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Abstract—Common spatial pattern (CSP) is a popular algo-
rithm for classifying electroencephalogram (EEG) signals in the
context of brain-computer interfaces (BCIs). This paper presents
a regularization and aggregation technique for CSP in a small-
sample setting (SSS). Conventional CSP is based on a sample-
based covariance matrix estimation. Hence, its performance in
EEG classification deteriorates if the number of training samples
is small. To address this concern, a regularized CSP (R-CSP)
algorithm is proposed where the covariance matrix estimation is
regularized by two parameters to lower the estimation variance
while reducing the estimation bias. To tackle the problem of
regularization parameter determination, R-CSP with aggregation
(R-CSP-A) is further proposed where a number of R-CSPs are
aggregated to give an ensemble-based solution. The proposed
algorithm is evaluated on data set IVa of BCI Competition III
against four other competing algorithms. Experiments show that
R-CSP-A significantly outperforms the other methods in average
classification performance in three sets of experiments across
various testing scenarios, with particular superiority in SSS.

Index Terms—Brain-computer interface (BCI), common spa-
tial pattern (CSP), electroencephalogram (EEG), small sample,
regularization, aggregation, generic learning.

I. INTRODUCTION

Nowadays, electroencephalography (EEG) signal classifi-

cation is receiving increasing attention in the biomedical

engineering community [1]. EEG captures the electric field

generated by the central nervous system. Due to its simplicity,

inexpensiveness and high temporal resolution, it is widely used

in noninvasive brain computer interfaces (BCI) [2], [3], where

brain activity is translated into sequences of control commands

that enable a subject, such as a disable person, to communicate

to a device, such as a computer, without using the peripheral

nervous system [2]. In noninvasive EEG-based BCI, the study

of motor imagery is of particular interest. It is measurable as

potential changes in EEG signals, the event-related desynchro-

nization/synchronization (ERD/ERS) patterns. EEG has also

been an important tool in epilepsy diagnosis [4] for seizure

detection, classification and localization.

EEG records brain activities as multichannel time series

from multiple electrodes placed on the scalp of a subject.

However, recorded multichannel EEG signals typically have
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very low signal-to-noise ratio (SNR) [2] and they are not

directly usable in BCI applications. One of the most effective

algorithms for EEG signal classification is the common spatial

pattern (CSP) algorithm, which extracts spatial filters that

encode the most discriminative information [5]–[8]. CSP was

first introduced for binary classification of EEG trials in [5].

It is designed to find spatial projections that maximize the

power/variance ratios of the filtered signals for two classes.

Its calculation is through a simultaneous diagonalization of

the covariance matrices of two classes. Usually, only the first

few most discriminative filters are needed for classification.

This paper focuses on EEG signal classification in a small-

sample setting (SSS). There are two motivations for this

problem. On one hand, this SSS problem often arises in

practical EEG signal classification problem when there is only

a small training set with limited number of trials available. It

should be noted that although a large number of data points

can be sampled from a trial with a sufficiently high frequency,

these data points are highly dependent. Generally, they are not

representative enough for EEG signal classification and a large

number of trials are still preferred for reliable classification

performance. On the other hand, as the user usually has to

perform a tedious calibration measurement before starting the

BCI feedback applications, one important objective in BCI

research is to reduce the number of training trials needed (and

the time needed) for a specific task [9]. Since the conventional

CSP algorithm is based on sample-based covariance matrix

estimation, the accuracy of the estimation will be affected

significantly if there is only a small training set.

The problem due to SSS in classification is common in

many other applications. Regularization was first introduced

to tackle the small-sample problem for linear and quadratic

discriminant analysis in the regularized discriminant analysis

(RDA) [10]. It was pointed out in [10] that small number

of training samples tends to result in a biased estimation

of eigenvalues. On the other hand, sample-based covariance

estimates from these poorly-posed problems are usually highly

unreliable. Two regularization parameters were introduced

by Friedman [10] to account for these undesirable effects.

Recently, the regularization technique has been adopted to

tackle small-sample problems in various applications such as

face recognition [11]–[13] and gait recognition [14].

This paper studies the regularization of the CSP algorithm

in SSS. A regularized CSP (R-CSP) algorithm is proposed

to regularize the covariance matrix estimation in CSP extrac-
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tion. Two regularization parameters are adopted as in [10].

The first regularization parameter controls the shrinkage of

a subject-specific covariance matrix towards a more generic

covariance matrix to lower the estimation variance. This is

built upon the generic learning principle in [15]. The second

regularization parameter controls the shrinkage of the sample-

based covariance matrix estimation towards a scaled identity

matrix to account for the bias due to limited number of

samples. Furthermore, the problem of regularization parameter

determination needs to be addressed for R-CSP. However, in

SSS, the number of samples may not be large enough for

determining regularization parameters by the commonly used

cross validation method [10]. Thus, the aggregation strategy

introduced in [12] for tensor object recognition is adopted

for regularization parameter determination in EEG signal

classification through R-CSP, where a number of differently

regularized CSPs are combined to give an ensemble-based

solution. The experimental evaluation is performed on data set

IVa from BCI Competition III. The proposed algorithm out-

performs four other competing CSP-based algorithms across a

wide range of testing scenarios, with more advantage in SSS.

There are several other versions of regularized spatial filters

in the literature. The adaptive spatial filter in [16] replaced

the information used in training by a-priori information for

more robust performance by considering various artifacts in

EEG signals. Heuristic parameter selection was used in [16].

