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Abstract

In this paper, we examine the generalization error of regularized distance metric
learning. We show that with appropriate constraints, the generalization error of
regularized distance metric learning could be independent from the dimensional-
ity, making it suitable for handling high dimensional data. In addition, we present
an efficient online learning algorithm for regularized distance metric learning. Our
empirical studies with data classification and face recognition show that the pro-
posed algorithm is (i) effective for distance metric learning when compared to the
state-of-the-art methods, and (ii) efficient and robust for high dimensional data.

1 Introduction

Distance metric learning is a fundamental problem in machine learning and pattern recognition. It is
critical to many real-world applications, such as information retrieval, classification, and clustering.
Numerous algorithms have been proposed and examined for distance metric learning. They are
usually classified into two categories: unsupervised metric learning and supervised metric learning.
Unsupervised distance metric learning, or sometimes referred to as manifold learning, aims to learn
a underlying low-dimensional manifold where the distance between most pairs of data points are
preserved. Example algorithms in this category include ISOMAP [10] and Local Linear Embedding
(LLE) [6]. Supervised metric learning attempts to learn distance metrics from side information such
as labeled instances and pairwise constraints. It searches for the optimal distance metric that (a)
keeps data points of the same classes close, and (b) keeps data points from different classes far
apart. Example algorithms in this category include [13, 8, 12, 5, 11, 15, 4]. In this work, we focus
on supervised distance metric learning.

Although a large number of studies were devoted to supervised distance metric learning (see the sur-
vey in [14] and references therein), few studies address the generalization error of distance metric
learning. In this paper, we examine the generalization error for regularized distance metric learning.
Following the idea of stability analysis [1], we show that with appropriate constraints, the general-
ization error of regularized distance metric learning is independent from the dimensionality of data,
making it suitable for handling high dimensional data. In addition, we present an online learning
algorithm for regularized distance metric learning, and show its regret bound. Note that although
online metric learning was studied in [7], our approach is advantageous in that (a) it is computation-
ally more efficient in handling the constraint of SDP cone, and (b) it has a proved regret bound while
[7] only shows a mistake bound for the datasets that can be separated by a Mahalanobis distance. To
verify the efficacy and efficiency of the proposed algorithm for regularized distance metric learning,
we conduct experiments with data classification and face recognition. Our empirical results show
that the proposed online algorithm is (1) effective for metric learning compared to the state-of-the-art
methods, and (2) robust and efficient for high dimensional data.



2 Regularized Distance Metric Learning

LetD = {2; = (z4,yi),i = 1,...,n} denote the labeled examples, where x), = (z1,...,2¢) € R?
is a vector of d dimension and y; € {1,2,...,m} is class label. In our study, we assume that
the norm of any example is upper bounded by R, i.e., sup, |z|]2 < R. Let A € S‘fd be the
distance metric to be learned, where the distance between two data points x and 2’ is calculated as
|z —2'|4 = (z —2') T A(x — o).

Following the idea of maximum margin classifiers, we have the following framework for regularized
distance metric learning:

. 1 2C
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where

e y; ; is derived from class labels y; and y;, i.e., y; ; = 1if y; = y; and —1 otherwise.

e ¢(z) is the loss function. It outputs a small value when z is a large positive value, and a large
value when 2 is large negative. We assume ¢(z) to be convex and Lipschitz continuous with
Lipschitz constant L.

e |A|% is the regularizer that measures the complexity of the distance metric A.

e tr(A) < n(d) is introduced to ensure a bounded domain for A. As will be revealed later,
this constraint will become active only when the constraint constant 7(d) is sublinear in
d, ie., n ~ O(dP) with p < 1. We will also show how this constraint could affect the
generalization error of distance metric learning.

3 Generalization Error

Let Ap be the distance metric learned by the algorithm in (1) from the training examples D. Let
Ip(A) denote the empirical loss , i.e.,

2
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For the convenience of presentation, we also write g (y; ;(1 — |z; — z;14)) = V(A4, 2;, 2;) to high-
light its dependence on A and two examples z; and z;. We denote by I(A) the loss of A over the
true distribution, i.e.,

I(A) = E(Zi72j) [V(A, Zi, ZJ)] (3)

Given the empirical loss I (A) and the loss over the true distribution I (A), we define the estimation
error as

Dp = 1I(Ap)—Ip(Ap) “4)

In order to show the behavior of estimation error, we follow the analysis based on the stability of
the algorithm [1]. The uniform stability of an algorithm determines the stability of the algorithm
when one of the training examples is replaced with another. More specifically, an algorithm A has
uniform stability [ if

Y(D, z), Vi, sup |V(Ap,u,v) — V(Ap=i,u,v)| < (%)

where D> stands for the new training set that is obtained by replacing z; € D with a new example
z. We further define 3 = k/n as the uniform stability 5 behaves like O(1/n).

