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REGULARIZED ESTIMATION IN SPARSE HIGH-DIMENSIONAL
TIME SERIES MODELS

BY SUMANTA BASU AND GEORGE MICHAILIDIS1

University of Michigan

Many scientific and economic problems involve the analysis of high-
dimensional time series datasets. However, theoretical studies in high-
dimensional statistics to date rely primarily on the assumption of independent
and identically distributed (i.i.d.) samples. In this work, we focus on
stable Gaussian processes and investigate the theoretical properties of
�1-regularized estimates in two important statistical problems in the con-
text of high-dimensional time series: (a) stochastic regression with serially
correlated errors and (b) transition matrix estimation in vector autoregressive
(VAR) models. We derive nonasymptotic upper bounds on the estimation er-
rors of the regularized estimates and establish that consistent estimation under
high-dimensional scaling is possible via �1-regularization for a large class of
stable processes under sparsity constraints. A key technical contribution of
the work is to introduce a measure of stability for stationary processes using
their spectral properties that provides insight into the effect of dependence on
the accuracy of the regularized estimates. With this proposed stability mea-
sure, we establish some useful deviation bounds for dependent data, which
can be used to study several important regularized estimates in a time series
setting.

1. Introduction. Recent advances in information technology have made
high-dimensional time series data sets increasingly common in numerous appli-
cations. Examples include structural analysis and forecasting with a large number
of macroeconomic variables [De Mol, Giannone and Reichlin (2008)], reconstruc-
tion of gene regulatory networks from time course microarray data [Michailidis
and d’Alché-Buc (2013)], portfolio selection and volatility matrix estimation in
finance [Fan, Lv and Qi (2011)] and studying co-activation networks in human
brains using task-based or resting state fMRI data [Smith (2012)]. These appli-
cations require analyzing a large number of temporally observed variables using
small to moderate sample sizes (number of time points), and the techniques used
for the respective learning tasks include classical regression, vector autorgres-
sive modeling and covariance estimation. Meaningful inference in such settings
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is often impossible without imposing some lower-dimensional structural assump-
tion on the data generating mechanism, the most common being that of sparsity
on the model parameter space. In high-dimensional regression and VAR prob-
lems, the notion of sparsity is often incorporated into the estimation procedure by
�1-penalization procedures like lasso and its variants [Bickel, Ritov and Tsybakov
(2009), van de Geer, Bühlmann and Zhou (2011)], while for covariance matrix es-
timation problems, sparsity is enforced via hard thresholding [Bickel and Levina
(2008)].

Theoretical properties of such regularized estimates under high-dimensional
scaling have been investigated in numerous studies over the last few years, under
the key assumption that the samples are independent and identically distributed
(i.i.d.). On the other hand, theoretical analysis of these estimates in a time series
context, where the data exhibit temporal and cross-sectional dependence, is rather
incomplete. A central challenge is to assess how the underlying dependence struc-
ture affects the performance of these regularized estimates.

In this paper, we focus on stationary Gaussian time series and use their spec-
tral properties to propose a measure of stability. Using this measure of stability,
we establish necessary concentration bounds for dependent data and study, in a
nonasymptotic framework, the theoretical properties of regularized estimates in
the following key statistical models: (a) �1-penalized sparse stochastic regression
with exogenous predictors and serially correlated errors and (b) �1-penalized least
squares and log likelihood based estimation of sparse VAR models. We estab-
lish nonasymptotic upper bounds on the estimation error and show that lasso can
perform consistent estimation in high-dimensional settings under a mild stability
assumption on the underlying processes that is common in the classical literature
of low-dimensional time series. Our results also provide new insights into how the
convergence rates are affected by the presence of temporal dependence in the data.

Next, we introduce the two models analyzed in this paper and highlight the main
contributions of our work to the existing literature. Although the main interest of
this work is to study VAR models in high dimensions, a key stepping stone to
our analysis comes from stochastic regression models, which are of independent
interest.

Stochastic regression. We start with this canonical problem in time series anal-
ysis [Hamilton (1994)], a linear regression model of the form

yt = 〈
β∗,Xt 〉 + εt , t = 1, . . . , n,(1.1)

where the p-dimensional predictors {Xt } and the errors {εt } are generated accord-
ing to independent, centered, Gaussian stationary processes. Under a sparsity as-
sumption on β∗, we study the properties of the lasso estimate

β̂ = argmin
β∈Rp

1

n
‖Y −Xβ‖2 + λn‖β‖1,(1.2)
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where Y = [yn : . . . : y1]′, X = [Xn : . . . : X1]′ and ‖β‖1 = ∑p
j=1 |βj |. Theoretical

properties of lasso have been studied for fixed design regression Y = Xβ∗ + E,
with E = [en : . . . : e1]′, by several authors [Bickel, Ritov and Tsybakov (2009),
Loh and Wainwright (2012), Negahban et al. (2012)]. They establish consistency
of lasso estimates in a high-dimensional regime under some form of restricted
eigenvalue (RE) or restricted strong convexity (RSC) assumption on S = X ′X /n

and suitable deviation conditions on X ′E/n.
In general, for a given design matrix X , verifying that X satisfies an RE con-

dition [Dobriban and Fan (2013)] is an NP-hard problem. In the case where the
rows of X are independently generated from a common Gaussian/sub-Gaussian
ensemble, these assumptions are known to hold with high probability under mild
conditions [Raskutti, Wainwright and Yu (2010), Rudelson and Zhou (2013)]. It
is not clear, however, whether similar regularity conditions are satisfied with high
probability when the observations are dependent.

Asymptotic properties of lasso for high-dimensional time series have been con-
sidered by [Loh and Wainwright (2012), Wu and Wu (2014)], and we provide
detailed comparisons with those studies in Section 3. In short, these works either
assume RE conditions or establish their validity within a very restricted class of
VAR(1) models, as illustrated in Figure 1 and Lemma E.2 in Appendix E (supple-
mentary material [Basu and Michailidis (2015)]).

A major contribution of the present study is to establish the validity of suitable
RE and deviation conditions for a large class of stationary Gaussian processes {Xt }
and {εt }. As a result, this work extends existing results to a much larger class of
time series models and provides deeper insights into the effect of dependence on
the estimation error of lasso.

Vector autoregression (VAR) represents a popular class of time series models in
applied macroeconomics and finance, widely used for structural analysis and si-
multaneous forecasting of a number of temporally observed variables [Bernanke,
Boivin and Eliasz (2005), Sims (1980), Stock and Watson (2005)]. Unlike struc-
tural models, VAR provides a broad framework for capturing complex temporal
and cross-sectional interrelationship among the time series [Bańbura, Giannone
and Reichlin (2010)]. In addition to economics, VAR models have been instrumen-
tal in linear system identification problems in control theory [Kumar and Varaiya
(1986)], while more recently, they have become standard tools in functional ge-
nomics for reconstruction of regulatory networks [Michailidis and d’Alché-Buc
(2013), Shojaie and Michailidis (2010)] and in neuroscience for understanding ef-
fective connectivity patterns between brain regions [Friston (2009), Seth, Chorley
and Barnett (2013), Smith (2012)].

Formally, for a p-dimensional vector-valued stationary time series {Xt } =
{(Xt

1, . . . ,X
t
p)}, a VAR model of lag d [VAR(d)] with serially uncorrelated Gaus-

sian errors takes the form

Xt = A1X
t−1 + · · · + AdXt−d + εt , εt i.i.d.∼ N(0,�ε),(1.3)



1538 SUMANTA BASU AND GEORGE MICHAILIDIS

where A1, . . . ,Ad are p ×p matrices and εt is a p-dimensional vector of possibly
correlated innovation shocks. The main objective in VAR models is to estimate
the transition matrices A1, . . . ,Ad , together with the order of the model d , based
on realizations {X0,X1, . . . ,XT }. The structure of the transition matrices provides
insight into the complex temporal relationships amongst the p time series and leads
to efficient forecasting strategies.

