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ABSTRACT 

The inadequacy of the maximum-likelihood criterion for 
emission image reconstruction has spurred the develop- 
ment of several regularization methods. Despite the spatial 
variance of medical images, most of the proposed meth- 

penalty is analogous to the “weighted-splines” approach 
described in [a] for a Gaussian noise model. This regular- 
izer leads to an optimality criterion with an analytically 
intractable M-step, SO we apply a variant of the GEM [3] 
iterative method. These points are considered in detail in 
Section 11. .~ 

ods are spatially invariant. This paper reports an inves- 
tigation of a spatially-variant penalized-likelihood method 
for tomographic image reconstruction based on a weighted 
Gibbs penalty. The penalty weights are determined 
from structural side information, such as the locations of 
anatomical boundaries in high-resolution magnetic reso- 
nance images. Such side information will be imperfect in 
practice, and a simple simulation demonstrates the impor- 
tance of accounting for the errors in boundary locations. 
We discuss methods for prescribing the penalty weights 
when the side information is noisy. Simulation results sug- 
gest that even imperfect side information is useful for guid- 
ing spatially-variant regularization. 

I. INTRODUCTION 

Many investigators have noted the inadequacy of the 
maximum-likelihood (ML) criterion for emission image re- 
construction, and have proposed regularization techniques 
that stabilize the emission estimate. Most such methods 
are spatially invariant; however, the spatial variance typi- 
cal of medical images argues for the use of spatially-variant 
reconstruction methods. This paper proposes using side in- 
formation, such as the locations of anatomical boundaries 
obtained from magnetic resonance (MR) images, to con- 
trol a spatially-variant penalized-likelihood method based 
on weighted Gibbs functions. An important feature of this 
method is that it can accommodate imperfect side infor- 
mation. 

The method described is a synthesis of three recent ad- 
vances in emission image reconstruction. The measure- 
ment model includes the effects of attenuation and ac- 
cidental coincidences, the importance of which is shown 
in [l]. The use of spatially-variant weights for a Gibbs 

The approach taken here is to use the side information 
to generate Gibbs penalty weights that are then held fixed 
for the duration of the estimation process. A more so- 
phisticated approach might allow the weights to vary with 
iteration. One such method involves supplementing the 
emission intensity parameters with parameters represent- 
ing a “line process” [4-81. These powerful techniques have 
demonstrated the capability of accommodating large reg- 
istration errors in computer simulations. However, since 
the number of unknown parameters is at  least tripled over 
the case of fixed weights, they are necessarily more com- 
putationally expensive. Also, the convergence properties 
of the associated algorithms are less well understood than 
the weighted GEM algorithm we propose. We believe that 
as MR-PET registration methods improve, there will be a 
class of applications, particularly in neurological imaging, 
where the simpler approach described in this paper will be 
adequate. 

The benefits of structural side information, such as 
might be derived from MR images, will clearly be task 
dependent. Therefore, in this paper we depart from the 
conventional global performance criteria, such as likelihood 
or global mean-square error, and focus on a specific local 
figure-of-merit: the accuracy of quantifying total uptake 
within a small region of interest (ROI) surrounded by re- 
gions of relatively higher activity. Since the results of such 
a study will be context dependent, we have chosen a con- 
text that has significance to clinical investigators at our 
institution: quantifying tracer uptake within the globus 
pallidus and the putamen for patients with Huntington’s 
Disease from position emission tomographic (PET) mea- 
surements of regional benzodiazepine receptor density ob- 
tained by injection of [”C] flumazenil [9,  lo]. These small 
neurological structures (see Figure 8) are poorly quanti- 
fied by conventional filtered back-projection images, due 

boundaries of these structures are obtainable from MR 
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images, so an iterative reconstruction method that can ex- 
ploit such side information could be beneficial. 

Section I1 describes the basic models and method, which 
we have applied to both a representative one-dimensional 
profile and to a realistic two-dimensional computer phan- 
tom with regional activities that correspond to autoradio- 
graphic data. Sections I11 and IV report the simulation 
results. Section V discusses the future directions of this 
research. 