The invariant CSP in [17] incorporated neurophysiological

prior knowledge in covariance matrix estimation to alleviate

the nonstationarities in EEG signals and the regularization

parameter was determined by cross validation. A method of

logistic regression with dual spectral regularization (LRDS)

was introduced in [18] for EEG classification, where cross val-

idation was employed for parameter selection too. A composite

CSP was proposed in [8] to transfer information from other

subjects to a subject of interest with fewer training samples

in order to boost the performance in SSS. Ten values for the

regularization parameter are tested, with the average results

reported. Lately, the spatially regularized CSP (SRCSP) [19]

is proposed to include spatial a priori in the learning process

by penalizing spatially non-smooth filters with a regularization

term. Another recent work involves regularization for EEG

analysis is the regularized discriminative framework in [20].

The main contributions of this work are as follows.

1) The introduction of a R-CSP algorithm for EEG signal

classification, which was first reported in a preliminary

version in [21]. It should be noted that while there have

been several approaches proposing variations of CSP

through more robust covariance matrix estimation [2], [8],

[16]–[18], [22], none has considered the effects of small

training sample set on the eigenvalues of the covariance

matrices, as discussed above. Thus, this work comple-

ments existing works on CSP extensions by addressing

this important problem frequently arising in practice.

It also has a positive impact in data collection effort,

processing efficiency and memory/storage requirement

in applications involving EEG signal classification since

now much fewer training samples are needed for the same

level of performance.

2) The proposal of an aggregation solution for the prob-

lem of regularization parameter determination in R-CSP,

where the commonly-used cross validation scheme [17],

[18] may not be applicable in SSS. This solution adopts

the principles introduced in uncorrelated multilinear dis-

criminant analysis [12], [23] for tensor object recognition

to CSP extraction in EEG signal classification. This

is a significant further progress from the preliminary

publication in [21], where the regularization parameter

determination is not solved and only a feasibility study

was provided. In contrast, the composite CSP in [8]

did not address the problem of regularization parameter

determination.

3) A detailed study on EEG signal classification in SSS

that considers 2 to 120 trials per condition, including

extreme small number of trials (2 to 10) in contrast to

the recent literature [3] that considers 10 to 100 trials

per condition. This study consists of 1500 experiments

in total in order to study the statistical significance of

the obtained results. Another two sets of experiments

are carried out for performance evaluation against four

competing solutions. Based on the simulations, insightful

observations have been made regarding the proposed

algorithm. This is also a significant development from

the earlier publication [21].

The rest of this paper is organized as follows. Section II

presents the R-CSP algorithm for EEG signal classification. In

Section III, the problem of regularization parameter determina-

tion is discussed and an aggregation solution is formulated for

R-CSP. Section IV provides an experimental study of the EEG

signal classification problem in SSS and an evaluation of the

proposed algorithm. Finally, Section V draws the conclusions.

II. REGULARIZED CSP FOR EEG SIGNAL

CLASSIFICATION

This section presents the R-CSP algorithm for classification

of EEG signals. Regularized covariance matrix estimation is

used in R-CSP by employing the regularization technique

introduced in [10] and the generic learning principle in [15].

The EEG classification scheme of R-CSP follows that in the

conventional CSP algorithm [5].

A. Sample-based Covariance Matrix in CSP

In CSP-based EEG signal classification, a matrix E of size

N × T is used to represent a single N -channel EEG trial,

with T samples in each channel for a single trial. The sample

covariance matrix of a trial E is normalized with the total

variance as [5]

S =
EET

tr(EET )
, (1)

where the superscript ‘T ’ denotes the transpose of a matrix and

tr(·) denotes the trace of a matrix. This paper considers only

binary classification problems and the two classes are indexed

by c = {1, 2}. For simplicity, it is assumed that M trials are

available for training in each class for a subject of interest,

indexed by m as E(c,m), m = 1, 2, ...,M . Hence, each trial has
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a covariance matrix S(c,m) and the average spatial covariance

matrix is then calculated for each class as [5]

S̄c =
1

M

M
∑

m=1

S(c,m), c = {1, 2}. (2)

The discriminative spatial patterns in CSP are extracted based

on this sample-based covariance matrix estimation. When

there are only a small number of training trials, such an esti-

mation problem could be poorly posed [10] and the estimated

parameters could be highly unreliable, giving rise to high

variance. Moreover, the low SNR for EEG signals makes the

estimation variance even higher.

B. Regularized Covariance Matrix Estimation in SSS

Regularization technique has been proved to be effective in

tackling the small-sample problem. It works by biasing the

estimates away from their sample-based values towards more

“physically plausible” values [10], which reduces the variance

of the sample-based estimates while tending to increase bias.

This bias-variance trade-off is commonly controlled by one or

more regularization parameters [10].

As in [10], the proposed R-CSP calculates the regularized

average spatial covariance matrix for each class as

Σ̂c(β, γ) = (1− γ)Ω̂c(β) +
γ

N
tr[Ω̂c(β)] · I, (3)

where β and γ are two regularization parameters (0 ≤ β, γ ≤
1), and I is an N ×N identity matrix. Ω̂c(β) is comprised of

covariance matrices for the trials from the specific subject as

well as generic trials from other subjects. It is defined as:

Ω̂c(β) =
(1− β) · Sc + β · Ŝc

(1− β) ·M + β · M̂
, (4)

where Sc is the sum of the sample covariance matrices for all

M training trials in class c:

Sc =
M
∑

m=1

S(c,m), (5)

and Ŝc is the sum of the sample covariance matrices for M̂

generic training trials {E(c,m̂)} from other subjects in class c:

Ŝc =

M̂
∑

m̂=1

S(c,m̂). (6)

In these definitions, S(c,m) and S(c,m̂) are the normalized

sample covariance matrix defined in (1).