The advantage of using stability analysis for the generalization error of regularized distance metric
learning. This is because the example pair (2;, z;) used for training distance metrics are not LLD.
although z; is, making it difficult to directly utilize the results from statistical learning theory.

In the analysis below, we first show how to derive the generalization error bound for regularized
distance metric learning given the uniform stability 3 (or ). We then derive the uniform stability
constant for the regularized distance metric learning framework in (1).



3.1 Generalization Error Bound for Given Uniform Stability

Analysis in this section follows closely [1], and we therefore omit the detailed proofs.

Our analysis utilizes the McDiarmid inequality that is stated as follows.

Theorem 1. (McDiarmid Inequality) Given random variables {v;}._, v}, and a function F : v' —
R satisfying

’
sup  |[F(v1,...,0) — F(v1,...,0i—1,0;, Vig1,. .. ,vl)‘ <,
the following statement holds

Pr(|F(v1,...,v) —E(F(vi,...,u))| >¢€) < 2exp —?76
Y
To use the McDiarmid inequality, we first compute E(Dp).
Lemma 1. Given a distance metric learning algorithm A has uniform stability k/n, we have the
Sollowing inequality for E(Dp)
E(Dp) < 2~ (©6)
n

where n is the number of training examples in D.

The result in the following lemma shows that the condition in McDiarmid inequality holds.

Lemma 2. Let D be a collection of n randomly selected training examples, and D" be the collec-
tion of examples that replaces z; in D with example z. We have |Dp — Dpi,=| bounded as follows

< 2k + 8Ln(d) + 2g0

|Dp — Dpiz| < (7

n

where go = sup, ., |V (0, z, 2")| measures the largest loss when distance metric A is 0.

Combining the results in Lemma 1 and 2, we can now derive the the bound for the generalization
error by using the McDiarmid inequality.

Theorem 2. Let D denote a collection of n randomly selected training examples, and Ap be the
distance metric learned by the algorithm in (1) whose uniform stability is k/n. With probability
1 — 4, we have the following bound for I(Ap)

In(2/9)
2n

I(Ap) ~ Ip(Ap) < 2+ (26 + ALn(d) +290) ®

3.2 Generalization Error for Regularized Distance Metric Learning
First, we show that the superium of tr(Ap) is O(d'/?), which verifies that 7(d) should behave
sublinear in d. This is summarized by the following proposition.

Proposition 1. The trace constraint in (1) will be activated only when

n(d) < v/2dgoC 9

where go = sup, ., |[V(0, z,2")|.

Proof. It follows directly from [tr(Ap)/d]* < |Ap|% < 2Csup |V (0, 2,2")| < Cgo. O
To bound the uniform stability, we need the following proposition

Proposition 2. For any two distance metrics A and A’, we have the following inequality hold for
any examples z,, and z,

[V (A, 24, 20) — V(A', 24, 2,)| <ALR*A— A'|p (10)



The above proposition follows directly from the fact that (a) V' (A, z, z) is Lipschitz continuous and
(b) |z]2 < R for any example x. The following lemma bounds |[Ap — Ap/|p.

Lemma 3. Let D denote a collection of n randomly selected training examples, and by z = (x,y) a
randomly selected example. Let Ap be the distance metric learned by the algorithm in (1). We have

8CLR?
n

|Ap — Api-|F < (11)

The proof of the above lemma can be found in Appendix A.

By putting the results in Lemma 3 and Proposition 2, we have the following theorem for the stability
of the Frobenius norm based regularizer.

Theorem 3. The uniform stability for the algorithm in (1) using the Frobenius norm regularizer,
denoted by (3, is bounded as follows

2 p4
< 32CL°R (12)
n

8=

3=

where k = 32C L% R*

Combing Theorem 3 and 2, we have the following theorem for the generalization error of distance
metric learning algorithm in (1) using the Frobenius norm regularizer

Theorem 4. Let D be a collection of n randomly selected examples, and Ap be the distance metric
learned by the algorithm in (1) with h(A) = |A|%. With probability 1 — &, we have the following
bound for the true loss function I(Ap) where Ap is learned from (1) using the Frobenius norm
regularizer

2 L2 4
I(Ap) — Ip(Ap) < SCTR + (32CL*R* + 4Ls(d) + 2g0)

In(2/4)
2n

13)

where s(d) = min (v/2dgoC, n(d)).

