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Abstract

We address the structure-from-motion problem in the context of head modeling from video sequences

for which calibration data is not available. This task is made challenging by the fact that correspondences

are difficult to establish due to lack of texture and that a quasi-euclidean representation is required for

realism.

We have developed an approach based on regularized bundle-adjustment. It takes advantage of our

rough knowledge of the head’s shape, in the form of a generic face model. It allows us to recover

relative head-motion and epipolar geometry accurately and consistently enough to exploit a previously-

developed stereo-based approach to head modeling. In this way, complete and realistic head models can

be acquired with a cheap and entirely passive sensor, such as an ordinary video camera with minimal

manual intervention.

We chose to demonstrate and evaluate our technique mainly in the context of head-modeling. We do

so because it is the application for which all the tools required to perform the complete reconstruction

are available to us. We will, however, argue that the approach is generic and could be applied to other

tasks, such as body modeling, for which generic facetized models exist.

1 Introduction

In earlier work, we have proposed an approach to fitting complex head animation models, including ears

and hair, to registered stereo pairs and triplets. Here, we extend this approach so that it can take advantage

of image sequences taken with a single camera, without requiring calibration data.

Our challenge, here, is to solve the structure from motion problem in a case where

• Correspondences are hard to establish and can be expected to be neither precise nor reliable due to

lack of texture.

• A Euclidean or Quasi-Euclidean [Beardsley et al., 1997] reconstruction is required for realism.
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• The motion is far from being optimal for most of the auto-calibration techniques that have been

developed in recent years.

To overcome these difficulties, we have developed an approach based on bundle-adjustment that takes

advantage of our rough knowledge of the face’s shape, in the form of a generic face model, to introduce

regularization constraints. This has allowed us to robustly estimate the relative head motion. The resulting

image registration is accurate enough to use a simple correlation-based stereo algorithm to derive 3–D

information from the data. We can then fit a 3–D facial animation mask [Kalra et al., 1992] using our earlier

work [Fua and Miccio, 1998, Fua and Miccio, 1999].

We chose to demonstrate and evaluate our technique mainly in the context of head-modeling because

it is the application for which we have all the tools required to perform the complete reconstruction task.

However, the difficulties discussed above are not specific to head modeling and are pervasive. In that sense

the solution we propose is generic: It is applicable to any modeling problem for which a rough shape model

is available.

Our contribution is a robust algorithm that takes advantage of our generic knowledge of the shape of the

object to be reconstructed, in this work a head, to effectively recover both motion and shape even though

the images typically exhibit little texture and are therefore hard to match. Furthermore, this technique has

been fully integrated into a complete approach that goes from images to high-quality models with very

little manual intervention. Thus, we can create realistic and sophisticated animation models using a cheap,

entirely passive and readily available sensor.

As more and more people have video cameras attached to their computers, our approach will be usable

to quickly produce clones for video-conferencing purposes. It will also allow the exploitation of ordinary

movies to reconstruct the faces of actors or famous people that cannot easily be scanned using active tech-

niques, for example because they are unavailable or long dead.

In the remainder of this paper, we first describe related approaches to relative-motion recovery and head

modeling. We then introduce our own approach to registration and demonstrate its robustness using real

video sequences. Next, we show reconstructions obtained by using these motion estimates to register the

images; deriving 3–D information by treating consecutive images as stereo pairs; and, in the end, fitting the

animation mask to the 3–D data. Finally, we use synthetic and Monte Carlo simulations to show that the

assumptions we make in this paper can be expected to hold for typical camera configurations. Our earlier

fitting procedure [Fua and Miccio, 1999] is described briefly in the appendix.

2 Related Work

2.1 Bundle-Adjustment and Autocalibration

Bundle-adjustment is a well established technique in the photogrammetric community [Gruen and Beyer,

1992]. However, it is typically used in a context, mapping or close-range photogrammetry, where reliable

and precise correspondences can be established. Also, because it involves nonlinear optimization, it requires

good initialization for proper convergence.

Lately, it has been increasingly used in the computer vision community to refine the output of auto-

calibration techniques. There again, however, most results have been demonstrated in man-made environ-

ments where feature points can be reliably extracted and matched across images. One cannot assume that

those results carry over directly in the case of ill-textured objects and low quality correspondences.
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These auto-calibration techniques have been the object of a tremendous amount of work [Faugeras et

al., 1992, Hartley et al., 1992, Luong and Viéville, 1996, Triggs, 1997, Pollefeys et al., 1998] and effective

methods to derive the epipolar geometry and the trifocal tensor from point correspondences have been

devised [Zhang et al., 1995, Fitzgibbon and Zisserman, 1998]. However, most of these methods assume

that it is possible to run an interest operator such as a corner detector [Pollefeys et al., 1998, Fitzgibbon and

Zisserman, 1998] to extract from one of the images a sufficiently large number of points that can then be

reliably matched in the other images. However, when using images such as the ones shown in Figure 1, we

cannot depend on such interest points because faces exhibit too little texture. We must expect that whatever

points we extract can only be matched with relatively little precision and a high probability of error.

(a)

(b)

Figure 1: Input video sequences: Five out of nine consecutive images of a short video sequences of two different

people. The images are of size 376 × 258 and 488 × 208 respectively

Autocalibration algorithms tend to be sensitive to such errors, as illustrated by Figure 2. We treated

three consecutive images in the video sequence of Figure 1(b) as two independent stereo pairs that share

the central image and ran Zhang’s image matcher [Zhang et al., 1995] independently on both image pairs.

The resulting epipolar geometry is depicted by Figure 2(b,d). These images were acquired in our lab with a

relatively long focal length and the head motion was close to being horizontal. Consequently, the epipolar

lines should also be almost horizontal and the epipoles should be very far away. The epipolar geometry of

Figure 2(b,d) is, therefore, clearly wrong. Of course, we want to stress that this example is not meant to

belittle in any way the quality of Zhang’s algorithm that has been acknowledged as one of the best of its

kind.1 Visual inspection of the correspondences shows very few mismatches. But, as for most algorithms in

this class, even relatively minor matching errors can create major problems.

To some extent, this problem can be alleviated by using more than two images at a time [Beardsley et

al., 1997]. However, in our case, this approach can only be of limited use because typical short sequences

of moving faces, such as the ones shown in Figure 1, often fail to exhibit rotational motion about two truly

independent axes. As a result, the corresponding camera geometries are close to being degenerate for these

methods [Sturm, 1997, Zisserman et al., 1998].