The term Ŝc introduced in (4) aims to reduce the variance in

the covariance matrix estimation, and it tends to produce more

reliable results. This is built upon the idea of generic learning

for the one-training-sample case in face recognition [15] and

it also embodies the same principle as that in [8], [17]. For

the classification of EEG signals from a particular subject, the

proposed training process constructs the regularization term

Ŝc using corresponding EEG trials collected from some other

subjects, i.e., generic trials from the population. When there

are S subjects available in total, each with M trials for each

class, M̂ = (S − 1)×M .

The rationales of the regularization scheme in (4) follow

those in [10]. The first regularization parameter β controls

the degree of shrinkage of the training sample covariance

matrix estimates to the pooled estimate, which is to reduce the

variance of the estimates. The second regularization parameter

γ controls the degree of shrinkage towards a multiple of the

identity matrix, with the average eigenvalue of Ω̂c(β) as the

multiplier. This second shrinkage has the effect of decreasing

the larger eigenvalues while increasing the smaller ones. This

is because the sample-based estimates in (1) tend to bias the

eigenvalues in the opposite direction, especially in SSS [10].

Thus, γ is to counteract such bias due to limited number

of samples. From the above, the conventional CSP can be

considered as a special case of R-CSP, i.e., when β = γ = 0.

In addition, the composite CSP introduced in [8] could be

considered as a special case of R-CSP with γ = 0.

The effects of the adopted regularization scheme are illus-

trated in Figs. 1 and 2 with some typical examples. In the

figures, the first 20 largest eigenvalues of a typical average

spatial covariance matrix are shown in descending order with

magnitudes in log scale. Figure 1 depicts the eigenvalue

distribution without regularization and with a regularization

β = 0.3 (γ = 0) for five randomly selected training sets

with M = 10 for the same class of a particular subject. It is

observed that the variance of the eigenvalues are much higher

when there is no regularization by β. Figure 2 simply shows

the eigenvalue distribution without regularization and with a

regularization γ = 0.1 (β = 0) for a fixed training set with

M = 10. It can be seen that the regularization by γ decreases

the relative magnitudes of the larger eigenvalues over those of

the smaller eigenvalues, which reduces the bias due the small

number of training samples in turn.

C. R-CSP Feature Extraction and Classification

With the formulation of the regularized covariance matrix

estimation in SSS, feature extraction in R-CSP follows that

in the classical CSP method [5]. The regularized composite

spatial covariance is formed and factorized as

Σ̂(β, γ) = Σ̂1(β, γ) + Σ̂2(β, γ) = ÛΛ̂ÛT , (7)

where Û denotes the matrix of eigenvectors and Λ̂ denotes

the diagonal matrix of corresponding eigenvalues. This paper

adopts the convention that the eigenvalues are sorted in de-

scending order. The full projection matrix is then formed as

Ŵ0 = B̂T Λ̂
−1/2

ÛT , (8)

where B̂ denotes the matrix of eigenvectors for the whitened

spatial covariance matrix Λ̂
−1/2

ÛT Σ̂1(β, γ)ÛΛ̂
−1/2

.

To get the most discriminative patterns, the first and last α

columns of Ŵ0 are retained to form an N × Q matrix Ŵ

with Q = 2α. In R-CSP feature extraction, an input trial E is

projected as

X̂ = ŴTE (9)

first. A Q-dimensional feature vector ŷ is then constructed

from the variance of the rows of X̂ as

ŷq = log

(

var(x̂q)
∑Q

q=1 var(x̂q)

)

, (10)
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(a) The eigenvalue distribution of a typical average covariance matrix
without regularization by β.

(b) The eigenvalue distribution of a typical average covariance matrix
with regularization β = 0.3.

Fig. 1. Illustration of the effects of the regularization parameter β on five
random training sets with M = 10 for the same class of a particular subject.

where ŷq denotes the q-th component of ŷ, x̂q denotes the

q-th row of X̂, and var(x̂q) denotes the variance of x̂q .

Finally, R-CSP classification in this work employs the

Fisher’s discriminant analysis (FDA) followed by the simple

nearest neighbor classifier (NNC). FDA solves for a projection

v to maximize the ratio of the between-class scatter to the

within-class scatter:

vFDA = argmax
v

vTΨBv

vTΨWv
, (11)

where ΨB and ΨW are the between-class scatter matrix and

the within-class scatter matrix [24] for the features ŷ in (10),

respectively. This problem can be solved as a generalized

eigenvalue problem [25] and the discriminant feature vector

zm is obtained as:

z = vT
FDAŷ. (12)

In NNC classification, the nearest neighbor is found as µ∗ =
argminµ ∥ z − zµ ∥, where zµ is the feature vector for the

µth training trial, µ = 1, 2, ..., 2M , and ∥ · ∥ is the Euclidean

norm for vectors. The class label of the µ∗th training sample

cµ∗ is then assigned to the test trial E.

Fig. 2. Illustration of the effects of regularization parameter γ on a fixed
training set: the eigenvalue distribution of a typical average spatial covariance
matrix with and without regularization by γ.

Fig. 3. Two examples showing the variation of classification accuracy (coded
as the gray levels in the displayed checkerboard) for 121 pairs of regularization
parameters β and γ. The pair resulting in the highest classification accuracy
is marked with a black star.

Figure 3 gives two examples on the variation of classifi-

cation accuracy for 121 pairs of regularization parameters β

and γ. The classification accuracy is coded as the gray levels

(white for the highest and black for the lowest) in the dis-

played checkerboard. A black star is used to mark the highest

classification accuracy in each example. The effectiveness of

both β and γ is observed in the figure. At the same time,

it could be seen that the classification accuracy could be

sensitive to parameter settings and determining the optimal

pair of regularization parameters is a challenging problem.