Remark The most important feature in the estimation error is that it converges in the order of
O(s(d)/+/n). By choosing 7(d) to have a low dependence of d (i.e., n(d) ~ dP with p < 1), the
proposed framework for regularized distance metric learning will be robust to the high dimensional
data. In the extreme case, by setting 7)(d) to be a constant, the estimation error will be independent
from the dimensionality of data.

4 Algorithm

In this section, we discuss an efficient algorithm for solving (1). We assume a hinge loss for ¢(z),
ie., g(z) = max(0,b — z), where b is the classification margin. To design an online learning
algorithm for regularized distance metric learning, we follow the theory of gradient based online
learning [2] by defining potential function ®(A) = |A|2%./2. Algorithm 1 shows the online learning
algorithm.

The theorem below shows the regret bound for the online learning algorithm in Figure 1.

Theorem 5. Let the online learning algorithm 1 run with learning rate X\ > 0 on a sequence
(e, 2}),ye,t = 1,...,n. Assume |x|o < R for all the training examples. Then, for all distance

metric M € Sj_x 4 e have

~ 1 1
L,<— | L,(M)+ —|M|?
< s (200 + 55 IME)

where

L,(M) = Zmax (0,6 — yu(1 — |z — 3[3))) L, = Zmax (O,b — (1 — |y — x;|124t71))

t=1 t=1



Algorithm 1 Online Learning Algorithm for Regularized Distance Metric Learning
1: INPUT: predefined learning rate A
2: Initialize Ag = 0
3: fort=1,...,Tdo

4:  Receive a pair of training examples {(z},v}), (7,42)}
5:  Compute the class label y;: y; = +1if y} = y7, and y; = —1 otherwise.
6:  if the training pair (z,27), y; is classified correctly, i.e., ¥ (1 — |zt — m%\itil) > ( then
7: At - Atfl.
8: else
9: Ay = 7g, (Am1 — Mye(ay — 2})(z — 2}) "), where g, (M) projects matrix M into the
SDP cone.

10:  end if
11: end for

The proof of this theorem can be found in Appendix B. Note that the above online learning algorithm
require computing 7g, (M), i.e., projecting matrix M onto the SDP cone, which is expensive for
high dimensional data. To address this challenge, first notice that M’ = 7g, (M) is equivalent to the
optimization problem M’ = arg minps o |M’ — M|p. We thus approximate A; = mg, (Ai—1 —
Aye(wy — 2})(xp — 24)T) with Ay = Ay — \ye(xy — 24) (2 — 24) T where )\; is computed as
follows

A = argmin {|\, — A+ Ay € [0,A], Ay—1 — Ny (w0 — ) (20 — )" = 0} (14)
At

The following theorem shows the solution to the above optimization problem.

Theorem 6. The optimal solution \; to the problem in (14) is expressed as

\ - A ye = —1
¢= min (A (@ — 2 TAT o — )] g =41

Proof of this theorem can be found in the supplementary materials. Finally, the quantity (z; —
x4)A; Y, (2, — o) can be computed by solving the following optimization problem

max2u ' (z; — x}) —u' Au
u
whose optimal value can be computed efficiently using the conjugate gradient method [9].

Note that compared to the online metric learning algorithm in [7], the proposed online learning
algorithm for metric learning is advantageous in that (i) it is computationally more efficient by
avoiding projecting a matrix into a SDP cone, and (ii) it has a provable regret bound while [7] only
presents the mistake bound for the separable datasets.

5 Experiments

We conducted an extensive study to verify both the efficiency and the efficacy of the proposed
algorithms for metric learning. For the convenience of discussion, we refer to the propoesd online
distance metric learning algorithm as online-reg. To examine the efficacy of the learned distance
metric, we employed the k& Nearest Neighbor (k-NN) classifier. Our hypothesis is that the better the
distance metric is, the higher the classification accuracy of k-NN will be. We set k = 3 for k-NN
for all the experiments according to our experience.

We compare our algorithm to the following six state-of-the-art algorithms for distance metric learn-
ing as baselines: (1) Euclidean distance metric; (2) Mahalanobis distance metric, which is com-
puted as the inverse of covariance matrix of training samples, i.e., (Y, z;x;)~'; (3) Xing’s algo-
rithm proposed in [13]; (4) LMNN, a distance metric learning algorithm based on the large margin
nearest neighbor classifier [12]; (5) ITML, an Information-theoretic metric learning based on [4];
and (6) Relevance Component Analysis (RCA) [8]. We set the maximum number of iterations for
Xing’s method to be 10,000. The number of target neighbors in LMNN and parameter v in [ITML



Table 1: Classification error (%) of a k-NN (k = 3) classifier on the ten UCI data sets using seven

different metrics. Standard deviation is included.