VAR estimation is a natural high-dimensional problem, since the dimensionality
of the parameter space (dp2) grows quadratically with p. For example, estimating
a VAR(2) model with p = 20 time series requires estimating dp2 = 800 parame-
ters. However, a comparable number of stationary observations is rarely available
in practice. In the low-dimensional setting, VAR estimation is carried out by refor-
mulating it as a multivariate regression problem [Lütkepohl (2005)]. Under high-
dimensional scaling and sparsity assumptions on the transition matrices, a natural
strategy is to resort to �1-penalized least squares or log-likelihood based methods
[Davis, Zang and Zheng (2012), Song and Bickel (2011)].

Compared to stochastic regression, theoretical analysis of large VAR requires
two important considerations. First, since the response variable is multivariate,
the choice of the loss function (least squares, negative log-likelihood) plays an
important role in estimation and prediction, especially when the multivariate er-
ror process has correlated components. Second, correlation of the error process
with the process of predictors Cov(Xt , εt ) �= 0 makes the theoretical analysis more
involved. Existing work on high-dimensional VAR models requires stringent as-
sumptions on the dependence structure [Song and Bickel (2011)], or on the transi-
tion matrix [Negahban and Wainwright (2011)], which are violated by many stable
VAR models, as discussed in Section 4. Our results show that consistent estimation
is possible with �1-penalization for both least squares and log-likelihood based
choices of loss functions under high-dimensional scaling for any stable VAR(d)

models. Interestingly, the latter choice of loss function leads to an M-estimation
problem that does not fit into the stochastic regression framework. As in the case
of stochastic regression, we establish the validity of suitable restricted eigenvalue
and deviation conditions using the stability measures introduced in this work.

A central theme of our theoretical results is that the effect of dependence on
the behavior of these regularized estimates can be nicely captured by the spectral
properties of the underlying multivariate processes. In particular, we show that
the estimation error of lasso in the time series models scales at the same rate
as for i.i.d. data, modulo a “price” of dependence, which can be interpreted as
a measure of “narrowness” of the underlying spectra. This agrees with a funda-
mental phenomenon in the signal processing literature—a flatter autocorrelation
function (slower decay of temporal dependence) corresponds to a narrower spec-
trum and vice versa. Moreover, for linear ARMA models, our spectral approach
has an added advantage of interpretability, since the spectral density of this class
allows a closed form expression in terms of the model parameters.
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At the core of our theoretical results are some novel deviation bounds for de-
pendent data established in Section 2. These deviation bounds serve two important
purposes. First, they help verify routinely used restricted eigenvalue and devia-
tion conditions used in the lasso literature for a large class of time series models
and help develop a theory independent of abstract regularity assumptions. Second,
these deviation bounds are general enough to seamlessly integrate with the ex-
isting theory of other regularization mechanisms and hence extend the available
results to time series setting. Examples include sparse covariance estimation via
hard thresholding, nonconvex penalties like SCAD and MCP for sparse modeling,
group lasso for structured sparsity and nuclear norm minimization for low-rank
modeling, as discussed in Section 7. It is worth noting that many of these regu-
larization mechanisms have been applied on time series data with good empirical
performance [Bickel and Levina (2008), Fan, Lv and Qi (2011), Song and Bickel
(2011)].

Outline of the paper. The remainder of the paper is organized as follows. In
Section 2, we first demonstrate via simulation how lasso errors scale in low and
high-dimensional regimes for time series data which motivates the proposed stabil-
ity measure, discuss relevant spectral properties of stationary processes, introduce
our measures of stability and present the main deviation bounds used in subsequent
analyses. In Section 3 we derive nonasymptotic upper bounds on the estimation er-
ror of lasso in stochastic regression with serially correlated errors. Section 4 is de-
voted to the modeling, estimation and theoretical analysis of sparse VAR models.
We examine both least squares and likelihood based regularized estimation of VAR
models and their consistency properties. In Section 5, we discuss extensions of the
current framework to other regularized estimation problems in high-dimensional
time series models. Finally, Section 6 illustrates the performance of lasso estimates
in stochastic regression and VAR estimation through simulation studies. We dele-
gate many of the technical proofs to the Appendices in the supplement [Basu and
Michailidis (2015)].

Notation. Throughout this paper, Z, R and C denote the sets of integers, real
numbers and complex numbers, respectively. We denote the cardinality of a set by
J by |J |. For a vector v ∈ Rp , we denote �q norms by ‖v‖q := (

∑p
j=1 |vj |q)1/q ,

for q > 0. We use ‖v‖0 to denote | supp(v)| = ∑p
i=1 1[vj �= 0] and ‖v‖∞ to denote

maxj |vj |. Unless mentioned otherwise, we always use ‖ · ‖ to denote �2-norm of
a vector v. For a matrix A, ρ(A), ‖A‖ and ‖A‖F will denote its spectral radius
|�max(A)|, operator norm

√
�max(A′A) and Frobenius norm

√
tr(A′A), respec-

tively. We will also use ‖A‖max, ‖A‖1 and ‖A‖∞ to denote the coordinate-wise
maximum (in absolute value), maximum absolute row sum and maximum abso-
lute column sum of a matrix, respectively. For any p ≥ 1, q ≥ 0, r > 0, we denote
the unit balls by Bq(r) := {v ∈ Rp :‖v‖q ≤ r}. For any J ⊂ {1, . . . , p} and κ > 0,
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we define the cone set C(S, κ) = {v ∈ Rp :‖vSc‖1 ≤ κ‖vS‖1} and the sparse set
K(s) = B0(s) ∩ B2(1), for any s ≥ 1. For any set V , we denote its closure and
convex hull by cl{V } and conv{V }. For a symmetric or Hermitian matrix A, we
denote its maximum and minimum eigenvalues by �min(A) and �max(A). We use
ei to denote the ith unit vector in Rp . Throughout the paper, we write A � B if
there exists an absolute constant c, independent of the model parameters, such that
A ≥ cB . We use A � B to denote A� B and B � A.

2. Deviation bounds for multivariate Gaussian time series.

2.1. Effect of temporal dependence on lasso errors. Whereas in classical
asymptotic analysis of time series, the quantification of temporal dependence and
its impact on the limiting behavior of the model parameter estimates are typically
achieved by assuming some mixing condition on the underlying stochastic pro-
cess, this route is hard to follow in a high-dimensional context, even for stan-
dard ARMA processes. In recent work, Wu and Wu (2014) and Chen, Xu and Wu
(2013) investigate the asymptotic properties of lasso and covariance thresholding
in the time series context, assuming a specific rate of decay on the functional de-
pendence measure [Wu (2005)] of the underlying stationary process. For VAR(1)

processes Xt = A1X
t−1 +εt , the mixing rates and the functional dependence mea-

sure are known to scale with the spectral radius ρ(A) [Chen, Xu and Wu (2013),
Liebscher (2005)]. The following two simulation experiments show that depen-
dence in the data affect the convergence rates of lasso estimates in a more intricate
manner, not completely captured by ρ(A). Further, several authors [Han and Liu
(2013), Loh and Wainwright (2012), Negahban and Wainwright (2011)] conducted
nonasymptotic analysis of high-dimensional VAR(1) models, assuming ‖A‖ < 1.
In Appendix E (supplementary material [Basu and Michailidis (2015)]) (see Fig-
ure 1 and Lemma E.2), we show that this assumption is restrictive and is violated
by many stable VAR(1) models. More importantly, such an assumption does not
generalize beyond VAR(1).

EXAMPLE 1. We generate data from the stochastic regression model (1.1)
with p = 200 predictors and i.i.d. errors {εt }. The process of predictors comes from
a Gaussian VAR(1) model Xt = AXt−1+ξ t , where A is an upper triangular matrix
with α = 0.2 on the diagonal and γ on the two upper off-diagonal bands. We
generate processes with different levels of cross-correlation among the predictors
by changing γ and plot the average estimation error of lasso (over multiple iterates)
against different sample sizes n in Figure 1.

The spectral radius is common (α = 0.2) across all models. Consistently with
the classical low-dimensional asymptotics, the lasso errors for different processes
seem to converge as n goes to infinity. However, for small to moderate n, as is
common in high-dimensional regimes, lasso errors are considerably different for
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FIG. 1. Estimation error of lasso in stochastic regression. Top panel: Example 1, VAR(1) process of
predictors with cross-sectional dependence. Bottom panel: Example 2, VAR(2) process of predictors
with no cross-sectional dependence.

different processes. Capturing the effect of cross-dependence via ‖A‖ < 1 has lim-
itations, as discussed above. We also see that the errors decay even when ‖A‖ ex-
ceeds 1. This motivates a new approach to capture the cross-dependence among
the univariate components.