III. AGGREGATION OF R-CSPS

As pointed out at the end of the previous section, there

is one important problem remaining for the proposed R-

CSP algorithm, i.e., the problem of regularization parameter

determination, which is a model selection problem [10]. This

problem is important since it is unlikely to know what values

are good for the two regularization parameters in advance, as

illustrated in Fig. 3. In earlier work [21], 121 regularization

parameter combinations were tested and the best result for

each case was reported, which is a close-set optimization

scheme. Consequently, the evaluation is not a fair one. This

section proposes an aggregation solution to this problem.

Traditionally, the problem of parameter determination is
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Input: A set of M EEG trials E(c,m)(s)
for each class of S

subjects, where c = {1, 2}, m = 1, 2, ...,M , and s =
1, ..., S. A test trial E for subject s∗, A pairs of β and γ,
the number of most discriminative columns from the full
projection matrix Q = 2α. Subject s∗ is considered as
the subject of interest and other subjects with s ̸= s∗ are
considered as the generic data.

Output: The class label for E.
R-CSP-A algorithm:

Step 1. Feature extraction

• Obtain S(c,m) for all subjects s = 1, ..., S according
to (1).

• Form Sc for subject s∗ according to (5) and form Ŝc

from other subjects s ̸= s∗ according to (6).
• For a = 1 : A

– Follow (4), (3), (7), and (8) to get the full projection
matrix.

– Retain the first and last α columns of the full
projection matrix to get Ŵ(a).

– Follow (9) and (10) to obtain the feature vector
ŷ(a).

Step 2. Aggregation at the matching score level for classi-
fication

• For a = 1 : A

– Apply (11) and (12) on ŷ(a) to get z(a).
– For c = 1 : 2

∗ Obtain the nearest-neighbor distance d(E, c, a).

– Normalize d(E, c, a) to [0, 1] to get d̃(E, c, a).

• Obtain the aggregated distance d(E, c).
• Output c∗ = argminc d(E, c) as the class label for

the test sample E.

Fig. 4. The pseudo-code implementation of the R-CSP-A algorithm for EEG
signal classification in SSS.

solved through cross validation (and the overall assessment

such as generalization error estimation is performed by nested

cross validation) [10], [17], [18], which is a sample-based

estimation method. Typically, one round of cross-validation

partitions a sample set of data into complementary subsets.

Analysis is performed on one subset (the training set), and the

other subset (the validation set) is used to validate the analysis.

Usually, several rounds of cross-validation are needed using

different partitions to reduce variability.

The cross validation method has been employed in our study

to determine the regularization parameters of R-CSP for EEG

signal classification in SSS. However, the R-CSP determined

this way could perform worse than the conventional CSP

algorithm in some cases. The main cause is that in SSS, there

may be insufficient number of samples for the construction of

the training and validation subsets to get reliable estimates of

the regularization parameters. For example, in the case that

only three samples are available for each class per subject,

only one sample can be used for the training, validation, and

testing respectively. When only two samples per class from a

subject are available for training and testing, there is no data

for validation except the testing data so cross validation can

not be performed. Therefore, the cross validation scheme may

not always be applicable to parameter determination of R-CSP

for EEG signal classification in SSS.

Based on the above study, this work adopts the technique of

aggregation for regularization parameter determination devel-

oped in face recognition and gait recognition applications [12],

resulting in R-CSP with aggregation (R-CSP-A). In R-CSP-

A, instead of using a single pair of regularization parameters

from the interval [0, 1], a fixed set of regularization parameter

pairs are used and the results from differently regularized CSPs

are combined to form an aggregated solution. This approach

embodies the principle of ensemble-based learning. Since

different regularization parameter pair will result in different

discriminative features, such diversity is good for ensemble-

based learning, based on the generalization theory explaining

the success of boosting [26]–[28]. As for the combination

scheme, there are various ways including the feature level

fusion [29], the matching score level fusion [30], [31], and

more advanced ensemble-based learning such as boosting [26],

[32], [33]. In this paper, the simple sum rule for matching score

fusion is employed as in [12].

Figure 4 provides the pseudo-code implementation of R-

CSP-A for EEG signal classification in SSS, where s =
1, ..., S is used to index the S subjects, each with M trials

for each class. In feature extraction, the input trials E(c,m)(s) ,

c = {1, 2}, m = 1, 2, ...,M , and s = 1, ..., S are fed into A

differently regularized CSP feature extractors with parameters

βa and γa to obtain a set of A different feature vectors ŷ(a).

In classification, FDA is applied to ŷ(a) to get z(a) for NNC.

For each a, the nearest-neighbor distance of the test trial E to

each candidate class c is calculated as [12]:

d(E, c, a) = min
µ,cµ=c

∥ z(a) − zµ(a)
∥ . (13)

The range of d(E, c, a) is then matched to the interval [0, 1]
as [32]:

d̃(E, c, a) =
d(E, c, a)−minc d(E, c, a)

maxc d(E, c, a)−minc d(E, c, a)
. (14)

Finally, the aggregated nearest-neighbor distance is obtained

employing the simple sum rule as [12]:

d(E, c) =
A
∑

a=1

d̃(E, c, a), (15)

and the test sample E is assigned the label: c∗ =
argminc d(E, c). Since only two classes are considered in this

work, the above aggregation process is equivalent to a simple

majority voting in this case. Nonetheless, the aggregation

formulation here is applicable in future work for more than

two classes.