11. METHOD 

A .  Measurement model 
Accurate quantification requires the use of an accurate 
measurement model. In particular, as shown in [ l ] ,  one 
should account for the effects of attenuation and acciden- 
tal coincidences in PET by including them in the mea- 
surement model, rather than by precorrecting the mea- 
surements. Precorrection destroys the Poisson nature of 
the measurements. 

For simplicity, we adopt the voxelized object model, 
and denote the rate of activity in the bth voxel by A b ,  

b = 1 , .  . . , B. The PET system consists of D detector pairs. 
Let p d b  denote the point-spread function (PSF) of the PET 
system, i.e., p d b  is the probability that,  in the absence of 
attenuation, an event from the bth voxel is detected by 
the dth detector pair, conditioned on it being detected. 
Thus x d = l p d b  = 1 .  Let q b  denote the overall detection 
probability for an event originating in the bth voxel, in the 
absence of attenuation. Let p d  denote the survival prob- 
ability for the dth detector pair, i.e., the probability that 
both of an annihilation-produced pair of photons emitted 
along the d detector pair tube are detected (not attenu- 
ated). Let r d  denote the rate of accidental coincidences 
for the dth detector pair. Then if Y d  denotes the number 
of events counted by the dth detector pair, we assume the 
y d ’ s  have independent Poisson distributions: 

D 

B 

Y d  POiSSOn(T ‘ (E a d b X b  + r d ) ) ,  ( 1 )  
b = l  

where T is the product of the scan time and correction fac- 
tors such as that for radioactive decay, and a d b  = P d p d b q b .  

For simplicity, we absorb T into A b  and r d .  

B. Regularizing Penalty Function 
Although one could use ( 1 )  to define an estimation method 
based on the ML criterion, the resulting estimates have ex- 
cessive variance for the specific tasks we are considering, 
as we show in simulations below. By considering instead 
an optimality criterion that is the difference between the 
log-likelihood and a penalty function that discourages ex- 
cessive variation between neighboring voxels, one can sig- 
nificantly reduce the variance with only a small increase 
in bias, thereby reducing the total RMS error. How much 

bias is tolerable is clearly task dependent, and is a subject 
needing further investigation. 

One’s choice for the penalty function again will be task 
dependent. Our hypothesis was that the task of quanti- 
fying uptake within a small cold spot would benefit from 
a spatially-variant penalty function, so a weighted Gibb’s 
function is a natural choice. Specifically, we consider the 
following penalized-likelihood estimate: 

i = arg max @(A) 
x 

@(A) = -1’AX + y’log(AA + r) - aV(X) ,  (2) 

where 1 is the column vector of ones of length D, A = 
{ a d b } ,  A = [A , , .  . . , A B ] ,  r = [ r l , .  . . , r D ] ,  and y = 
[ y l , .  . . , y o ] .  The weighted Gibb’s function V is defined 
by: 

1 
2 . .  

V(X) = - W j , j ( A i  - A i ) ?  
1 J 

The weights W ~ J  control the influence of the penalty. If 
the presence of an anatomical boundary in an MR im- 
age implies that the activities in two neighboring voxels 
are likely to be disparate, then the corresponding weight 
should be set relatively small, so as to avoid penalizing the 
discrepancy. Such a scheme reduces the “edge artifact” of 
spatially-invariant regularization [I 13.  It is important to 
note that this weighting method does not force uniformity 
within anatomical regions. 

In case of perfect side information, one would set wi,j  
to one for neighboring pixel pairs that do not straddle a 
boundary, and all other wj,j’s to zero. In practice, side 
information will be imperfect due to noise in MR images, 
registration errors, and discrepancies between anatomical 
and functional boundaries. As we demonstrate empirically 
in Section 111, it is essential to account for such errors. The 
weighted Gibbs penalty method lends itself naturally to 
the following approach: we first use the side information 
to generate weights that would be optimal if the bound- 
aries were perfect, and then blur or dilate the weights with 
a kernel whose width corresponds to the uncertainty in the 
side information. Though this is not necessarily the opti- 
mal method for accommodating imperfect side information 
(cf [ 1 2 ] ) ,  it has yielded reasonable results in simulations. 