EXAMPLE 2. Even in the absence of cross-dependence, lasso errors exhibit
interesting behavior in different regimes, as we show in the next example. Here
we generate a similar regression model with p = 500 predictors, each generated
independently from a Gaussian VAR(2) process Xt

j = 2αXt
j−1 − α2Xt

j−2 + ξ t ,
0 < α < 1, X(0) = 1. The assumption ‖A‖ < 1 is not applicable here. The pro-
cesses with different α exhibit different behavior for small to moderate n, as pre-
dicted by their mixing rates and the functional dependence measures, although it
seems the effect of this dependence is significantly reduced when the sample size
is large (Figure 1).

These examples motivate us to introduce a different measure to quantify depen-
dence that reconciles the observed behavior of the lasso errors.

2.2. Measure of stability. Consider a p-dimensional discrete time, centered,
covariance-stationary process {Xt }t∈Z with autocovariance function X(h) =
Cov(Xt ,Xt+h), t, h ∈ Z. We make the following assumption:
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ASSUMPTION 2.1. The spectral density function

fX(θ) := 1

2π

∞∑
�=−∞

X(�)e−i�θ , θ ∈ [−π,π ](2.1)

exists, and its maximum eigenvalue is bounded a.e. on [−π,π ], that is,

M(fX) := ess sup
θ∈[−π,π ]

�max
(
fX(θ)

)
< ∞.(2.2)

We will often write f instead of fX and  instead of X , when the underly-
ing process is clear from the context. Existence of the spectral density is guaran-
teed if

∑∞
l=0 ‖(l)‖2 < ∞. Further, if

∑∞
l=0 ‖(l)‖ < ∞, then the spectral density

is bounded, continuous and the essential supremum in the definition of M(fX)

is actually the maximum. Assumption 2.1 is satisfied by a large class of general
linear processes, including stable, invertible ARMA processes [Priestley (1981)].
Moreover, the spectral density has a closed form expression for these processes, as
shown in the following examples.

EXAMPLE. An ARMA(d, �) process {Xt }
Xt = A1X

t−1 + A2X
t−2 + · · · + AdXt−d

(2.3)
+ εt − B1ε

t−1 − B2ε
t−2 − · · · − B�ε

t−�

is stable and invertible if the matrix valued polynomials A(z) := Ip − ∑d
t=1 Atz

t

and B(z) := Ip − ∑�
t=1 Btz

t satisfy det(A(z)) �= 0 and det(B(z)) �= 0 on the unit
circle of the complex plane {z ∈ C : |z| = 1}.

For a stable, invertible ARMA process, the spectral density takes the form

fX(θ) = 1

2π

(
A−1(e−iθ ))B(

e−iθ )�εB∗(e−iθ )(A−1(e−iθ ))∗.(2.4)

In Appendix E (supplementary material [Basu and Michailidis (2015)]), we pro-
vide more details on general linear processes and connection with mixing condi-
tions.

Existence of the spectral density ensures the following representation of the
autocovariance matrices

X(�) =
∫ π

−π
fX(θ)ei�θ dθ for all � ∈ Z.(2.5)

Since the autocovariance function characterizes a centered Gaussian process, it
can be used to quantify the temporal and cross-sectional dependence for this class
of models. In particular, spectral density provides insight into the stability of the
process, as illustrated and explained in the caption of Figure 2. The upshot is that
the peak of the spectral density can be used as a measure of stability of the process.
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FIG. 2. Autocovariance (h) and spectral density f (θ) of a univariate AR(1) process
Xt = ρXt−1 + εt , 0 < ρ < 1, X(0) = 1 = ∫ π−π f (θ) dθ . Processes with stronger temporal de-
pendence, that is, with larger ρ, have flatter  and narrower f . For ρ = 1, the process is unstable,
and the spectral density does not exist. (a) Autocovariance of AR(1), (b) spectral density of AR(1).

More generally, for a p-dimensional time series {Xt }, a natural analogue of the
“peak” is the maximum eigenvalue of the (matrix-valued) spectral density function
over the unit circle, as defined in (2.2).

In our analysis of high-dimensional time series, we will use M(fX) as a mea-
sure of stability of the process. Processes with larger M(fX) will be considered
less stable.

For any k-dimensional subset J of {1, . . . , p}, we can similarly measure the sta-
bility of the subprocess {X(J )} = {(Xt

j ) : j ∈ J }t∈Z as M(fX(J )). We will mea-
sure the stability of all k-dimensional subprocesses of {Xt } using

M(fX, k) := max
J⊆{1,...,p},|J |≤k

M(fX(J )).

Clearly, M(fX) = M(fX,p). For completeness, we define M(fX, k) to be
M(fX), for all k ≥ p. It follows from the definitions that

M(fX,1) ≤ M(fX,2) ≤ · · · ≤ M(fX,p) =M(fX).

If {Xt } and {Y t } are independent p-dimensional time series satisfying Assump-
tion 2.1 and Zt = Xt + Y t , then fZ = fX + fY . Consequently,

M(fZ) = M(fX) +M(fY ).

More generally, for any two p-dimensional processes {Xt } and {Y t }, the cross-
spectral density is defined as

fX,Y (θ) = (1/2π)

∞∑
l=−∞

X,Y (l)e−ilθ , θ ∈ [−π,π ],

where X,Y (h) = Cov(Xt , Y t+h), h ∈ Z. If the joint process Wt = [(Xt)′, (Y t )′]′
satisfies Assumption 2.1, we can similarly define the cross-spectral measure of
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stability

M(fX,Y ) = ess sup
θ∈[−π,π ]

√
�max

(
f ∗

X,Y (θ)fX,Y (θ)
)
.

For studying stochastic regression and VAR problems, we also need the lower
extremum of the spectral density over the unit circle,

m(fX) := ess inf
θ∈[−π,π ]�min

(
fX(θ)

)
.

Since m(fX) captures the dependence among the univariate components of the
vector-valued time series, it plays a crucial role in our analysis of high-dimensional
regression in quantifying dependence among the columns of the design matrix.

For stable, invertible ARMA processes and general linear processes with stable
transfer functions, the spectral density is bounded and continuous. In these cases,
the essential supremum (infimum) in the above definitions of m(fX) and M(fX)

reduce to maximum (minimum) because of the continuity of eigenvalues and the
compactness of the unit circle {z ∈ C : |z| = 1}.

Note that m(fX) and M(fX) may not have closed form expressions for general
stationary processes. However, for a stationary ARMA process (2.3), we have the
following bounds:

m(fX) ≥ 1

2π

�min(�ε)μmin(B)

μmax(A)
,

M(fX) ≤ 1

2π

�max(�ε)μmax(B)

μmin(A)
(2.6)

μmin(A) := min|z|=1
�min

(
A∗(z)A(z)

)
,

μmax(A) := max|z|=1
�max

(
A∗(z)A(z)

)
,

and μmin(B), μmax(B) are defined accordingly.
It is often easier to work with μmin(A) and μmax(A) instead of m(fX) and

M(fX). In particular, we have the following bounds:

PROPOSITION 2.2. Consider a polynomial A(z) = Ip − ∑d
t=1 Atz

t , z ∈ C,
satisfying det(A(z)) �= 0 for all |z| ≤ 1:

(i) For any d ≥ 1, μmax(A) ≤ [1 + (vin + vout)/2]2, where

vin =
d∑

h=1

max
1≤i≤p

p∑
j=1

∣∣Ah(i, j)
∣∣, vout =

d∑
h=1

max
1≤j≤p

p∑
i=1

∣∣Ah(i, j)
∣∣.

(ii) If d = 1, and A1 is diagonalizable, then

μmin(A) ≥ (
1 − ρ(A1)

)2‖P‖−2∥∥P −1∥∥−2
,
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where ρ(A1) is the spectral radius (maximum absolute eigenvalue) of A1, and the
columns of P are eigenvectors of A1.