In addition, it should be noted that there are other ensemble-

based extensions of CSP [34]–[36]. In [35], EEG signals are

decomposed into sub-bands where CSP is applied to extract

features from each sub-band and then the sub-band scores are

fused to give the final classification result. In the mixtures of

CSP approach [36], multiple CSP feature extractors are con-

structed by bootstrap sampling of the training set to improve

the classification performance. These two algorithms apply the

ensemble-based learning principle on the training data while

the proposed R-CSP-A applies the ensemble-based learning in

the feature extraction process with fixed training data. These
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two approaches employ the same principle at different stages

of processing so they could be combined to work together for

even better classification performance. However, this is out of

the scope of this paper so it is left for future research.

IV. EXPERIMENTAL STUDY

This section presents a large number of experiments carried

out in support of the following objectives:

1) Investigate how the performance of EEG signal classifi-

cation is affected by the number of training samples.

2) Evaluate the performance of R-CSP-A against the con-

ventional CSP algorithm as well as other competing CSP-

based algorithms on EEG signal classification.

A. Experimental Data and Design

Experiments are carried out on data set IVa of BCI Compe-

tition III [34], [37]. In each capturing session of this data set,

visual cues were presented to a subject for 3.5 seconds with

the indication of one of the three motor imageries that the

subject should perform: left hand, right hand, and right foot.

For the subject to relax, the cue presentation was separated

by intervals with random length ranging from 1.75 to 2.25

seconds. Only the right hand and right foot motor imageries

of five healthy subjects (‘aa’, ‘al’, ‘av’, ‘aw’, and ‘ay’)

are provided for public use. The EEG signals were recorded

with 118 electrodes located at the positions of the extended

international 10/20 system. There are 140 trials for each class,

per subject, i.e., a total of 280 trials for each subject. All EEG

signals were down-sampled to 100Hz and band-pass filtered.

Thus, N = 118 and T = 350. In addition, the first and last

three columns of Ŵ0 are used for classification i.e., Q = 6
(α = 3), as recommended in [2], [3]. For a subject whose

EEG signals are to be classified, the training process of R-CSP

employs the corresponding EEG trials collected for other four

subjects in the regularization term Ŝc. E.g., the generic training

trials for ‘ay’ consist of all the trials from ‘aa’, ‘al’, ‘av’, and

‘aw’. Therefore, M̂ = 560. For the aggregation, the research

in ensemble-based learning [32] indicates that high diversity

of the learners to be combined is preferred. Thus, based on the

study in [21] and the experience learnt from [12], the following

six values for β and five values for γ are empirically selected

in an approximately even logarithmic scale to cover a wide

range, ensure diversity, and also limit the number of values

for computational concerns:

β ∈ {0, 0.01, 0.1, 0.2, 0.4, 0.6}, γ ∈ {0, 0.001, 0.01, 0.1, 0.2},

where one more value is selected for β than for γ because

the effective β values have a wider range as seen in [21]. The

above selection gives A = 6× 5 = 30 differently regularized

CSP feature extractors, indexed by a = 1, ..., A. This setting

for R-CSP-A is used in all the experiments below.

Three sets of experiments are carried out as detailed below:

I. To study EEG signal classification in SSS, the following

15 values of M (the number of training samples per

class) are tested for each subject:

M ∈ {2, 3, 4, 5, 6, 8, 10, 20, 30, 40, 50, 60, 80, 100, 120}.

To ensure the significance of the studies, for each class

per subject, the M trials are randomly selected from the

140 trials and the rest 140−M trials are used for testing.

The reported results are the average of 20 such repeated

experiments. Thus, there are 5× 15× 20 = 1500 experi-

ments in total. For this study, the 7-30 Hz frequency band

is used. Besides space limitation, as the commonly-used

10-fold cross validation cannot be performed for very

small values of M , only the results for conventional CSP

and R-CSP-A are reported in this study.

II. To evaluate the proposed R-CSP-A algorithm against

competing solutions, this set of experiments are carried

out using subject-specific frequency bands that are used

by the winning entry of data set IVa in BCI Competition

III [38]. R-CSP-A is compared against the following five

competing algorithms:

a) CSP: the conventional CSP [5].

b) LW-CSP: CSP with regularized covariance matrices

determined by Ledoit and Wolf’s method [39], [40].

c) LRDS: logistic regression with dual spectral regular-

ization, where the regularization parameter is deter-

mined by 10-fold cross validation (20 parameters are

tested as suggested by the authors) [18].

d) SRCSP: spatially regularized CSP with 10-fold cross

validation to determine the regularization parameters

(80 parameter combinations are tested as suggested by

the authors) [19].

e) R-CSP-CV: the proposed R-CSP with 10-fold cross

validation to determine the regularization parameters

(30 parameter combinations used by R-CSP-A are

tested.)

To be more realistic, the first L trials are used for training

and the rest are used for testing. The following 10 values

of L are tested for each subject:

{10, 20, 40, 60, 80, 100, 120, 160, 200, 240}.

III. In addition, the EEG classification experiments are car-

ried out in the setting of BCI Competition III for com-

pleteness, where L = 84, 112, 42, 28 and 14 for subject

‘aa’, ‘al’, ‘av’, ‘aw’, and ‘ay’, respectively. The results

for CSP, LW-CSP, LRDS, SRCSP, R-CSP-CV and R-

CSP-A are reported. Similar to Experiment II, subject-

specific frequency bands by the winner of data set IVa

[38] are used in this study.

B. Experimental Results

In the following, the experimental results are presented for

the experimental settings described above. For performance

evaluation, the correct classification rate (CCR) is used to

measure the classification accuracy.