1It also has the great merit of being freely available on the web and we are prepared to make ours similarly available for testing

and comparison purposes.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2: Computing the epipolar geometry without and with a model. (a,b) Running Zhang’s algorithm [Zhang

et al., 1995] on two consecutive images of the video sequence of Figure 1(b). The matches, shown as

numbered crosses, are mostly correct. However, the epipolar geometry, depicted by the solid lines is

not. (c,d) The output of an independent run of Zhang’s system on a different image pair. (e,f,g) The

epipolar geometry recovered by the algorithm described in this paper. The lines in (e,g) are the epipolar

lines that correspond to the crosses in (f).

In short, while the structure-from-motion problem is well understood from a theoretical point of view,

model-free techniques are too sensitive to noise to be directly applicable both to our specific problem and to

all modeling tasks that involve the difficulties described in the introduction.

In the case of head tracking, a generic 2–D face model can be used to estimate roughly estimate pose

from appearance [Lanitis et al., 1995]. However for 3–D reconstruction purposes and more precise es-

timation, using a 3–D model is, in general, more effective. Jebara and Pentland [1997] introduce shape

constraints based on allowable deformation modes derived from a collection of Cyberwaretm scans of real

heads. When such a database is available, this certainly is an effective approach. However, to make it fully

general, one would require large number of instances of the target object, making it difficult to derive in

practice.

By contrast, in this work, we will show that a simple, and easily obtainable, facetized model can be used

to derive effective shape constraints. These are key to a practical solution of our reconstruction problem. As

shown in Figure 2(e,f,g), by using these constraints, we can recover a consistent epipolar geometry. This is

crucial for us because we treat consecutive images in a sequence as stereo pairs that provide the 3-D data

required to compute the results of Section 4.
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2.2 Head Modeling

In recent years much work has been devoted to modeling faces from image and range data. There are

many effective approaches to recovering face geometry. They rely on stereo [Devernay and Faugeras, 1994,

Fua and Leclerc, 1995], shading [Leclerc and Bobick, 1991, Samaras and Metaxas, 1998], structured

light [Proesmans et al., 1996], silhouettes [Tang and Huang, 1996] or low-intensity lasers. However, if

the goal is to fit a full animation model to the data, recovering the head as a simple triangulated mesh does

not suffice. To be suitable for animation, such a model must have a large number of degrees of freedom.

Some approaches use very clean data—the kind produced by a laser scanner or structured light—to instan-

tiate them [Lee et al., 1995]. Among approaches that rely on image data alone, many require extensive

manual intervention, such as supplying silhouettes in orthogonal images [Lee and Thalmann, 1998] or point

correspondences in multiple images [Pighin et al., 1998].

Successful approaches to automating the fitting process have involved the use of optical flow [DeCarlo

and Metaxas, 1998] or appearance based techniques [Kang, 1997] to overcome the fact that faces have little

texture and that, as a result, automatically and reliably establishing correspondences is difficult. This latter

technique is closely related to ours because head shape and camera motion are recovered simultaneously.

However, the optical flow approach avoids the “correspondence problem” at the cost of making assumptions

about constant illumination of the face that may be violated as the head moves. This tends to limit the range

of images that can be used, especially if the lighting is not diffuse.

More recently, another extremely impressive appearance-based approach that uses a sophisticated sta-

tistical head model has been proposed [Blanz and Vetter, 1999]. This model has been learned from a large

database of human heads and its parameters can be adjusted so that it can synthesize images that closely

resemble the input image or images. While the result are outstanding even when only one image is used,

the recovered shape cannot be guaranteed to be correct unless more than one is used. Because the model is

Euclidean, initial camera parameters must be supplied when dealing with uncalibrated imagery. Therefore,

the technique proposed here could be used to initialize the Blanz & Vetter system in an automated fashion.

In other words, if we had had their model, we could have used it to develop the technique described here.

However, for practical reasons, it was not available. Instead, we used the model described below.

2.3 Face Model

In this work, we use the facial animation model that has been developed at University of Geneva and

EPFL [Kalra et al., 1992]. It can produce the different facial expressions arising from speech and emo-

tions. Its multilevel configuration reduces complexity and provides independent control for each level. At

the lowest level, a deformation controller simulates muscle actions using rational free form deformations.

At a higher level, the controller produces animations corresponding to abstract entities such as speech and

emotions.

The corresponding skin surface is shown in its rest position in Figure 3(a,b). We will refer to it as the

surface triangulation. Our goal is to deform the surface without changing its topology. This is important

because the facial animation software depends on the model’s topology and its configuration files must be

recomputed every time it is changed, which is hard to do on an automated basis.
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(a) (b) (c) (d) (e)

Figure 3: Animation model. (a) Wireframe model used to animate complete heads. (b) Shaded view of the model

(c) Regular sampling of the face used to perform bundle adjustment. (d) Shaded view of the resampled

triangulation. (e) Control triangulation used to deform the face.

3 Relative Motion Recovery

Our complete approach to head-modeling is summarized by Figure 4(a). Our earlier work [Fua and Miccio,

1998, Fua and Miccio, 1999] assumed calibrated images. In this section, we focus on the implementation

and evaluation of a regularized bundle-adjustment technique that allows us to perform this task in the absence

of calibration data. Figure 4(b) depicts graphically the steps of this procedure and we describe them in detail

below.

Hair Texture Map

Generic Hair Model

Complete Head Model

Generic Face Model

Face Texture Map

Fitted Face Model Fitted Hair Model

Bundle Adjust.

2D Silhouettes3D Attractors

Images

Disparity Maps

Additional Feature Points

5 Required Feature Points

Image Triplet

Bundle Adjustment

Vertex Matching

Vertex Projection

Rough Allignment

 

  (In one image only)

5 Required Feature Points

Generic Face Model

(a) (b)

Figure 4: Head modeling procedure: (a) Flow chart of the whole procedure. The manually and semi-automatically

entered data appears on the right hand-side. The location of 5 2-D points must be supplied, the rest is

optional. The dotted rectangle in the diagram’s upper left side encompasses the regularized bundle-

adjustment procedure that this paper focuses on. It is depicted in more details in (b). (b) Flow chart of

the bundle-adjustment procedure itself as described in Section 3.

Here, we choose sequences in which the subjects keep a fairly neutral expression and we treat the head

as a rigid object. We assume that the intrinsic camera parameters remain constant throughout the sequence.

In theory, given high precision matches, bundle-adjustment can recover both intrinsic parameters and cam-

era motion [Gruen and Beyer, 1992]. The same holds true for recent auto-calibration techniques but, as

discussed in Section 2.1, typical video sequences of head images are close to exhibiting degenerate motions

as far as these techniques are concerned [Sturm, 1997, Zisserman et al., 1998]. There again, extremely

precise matches would be required.
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In practice, however, face images exhibit little texture and we must be prepared to deal with the po-

tentially poor quality of the point matches. Therefore, we have chosen to roughly estimate the intrinsic

parameters and to concentrate on computing the extrinsic ones using bundle-adjustment: We use an approx-

imate value for the focal length and assume that the principal point remains in the center of the image.