Proposition 2.2, together with (2.6), demonstrate how m(fX) and M(fX) be-
have for ARMA models. For instance, for a VAR(1) process, these quantities are
bounded away from zero and infinity as long as the noise covariance structure and
the matrix of eigenvectors of A1 are well conditioned, the spectral radius of A1 is
bounded away from 1 and the entries of A1 do not concentrate on a single row or
column. The proof is delegated to Appendix E (supplementary material [Basu and
Michailidis (2015)]).

2.3. Deviation bounds. Based on realizations of {Xt }nt=1 generated according
to a stationary process satisfying Assumption 2.1, we construct the data matrix
X = [Xn : . . . : X1]′ and the sample Gram matrix S = X ′X /n. Deriving suitable
concentration bounds on S is a key step for studying regression and VAR esti-
mation problems in high dimension. In the time series context, this is particularly
challenging, since both the rows and columns of the data matrix X are dependent
on each other. When the underlying process is Gaussian, this dependence can be
expressed using the covariance matrix of the random vector vec(X ′). We denote
this covariance matrix by ϒX

n := Cov(vec(X ′),vec(X ′))np×np .
The next proposition provides bounds on the extreme eigenvalues of ϒX

n and
generalizes analogous results in univariate analysis presented in Xiao and Wu
(2012) and Grenander and Szegö (1958). A similar result for block Toeplitz forms
under slightly different conditions can be found in Parter (1961). Note that these
bounds depend only on the spectral density fX and are independent of the sample
size n.

PROPOSITION 2.3. For any n ≥ 1, p ≥ 1,

2πm(fX) ≤ �min
(
ϒX

n

) ≤ �max
(
ϒX

n

) ≤ 2πM(fX).

In particular, for n = 1,

2πm(fX) ≤ �min
(
X(0)

) ≤ �max
(
X(0)

) ≤ 2πM(fX).

Next, we establish some deviation bounds on S = X ′X /n and X ′E/n. These
bounds serve as starting points for analyzing regression and covariance estimation
problems. In part (a), the first deviation bound shows how ‖Xv‖2/n‖v‖2 concen-
trates around its expectation, where v ∈ Rp is a fixed vector. This will be used to
verify restricted eigenvalue assumptions for stochastic regression and VAR esti-
mation problems. The second deviation bound is about the concentration of the
entries of S around their expectations. This will be useful for estimating sparse
covariance matrices. In part (b), we establish deviation bounds on how X ′Y/n
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concentrates around zero (Y is the data matrix from another process {Y t }). In re-
gression and VAR problems, applying this bound with {Y t } as the error process
enables the derivation of necessary deviation bounds on X ′E/n under different
norms.

PROPOSITION 2.4. (a) For a stationary, centered Gaussian time series
{Xt }t∈Z satisfying Assumption 2.1, there exists a constant c > 0 such that for
any k-sparse vectors u, v ∈Rp with ‖u‖ ≤ 1, ‖v‖ ≤ 1, k ≥ 1, and any η ≥ 0,

P
[∣∣v′(S − X(0)

)
v
∣∣ > 2πM(fX, k)η

] ≤ 2 exp
[−cnmin

{
η2, η

}]
,(2.7)

P
[∣∣u′(S − X(0)

)
v
∣∣ > 6πM(fX,2k)η

] ≤ 6 exp
[−cnmin

{
η2, η

}]
.(2.8)

In particular, for any i, j ∈ {1, . . . , p}, we have

P
[∣∣Sij − ij (0)

∣∣ > 6πM(fX,2)η
] ≤ 6 exp

[−cnmin
{
η2, η

}]
.(2.9)

(b) Consider two p-dimensional, centered, stationary Gaussian processes
{Xt }t∈Z and {Y t }t∈Z with Cov(Xt , Y t ) = 0 for every t ∈ Z and the joint pro-
cess [(Xt)′, (Y t )′]′ satisfying Assumption 2.1. Let X = [Xn : . . . : X1]′ and
Y = [Yn : . . . : Y 1]′ be the data matrices. Then there exists a constant c > 0 such
that for any u, v ∈ Rp with ‖u‖ ≤ 1, ‖v‖ ≤ 1, we have

P
[∣∣u′(X ′Y/n

)
v
∣∣ > 2π

(
M(fX) +M(fY ) +M(fX,Y )

)
η
]

(2.10)
≤ 6 exp

[−cnmin
{
η,η2}].

In particular, for any stable VAR(d) model (1.3) with X = [Xn : . . . : X1]′ and
E = [εn+h : . . . : ε1+h]′, h > 0, we have

P

[∣∣u′(X ′E/n
)
v
∣∣ > 2π

(
�max(�ε)

(
1 + 1 + μmax(A)

μmin(A)

))
η

]
(2.11)

≤ 6 exp
[−cnmin

{
η,η2}].

Next, we give the proofs of the these two key propositions that employ tech-
niques in spectral theory of multivariate time series and nonasymptotic random
matrix theory results.

PROOF OF PROPOSITION 2.3. For 1 ≤ r, s ≤ n, the (r, s)th block of the np ×
np matrix ϒX

n is a p × p matrix

X(r − s) = Cov
(
Xn−r+1,Xn−s+1).

For any x ∈ Rnp , ‖x‖ = 1, write x as x = {(x1)′, (x2)′, . . . , (xp)′}′, where each
xi ∈ Rp . Define G(θ) = ∑n

r=1 xre−irθ , for θ ∈ [−π,π ]. Note that∫ π

−π
G∗(θ)G(θ) dθ =

n∑
r=1

n∑
s=1

∫ π

−π

(
xr)′(xs)ei(r−s)θ dθ

(2.12)

=
n∑

r=1

∥∥xr
∥∥22π = 2π.
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Also,

x′ϒX
n x =

n∑
r=1

n∑
s=1

(
xr)′X(r − s)

(
xs)

=
n∑

r=1

n∑
s=1

∫ π

−π

(
xr)′fX(θ)ei(r−s)θ (xs)dθ using (2.5)

=
∫ π

−π
G∗(θ)fX(θ)G(θ) dθ.

Since fX(θ) is Hermitian, G∗(θ)fX(θ)G(θ) is real, for all θ ∈ [−π,π ], and

m(fX)G∗(θ)G(θ) ≤ G∗(θ)fX(θ)G(θ) ≤M(fX)G∗(θ)G(θ).

This, together with (2.12), implies

2πm(fX) ≤ x′ϒX
n x ≤ 2πM(fX)

for all x ∈ Rnp , ‖x‖ = 1. �

PROOF OF PROPOSITION 2.4. (a) First, note that it is enough to prove (2.7)
for ‖v‖ = 1. For any v ∈ Rp , ‖v‖ = 1, let J denote its support supp(v) so that
|J | = k. define Y = Xv =XJ vJ . Then Y ∼ N(0n×1,Qn×n) with

Qrs = v′
J Cov

(
Xn−r+1

J ,Xn−s+1
J

)
vJ = v′

J X(J )(r − s)vJ for all 1 ≤ r, s ≤ n.

Note that v′Sv = (1/n)Y ′Y = (1/n)Z′QZ where Z ∼ N(0, In). Also, v′X(0)v =
v′
J X(J )(0)vJ = E[Z′QZ/n].

So, by the Hanson–Wright inequality of Rudelson and Vershynin (2013), with
‖Zi‖ψ2 ≤ 1 since Zi ∼ N(0,1), we get

P
[∣∣v′(S − X(0)

)
v
∣∣ > ζ

] = P
[∣∣Z′QZ −E

[
Z′QZ

]∣∣ > nζ
]

(2.13)

≤ 2 exp
[
−cnmin

{
n2ζ 2

‖Q‖2
F

,
nζ

‖Q‖
}]

.

Since ‖Q‖2
F /n ≤ ‖Q‖2, setting ζ = ‖Q‖η, we obtain

P
[∣∣v′(S − X(0)

)
v
∣∣ > η‖Q‖] ≤ 2 exp

[−cnmin
{
η,η2}].

