Jwzv dr dy 

= l-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh ' ( L  e> WI7 w2) 4 dr  

(D2)  

where 

h ' ( t >  ( 7  0 1 9  w2)  

= A(.$ - X, - ~ ) e - J ~ l . ~ e - J ~ ~ \ ' d r d y .  (D3) 

Set 5 - x = p ,  { - y = 4. Then 

h'(5, r, W I ,  w2) 

In addition 

Using the properties of Fourier transform 

where 

R ( w , ,  w2) = B( jw1, jwz)  (D9) 

is the regularizing polynomial corresponding to the PDO 

B( . ) .  Substituting (D5), (D7), and (D8) in (Dl)  

[ I H ( %  w 2 ) I 2  + aR(W19 U ? ) ]  F ( w , ,  w2) 

= G(Ul, w2) H*(Ul, w2) .  (D10) 

Equation (D 10) determines the regularizing filter which 
corresponds to the PDO B ( . ) . The transfer function of 
this filter is obtained as follows: 

F(wl> w2) 

G(Wl, U*)  
H,(w,, u2, a )  = 

APPENDIX E 

Proof of Proposition 2: Let F, be the image matrix 
with elements Fi.J; i, j = 1, * * , N .  By definition, f, is 
obtained by lexicographically ordering the elements of F,. 
Letx ;  i = 1, , N 2  be the elements off,. Then 

fN(;-l)+j = F-V 1.J 1 I i,j I N.  ( E l )  

By definition, f, is formed by ordering the columns of 
F,. Let FA be the transpose of the image matrix with ele- 

ments F/ , j ;  i ,  j = 1, . . , N .  Obviously, fs can also be 
formed by lexicographically ordering the elements of F;.  
Letf,!; i = 1, 2, * . , N 2  be the elements offs. Then 

f h c i - l ) + j  = F / ~ j  = 5,; = f N ( j - l , + i  V 1 I i, j I N. 

(E2)  

The column vectors of A, and A, are related by (6.22), 
that is 

~ h ( ; - ~ , + ~  - - u ~ ( , - ~ , + ~  V 1 I i ,  j I N.  (E3) 

If a,!.j and u ; , ~ ;  i, j = 1, 
and A,, respectively, then 

, N 2  are the elements of A, 

u / , N ( i - l ) + j  = ~ / . N ( ; - I ) + ~  V 1 5 i , j  5 N;  

1 I I I N ' .  (E41 

Define g'  = and g = A,f,,. Let g/  and g; ;  i = 1, 
. . .  , N 2  be the elements of g' and g ,  respectively. Tak- 
ing into account (E2) and (E4) 

N N  

(E5 1 
Therefore 

which proves the proposition. 
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Proof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Proposition 3: Assume that A,, is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa separa- 

ble matrix, that is, it can be written as follows: 

A, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 D. (E71 

L e t a , ; i =  1,2 ; . -  ,N2bethecolumnsofA, , ,whi lec j  
and d j ; j  = 1, 2 ,  * - , N are the columns of C and D,  
respectively. Then 

where, in general 

a N ( ,  - +J = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc, O 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV 1 5 i ,  j I N .  (E8) 

The matrix A,, defined in Proposition 2 by (6.21), is given 

by 

A ,  = [ a ;  0 . .  ah ah+l - e *  a;N . . 

U;(,+ I ) +  I - * * a h ? ] .  (E91 

- Since, from Proposition 2, ah(, - 1 )  - U N ( ]  - 1 ) +, 

u ~ ~ , - ~ ~ + ~  = cJ 0 d, V 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 i , j  5 N .  (E10) 

Combining (E9) and (E10) 

Proof of Proposition 3: Let c:, d r ;  i = 1, . * . , N 
be the rows of C and D,  respectively. From (E12) 

AT = [D' O CI  DT 8 C 2  . . * DT O C N ]  

= [ d l @ c l  * * .  d N @ c l  d 1 0 c 2  

dN O C 2  . . * dl O C N  . . . dN O c N ]  

= [bl " '  b~ ~ N + I  * "  b 2 ~  " *  

b N ( N - I ) + I  . * . bN?] (E13 1 

where 

~ N ( , - I ) + ~  = d, 8 C, V 1 I i ,  j I N .  (E14) 

Let g' be the vector consisting of the ordered columns of 
G .  According to Proposition 2 

g, = A f g  = Ai'g' (E15) 

where 

A:' = [ b ;  . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbh bh+, . . . biN . . . 

b h ( N - I ) + I  ' '  ' b h 2 ]  (E16) 

and b,'; i = 1, * - , N 2  are related to b,; i = 1, . . * , 
N 2  by - - b N ( J - l ) + , ,  or equivalently 

b&(,-I ,+J = d, 0 cl V 1 5 i ,  j 5 N .  (E17) 

Combining (E16) and (E17) 

which proves the proposition. 

Hence 

gR = DT O C'g'. (E191 

Since g' can also be obtained by lexicographically order- 
ing the elements of G', (E19) can be written in a matrix 
form as follows: 

GR = D'G'C. 
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