1) Results for Experiment I: The complete experimental

results for the first set of experiments are summarized in

Table I, where the mean and standard deviation (Std) of

the 20 repetitions are reported for the five subjects and for

the 15 values of M tested. This table also includes the

average over subjects for each value of M and the average

over the various Ms for each subject. In all the testing
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Fig. 5. Illustration of the improvement achieved over CSP by the proposed
R-CSP-A algorithm in Experiment I.

scenarios, the R-CSP-A algorithm outperforms the classical

CSP algorithm, with an average improvement of 6% in CCR.

This shows that the regularization scheme introduced in this

paper is effective in improving the EEG signal classification

accuracy. Furthermore, on average, for M ranging from 2
to 10, R-CSP-A outperforms CSP by 8.6% while R-CSP-A

outperforms CSP by only 3.8% for M ranging from 20 to

120, indicating that R-CSP-A is particularly powerful when the

number of training samples is small. In particular, for subject

‘ay’, the average improvement in CCR is more than 17% for

M = 2, 3, 4, 5. Figure 5 further illustrates the classification

performance difference between R-CSP-A and CSP. Similar to

the observations in Table I, the figure shows that the advantage

of R-CSP-A over CSP is more significant for small values

of M . Due to its ensemble learning nature, R-CSP-A also

has lower Std than CSP on average, as seen from the right

bottom of Table I. To study the statistical significance of the

improvement of R-CSP-A over CSP, paired t-tests were carried

out for all the 1500 experiments. The p value obtained is much

less than 0.001, indicating that the performance gain of R-

CSP-A over CSP is statistically significant.

Figure 6 plots the results for the five subjects on the data set

used separately. The figure demonstrates that the classification

results are subject-dependant. For some subjects such as ‘al’,

the classification accuracy is generally higher, while for some

other subjects such as ‘av’, the classification accuracy is

generally lower. Furthermore, the classification performance

does not always increase monotonically with M . In Table I,

the best results for each subject and their average over various

M are highlighted with italic bold fonts. For CSP, the best

results for ‘aa’, ‘al’, ‘av’, ‘aw’, ‘ay’, and their average are

obtained with M = 100, 40, 120, 80, 60 and 100, respectively.

For R-CSP-A, the best results for ‘aa’, ‘al’, ‘av’, ‘aw’, ‘ay’,

and their average are obtained with M = 100, 40, 120, 100, 60
and 100, respectively. Similar observations can be made from

results reported by other researchers, e.g., Figs. 1 and 2 in

[3]. This is in contrary to our common belief that better

results should be obtained with more training data and the

cause needs further investigation. A possible cause could be

(a) The CCRs obtained by CSP for each of the five subjects.

(b) The CCRs obtained by R-CSP-A for each of the five subjects.

Fig. 6. Demonstration of EEG classification performance difference among
subjects in Experiment I.

increased number of outliers so effective outlier elimination

may mitigate this problem.

2) Results for Experiment II: The results for Experiment

II are summarized in Figs. 7 and 8. There are a total of

300 experiments (ten experiments on five subjects for six

algorithms).

Figure 7 depicts the EEG classification performance aver-

aged over five subjects for the ten values of L tested. From

the figure, it could be seen that R-CSP-A outperforms R-CSP-

CV for all averaged cases, illustrating the effectiveness of the

proposed aggregation scheme over traditional cross validation.

R-CSP-A also outperforms the other four algorithms (CSP,

LW-CSP, LRDS and SRCSP) in most averaged cases except

for L = 160, where LRDS obtains better results than R-CSP-

A. Furthermore, the figure demonstrates again that R-CSP-A

is particularly effective for small values of L. In general, R-

CSP-A outperforms the other methods by a greater amount

for a smaller value of L. For example, the average CCR over

L = 10, 20 and 40 for CSP, LW-CSP, LRDS, SRCSP, R-CSP-

CV and R-CSP-A are 58.6%, 69.8%, 73.3%, 68.2%, 78.5%
and 83.4%, respectively. R-CSP-A has outperformed all the

other methods significantly in this case, with CCR 10.1%
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TABLE I
EEG CLASSIFICATION PERFORMANCE FOR EXPERIMENT I, WITH CCRS IN PERCENTAGE REPORTED (MEAN±STD).

M Subject aa al av aw ay Average

2 CSP 51.3±4.0 70.0±14.8 49.1±2.0 49.7±4.5 57.4±7.7 55.5±11.0
R-CSP-A 58.8±6.1 76.3±9.2 52.6±3.8 57.1±9.2 73.9±7.8 63.8±12.0

3 CSP 50.8±4.0 63.1±16.4 51.8±4.5 54.0±6.1 58.5±10.1 55.7±10.3
R-CSP-A 58.6±5.4 79.1±8.3 56.2±4.6 58.9±8.4 71.5±8.4 64.9±11.3

4 CSP 52.6±4.8 77.0±11.7 50.6±4.0 57.8±5.3 56.4±9.3 58.9±12.0
R-CSP-A 63.6±7.7 83.0±8.0 54.7±4.2 66.6±5.9 75.9±7.7 68.8±11.9

5 CSP 51.7±5.1 81.2±11.3 51.8±5.0 58.9±8.3 59.4±10.3 60.6±13.6
R-CSP-A 62.9±5.7 85.4±5.8 56.1±5.4 65.6±6.8 78.6±5.3 69.7±12.1

6 CSP 55.0±5.9 80.4±8.2 51.6±4.1 58.3±8.7 65.0±9.9 62.1±12.6
R-CSP-A 65.1±5.7 85.8±3.6 56.1±5.4 67.8±5.6 80.6±4.9 71.1±11.9