Also, for any w ∈ Rn, ‖w‖ = 1, we have

w′Qw =
n∑

r=1

n∑
s=1

wrwsQrs =
n∑

r=1

n∑
s=1

wrwsv
′
J X(J )(r − s)vJ

= (w ⊗ v)′ϒX(J)
n (w ⊗ v)

≤ �max
(
ϒX(J)

n

)
since ‖w ⊗ v‖ = 1

≤ 2πM(fX(J )) by Proposition 2.3

≤ 2πM(fX, k).
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This establishes an upper bound on the operator norm ‖Q‖ ≤ 2πM(fX, k).
To prove (2.8), note that

2
∣∣u′(S − X(0)

)
v
∣∣ ≤ ∣∣u′(S − X(0)

)
u
∣∣ + ∣∣v′(S − X(0)

)
v
∣∣

+ ∣∣(u + v)′
(
S − X(0)

)
(u + v)

∣∣
and u + v is 2k-sparse with ‖u + v‖ ≤ 2. The result follows by applying (2.7)
separately on each of the three terms on the right.

The element-wise deviation bound (2.9) is obtained by choosing u = ei , v = ej .
(b) Note that u′(X ′Y/n)v can be viewed as (1/n)

∑n
t=1 wtzt , where wt =

〈u,Xt 〉, zt = 〈v,Y t 〉 are two univariate stationary processes with spectral densi-
ties fw(θ) = u′fX(θ)u and fz(θ) = v′fY (θ)v. Since Cov(wt , zt ) = 0, we have the
following decomposition:

2

n

n∑
t=1

wtzt =
[

1

n

n∑
t=1

(
wt + zt )2 − Var

(
w1 + z1)]

−
[

1

n

n∑
t=1

(
wt )2 − Var

(
w1)] −

[
1

n

n∑
t=1

(
zt )2 − Var

(
z1)],

and it suffices to concentrate the three terms separately. Applying (2.7) on the
process wt = 〈u,Xt 〉 and noting that M(fw) ≤ M(fX), we have

P

[∣∣∣∣∣(1/n)

n∑
t=1

(
wt )2 − Var

(
w1)∣∣∣∣∣ > 2πM(fX)η

]
> 2 exp

[−cnmin
{
η,η2}].

A similar argument for {zt } leads to

P

[∣∣∣∣∣(1/n)

n∑
t=1

(
zt )2 − Var

(
z1)∣∣∣∣∣ > 2πM(fY )η

]
> 2 exp

[−cnmin
{
η,η2}].

To concentrate the first term, note that the process {wt + zt } has a spectral density
given by

fw+z(θ) = [u′ v′ ]
[

fX(θ) fX,Y (θ)

f ∗
X,Y (θ) fY (θ)

][
u

v

]

= u′fX(θ)u + v′fY (θ)v + u′fX,Y (θ)v + v′f ∗
X,Y (θ)u.

Since ‖u‖ ≤ 1, ‖v‖ ≤ 1, M(fw+z) ≤ M(fX) + M(fY ) + 2M(fX,Y ), where the
last term is obtained by applying the Cauchy–Schwarz inequality on each of the
cross-product terms. Applying (2.7) separately on {wt }, {zt } and {wt + zt } with
the above bounds on the respective stability measures leads to the final result.

In the special case of a VAR(d) process, set ε̃t := εt+h so that Cov(Xt , ε̃t ) = 0.
Then it suffices to establish upper bounds on M(fX), M(fε̃) and M(fX,ε̃).
From (2.6), 2πM(fX) is upper bounded by �max(�ε)/μmin(A). The process {ε̃t }
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is serially uncorrelated, so M(fε̃) is the same as �max(�ε). To derive an upper
bound on the cross-spectral measure of stability, note that

Cov
(
Xt, εt+h+l) = Cov

(
Xt,Xt+h+l − A1X

t+h+l−1 − · · · − AdXt+h+l−d)
= X(h + l) − X(h + l − 1)A′

1 − · · · − X(h + l − d)A′
d .

Hence, the cross-spectrum of {Xt } and {ε̃t } can be expressed as

fX,ε̃(θ)

= 1

2π

∞∑
l=−∞

[
X(h + l) − X(h + l − 1)A′

1 − · · · − X(h + l − d)A′
d

]
e−ilθ

= fX(θ)eihθ [I − A′
1e

−iθ − · · · − A′
de−idθ ]

= eihθfX(θ)A∗(eiθ ).
Hence M(fX,ε̃) is bounded above by M(fX)μmax(A). Combining the three up-
per bounds on the stability measures and replacing M(fX) with its upper bound
in (2.6), establishes the final result. �

Role of the two tails in (2.13) and sharpness of the bounds. The convergence
rates of lasso and other regularized estimates in high-dimensional settings depend
on how S concentrates around X(0) and X ′E/n around 0, as is evident in subse-
quent proofs. In the bounds established above, the effect of dependence is captured
by M(fX). In the special case of no temporal and cross-sectional dependence, our
results recover the bounds of lasso for i.i.d. data, as we remark in Section 3. For
processes with strong dependence, however, we believe this bound can be further
sharpened, although a closed form solution of the exact rate was not established.
Next, we provide an asymptotic argument for a fixed p case and demonstrate that
in a low-dimensional setting with very large sample sizes, the effect of dependence
can be captured by the integrated spectrum, which provides a tighter bound.

The sub-Gaussian and sub-exponential tails in the main concentration inequality
(2.13) suggest an interesting phenomenon, that temporal dependence in the data
may affect the concentration property and in turn the convergence rates of the
regularized estimates in two different ways, depending on which term in the tail
bound is dominant.

In the special case of no temporal dependence, that is, Xt i.i.d.∼ N(0,�), the
matrix Q is diagonal and ‖Q‖F /

√
n = ‖Q‖. So, setting ζ = η‖Q‖F /

√
n or ζ =

η‖Q‖ leads to the same bound, and we recover the Bernstein-type tail bounds for
subexponential random variables [Vershynin (2010)].

In the presence of temporal dependence, the two norms ‖Q‖F and ‖Q‖ behave
differently, and this affects the rates. To illustrate this further, we need additional
notation. First note that M(fX) can be viewed as sup‖v‖=1 ‖fy‖∞ where yt =
〈v,Xt 〉 and ‖ · ‖∞ denotes the L∞ or sup norm of a function. A related quantity
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FIG. 3. ‖fy‖2 and ‖fy‖∞ for a univariate Gaussian AR(2) process yt = 2αyt−1 − α2yt−2 + ξ t ,
y(0) = 1, 0 < α < 1.

that will be useful for studying the tails is the Euclidean or L2 norm ‖fy‖2 =
(
∫ π
−π f 2

y (θ) dθ)1/2. For any univariate Gaussian process {yt }, it is easy to see that

‖fy‖2 ≤ √
2π‖fy‖∞, and they coincide when the process is serially uncorrelated,

that is, the spectrum is flat a.e. With stronger temporal dependence, the spectrum
becomes more spiky and ‖fy‖∞ changes more sharply than ‖fy‖2. In Figure 3,
we demonstrate this on a family of AR(2) processes yt = 2αyt−1 − α2yt−2 + ξ t ,
y(0) = 1, 0 < α < 1.

Coming back to the behavior of the two tails, note that

P
[∣∣v′(S − (0)

)
v
∣∣ > ζ

] ≤ 2 exp
[
−c min

{
nζ 2

‖Q‖2
F /n

,
nζ

‖Q‖
}]

.

We consider a low-dimensional, fixed p regime. It is known that [cf. Chapter 5,
Grenander and Szegö (1958)] for large n, ‖Q‖2

F /n approaches 2π‖fy‖2
2 and ‖Q‖

approaches 2π‖fy‖∞. With a choice of ζ � √
logp/n, the tail probability on the

right-hand side can be approximated by

2 exp
[
−c min

{
logp

c1‖fy‖2
2

,

√
n logp

‖fy‖∞

}]
.

This indicates that for very large n, the first term will be smaller, and the tail proba-
bility will scale with ‖fy‖2. So processes with various levels of dependence should
behave similarly in terms of estimation errors. For strongly dependent processes,
where ‖fy‖2 � ‖fy‖∞, it would take more samples n for the first term to offset
the second term. With a smaller sample size, the tail behavior will be driven by
‖fy‖∞, and the effect of dependence will be more prominent in the estimation er-
ror of the regularized estimates. Interestingly, this is the same pattern reflected in
Figure 1.
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3. Stochastic regression. In the presence of serially correlated errors, and un-
der a sparsity assumption on β∗, we use the deviation bounds of Section 2 to derive
an upper bound on the estimation error of lasso. Our results show that consistent
estimation of β∗ is possible, as long as the predictor and noise processes are stable.
We consider the lasso estimate (1.2) for the stochastic regression model (1.1). Fur-
ther, we assume that both fX and fε satisfy Assumption 2.1, and β∗ is k-sparse,
with support J , that is, |J | = k.