By so doing, we generate 3–D models that are deformed versions of the real heads. When the motion

between the camera viewpoints is a pure translation or the cameras are assumed to be orthographic, this

deformation can be shown to be an affine transform [Luong and Viéville, 1996]. In the general case, how-

ever, the use of approximate internal parameters causes violations of the epipolar geometry. It has been

shown [Baratoff and Aloimonos, 1998] that reconstruction errors caused by such violations can, in some

cases, be modeled as a Cremona transform, which is quadratic.

In this section, we use real video sequences to show that, in practice, the deformation is still adequately

modeled by an affine transform. In Section 5, we will use synthetic data and Monte Carlo simulations to

verify that, for typical camera configurations, modeling the deformation as an affine one is, in general, an

excellent approximation. Furthermore, the closer the approximate value of the focal length to its true value,

the closer that affine transform is to being a simple rotation, translation and scaling. In other words, the fact

that our results are precise up to an affine transform that does not deform the face severely is no accident and

does not depend on the specific geometry of the sequences used here. We will also argue that the relatively

poor quality of the matches that can be obtained on a face cause imprecisions in motion recovery that are at

least as severe as those produced by the use of approximate intrinsic camera parameters. Therefore, there

is no compelling reason to use a more sophisticated approach to camera model recovery—for example, one

that can also recover the internal camera parameters, as long as the precision of the point matches cannot be

drastically improved.

3.1 Initialization

One well known limitation of bundle-adjustment algorithms is the fact that, in order to ensure convergence,

one must provide initial values for both camera positions and the x, y, and z coordinates, which should not

be too far from their true values.

To initialize the process for a video sequence such as the ones depicted by Figure 1, we manually supply

the approximate 2–D location of five feature points in one reference image: nose tip, outer corners of the

eyes and outer mouth corners, as shown in Figure 5(a). Note that we supply 2–D locations in one image

only, which is very easy, as opposed to trying to manually register the points, which would require much

more work if one wanted to do so with any degree of accuracy.

We usually choose as our reference image one in which the subject faces the camera and we take this

image to be image number one. The system then automatically finds the position and orientation of the

central camera that brings the keypoints’ projections as close as possible to those positions.

This guarantees that points on the 3–D face model roughly project on the imaged face. We then estimate

the positions and orientations for the two images on either side of the central image, as described in the

following section.

3.2 Bundle-Adjustment using Approximate Internal Parameters

To estimate the positions and orientations for the two images on either side of the central image, we begin by

retriangulating the surface of the generic face model of Figure 3(a,b) to produce the regular mesh depicted

7



(a) (b) (c) (d)

Figure 5: Tie points: (a) The five manually supplied keypoints used to compute the orientation of the first camera.

(b) The projections of the vertices of the bundle-adjustment triangulation of Figure 3. (c) into the central

image of Figure 1(a). (c,d) Matching points in the images immediately following and immediately

preceding the central image of Figure 1(a) in the sequence. These correspondences have been computed

using a simple correlation algorithm and take visibility constraints for the central image into account.

by Figure 3(c,d) that we call the bundle-adjustment triangulation. As shown in Figure 5(b), our initial

orientation choice guarantees that the bundle-adjustment triangulation’s vertices projections roughly fall on

the face. We match these projections into the other images using a simple correlation-based algorithm [Fua,

1993]. Figure 5(c,d) depicts the results. For each of these tie points, we write two observation equations:

Prj
u(xi, yi, zi) = uj

i + ǫ
u

j

i

(1)

Prj
v(xi, yi, zi) = vj

i + ǫ
v

j

i

where (uj
i ,vj

i ) is the expected projection of point i in image j, that is, one of the white dots in Figure 5(b,c,d);

Prj
u(x, y, z) and Prj

v(x, y, z) denote the two image coordinates of the actual projection of point (xi, yi, zi)

in image j using the current estimate of the camera models; and, ǫ
u

j

i

, ǫ
v

j

i

the projection errors to be mini-

mized. For each j, Prj
u and Prj

v depend on the six external parameters that define the camera position and

orientation.

Given n tie points that project in the three images, the position parameters can be recovered by mini-

mizing the observation errors in the least square sense, that is by minimizing the objective function E :

E =
∑

1≤i≤n

wiei (2)

ei =
∑

1≤j≤3

δ
j

i ((Prj
u(xi, yi, zi) − u

j

i )
2 + (Prj

v(xi, yi, zi) − v
j

i )
2)) ,

with respect to six external parameters of each camera and of the x, y and z coordinates. δ j
i is either zero

or one depending on whether the tie point i is visible in image j or not. wi is a weight associated to point

i. It is initially taken to be 1 for all points and is then adjusted as discussed below. The solution can only

be found up to a global rotation, translation and scaling. To remove this ambiguity, we fix the position of

the first camera and one additional parameter such as the distance of one vertex in the triangulation. The

unknown parameters therefore are the 12 external parameters of the second and third camera and the n x, y
and z coordinates.
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In practice, we represent the camera models for all the cameras as 3x4 projection matrices. The algo-

rithm goes through the following steps:

1. Generate an initial 3x4 projection matrix for the first camera with the principal point in the center of

the image.

Prj =

∣

∣

∣

∣

∣

∣

∣

f’ 0 xdim/2 0

0 f’ ydim/2 0

0 0 1 0

∣

∣

∣

∣

∣

∣

∣

, (3)

where xdim, ydim are the image dimensions and f ′ is an approximation of the true camera constant,

i.e. focal length times a scale factor, f , expressed here in pixels per millimeter.

2. Compute a 4x4 rotation-translation matrix M such that the five keypoints of Figure 5(a) once multi-

plied by this matrix project as close as possible to the hand-picked locations in the central image. The

3x4 matrix that represents the camera model for the first image is then be taken to be Tr = Prj ∗M ,

ensuring that the five keypoints project in the vicinity of the five hand-picked locations. As a conse-

quence, all the other vertices of the bundle-adjustment triangulation also project on the face, as shown

in Figure 5(b). These projections are taken to be the u1

i , v
1

i of Equation 2. We then match the points

that are expected to be visible in the two images that immediately precede and succeed the central

image in the video sequence. We use a simple correlation-based algorithm [Fua, 1993] to obtain the

(uj
i , v

j
i )2≤j≤3 of Equation 2. Figure 5(c,d) depicts the results. Note that not all the points are matched

and that there is a number of erroneous matches.

3. Take the initial positions of the other cameras to be equal to that of the first.

4. Given these initial values, use the Levenberg-Marquardt algorithm [Press et al., 1986] to minimize

the objective function E of Equation 2 with respect to the camera positions and the tie points’ 3–D

coordinates.