8 CSP 54.6±6.3 86.6±4.5 51.1±3.9 64.3±8.9 68.5±8.9 65.0±14.1
R-CSP-A 67.7±5.6 86.6±3.8 58.8±4.4 71.1±5.7 80.1±5.5 72.9±10.9

10 CSP 56.7±5.9 85.0±5.9 52.3±4.5 64.9±8.2 76.9±8.1 67.2±13.9
R-CSP-A 65.4±3.3 86.3±2.3 59.9±5.0 74.0±3.4 84.1±2.8 73.9±10.8

20 CSP 61.9±5.6 87.8±4.5 56.2±6.4 72.4±9.7 81.3±5.4 71.9±13.3
R-CSP-A 71.3±3.2 89.4±3.0 62.6±6.3 75.8±3.0 86.4±1.9 77.1±10.5

30 CSP 64.4±4.8 90.0±4.6 59.5±5.1 77.4±6.9 82.0±5.1 74.7±12.4
R-CSP-A 73.7±3.9 88.9±3.1 64.8±4.0 78.0±2.4 86.6±2.9 78.4±9.3

40 CSP 67.7±6.0 90.4±4.4 59.3±5.3 77.4±7.8 83.9±4.6 75.7±12.5
R-CSP-A 74.8±2.7 89.6±2.2 65.3±4.3 77.1±3.5 87.6±2.4 78.9±9.4

50 CSP 69.2±5.5 88.4±4.0 59.7±5.7 83.0±6.3 83.9±4.3 76.8±11.9
R-CSP-A 75.7±3.8 88.1±2.4 66.1±5.0 81.6±3.6 88.6±2.7 80.0±9.1

60 CSP 68.2±5.9 88.8±3.7 62.1±4.3 80.9±7.7 86.5±2.9 77.3±11.6
R-CSP-A 74.6±4.3 88.5±3.3 68.5±3.5 82.1±4.3 89.8±1.5 80.7±8.8

80 CSP 68.6±8.0 89.6±5.0 59.7±5.1 84.5±9.4 85.3±4.6 77.5±13.2
R-CSP-A 77.6±4.1 89.0±3.0 68.5±4.6 81.9±5.3 88.3±2.9 81.1±8.6

100 CSP 71.1±6.9 88.6±4.8 59.8±6.2 84.4±9.1 85.8±3.4 77.9±12.5
R-CSP-A 79.0±5.1 88.7±4.1 69.7±5.8 83.9±4.8 89.6±3.5 82.2±8.6

120 CSP 69.0±9.5 88.8±6.7 62.6±7.7 79.1±10.7 83.9±4.4 76.7±12.4
R-CSP-A 75.9±7.2 89.0±6.4 71.9±6.3 79.8±6.7 88.1±3.5 80.9±9.0

Average CSP 60.8±9.6 83.7±11.4 55.8±6.7 69.8±14.0 74.3±13.4 68.9±15.0
R-CSP-A 69.6±8.3 86.2±6.3 62.1±7.7 73.4±9.9 83.3±7.5 74.9±11.9

higher than LRDS and 4.9% higher than R-CSP-CV.

Figure 8 shows the EEG classification performance aver-

aged over the ten values of L tested for five subjects as

well as the overall mean. The advantage of R-CSP-A over

R-CSP-CV is observed for all subjects except ‘aw’ and R-

CSP-A gives higher CCRs than the other four algorithms in

most averaged cases except for subject ‘ay’, where LRDS is

particularly effective and gives the best results (on the other

hand, the performance of LRDS is particularly poor for subject

‘av’). The overall average CCR for CSP, LW-CSP, LRDS,

SRCSP, R-CSP-CV and R-CSP-A are 72.5%, 75.5%, 76.9%,

77.1%, 81.5% and 84.5%, respectively, as the last bar group

in Fig. 8 indicates. R-CSP-A has outperformed all the other

methods on average, with CCR 7.4% higher than SRCSP

and 3% higher than R-CSP-CV. Moreover, even R-CSP-CV

produces better results than all the other four algorithms (4.4%
higher than SRCSP), demonstrating the effectiveness of the

proposed regularization scheme for CSP and also showing that

the results from the training set can be well-transferred to the

test set (though still inferior to the aggregation scheme).

3) Results for Experiment III: Table II reports the results

for Experiment III where the classification tasks are carried out

in the BCI Competition III setting. The highest CCR among

the six algorithms listed in Sec. IV-A is highlighted in bold

font for each subject and their average. On average, R-CSP-A

has outperformed the other five algorithms by at least 4%. In

this set of results, its superiority over other methods is mainly

on the more difficult subject ‘av’, and its performance on the

other subjects has no significant difference over LRDS and

R-CSP-CV. In the exceptional case of ‘aa’ (with L = 84),

R-CSP-CV gives a better result than R-CSP-A, though this is

not the general case as shown in Sec. IV-B2.

The CCRs by the winner for this data set in BCI Com-

petition III are included at the bottom of Table II for easy

reference. It could be seen that R-CSP-A is inferior to the

winner. However, it should be noted that the winner algorithm

involves an ensemble classifier based on three methods: CSP

on ERD, autoregressive models on ERD, and LDA on temporal

waves of readiness potential. Different methods are used for

two groups of subjects with fine-tuned parameters for each

subject [38]. CSP is the only method used for all subjects.

Furthermore, the winner algorithm uses bootstrap aggregation

and extends training samples with former classified test sam-

ples for two subjects to achieve the best performance. Thus, R-

CSP-A is less complex and not subject-customized compared

to the winner algorithm so the performance gap is expected

and it should be considered as one significant enhancement of

a particular component (CSP) of the winner algorithm.