C. Iterative Algorithm 
Historically, the use of objective functions such as (a),  with 
its Gibbs penalty, has been hampered by the slow con- 
vergence of the associated stochastic maximization proce- 
dures or by the uncertain behavior of locally convergent 
methods. Following the usual estimate-maximize (EM) al- 
gorithm derivation, one can show that the E step for (2) 
is: 

B 

y d ( x 2 )  = a d b x ;  + r d ,  
b=l  

n i b  = Y d  a db / Y d  ( x i )  , 
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where Ai denotes the emission estimate after the ith itera- 
tion, and n ib  is the conditional expectation of the number 
of events in the dth detector due to the bth voxel. The M 
step requires maximizing: 

D B  

d=l b = l  

over Ai+'. The resulting coupled set of equations ap- 
pears to have no analytical solution. We experimented 
with the "one step late" (OSL) method of Green 1131, 
but found the necessity of line-search operations [14] to 
be computationally prohibitive. We have adopted the gen- 
eralized estimate-maximize (GEM) method of Hebert and 
Leahy [3,15], which, although originally applied to SPECT, 
is also applicable to the PET measurement model (1).  Ze- 
roing the derivative of (3) with respect to Xi+' yields: 

D 

(4) 
The GEM approach is to first set Xi+' = A i  for all b, then 
to loop through the b's in some order and to replace Xi" 
with the unique positive root of (4). After considering the 
discussion in [16], we chose the following ordering for our 
one-dimensional simulations: on even iterations, the even 
voxels are updated first, and then the odd voxels are up- 
dated; the opposite order holds for odd iterations. Unlike 
the method in [16], this is guaranteed to increase the penal- 
ized likelihood each iteration [3]. For the two-dimensional 
simulations, we applied the raster-scan order of [3]. 

The convergence of the GEM algorithm has been ad- 
dressed in [3,14], under the assumption that the penalized 
log-likelihood (2) is a strictly convex function of A. This 
was established in [14] by showing that the log-likelihood 
(for a SPECT measurement model) is convex, and the 
penalty term is strictly convex. In our case, it is possi- 
ble that several weights could be set to zero, in which case 
the penalty term may not be strictly convex (although it 
would remain convex). Fortunately, the presence of acci- 
dental coincidences in PET ensures that the log-likelihood 
term is strictly convex, provided the matrix A has full 
column rank [17]. 

111. 1D SIMULATION 

To explore the possible benefits of spatially-variant regu- 
larization in the presence of imperfect structural side in- 
formation, we performed simulations based on the one- 
dimensional profile shown in Figure 1. This profile is 
representative of the flumazenil quantification task. The 
nonuniform cold spot represents the putamen, which is ad- 
jacent to the globus pallidus and the cortex, both of which 
have significantly higher activity. For this simulation, the 
diameter of the cold spot is 7 pixels. The system matrix 
A corresponds to a triangular point spread function with 

a FWHM of 5 pixels. A typical measurement realization 
y is shown in Figure 2. 

Our task is to quantify the total uptake within the cold 
spot. This task requires two components: 1) reconstruct- 
ing the activity distribution from the noisy measurements, 
and 2) identifying the boundaries of the region of interest 
(ROI) and integrating the activity within that ROI. Here 
we focus only on the first task by integrating the activity 
within the true ROI (pixels 33 through 39) for all simula- 
tions. 

We have examined the performance of the GEM recon- 
struction method as a function of the regularization pa- 
rameter a in four scenarios. For each scenario and for each 
value of a, 50 measurement realizations were reconstructed 
via 1000 iterations of the GEM algorithm. 

0 Case 1: No side information was available, so all the 
weights wb were set to 1. This corresponds to conven- 
tional spatially-invariant regularization. 

0 Case 2: Perfect side information corresponding to the 
edge locations was used. Specifically, ~ 3 2  = w39 = 0, 
and all other weights were set to 1. Thus, the weights 
for pixel pairs that straddled an edge of the cold spot 
were set to 0, thereby reducing spill over. 