This yields the camera models for the two images on either side of the central image and an estimate

of the bundle-adjustment triangulation’s shape. To compute the following camera positions, the image im-

mediately succeeding the central image becomes the new central image. We project the bundle-adjustment

triangulation’s vertices into it, compute the matching points in the image that follows in the sequence and

rerun the bundle-adjustment algorithm to compute the position of the corresponding camera. We then iter-

ate until the end of the sequence. We proceed similarly for the images that precede the central image in the

sequence.

3.3 Robust Bundle-Adjustment

The procedure outlined above is generic bundle-adjustment [Gruen and Beyer, 1992], with fixed intrinsic

parameters. If the correspondences were perfect, this would be sufficient to retrieve the motion parameters.

However the point correspondences can be expected to be noisy and to include mismatches. To increase the

robustness of our algorithm, we augment the standard procedure in two ways:
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1. Iterative reweighted least squares. Because some of the point matches may be spurious, we use a
variant of the Iterative Reweighted Least Squares [Beaton and Turkey, 1974] technique. We first run the
bundle adjustment algorithm with all the weights wi of Equation 2 set equal to 1. We then recompute these
weights so that they are inversely proportional to the final residual errors. We minimize our criterion again
using these new weights and iterate the whole process until the weights stabilize. This typically takes three
iterations. More specifically, for each tie point, we compute the average residual error ǫi:

∑

j δ
j

i (Prj
u(xi, yi, zi) − u

j

i )
2 + (Prj

v(xi, yi, zi) − v
j

i )
2

∑

j δ
j

i

.

We then take wi to be exp(−ǫi

ǫi
), where ǫi is the median value of the ǫi for 1 ≤ i ≤ n. In effect, we use ǫi as

an estimate of the noise variance and we discount the influence of points that are more than a few standard

deviations away.

2. Regularization. The tie points are the vertices of our bundle-adjustment triangulation and represent a

surface that is known to be smooth. We prevent excessive deformation by adding a regularization term ED

to the objective function E of Equation 2.

To compute this term, we first rewrite our observation equations as:

Prj
u(xi + dxi, yi + dyi, zi + dzi) = uj

i (4)

Prj
v(xi + dxi, yi + dyi, zi + dzi) = vj

i

where xi, yi, zi are the vertex coordinates that are now fixed and dxi, dyi, dzi are displacements that become

the actual optimization variables.

If the surface were continuous, we could take ED to be the sum of the square of derivatives of the dxi,

dyi and dzi across the surface. We approximate this by treating the bundle-adjustment triangulation’s facets

as C0 finite elements and evaluating ED as follows. We introduce a stiffness matrix K such that

ED = 1/2(dXtKdX + dY tKdY + dZtKdZ) (5)

approximates [Zienkiewicz, 1989] the sum of the square of the derivatives of displacements across the

triangulated surface when dX, dY , and dZ are the vectors of the dxi, dyi and dzi. In other words, ED is the

discretization of

∫∫

[

(

∂dX(u, v)

∂u

)2

+

(

∂dY (u, v)

∂v

)2

+

(

∂dZ(u, v)

∂v

)2
]

du dv .

We can now enforce smoothness by minimizing the regularized objective function ET :

ET = λED +
∑

i

wiei (6)

ei =
∑

j

δj
i ((Prj

u(xi + dxi, yi + dyi, zi + dzi) − uj
i )

2

+ (Prj
v(xi + dxi, yi + dyi, zi + dzi) − vj

i )
2) ,

where λ is a smoothing coefficient. As will be shown below, the result is not very sensitive to the exact

choice of λ and we take it to be 1.0 by default.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Comparison with laser scanner data: (a) Profile view of the bundle-adjustment triangulation of Fig-

ure 3(c,d) before adjustment. (b,c) Frontal and profile view of the bundle-adjustment triangulation after

bundle adjustment but before stereo reconstruction. (d) Laser scanner output. (e) Bundle-adjustment

triangulation of (b,c), affine transformed to be as close as possible, in the least-squares sense, to (d), the

scanner’s output. The deformation with respect to (b,c) is mild and close to being a simple scaling along

the coordinate axes. (f) Recovered relative camera positions for the whole sequence.

In Section 5 we will use synthetic data to show that this “regularized bundle-adjustment” works well in

the presence of both significant tie points coordinates imprecision and of rates of mismatches of up to 30

%, whereas the standard implementation of bundle-adjustment breaks down completely. In the case of the

image triplet of Figure 5, our procedure yields the bundle-adjustment triangulation depicted by Figure 6(b,c).

To quantify our result’s quality, we have used a Minoltatm laser scanner to acquire the model of the same

head shown in Figure 6(d). The theoretical precision of the laser is approximately 0.3 millimeters and it can

therefore be considered as a reasonable approximation of ground truth. Of course, in practice, even the laser

exhibits a few artifacts. However, since the two reconstruction methods are completely independent of one

another, places of agreement are very likely to be correct for both.

To show that the deformation induced by our arbitrary choice of internal camera parameters is indeed

close to being as an affine transformation, we have computed the affine transform A that brings the bundle-

adjustment triangulation closest to the laser-scanner model. As shown in Figure 6(e), the deformation

introduced by the affine transform is relatively mild. In fact, it can be closely approximated by a scaling

along each of the coordinate axes. Note, however, that the resulting mask still does not seem very realistic:

This is to be expected since we only gather information at the vertices of the bundle-adjustment triangulation

and nowhere else. It is for this reason that the further fitting step of Section 4 is required to exploit all the
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available stereo data.
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(a) (b) (c) (d)

Figure 7: Quantitative evaluation of the bundle-adjustment algorithm. (a) For the subject of Figure 1(a), pro-

portion of the 3–D points in the laser output that are within a given distance of the bundle-adjustment

triangulation, after it has been deformed using an affine transform. We show three almost superposed

curves corresponding to three different values of the regularization parameter λ. The fourth curve de-

picts the equivalent result obtained by fixing the 3–D location of the bundle-adjustment triangulation’s

vertices. (b) Graphic depiction of the distances. The surface of the laser output is intensity-coded so

that the white areas are those that are furthest away from the bundle-adjustment triangulation. White

corresponds to an error greater than 5 millimeters. (c,d) Same thing for the subject of Figure 1(b)

For a more quantitative estimate, we plot the proportion of 3–D points in the laser output that are within

a given distance of the deformed bundle-adjustment triangulation. We have performed this computation

for three different values—0.5, 1.0, and 2.0—of the regularization parameter λ. The resulting plot appears

in Figure 7(a). We have also repeated this entire procedure for the subject of Figure 1(b), resulting in the

graphs of Figure 7(c). Note that:

1. For both faces, the three curves are essentially superposed, indicating the relative insensitivity of the

bundle-adjustment procedure to the value of λ. The corresponding median reprojection errors are in

the order of 0.25 pixels, which guarantees a good and consistent epipolar geometry.