4) Discussions: One important implication from the exper-

imental results is that the proposed algorithm has positive

impact on the data collection effort, processing efficiency

and memory/storage requirement in EEG signal classification

applications. This is because for the same level of perfor-

mance, R-CSP-A needs much fewer training samples than

other competing algorithms. For example, from Fig. 7, to

achieve an average CCR of at least 80%, R-CSP-A needs only
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Fig. 7. EEG classification performance comparison for ten values of L,
averaged over five subjects in Experiment II.

10 samples in total while R-CSP-CV needs 20 samples and

the other four algorithms need more than 90 samples.

Finally, since R-CSP-A is an aggregation of A multiple R-

CSPs, the computational time of R-CSP-A is about A times of

that of CSP. However, since CSP is a very efficient algorithm

and only a very small number (six) of features are involved for

each R-CSP, the increased computational time will result in

little performance degradation in modern computer systems.

Fig. 8. EEG classification performance comparison in Experiment II for the
five subjects and their mean, averaged over ten values of L. (Please note that
colors are used so this figure is best viewed on screen or in color print.)

TABLE II
EEG CLASSIFICATION PERFORMANCE FOR EXPERIMENT III, THE BCI
COMPETITION III SETTING, WITH CCRS REPORTED IN PERCENTAGE.

Algorithm aa al av aw ay Average

CSP 66.1 98.2 59.2 88.4 61.1 74.6

LW-CSP 69.6 100.0 56.6 93.3 67.1 77.3

LRDS 80.4 94.6 50.0 90.6 83.3 79.8

SRCSP 77.7 96.4 59.2 91.1 61.1 77.1

R-CSP-CV 77.7 96.4 58.7 92.0 68.3 78.6

R-CSP-A 76.8 98.2 74.5 92.9 77.0 83.9

BCI III Winner 95.5 100.0 80.6 100.0 97.6 94.2

V. CONCLUSIONS

The sample-based covariance matrix estimation in the con-

ventional CSP algorithm results in limited performance when

only a small number of samples are available for training. This

paper addresses the problem of discriminative CSP extraction

in SSS for EEG signal classification. CSP is regularized using

two regularization parameters, with one to lower the estimation

variance and the other to reduce the estimation bias. The

principle of generic learning is applied in the regularization

process. To tackle the problem of regularization parameter

determination in SSS, the aggregation method in [12] is

adopted. Experiments were performed on data set IVa of BCI

Competition III. The experimental results have demonstrated

the effectiveness of the proposed R-CSP-A algorithm, espe-

cially its superiority over other competing algorithms in SSS.

Moreover, R-CSP-A has positive impact in data collection

effort, data storage, and processing efficiency as well.
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parameters as a feature for eeg-based braincomputer interfaces,” Neural

Networks, vol. 22, no. 9, pp. 1313–1319, Nov. 2009.

Haiping Lu (S’02-M’09) received the B.Eng. and
M.Eng degrees in Electrical and Electronic En-
gineering from Nanyang Technological University,
Singapore, in 2001 and 2004, respectively, and the
Ph.D. degree in Electrical and Computer Engineer-
ing from University of Toronto, Canada, in 2008.
Currently, he is a research fellow in the Institute for
Infocomm Research, Singapore. His current research
interests include pattern recognition, machine learn-
ing, biometrics, and biomedical engineering.

How-Lung Eng (M’03) received his B.Eng. and
Ph.D. degrees both in Electrical and Electronic En-
gineering from Nanyang Technological University,
Singapore, in 1998 and 2002, respectively. Currently,
he is with the Institute for Infocomm Research, Sin-
gapore as a Research Scientist. His research interest
includes real-time vision, pattern classification and
machine learning for human behavior analysis and
abnormal event detection. He has made several PCT
fillings related to video surveillance applications.

Cuntai Guan (S’91-M’92-SM’03) is a Principal
Scientist & Program Manager at Institute for Info-
comm Research, Agency for Science, Technology
and Research, Singapore. He received the Ph.D.
degree in electrical and electronic engineering from
Southeast University, China, in 1993. His current
research interests include brain-computer interface,
neural signal processing, machine learning, pattern
classification, and statistical signal processing, with
applications to neuro-rehabilitation, health monitor-
ing, and cognitive training. He is an Associate Editor

of Frontiers in Neuroprosthetics.

Konstantinos N. Plataniotis (S’90-M’92-SM’03)
is a Professor with the Department of Electrical
and Computer Engineering and the Director of the
Knowledge Media Design Institute at the University
of Toronto. He received his B.Eng. degree in Com-
puter Engineering from University of Patras, Greece
in 1988 and his M.S. and Ph.D. degrees in Electrical
Engineering from Florida Institute of Technology in
1992 and 1994, respectively. His research interests
include multimedia systems, biometrics, image &
signal processing, communications systems and pat-

tern recognition. He is a registered professional engineer in Ontario, and the
Editor-in-Chief (2009-2011) for the IEEE Signal Processing Letters.

Anastasios N. Venetsanopoulos (S’66-M’69-
SM’79-F’88) is a Professor of Electrical and
Computer Engineering at Ryerson University,
Toronto, and a Professor Emeritus with the
Department of Electrical and Computer Engineering
at the University of Toronto. He received the B.Eng.
degree in Electrical and Mechanical Engineering
from the National Technical University of Athens,
Greece in 1965, and the M.S., M.Phil., and
Ph.D. degrees in Electrical Engineering from Yale
University in 1966, 1968 and 1969, respectively.

His research interests include multimedia, digital signal/image processing,
telecommunications, and biometrics. He is a Fellow of the Engineering
Institute of Canada, the IEEE, the Canadian Academy of Engineering, and
the Royal Society Of Canada.