Dataset | Eclidean Mabhala Xing LMNN ITML RCA Online-reg
1 195+22 | 188+2.5 | 293+17.2 | 13.8+25 | 8.6+£1.7 | 174+1.5 | 13.2+2.2
2 399£23 | 6.7£0.6 40.1 £ 2.6 3.6+1.1 | 400£23 | 3.8£04 3.7+£1.2
3 36.0£2.0 | 42.1+4.0 | 435+125 | 33.1+0.6 | 39.8+3.3 | 41.6£0.7 | 37.3+4.1
4 40+£1.7 | 104 £2.7 3.1+20 3.9+1.6 3.2+1.6 29415 32+1.3
5 30619 29.1+21 | 30619 | 29.6+1.8 | 288+2.1 | 286 £2.3 | 27.7+ 1.3
6 254+42 | 1844+34 | 23.3+£34 | 15.2+3.1 | 17.1£4.1 | 13.9+2.2 | 129+2.2
7 31.9£28 | 10.0£2.8 | 246=£7.5 45+24 | 2807£3.7 | 1.8£1.5 1.8+1.1
8 189+£0.5 | 37.3£0.5 | 16.14+06 | 184+£0.4 | 23.3+1.3 | 30.6 0.7 | 19.8£0.6
9 2.0+0.4 6.1+0.5 12.44+0.8 1.6£0.3 25+04 2.8+04 29+04

Table 2: p-values of the Wilcoxon signed-rank test of the 7 methods on the 9 datasets.

Methods | Eclidean | Mahala | Xing | LMNN | ITML | RCA | Online-reg
Euclidean 1.000 0.734 | 0.641 | 0.004 | 0.496 | 0.301 0.129
Mabhala 0.734 1.000 | 0.301 | 0.008 | 0.570 | 0.004 0.004
Xing 0.641 0.301 | 1.000 | 0.027 | 0.359 | 0.074 0.027
LMNN 0.004 0.008 | 0.027 | 1.000 | 0.129 | 0.496 0.734
ITML 0.496 0.570 | 0.359 | 0.129 | 1.000 | 0.820 0.164
RCA 0.301 0.004 | 0.074 | 0.496 | 0.820 | 1.000 0.074
Online-reg 0.129 0.004 | 0.027 | 0.734 | 0.164 | 0.074 1.000

were tuned by cross validation over the range from 10~ to 10%. All the algorithms are implemented
and run using Matlab. All the experiment are run on a AMD Processor 2.8G machine, with SGMB
RAM and Linux operation system.

5.1 Experiment (I): Comparison to State-of-the-art Algorithms

We conducted experiments of data classification over the following nine datasets from UCI repos-
itory: (1) balance-scale, with 3 classes, 4 features, and 625 instances; (2) breast-cancer, with 2
classes, 10 features, and 683 instance; (3) glass, with 6 classes, 9 features, and 214 instances; (4)
iris, with 3 classes, 4 features, and 150 instances; (5) pima, with 2 classes, 8 features, and 768 in-
stances; (6) segmentation, with 7 classes, 19 features, and 210 instances; (7)wine, with 3 classes,
13 features, and 178 instances; (8) waveform, with 3 classes, 21 features, and 5000 instances; (9)
optdigits, with 10 classes, 64 features, 3823 instances. For all the datasets, we randomly select 50%
samples for training, and use the remaining samples for testing. Table 1 shows the classification
errors of all the metric learning methods over 9 datasets averaged over 10 runs, together with the
standard deviation. We observe that the proposed metric learning algorithm deliver performance that
comparable to the state-of-the-art methods. In particular, for almost all datasets, the classification
accuracy of the proposed algorithm is close to that of LMNN, which has yielded overall the best
performance among six baseline algorithms. This is consistent with the results of the other studies,
which show LMNN is among the most effective algorithms for distance metric learning.

To further verify if the proposed method performs statistically better than the baseline methods, we
conduct statistical test by using Wilcoxon signed-rank test [3]. The Wilcoxon signed-rank test is a
non-parametric statistical hypothesis test for the comparisons of two related samples. It is known to
be safer than the Student’s t-test because it does not assume normal distributions. From table 2, we
find that the regularized distance metric learning improves the classification accuracy significantly
compared to Mahalanobis distance, Xing’s method and RCA at significant level 0.1. It performs
slightly better than ITML and is comparable to LMNN.
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Figure 1: (a) Face recognition accuracy of kNN and (b) running time of LMNN, ITML, RCA and
online_reg algorithms on the “att-face” dataset with varying image sizes.