Note that in the low-dimensional regime, consistent estimation relies on the
following assumptions:

(a) X ′X /n converges to a nonsingular matrix (limn→∞ �min(
X ′X
N

) > 0).
(b) X ′E/n converges to zero.

In the high-dimensional regime (n � p), the first assumption is never true since
the design matrix is rank-deficient (i.e., more variables than observations). The
second assumption is also very stringent, since the dimension of X ′E grows with
n and p. Interestingly, consistent estimation in the high-dimensional regime can
be ensured under two analogous sufficient conditions. The first one comes from a
class of conditions commonly referred to as restricted eigenvalue (RE) conditions
[Bickel, Ritov and Tsybakov (2009), van de Geer and Bühlmann (2009)]. Roughly
speaking, these assumptions require that ‖X (β̂ − β∗)‖ is small only when ‖β̂ −
β∗‖ is small. For sparse β∗ and λn appropriately chosen, it is now well understood
that the vectors v = β̂ − β∗ only vary on a small subset of the high-dimensional
space Rp [Negahban et al. (2012)]. As shown in the proof of Proposition 3.3, the
error vectors v in stochastic regression lie in a cone

C(J,3) = {
v ∈ Rp :‖vJ c‖1 ≤ 3‖vJ ‖1

}
,

whenever λn ≥ 4‖X ′E/n‖∞. This indicates that the RE condition may not be
very stringent after all, even though X is singular. Note that verifying that the
assumption indeed holds with high probability is a nontrivial task.

The next proposition shows that a restricted eigenvalue (RE) condition holds
with high probability when the sample size is sufficiently large and the process of
predictors {Xt } is stable, with a full-rank spectral density.

PROPOSITION 3.1 (Restricted eigenvalue). If m(fX) > 0, then there exist con-
stants ci > 0 such that for n� max{1,ω2}min{k log(c0p/k), k logp},

P

[
inf

v∈C(J,3)\{0}
‖Xv‖2

n‖v‖2 ≥ αRE

]
≥ 1 − c1 exp

[−c2nmin
{
1,ω−2}],

where αRE = πm(fX), ω = c3M(fX,2k)/m(fX).

REMARKS. (a) The assumption m(fX) > 0 is fairly mild and holds for stable,
invertible ARMA processes. However, the conclusion holds under weaker assump-
tions like �min(X(0)) > 0 or an RE condition on X(0), replacing 2πm(fX) by
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the minimum (or restricted) eigenvalue of X(0), as evident in the proof of this
proposition.

(b) For large k, k log(c0p/k) can be much smaller than k logp, the sample size
required for consistent estimation with lasso.

(c) The factor ω � M(fX,2k)/m(fX) captures the effect of temporal and cross-
sectional dependence in the data. Larger values of M(·) and smaller values of
m(·) indicate stronger dependence in the data, and the bounds indicate that more
samples are required to ensure RE holds with high probability. We demonstrate this
on three special types of dependence in the design matrix X , independent entries,
independent rows and independent columns:

(i) If the entries of X are independent from a N(0, σ 2) distribution, we have
X(0) = σ 2I and X(h) = 0 for h �= 0. In this case, fX(θ) ≡ (1/2π)σ 2I and
M(fX,2k)/m(fX) = 1.

(ii) If the rows of X are independent and identically distributed as N(0,�X),
that is, X(0) = �X , X(h) = 0 for h �= 0, the spectral density takes the
form fX(θ) ≡ (1/2π)�X , and M(fX,2k)/m(fX) can be at most �max(�X)/

�min(�X).
(iii) If the columns of X are independent, that is, all the univariate components

of {Xt } are independently generated according to a common stationary process
with spectral density f , then the spectral density of {Xt } is fX(θ) = f (θ)I , and
we have

M(fX,2k)/m(fX) = max
θ∈[−π,π ]f (θ)/ min

θ∈[−π,π ]f (θ).

The ratio on the right can be viewed as a measure of narrowness of f . Since nar-
rower spectral densities correspond to processes with flatter autocovariance, this
indicates that more samples are needed when the dependence is stronger.

The second sufficient condition for consistency of lasso requires that the co-
ordinates of X ′E/n uniformly concentrate around 0. In the next proposition, we
establish a deviation bound on ‖X ′E/n‖∞ that holds with high probability. Sim-
ilar results were established in Loh and Wainwright (2012) for a VAR(1) process
with serially uncorrelated errors, under the assumption ‖A1‖ < 1. Our result relies
on different techniques, holds for a much larger class of stationary processes and
allows for serial correlation in the noise term, as well.

PROPOSITION 3.2 (Deviation condition). For n � logp, there exist constants
ci > 0 such that

P

[
1

n

∥∥X ′E
∥∥∞ > c02π

[
M(fX,1) +M(fε)

]√ logp

n

]
≤ c1 exp[−c2 logp].
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REMARK. The deviation inequality shows that the coordinates of X ′E/n uni-
formly concentrate around 0, as long as the stability measures of {εt } and the uni-
variate components of {Xt } grow at a rate slower than

√
n/ logp. These two propo-

sitions allow us to establish error rates for estimation and prediction in stochastic
regression.

PROPOSITION 3.3 (Estimation and prediction error). Consider the stochastic
regression setup of (1.1). If β∗ is k-sparse, n � [M(fX, k)/m(fX)]2k logp, then
there exist constants ci > 0 such that for

λn ≥ c02π
[
M(fX,1) +M(fε)

]√
(logp)/n,

any solution β̂ of (1.2) satisfies, with probability at least 1 − c1 exp[−c2 logp],
∥∥β̂ − β∗∥∥ ≤ 2λn

√
k

αRE
,

∥∥β̂ − β∗∥∥
1 ≤ 8λnk

αRE
,

1

n

∥∥X (
β̂ − β∗)∥∥2 ≤ 4λ2

nk

αRE
,

where the restricted eigenvalue αRE = πm(fX).
Further, a thresholded variant of lasso β̃ , defined as β̃j = {β̂j 1|β̂j |>λn

}, for 1 ≤
j ≤ p, satisfies, with the same probability,

∣∣supp(β̃)\ supp
(
β∗)∣∣ ≤ 24k

αRE
.(3.1)

REMARKS. (a) The convergence rates of �2-estimation and prediction√
k logp/n are of the same order as the rates for regression with i.i.d. samples. The

temporal dependence contributes the additional term [M(fX,1)+M(fε)]/m(fX)

in the error rates and [M(fX,2k)/m(fX)]2 in the sample size requirement. This
ensures fast convergence rates of lasso under high-dimensional scaling, as long as
the processes of predictors and noise are stable.

(b) A thresholded version of lasso enjoys small false positive rates, as shown
in (3.1). Note that we do not assume any “beta-min” condition, that is, a lower
bound on the minimum signal strength. It is possible to control the false negatives
under suitable “beta-min” conditions, as shown in [Zhou (2010)].

Comparison with existing results. The problem of stochastic regression in a
high-dimensional setting has been addressed by Loh and Wainwright (2012). Af-
ter initial submission of this work, we became aware of a recent work by Wu and
Wu (2014). Next, we briefly illustrate the major differences of our results with
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these other studies. Loh and Wainwright (2012) assume that the process of pre-
dictors {Xt } follows a Gaussian VAR(1) process with transition matrix satisfying
‖A‖ < 1. They also assume that the errors are independent. Our results allow both
the predictors and the errors to be generated from any stable Gaussian process. Wu
and Wu (2014) consider lasso estimation with a fixed design matrix and assume
that an RE condition is satisfied. In our work, we consider a random Gaussian de-
sign and establish that RE holds with high probability for a large class of stable
processes. Consequently, our final results of consistency do not rely on any RE
type assumptions. Wu and Wu (2014) also consider random design regression us-
ing a CLIME estimator and provide an upper bound on the estimation error, with-
out assuming RE type conditions. However, the established upper bounds seem to
worsen with stronger signal (|β|1). Our results do not exhibit such properties. Fi-
nally, both these papers consider a short-range dependence regime, although their
results are derived under a mild moment condition on the random variables while
we focus on Gaussian processes only. The results in the above paper quantify de-
pendence via the functional and predictive measure of Wu (2005) and assume a
certain decay condition on this measure. For the multivariate stationary linear pro-
cesses, this is verified under another decay condition on the transition matrices in
its AR representation [Chen, Xu and Wu (2013)]. Our results, on the other hand,
rely on existence and boundedness of spectral density, and this assumption is sat-
isfied by commonly used stable processes, including ARMA and general linear
processes.