0 Case 3: Imperfect side information was simulated. Let 
bl and b, denote the left and right edges of the cold 
spot as they might be determined from an MR im- 
age. (These two values are the side information). For 
each realization, bl was randomly selected from the 
set {31,32,33},  and b, was randomly selected from 
the set {38,39,40}.  For Case 3, the side information 
was applied "blindly," i.e., we set wbl = Wb, = 0 and 
all other weights to 1, despite the fact that 61 and b, 
are usually incorrect. 

0 Case 4: Imperfect side information with the same er- 
ror distribution as in Case 3. However, for Case 4 we 
made the following heuristic attempt to account for 
the errors in bl and b,: we set wb,-l = Wb, = wb1+1 = 
wb,-l = Wb, = Wb,+l = 0.01, and all other weights 
to 1. This small band of weights corresponds to a 
dilation of the ideal weights, and allows for a rapid 
activity transition in the neighborhood of edge loca- 
tion specified by the noisy side information. 

Figure 3 displays the percent root mean-square (RMS) 
error in total uptake within the cold spot as a function of 
the regularization parameter a.  The optimal performance 
of each method is summarized in Table I. It is useful to 
compare the mean of the 50 reconstructions for each case 
with the true activity distribution; these are shown in Fig- 
ures 4-7. The dotted bands around each curve represent 
one standard deviation above and below the mean. The 
curve for each case corresponds to the value aopt shown in 
Table I that minimized the RMS error. The four cases il- 
lustrate the tradeoff between bias and variance: Case l has 
high variance, but additional smoothing would cause more 
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increase in bias than decrease in variance. Case 2 has low 
variance and low bias since the edges are known perfectly. 
Case 4 improves over Case 3 by significantly reducing the 
bias with slight increase in variance. 

Iv. 2D SIMULATION 

The one-dimensional simulation results encouraged our 
proceeding to evaluate the method on a realistic computer 
phantom. Figure 8 shows the true emission distribution 
used for this study. The anatomical boundaries in this 
image were obtained by manually tracing a photographic 
atlas. The regional emission intensities were assigned rel- 
ative values based on autoradiographic measurements. 

The simulated PET measurements included the effects 
of nonuniform attenuation (due to skull), accidental co- 
incidences (RZ 8%), and finite detector response (6” 
FWHM). We assumed the survival probabilities and ac- 
cidental coincidence rates were known. (However, our 
method has been implemented in conjunction with the 
joint-likelihood method of [18] that accounts for noise in 
transmission measurements). Each PET measurement re- 
alization contained approximately lo6 total counts, dis- 
tributed over 100 angles by 64 bins. The reconstructed 
object size was 50 x 64 pixels with 4mm sides. 

For each reconstruction method shown in the figures, 30 
pseudo-random Poisson distributed realizations were re- 
constructed. For each realization, the total uptake within 
the true region of support for the globus pallidus and 
putamen were computed. The conventional filtered back- 
projection reconstructions are shown in Figure 8, for both 
a ramp filter, and a Hanning-windowed ramp filter with a 
cutoff at  the Nyquist frequency. The percent bias, stan- 
dard deviation, and root mean-square (RMS) error are 
summarized in Table 11. The iterative methods were ran 
for 300 iterations, with the total uptake computed for every 
fifth iteration. The resulting bias and variance are plotted 
as trajectories in Figures 10-12. The semi-ellipses in those 
figures correspond to contours of constant RMS error. 

We compared three iterative methods: sieve-constrained 
EM algorithm [ll], weighted Gibbs penalty GEM with per- 
fect side information, and GEM with blurred weights. The 
latter case corresponds to degrading the perfect side infor- 
mation with a 6mm FWHM kernel-this figure is compa- 
rable to recently published MR-PET registration accura- 
cies. Each method was evaluated for several values of the 
regularization parameter a. The sieve-constrained EM al- 
gorithm was evaluated for larger kernel sizes than 4mm 
FWHM, but the resulting uptake estimates had signifi- 
cantly worse RMS error. Sieve-constrained EM is a spa- 
tially invariant method, and therefore does not reduce spill 
over into the small ROI’s considered here. Figure 9 dis- 
plays representative reconstructions for the three iterative 
methods. Table I1 summarizes the error statistics for the 
different methods at  the 300th iteration. 