2. The median distance in all cases is approximately 1 millimeter which, given the camera geometry,

corresponds to a shift in disparity of less than 1/5 a pixel. These distances for λ = 1.0 appear in the

first column of Table 1. The precision of the correlation based algorithm we use is in the order of half

a pixel, outliers excluded [Fua, 1993]. We therefore conclude that our bundle adjustment algorithm

performs an effective and robust averaging of the input data.

3. However, if λ becomes too large, the bundle-adjustment triangulation becomes rigid. Its shape cannot

adapt to match that of the face; the reprojection errors of Equation 2 become too big to guarantee a

satisfactory epipolar geometry. To illustrate this point, in each graph, we have plotted a fourth curve

that corresponds to the result obtained by fixing the bundle-adjustment triangulation’s shape instead of

allowing it to deform. The reprojection errors grow much larger (> 1 pixel) and the resulting epipolar

geometry stops being good enough for high quality Euclidean reconstruction.

To estimate numerically the severity of the shape deformation provoked by our procedure we proceed as

follows: Given the the affine transform A represented by a 4 × 4 matrix, we perform a singular value

decomposition of its rotational component. This yields U tDV where U and V are 3 × 3 rotation matrices

and D is a 3× 3 diagonal matrix. If A were a pure rotation, translation and scaling, all the eigenvalues of D
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f ′ = 4200
Median dist. after

Bundle-Adjust.

Deformation after

Bundle-Adjust.

Median dist. after

Model Fitting

Deformation after

Model Fitting

Head of Fig. 1(a) 0.90 mm 1.19 0.83 mm 1.13

Head of Fig. 1(b) 1.10 mm 1.09 0.92 mm 1.14

Table 1: Metric comparison against the scanner’s output. (Column 2) Median distance of the bundle-adjustment

triangulation’s vertices to the scanned surface after affine transformation. (Column 3) Measure of the

deformation produced by this affine transformation. (Column 4,5) Equivalent measures for the final

surface-triangulation.

would be equal to the scaling factor. Thus, we take the ratio of D’s maximum to minimum eigenvalue to be

a measure of how much A deforms the shape. The results are shown in the second column of Table 1.

In the examples shown here, we have systematically taken the approximate focal length of Equation 3

to be f ′ = 4200. Figure 8 shows the effect of changing the value of f ′. Using the images of Figure 5, we

performed the same computation for values of f ′ ranging from 3500 to 5000. We plot here
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Figure 8: Changing the value of f ′ in the bundle-adjustment procedure. AFF, DEF, and PRJ, are described at

the end of Section 3.3. They are shown here as functions of f ′ in (a),(b), and (c), respectively.

AFF : the median distance in mm of the scanner output vertices to the affine transformed triangulation;

DEF : the severity of the shape deformation, measured as described above;

PRJ : the reprojection error in pixel, that is, the median distance of the bundle-adjustment triangulation

vertices’s projections to the expected values, such as the white dots’ location in Figure 5.

For verification purposes, we have calibrated—without using the calibration data in any of our computations—

the camera used to acquire the sequences of Figure 5 using the INRIA CamCal package[Tarel and Vezien,

1996]. It yields a value of f approximately equal to 4000. It is only approximate because, CamCal, in

effect, can also trade changes in the value of f against changes of the estimated distance of the camera to

the calibration grid it uses.

In any event, the curves that appear in Figure 8 are relatively flat in the vicinity of f = 4000 and the

corresponding values of AFF, DEF, and PRJ, are entirely consistent with those found by running Monte

Carlo simulations, as will be seen in Section 5.

By repeating this computation over all overlapping triplets of images in the video sequences we can

compute all the camera positions depicted by Figure 6(f). To ensure shape consistency across the sequence,

given a new triplet, we fix the camera positions for the two images that belong to a previous triplet and

allow only the third one to move. In effect, for each new image, we compute the camera position only once
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and, then, fix it. In theory, once all the images have been registered, we could rerun our bundle adjustment

procedure using all images simultaneously but we have not found this to be necessary in practice.

4 Refined Head Models

(a)

(b)

Figure 9: Fitting the complete animation mask. (a) For the subject of Figure 1(a): The manually supplied 2–D

features points; shaded view of the complete head model; the cylindrical texture map; and, textured

model. (b) For the subject of Figure 1(b), the manually supplied 2–D features points; two shaded and

two textured views of the head model.

Given the camera models computed above, we can now recover additional information about the sur-

face. We use a simple correlation-based algorithm [Fua, 1993] to compute a disparity map for each pair of

consecutive images in the video sequences. We then turn each valid disparity value into a 3–D point and

fit our animation mask to these 3–D points by minimizing an objective function. This approach is depicted

by Figure 4(a) and summarized in the appendix. For additional details, we refer the interested reader to our

earlier publications [Fua and Miccio, 1998, Fua and Miccio, 1999]. Alternatively, we could have used an

appearance-based technique [Kang, 1997, Blanz and Vetter, 1999] that optimizes shape and camera position

simultaneously. Because such approaches perform a gradient-style minimization, a good starting point such

as the one our algorithm provides would almost certainly be helpful.

Figure 9 depicts the final models for the two video sequences we have used so far. To ensure that some

of the key elements of the face—corners of the eyes, mouth and hairline—project at the right places, we

have manually supplied the location of the projection in one image of a few feature points such as the ones

shown in the first column of Figure 9: Our objective function incorporates a term that forces the projection

of the generic mask’s corresponding vertices to be close to them [Fua and Miccio, 1998, Fua and Miccio,

1999]. Note that the five manually supplied points used to initialize the bundle-adjustment procedure of

Section 3.1, shown as disks, form a subset of these feature points. In practice, we supply all these points

initially and then let the system run automatically. To produce these face models, the manual intervention

14



0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

p
o
rt

io
n
 o

f 
p
o
in

ts
 w

it
h
in

 d
is

ta
n
ce

Distance in mm

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

p
o
rt

io
n
 o

f 
p
o
in

ts
 w

it
h
in

 d
is

ta
n
ce

Distance in mm

(a) (b) (c)

Figure 10: Quantitative and qualitative evaluation of the reconstructions’ quality for both subjects of Figure 1. (a)

Proportion of 3–D laser points that are within a given distance of the affine-transformed face surface.

In both graphs, the solid line corresponds to the final head model and the dotted one to the bundle-

adjustment triangulation for λ = 1.0. (b) Profile images of both subjects that has not been used to

perform the computation. (c) The corresponding face model shown in a similar pose.

required therefore reduces to supplying these few points by clicking on their approximate locations in one,

and only one, image, which can be done quickly.