4. Transition matrix estimation in sparse VAR models. This problem has
been considered by several authors in recent years [Davis, Zang and Zheng (2012),
Han and Liu (2013), Song and Bickel (2011)]. Most of these studies consider a
least squares based objective function or estimating equation to obtain the esti-
mates, which is agnostic to the presence of cross-correlations among the error
components (nondiagonal �ε). Davis, Zang and Zheng (2012) provide numeri-
cal evidence that the forecasting performance can be improved by using a log-
likelihood based loss function that incorporates information on the error correla-
tions. In this section, we consider both least squares and log-likelihood estimates
and study their theoretical properties. A key contribution of our theoretical analy-
sis is to verify suitable RE and deviation conditions for the entire class of stable
VAR(d) models. Existing works either assume such conditions without verifica-
tion, or use a stringent condition on the model parameters, such as ‖A‖ < 1, as
discussed in Section 1.

We consider a single realization of {X0,X1, . . . ,XT } generated according to
the VAR model (1.3). We will assume the error covariance matrix �ε is positive
definite so that �min(�ε) > 0 and �max(�ε) < ∞. We will also assume that the
VAR process is stable, that is, det(A(z)) �= 0 on the unit circle {z ∈ C : |z| = 1}.
For stable VAR(d) processes, the spectral density (2.4) simplifies to

fX(θ) = 1

2π

(
A−1(e−iθ ))�ε

(
A−1(e−iθ ))∗.
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FIG. 4. Graphical representation of the VAR model (1.3): directed edges (solid) correspond to the
entries of the transition matrices, undirected edges (dashed) correspond to the entries of �−1

ε .

To deal with dependence in the VAR estimation problem, we will work with
μmin(A), μmax(A) and the extreme eigenvalues of �ε instead of m(fX) and
M(fX). For a VAR(d) process with serially uncorrelated errors, equation (2.6)
simplifies to

M(fX) ≤ 1

2π

�max(�ε)

μmin(A)
, m(fX) ≥ 1

2π

�min(�ε)

μmax(A)
.(4.1)

This factorization helps provide better insight into the temporal and contem-
poraneous dependence in VAR models. A graphical representation of a stable
VAR(d) model (1.3) is provided in Figure 4. The transition matrices A1, . . . ,Ad

encode the temporal dependence of the process. When the components of the er-
ror process {εt } are correlated, �−1

ε captures the additional contemporaneous de-
pendence structure. Expressing the estimation and prediction errors in terms of
μmin(A), μmax(A),�min(�ε) and �max(�ε) instead of m(fX) and M(fX) help
separate the effect of the two sources of dependence.

We will often use the following alternative representation of a p-dimensional
VAR(d) process (1.3) as a dp-dimensional VAR(1) process X̃t = Ã1X̃

t−1 + ε̃t

with

X̃t =

⎡
⎢⎢⎣

Xt

Xt−1

...

Xt−d+1

⎤
⎥⎥⎦

dp×1

, Ã1 =

⎡
⎢⎢⎢⎢⎢⎣

A1 A2 · · · Ad−1 Ad

Ip 0 · · · 0 0
0 Ip · · · 0 0
...

...
. . .

...
...

0 0 · · · Ip 0

⎤
⎥⎥⎥⎥⎥⎦

dp×dp

,

(4.2)

ε̃t =

⎡
⎢⎢⎣

εt

0
...

0

⎤
⎥⎥⎦

dp×1

.
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The process X̃t with reverse characteristic polynomial Ã(z) := Idp − Ã1z is stable
if and only if the process Xt is stable [Lütkepohl (2005)]. However, the quantities
μmin(A),μmax(A) are not necessarily the same as μmin(Ã),μmax(Ã).

4.1. Estimation procedure. Based on the data {X0, . . . ,XT }, we construct the
following regression problem:⎡

⎢⎣
(
XT

)′
...(

Xd
)′

⎤
⎥⎦

︸ ︷︷ ︸
Y

=
⎡
⎢⎣
(
XT −1)′ · · · (

XT −d
)′

...
. . .

...(
Xd−1)′ · · · (

X0)′
⎤
⎥⎦

︸ ︷︷ ︸
X

⎡
⎢⎣

A′
1
...

A′
d

⎤
⎥⎦

︸ ︷︷ ︸
B∗

+
⎡
⎢⎣
(
εT

)′
...(

εd
)′

⎤
⎥⎦

︸ ︷︷ ︸
E

,

vec(Y) = vec
(
XB∗) + vec(E),

= (I ⊗X )vec
(
B∗) + vec(E),

Y︸︷︷︸
Np×1

= Z︸︷︷︸
Np×q

β∗︸︷︷︸
q×1

+vec(E)︸ ︷︷ ︸
Np×1

, N = (T − d + 1), q = dp2,

with N = T − d + 1 samples and q = dp2 variables. We will assume that β∗ is a
k-sparse vector, that is,

∑d
t=1 ‖vec(At )‖0 = k.

We consider the following estimates for the transition matrices A1, . . . ,Ad , or
equivalently, for β∗: (i) an �1-penalized least squares estimate of VAR coefficients
(�1-LS), which does not exploit �ε

argmin
β∈Rq

1

N
‖Y − Zβ‖2 + λN‖β‖1,(4.3)

and (ii) an �1-penalized log-likelihood estimation (�1-LL) [Davis, Zang and Zheng
(2012)].

argmin
β∈Rq

1

N
(Y − Zβ)′

(
�−1

ε ⊗ I
)
(Y − Zβ) + λN‖β‖1.(4.4)

This gives the maximum likelihood estimate of β , for known �ε . In practice, �ε

is often unknown and needs to be estimated from the data. In the numerical exper-
iments of Section 6, we used the residuals from a �1-LS fit to estimate �ε . Further
discussion on estimating �ε and a fast algorithm based on block coordinate de-
scent that minimizes (4.4) are presented in Appendix C (supplementary material
[Basu and Michailidis (2015)]).

4.2. Theoretical properties. We analyze the estimates from optimization prob-
lems (4.3) and (4.4) under a general penalized M-estimation framework [Loh and
Wainwright (2012)]. To motivate this general framework, note that the VAR es-
timation problem with ordinary least squares is equivalent to the following opti-
mization:

argmin
β∈Rq

−2β ′γ̂ + β ′̂β,(4.5)
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where ̂ = (I ⊗ X ′X /N), γ̂ = (I ⊗ X ′)Y/N are unbiased estimates for their
population analogues. A more general choice of (γ̂ , ̂) in the penalized version of
the objective function leads to the following optimization problem:

argmin
β∈Rq

−2β ′γ̂ + β ′̂β + λN‖β‖1,

(4.6)
̂ = (

W ⊗X ′X /N
)
, γ̂ = (

W ⊗X ′)Y/N,

where W is a symmetric, positive definite matrix of weights. Optimization prob-
lems (4.3) and (4.4) are special cases of (4.6) with W = I and W = �−1

ε , respec-
tively.

First, we establish consistency of VAR estimates under the following sufficient
conditions: a modified restricted eigenvalue (RE) [Loh and Wainwright (2012)]
and a deviation condition. Then we show that all stable VAR models satisfy these
assumptions with high probability, as long as the sample size is of the same order
as required for consistency.

(A1) Restricted eigenvalue (RE). A symmetric matrix ̂q×q satisfies restricted
eigenvalue condition with curvature α > 0 and tolerance τ > 0 (̂ ∼ RE(α, τ )) if

θ ′̂θ ≥ α‖θ‖2 − τ‖θ‖2
1 ∀θ ∈ Rq.(4.7)

The deviation condition ensures that γ̂ and ̂ are well behaved in the sense
that they concentrate nicely around their population means. As γ̂ and ̂β∗ have
the same expectation, this assumption requires an upper bound on their differ-
ence. Note that in the low-dimensional context of (4.5), γ̂ − ̂β∗ is precisely
vec(X ′E)/N .