5.2 Experiment (II): Results for High Dimensional Data

To evaluate the dependence of the regularized metric learning algorithms on data dimensions, we
tested it by the task of face recognition. The AT&T face database ! is used in our study. It consists
of grey images of faces from 40 distinct subjects, with ten pictures for each subject. For every
subject, the images were taken at different times, with varied the lighting condition and different
facial expressions (open/closed-eyes, smiling/not-smiling) and facial details (glasses/no-glasses).
The original size of each image is 112 x 92 pixels, with 256 grey levels per pixel.

To examine the sensitivity to data dimensionality, we vary the data dimension (i.e., the size of
images) by compressing the original images into size different sizes with the image aspect ratio
preserved. The image compression is achieved by bicubic interpolation (the output pixel value is a
weighted average of pixels in the nearest 4-by-4 neighborhood). For each subject, we randomly spit
its face images into training set and test set with ratio 4 : 6. A distance metric is learned from the
collection of training face images, and is used by the kNN classifier (k = 3) to predict the subject ID
of the test images. We conduct each experiment 10 times, and report the classification accuracy by
averaging over 40 subjects and 10 runs. Figure 1 (a) shows the average classification accuracy of the
kNN classifier using different distance metric learning algorithms. The running times of different
metric learning algorithms for the same dataset is shown in Figure 1 (b). Note that we exclude
Xing’s method in comparison because its extremely long computational time. We observed that
with increasing image size (dimensions), the regularized distance metric learning algorithm yields
stable performance, indicating that the it is resilient to high dimensional data. In contrast, for almost
all the baseline methods except ITML, their performance varied significantly as the size of the input
image changed. Although ITML yields stable performance with respect to different size of images,
its high computational cost (Figure 1), arising from solving a Bregman optimization problem in each
iteration, makes it unsuitable for high-dimensional data.

6 Conclusion

In this paper, we analyze the generalization error of regularized distance metric learning. We show
that with appropriate constraint, the regularized distance metric learning could be robust to high
dimensional data. We also present efficient learning algorithms for solving the related optimiza-
tion problems. Empirical studies with face recognition and data classification show the proposed
approach is (i) robust and efficient for high dimensional data, and (ii) comparable to the state-of-the-
art approaches for distance learning. In the future, we plan to investigate different regularizers and
their effect for distance metric learning.

'mttp://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Appendix A: Proof of Lemma 3
Proof. We introduce the Bregmen divergence for the proof of this lemma. Given a convex function
of matrix ¢(X), the Bregmen divergence between two matrices A and B is computed as follows:
dy(A, B) = ¢(B) — ¢(A) — tr (Vp(A) " (B — A))
We define convex function N(X) and Vp(X) as follows:
N = IXF Vo) = iy SOV 02)

z<j

and furthermore convex function Tp(X) = N(X) + CVp(X). We thus have

dN(AD, A'Di,z) + dN(ADi,z , AD> < dTD (AD, ADi,z) + deDz . (ADi,z,AD)
C
nln—1) 27; V(Apiz, 2i,2j) = V(Apiz, 2,25) + V(Ap, 2, 2j) = V(Ap, 2, 25)]
j#i
S8CLR?
< |Ap — Apes|p

The first inequahty follows from the fact that both N(X) and Vp(X) are convex in X. The second
step holds because matrix Ap and Api,- minimize the objective function T (X) and Tpi.- (X),
respectively, and therefore

(Api- — Ap) VTp(Ap) >0, (Ap — Api:)' VIpi-(Api:) >0
Since dx (A, B) = ||A — BJ|%, we therefore have

8CLR?
|Ap — Api|2 <

|Ap — Api|p

which leads to the result in the lemma. O

Appendix B: Proof of Theorem 7

Proof. We denote by A} = A;_1 — \y(z — 2})(x; —2}) " and Ay = g, (A}). Following Theorem
11.1 and Theorem 11.4 [2], we have

L, — Ln,(M) < /\D@ (M, Ap) +

Z <(Ag1, AY)

V\H

where ) 1
Dy-(A, B) = 5|A - B}, &(4) = &*(4) = S |Af}

Using the relation A} = A; 1 — \y(zy — 2})(x; — 2}) T and Ag = 0, we have

Ln— Lyp(M) <

< o5 IMIE + Azf[ytuf\zrz;\it,mo =yt

By assuming |z| < R for any training example, we have |z, — z}|3 < 16 R*. Since

Zz[yﬂ—m—xtut ) < 0] o — i’ <3 max(0,b— (1 o — ) ;

t=1
we thus have the result in the theorem O

16R*  16R*
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