Because stereo tends to fail in the hair regions, the shape of the top of the head has been recovered

by semi-automatically delineating in each image of the video sequence the boundary between the hair and

the background and treating it as a silhouette that constrains the shape [Fua and Miccio, 1998]. Given the

final head model, the algorithm creates a cylindrical texture map, such as the one shown in the first row of

Figure 9.

In Figure 10(a), we use again the Minoltatm laser scanner output to evaluate the reconstruction’s quality.

As in Section 3.3, we compute the affine transform that best maps the reconstructed face onto the laser

output and plot the proportion of 3–D laser points that are within a given distance of the deformed face

surface. In both cases, the corresponding curves appears as a solid black line. For comparison’s sake, we

also plot as a dotted line the corresponding distribution for the bundle-adjustment triangulation in the case

λ = 1.0. As expected, using additional stereo data has brought an improvement as evidenced by the fact

that the solid curve is above the dotted one. In the third column of table 1 we indicate the corresponding

median values of the distances.

To evaluate these results qualitatively, in Figure 10, we show two side views of the heads that have

not been used to perform the computation and show the reconstructed models seen in a similar pose. Note

that the face outlines corresponds quite accurately except where stereo can be expected to fail because the

surface slopes away from the camera: Bottom of the nose and of the chin.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11: A man with a mustache. (a,b,c) Three color images of a sequence of seven. (d) A profile view that

was not used during the computation. (e) Shaded view of the reconstructed model. The points on the

mustache are treated as outliers and ignored. (f,g,h) Texture-mapped views of the head model. In this

and following figures, the eye texture comes from a standard library and could be improved by using the

actual images of the character’s eyes.

In Figures 11 and 12 we show additional models reconstructed from images acquired with a different

camera, a color one, but using the same parameters for our algorithm. All these models can be animated

to produce synthetic expressions such as the ones shown in the first two rows of Figure 12. These video

sequences and 3–D models are available on our website ligwww.epfl.ch/f̃ua/faces/.

To check the applicability of our technique to reconstructing famous actors from old movies, we scanned

a number of scenes from “Key Largo” with H. Bogart and L. Bacall and “Queen Christine” with G. Garbo.

Obviously, most of the shots cannot be used directly by the technique described in this paper because actors

talk or change their facial expressions. However, all we need is a short clip, about one second, in which the

actor turns his head without speaking. In both cases, we were able to find and process such clips to generate

models. Unfortunately, we cannot show these results because the movie companies have not granted us a

license to use the images for publication purposes. Nevertheless, an interesting extension of this work would

be to use these 3–D animation models to track face’s deformation as actors express their emotions and, thus,

learn the animation parameters that could be used to synthesize personalized expressions.

In future work, we plan to extend this technique to whole body modeling, as illustrated by Figure 13

and 14. We found these stereo pairs on the web. We manually, and very roughly, aligned a generic female

torso model with the first image of each one. We then used this model as both our bundle-adjustment

triangulation and our surface triangulation: We projected its vertices onto these first images, computed

matches in the second and used our regularized bundle-adjustment technique to compute the relative position

of the camera. We then used this information to rectify the images, compute a disparity map, generate 3–D

points and deform the generic model. In the absence of ground truth, it is difficult to judge the quality of
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(a)

(b)

(c)

(d)

Figure 12: Reconstruction and animation. (a) Central image of a sequence, two texture-mapped views of the cor-

responding head model; and two synthetic expressions, opening of the mouth and closing of the eyes.

(b) Central image of another sequence; three views of the corresponding head model; and a synthetic

smile.(c,d) Reconstructed models for two additional people

the result but the shape appears to be reasonable and, once texture-mapped, would look realistic. This is

very encouraging given the fact that, on these image pairs, Zhang’s algorithm [Zhang et al., 1995] extracts

very few matches and puts the epipoles within the images, which is clearly not realistic. To extend this to

full body modeling from video sequences, we intend to use an articulated body model [Boulic et al., 1995,

Thalmann et al., 1996]. To account for the fact that the person can move, we will treat the joint angles as

variables in the regularized bundle-adjustment minimization.

5 Validity of our Deformation Model

There are two main sources of errors in our reconstruction procedure:

1. We use approximate internal parameters for the cameras.

2. The point matches we use as input to our bundle-adjustment procedure can be imprecise or even

wrong.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13: Body Modeling. (a,b) A stereo pair found on the world wide web. The diagonal black bands have been

added after the fact so that these images can be published. (c) Generic female torso. (d) Projection of the

generic torso’s vertices after rough alignment. Note that the alignment is far from perfect. (e) Matching

points in the second image. Because the skin is fairly smooth, there are relatively few of them. (f,g)

Recovered epipolar geometry. The lines in (g) are the epipolar lines that correspond to the crosses in (f).

(h) Generic torso deformed to match the stereo data.

(a) (b) (c) (d) (e)

Figure 14: Body Modeling. (a,b) Another stereo pair found on the world wide web. (c,d) Recovered epipolar

geometry. (e) Generic torso deformed to match the stereo data.

As discussed in Section 3 and 4, we model the overall deformation due to these error sources as an affine

transform. Here, we use synthetic data and Monte Carlo simulations to show that:

1. For typical camera configurations, the deformation produced by using approximate camera parameters

is indeed very close to being an affine transform even when there is a substantial amount of rotation

between the cameras. This deformation is not severe as long as the approximate focal length is

“reasonably” close to the actual one. Below, we will argue that for typical camera configurations,

focal length estimates that are between 80 % and 120 % of the truth are amply sufficient.

2. The poor quality of the matches introduces another deformation that can also be modeled as an affine
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transform. It does not substantially deform the shape if a sufficient regularization constraint is intro-

duced.

This justifies our use of a fixed focal length and of an affine transform to model the overall deformation of

our reconstructed models with respect to reality. Because the two error sources described above produce de-

formations of approximately the same magnitude, there is little point in using a more sophisticated approach

to camera model recovery when much more accurate point matches cannot be obtained. The focal length

cannot be reliably recovered from such data. Under our fixed focal length assumption, a small change in

focal length during image acquisition would be modeled as a translation of the camera away or towards the

subject without much loss of accuracy.

5.1 Influence of the Internal Parameters

To gauge the effect of using approximate internal parameters as opposed to exact ones, we used a random

number generator to produce sets of 3–D points, such as the one shown in Figure 15(a). For each such set

M , we

1. Define a camera model C0 with focal length f , located at distance z from M ;

2. Define two additional camera models, C1 and C2 that correspond to the same camera, and focal

length, after randomly chosen rotation and translation;

3. Generate the projections of the points in M using C0, C1 and C2 to produce the 2–D points m0, m1,

and m2;

4. Run the bundle-adjustment algorithm of Section 3 using m0, m1, and m2 and an approximate focal

length f ′ as input. This results in the reconstruction of M ′, a set of 3–D points, with M ′ = M when

f ′ = f ;

5. Compute the affine transform A that best maps M ′ onto M in the least squares sense and let A.M ′ be

the points in M ′ transformed by A.