V. DISCUSSION 

The results summarized in Tables I and I1 demonstrate 
that the use of structural side information, in conjunction 
with a spatially variant reconstruction method, can signif- 
icantly reduce RMS error over spatially invariant regular- 
ization. In the one-dimensional case, the RMS error was 
reduced by almost a factor of 3 with the use of perfect side 
information. For the two-dimensional simulation, the RMS 
error in uptake within the globus pallidus was reduced by 
over a factor of 4. However, the one-dimensional results 
clearly demonstrate that if the side information is imper- 
fect, then using it “blindly” is unlikely to be significantly 
beneficial for this type of quantification task. In the one- 
dimensional example, we applied a simple heuristic scheme 
(weight dilation) to account for the uncertainty in the side 
information, and were able to recover some of the bene- 
fits of the side information, despite its imperfections. The 
results with blurred weights for the two-dimensional case 
are less impressive, and more investigation into how to ef- 
ficiently use imperfect side information is clearly needed. 
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Figure 3: Percent RMS error for the four cases versus a.  Case 1 (.), Case 2 (-), Case 3 (-.), Case 4 (- -) 
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Figure 4: True activity (-), mean reconstruction (o) ,  and 
pointwise standard deviation (.) for Case 1. 
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Figure 5: True activity (L), mean reconstruction (o ) ,  and 
pointwise standard deviation (.) for Case 2. 
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Figure 6: True activity (-), mean reconstruction (o),  and 
pointwise standard deviation (.) for Case 3. 

Figure 7: True activity (-), mean reconstruction (o), and 
pointwise standard deviation (.) for Case 4. 
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9 

Method Globus Pallidus 
bias c RMS 

FBP-RamD -47.0 6.2 47.4 

..... 

.'W.' 

Putamen 
bias B RMS 
-8.2 6.9 10.7 

Figure 8: Left: Simulated activity distribution. Middle: Filtered back-projection reconstruction with a ramp filter. 
Right: Filtered back-projection reconstruction with a Hanning window (cutoff at Nyquist frequency). 

FBP-Hanning window 
Sieve-constrained EM. 4mm 

Figure 9: Left: Sieve-constrained EM reconstruction, FWHM=4mm. Middle: GEM reconstruction with perfect weights. 
Q = eb2. Right: GEM reconstruction with blurred weights. a = e-'. 

-56.2 3.6 56.3 I -2.5 4.9 5.5 
-39.6 9.1 40.6 1 -21.0 6.1 21.8 ~ I 

GEM, ideal weights, CY = e-5 
GEM, ideal weights, Q = e-' 
GEM, ideal weights, a = e' 
GEM, blurred weights, Q = e-' 
GEM, blurred weights, Q = e-' 

I 1  

-14.4 14.8 20.7 -14.8 10.7 18.3 
-3.3 11.2 11.7 -5.7 11.3 12.7 
-4.6 9.5 10.6 -8.5 10.5 13.5 

-48.4 4.2 48.6 -24.7 4.6 25.1 
-35.6 6.9 36.3 -18.0 9.1 20.2 

Table 11: Percent bias, standard deviation, and root mean-square (RMS) error for the total uptake within the two 
regions. The standard errors for these statistics are about f2%. The iterative methods show significant improvement 
for the smaller region (globus pallidus), but are unimpressive for the larger region (putamen). 
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Figure 10: Bias-vs-variance for 4mm sieve-constrained EM reconstructions. Left: globus pallidus. Right: putamen. 
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Figure 11: Bias-vs-variance for GEM reconst,ruct,ions wit,h ideal weights (a = e - 2 ) .  Left: globus pallidus. Right: 
putamen. 
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Figure 12: Bias-vs-variance for GEM reconstructions with blurred weights ( a  = e - 7 ) .  Left: globus pallidus. Right: 
putamen. 