More specifically, in our experiments, M is formed by randomly distributed 3–D points in a 20×20×10cm
volume, which approximates a face’s dimensions. C0, the first camera, is located at a distance z of either

50cm or 100cm from M . The motion of C1 and C2 with respect to C0 is defined by random translation and

rotation vectors that are scaled so that ||t||, the translation vector’s norm, is either 5cm or 10cm and ||r||,
the rotation vector’s norm, is either 0.1, 0.2 or 0.3 radians.

All three cameras have the same focal length f = 1mm and their principal points are taken to be the

origin of the image planes’ coordinate systems. Note that the chosen value of f is arbitrary. Changing it

only produces an overall scaling of the projection values. What is significant is f ′/f , the ratio of the focal

length used to run the bundle adjustment algorithm to the real one.

We then ran our bundle-adjustment algorithm, using values of f ′ ranging from 0.5mm to 2.0mm and

shifting the principal points by values of up to 0.03mm. For each set of points M , corresponding recon-

struction M ′ and affine transform A, as in Section 3.3, we evaluate
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Figure 15: Synthetic data used to quantify the influence of using approximate internal parameters. (a) 3–D points

uniformly distributed in a bounding box and three synthetic cameras. (b) The camera configuration is

defined by Z , the distance of the first camera to the 3–D points, and by the rotation and translation

vectors R and T that define the motion of the other two cameras with respect to the first.

AFF Validity of the affine approximation: The mean square distance of A.M ′, the reconstructed points

after affine transformation, to M . In the graphs below it is shown in a range from 0 to 10mm. The

closer to zero AFF is, the better the affine approximation.

DEF The severity of the deformation: We use the measure proposed in Section 3.3. We perform a singu-

lar value decomposition of A and compute the ratio of the largest to the smallest eigenvalue of the

resulting diagonal matrix.

PRJ The reprojection error: The mean square distance of the projections of the reconstructed points to

the actual values. In the graphs below, it is expressed in millimeters in a range from 0 to 0.002mm.

For cameras such as the ones we have used to acquire the images shown in Section 3, to convert the

projection values expressed in mm to pixel values, one ought to multiply these values by a factor in

the order of 4000 to 5000. In other words, this range corresponds to reprojection errors between 0 and

approximately 8 to 10 pixels.

In Figure 16, we show the values of AFF, DEF and PRJ as a function of the ratio f ′/f . Each row

corresponds to a particular camera setup with z ∈ {50cm, 100cm} and ||t|| ∈ {5cm, 10cm}. If there were

no rotation between the cameras, that is if ||r|| = 0, the affine approximation would be perfect [Luong and

Viéville, 1996], up to the numerical accuracy of our least-squares solver. Bearing this in mind, in each case,

we plot three separate curves, for ||r|| = 0.1, ||r|| = 0.2 and ||r|| = 0.3.

For each configuration, we performed one hundred trials. The curves depict the mean values of AFF,

DEF and PRJ and the error bars represent variances. The further away the cameras are, that is the greater

z, the lesser the perspective distortion and the better the affine approximation as measured by AFF is. This

is not surprising since a large z corresponds to a situation where the camera can almost be considered as

an orthographic one and, therefore, where the affine model is strictly correct. Similarly the smaller the

rotation component ||r||, the better the approximation. Note however that even for the “worst case scenario”

plotted here—that is, ||r|| = 0.3rad, ||z|| = 50cm, and ||t|| = 5cm—AFF remains below 1mm for

0.9 < f ′/f < 1.1 and below 2mm for 0.8 < f ′/f < 1.2. In other words, for typical face sequences with a

camera that does not come too close to the head, the affine approximation is an excellent one.
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The PRJ curves that depict the reprojection errors have the same overall shape as the AFF curves. For

our worst case scenario, the reprojection errors remain below 0.00025mm for 0.8 < f ′/f < 1.2. For real

cameras such as the ones used in this paper, this corresponds to errors smaller than 1 pixel. In other words,

as long as the bundle adjustment algorithm produces residuals that are smaller than 1 pixel on average, the

affine approximation can be considered as valid. This naturally leads to a very simple heuristic to guess a

usable value of f ′ if none is available: Perform the bundle adjustment computation for several values of f ′

until one is found that yields sufficiently small residuals.

The previous results were computed without shifting the cameras’ principal points. In Figure 17, we

show three sets of AFF, DEF and PRJ curves computed in our worst case scenario and for
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Figure 16: Using an approximate focal length for different camera configurations. AFF appears in the first column

as a function of the ratio of the focal length used to perform the bundle adjustment to the real one.

Similarly DEF and PRJ are shown in the second and third columns. See Section 5.1 for details.
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shifts of the principal points of 0, 0.01mm, 0.02mm, and 0.03mm. For real cameras such as the ones used

in this paper, this corresponds to shifts of approximately 0, 50, 100 and 150 pixels. This shift has very little

influence and all four curves are almost superposed in all three graphs. Therefore, in practice, we can safely

assume that the principal point is in the center of the image.
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Figure 17: Using an approximate focal length and shifting the principal points. AFF, DEF and PRJ are depicted

as in Figure 16 for z: 50cm ||t||: 5cm ||r|| : 0.3rad and increasing shifts of the assumed location of the

principal point.

5.2 Influence of Mismatches

The point matches we use as input to our bundle-adjustment cannot be expected to be either precise or error-

free. To quantify the effectiveness of our regularized bundle-adjustment algorithm, we use the synthetic

surface triangulation of Figure 18(a) and the corresponding pyramid shaped bundle-adjustment triangula-

tion of Figure 18(b). The flat part of the surface triangulation is the plane of equation z = 0 and the spherical

part has a radius of 35mm. Again we use three synthetic cameras located at a distance of about 60cm with

motions with respect to one another that include a rotational component of approximately 0.3rad. In other

words, this configuration approximates the “worst case scenario” of Section 5.1.

Given these camera models, we use as input to our algorithm the projections of points that have the same

x, y coordinates as the bundle-adjustment triangulation’s vertices but belong to the surface triangulation. To

simulate the errors that can be expected from our stereo matcher, we corrupt these projections by adding

two kinds of noise:

1. White noise with variance σnoise ∈ {0.5pixel, 1.0pixel}. This simulates the imprecision of the

matches. Given the specific camera geometry used here, a disparity error of 1.0 pixel translates to

an error of 3 to 6 mm in terms of reconstruction accuracy. This represents 10 to 20 % of the 35 mm

radius of the sphere, and is therefore a significant amount of noise.

2. Outliers whose coordinates are random. These outliers replace some of the actual projections to

simulate mismatches. In the plots below, we introduce a proportion rateout ∈ {0%, 10%, 20%, 30%}
of such gross errors.

Given these randomized projections, we ran our algorithm for values of the λ regularization parameter

ranging from 0.0 to 1.0. The algorithm’s aim is to recover camera models that are good enough to perform

the stereo reconstruction of Section 4. To gauge this, we have adopted the following procedure: For each
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Figure 18: Synthetic data used to quantify the influence of mismatches and the robustness of our approach. (a)

Half sphere used as the surface triangulation and synthetic cameras. (b) Corresponding pyramid shaped

bundle-adjustment triangulation.(c,d,e) Shaded representations of the surface triangulation’s projections

in the three cameras.

trial run, we use the real projections of the vertices of the surface triangulation and the recovered camera

models to compute two sets of 3–D points, a first one M12 using camera 1 and 2, and the second one M13

using camera 1 and 3. We evaluate:

DST The average distance between corresponding points in M12 and M13: If the camera models were

perfect, both these sets of reconstructed points should have the same 3–D location as the original 3–D

vertices and DST would be zero. In the graphs below it is shown in a range from 0 to 4mm, which

correspond to reprojection errors in the order of one pixel or less.

AFF The affine nature of the deformation: Our reconstruction procedure fits a surface to the stereo data.

This fitting operation averages the data. To simulate this behavior and the bias introduced by our

regularization term, we take M123 to be the midpoint of corresponding points in M12 and M13 and

compute the affine transform A that best maps M123 onto the original 3–D vertices. In the graphs

below, we plot the mean square distance between A.M123, the points in M123 transformed by A, and

those original vertices. Small values of AFF indicate that the bias introduced by our regularization is

well modeled by an affine transform.

DEF The severity of the deformation: We use the same measure as before.

Figure 19 depicts the mean values of DST, AFF and DEF as a function of λ after a hundred trials for each

value of σnoise and rateout. The variances appear as error bars.
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Figure 19: Influence of mismatches. DST, AFF, and DEF are represented in the first, second and third column

respectively. Each row corresponds to one value of the noise. In all graphs, each curve corresponds to a

different value of rateout. See Section 5.2 for details.

In all graphs, we plot four curves, one for each value of rateout. The lowest curve corresponds to

rateout = 0. In this specific case, the reconstruction errors are caused exclusively by the white noise

added to the projections. The resulting deformation is well modeled by an affine transform that is almost a

rotation as evidenced by the fact that DEF is close to 1.0. DST is approximately 1.0mm, which translates

to reprojection errors in the order of 0.2 pixels. Note that, in this specific case, DEF increases slightly

when λ is non zero, indicating the bias introduced by the regularization. In all other cases, that is for

0 ≤ rateout ≤ 20%, the exact opposite happens: DST, AFF and DEF decrease towards values that are not

significantly larger than the ones computed for rateout = 0. For rateout = 30%, DST starts to increase

significantly but the averaging operation we perform results in values of AFF and DEF that remain low,

at least when λ is large enough. In other words, a small amount of regularization, that is λ = 0.2 deals

effectively with outliers rate of up to 20%. The use of a larger regularization term mitigates the impact of

even higher rates, at the possible cost of a small amount of affine deformation in the resulting shape.

Obviously, the exact shape of these curves is heavily influenced by the closeness of the initial bundle-

adjustment triangulation’s shape to the actual one. Our experiments with numerous real sequences of heads

shows that the bundle adjustment triangulation of Figure 3(c,d) is close enough, after stretching in all three

directions to accommodate variations in proportions, to yield excellent results. The values of DEF that

appear in table 1 are consistent with those reported in this section.
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6 Conclusion

We have shown that by incorporating model-based constraints in the framework of bundle-adjustment, we

are able to effectively tackle the structure-from-motion problem in a case where correspondences are difficult

to establish.

As a result, we have been able to develop an integrated and largely automated approach to fitting a

complete head model to images without requiring calibration data and with very limited manual intervention.

Using this technique, such models can be produced cheaply and fast using an entirely passive sensor, even

though the images we use may have relatively little texture. This has direct applications in the field of

video communication and entertainment and will allow the fast generation of realistic avatars from widely

available data.

Using, on the one hand, synthetic data and, on the other hand, images and laser scans of the same

people, we have shown empirically that the models we create are very good approximations up to an affine

transform. We chose to demonstrate the complete approach for one specific application for which we can

perform the complete modeling task from images to usable models. However, because the constraints we

impose only depend on the existence of a generic shape model for the objects to be reconstructed, this

approach can potentially be generalized to many other deformable shapes. Specifically, we are interested in

modeling the complete body. In future work, we will use articulated models to extend our approach to this

new application field.

Appendix

In this appendix, we summarize briefly the technique we have used to fit the animation mask to the image

data [Fua and Miccio, 1998, Fua and Miccio, 1999]. Given a set of registered images, it is designed to fit a

facial animation model with minimal manual intervention. In the examples presented in this paper, the video

sequences were initially uncalibrated and registration has been achieved using the technique of Section 3.

However, calibrated stereo pairs or triplets can be used as well. The animation model [Kalra et al., 1992]

we use can produce the different facial expressions arising from speech and emotions. Our fitting procedure

takes the following steps:

• Obtain 3–D information: We compute disparity maps for each image pair, fit local surface patches

to the corresponding 3–D points, and use these patches to compute a central 3–D point and a normal

vector.

• Model the Face: We attach a coarse control mesh such as the one shown in Figure 3(e) to the face

of the animation model and perform a least squares adjustment of this control mesh, so that the model

matches the previously computed data. We weight the data points according to how close—in the

least squares sense—they are to the model and use an iterative reweighting technique to eliminate the

outliers. We then subdivide the control mesh and repeat the procedure to refine the result.

• Generate a texture map: We use the original images to compute a cylindrical texture map that

allows realistic rendering. This is achieved by first generating a cylindrical projection of the head

model and then, for each projected point, finding the images in which it is visible and averaging the

corresponding gray-levels.

The only manual intervention that is mandatory is supplying the location of the five key feature points

of Figure 5(a) in one single image. In order to ensure proper animation, it is important to guarantee that
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important features of the model—mouth and corners of the eyes especially—project at the correct locations

in the face. The system is therefore set up so that we have the option to supply a few additional 2–D feature

points such as the ones shown in the first column of Figure 9. Because only the 2-D location of these points

need to be specified, this can be done very quickly.
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