(A2) Deviation condition. There exists a deterministic function Q(β∗,�ε)

such that

∥∥γ̂ − ̂β∗∥∥∞ ≤Q
(
β∗,�ε

)√ logd + 2 logp

N
.(4.8)

PROPOSITION 4.1 (Estimation and prediction error). Consider the penalized
M-estimation problem (4.6) with W = I or W = �−1

ε . Suppose ̂ satisfies RE
condition (4.7) with kτ ≤ α/32, and (̂, γ̂ ) satisfies deviation bound (4.8). Then,
for any λN ≥ 4Q(β∗,�ε)

√
(logd + 2 logp)/N , any solution β̂ of (4.6) satisfies∥∥β̂ − β∗∥∥

1 ≤ 64kλN/α,∥∥β̂ − β∗∥∥ ≤ 16
√

kλN/α,(
β̂ − β∗)′̂(

β̂ − β∗) ≤ 128kλ2
N/α.

Further, a thresholded variant of lasso β̃ = {β̂j 1|β̂j |>λN
} satisfies

∣∣supp(β̃)\ supp
(
β∗)∣∣ ≤ 192k

αRE
.
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REMARKS. (a) ‖β̂ − β∗‖ is precisely
∑d

t=1 ‖Ât − At‖F , the �2-error in es-
timating the transition matrices. For �1-LS, (β̂ − β∗)′̂(β̂ − β∗) is a measure
of in-sample prediction error under �2-norm, defined by

∑T
t=d ‖∑d

h=1(Âh −
Ah)X

t−h‖2/N . For �1-LL, (β̂ −β∗)′̂(β̂ −β∗) takes the form
∑T

t=d ‖∑d
h=1(Âh −

Ah)X
t−h‖2

�ε
/N , where ‖v‖� := √

v′�−1v. This can be viewed as a measure of in-
sample prediction error under a Mahalanobis-type distance on Rp induced by �ε .

(b) The convergence rates are governed by two sets of parameters: (i) di-
mensionality parameters, the dimension of the process (p), order of the process
(d), number of parameters (k) in the transition matrices Ai and sample size
(N = T − d + 1); (ii) internal parameters, the curvature (α), tolerance (τ ) and
the deviation bound Q(β∗,�ε). The squared �2-errors of estimation and predic-
tion scale with the dimensionality parameters as k(2 logp + logd)/N , similar to
the rates obtained when the observations are independent [Bickel, Ritov and Tsy-
bakov (2009)]. The temporal and cross-sectional dependence affect the rates only
through the internal parameters. Typically, the rates are better when α is large and
Q(β∗,�ε), τ are small. In Propositions 4.2 and 4.3, we investigate in detail how
these quantities are related to the dependence structure of the process.

(c) Although the above proposition is derived under the assumption that d

is the true order of the VAR process, the results hold even if d is replaced by
any upper bound d̄ on the true order. This follows from the fact that a VAR(d)

model can also be viewed as VAR(d̄), for any d̄ > d , with transition matri-
ces A1, . . . ,Ad,0p×p, . . . ,0p×p . Note that the convergence rates change from√

(logp + 2 logd)/N to
√

(logp + 2 log d̄)/N .
Proposition 4.1 is deterministic; that is, it assumes a fixed realization of

{X0, . . . ,XT }. To show that these error bounds hold with high probability, one
needs to verify that assumptions (A1–A2) are satisfied with high probability when
{X0, . . . ,XT } is a random realization from the VAR(d) process. This is accom-
plished in the next two propositions.

PROPOSITION 4.2 (Verifying RE for ̂). Consider a random realization
{X0, . . . ,XT } generated according to a stable VAR(d) process (1.3). Then there
exist constants ci > 0 such that for all N � max{ω2,1}k(logd + logp), with prob-
ability at least 1 − c1 exp(−c2N min{ω−2,1}), the matrix

̂ = Ip ⊗ (
X ′X /N

) ∼ RE(α, τ ),

where

ω = c3
�max(�ε)/μmin(Ã)

�min(�ε)/μmax(A)
, α = �min(�ε)

2μmax(A)
,

τ = α max
{
ω2,1

} logd + logp

N
.
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Further, if �−1
ε satisfies σ̄ i

ε := σ ii
ε −∑

j �=i σ
ij
ε > 0, for i = 1, . . . , p, then, with the

same probability as above, the matrix

̂ = �−1
ε ⊗ (

X ′X /N
) ∼ RE

(
α min

i
σ̄ i

ε , τ max
i

σ̄ i
ε

)
.

This proposition provides insight into the effect of temporal and cross-sectional
dependence on the convergence rates obtained in Proposition 4.1. As mentioned
earlier, the convergence rates are faster for larger α and smaller τ . From the expres-
sions of ω,α and τ , it is clear that the VAR estimates have smaller error bounds
when �max(�ε),μmax(A) are smaller and �min(�ε),μmin(Ã) are larger, that is,
when the spectrum is less spiky.

PROPOSITION 4.3 (Deviation bound). There exist constants ci > 0 such that
for N � (logd+2 logp), with probability at least 1−c1 exp[−c2(logd+2 logp)],
we have

∥∥γ̂ − ̂β∗∥∥∞ ≤Q
(
β∗,�ε

)√ logd + 2 logp

N
,

where, for �1-LS,

Q
(
β∗,�ε

) = c0

[
�max(�ε) + �max(�ε)

μmin(A)
+ �max(�ε)μmax(A)

μmin(A)

]
and for �1-LL,

Q
(
β∗,�ε

) = c0

[
1

�min(�ε)
+ �max(�ε)

μmin(A)
+ �max(�ε)μmax(A)

�min(�ε)μmin(A)

]
.

As before, this proposition shows that the VAR estimates have lower error
bounds when �max(�ε), μmax(A) are smaller and �min(�ε), μmin(A) are larger,
that is, when the spectrum is less spiky.

Comparison with existing results. The problem of sparse VAR estimation has
been theoretically studied in the literature in [Chudik and Pesaran (2011), Song and
Bickel (2011), Wu and Wu (2014)]. Next, we briefly highlight differences between
our results and these works. First, the results of Chudik and Pesaran (2011) rely on
a priori available neighborhood information for every time series, which implies
that the structure of transition matrices {At }dt=1 is known, and only their magni-
tudes need to be estimated. This is a significant limitation compared to regularized
methods like lasso, which do not require any prior knowledge on the sparsity pat-
tern in the transition matrices. The theoretical upper bounds on VAR estimation
error established in Song and Bickel (2011) do not decrease as the sample size T

increases, and hence do not ensure consistency beyond very strict conditions. Also,
the results in their paper and in Wu and Wu (2014) are established assuming RE
holds, while a significant portion of our analysis is devoted to establish that RE and
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deviation bounds hold with high probability. We also provide in-depth analysis on
how the relevant constants are affected by the dependence present in the data. Fi-
nally, our work is the first one to provide theoretical analysis of the log-likelihood
based VAR estimation procedure, which does not fit directly into the regression
setting considered in the aforementioned papers.

5. Extension to other regularized estimation problems. The deviation in-
equalities established in Section 2 can be easily integrated with the vast body of
existing literature of high-dimensional statistics for i.i.d. data and study other reg-
ularized estimation problems in the context of high-dimensional time series. To
demonstrate this, in this section we establish consistency of sparse covariance es-
timation by hard-thresholding [Bickel and Levina (2008)] for high-dimensional
time series and discusss the main steps in extending the results to some noncon-
vex penalties for sparse regression and group lasso and nuclear norm penalties for
inducing structured sparsity.

5.1. Sparse covariance estimation. Consider a p-dimensional centered Gaus-
sian stationary time series {Xt }t∈Z satisfying Assumption 2.1. Based on realiza-
tions {X1, . . . ,Xn} generated according to the above stationary process, we aim
to estimate the contemporaneous covariance matrix � = (0). The sample co-
variance matrix ̂(0) = 1

n

∑n
t=1(X

t − X̄)(Xt − X̄)′ is known to be inconsistent
when p grows faster than n. Bickel and Levina (2008) showed that when the
samples are generated independently from a centered Gaussian or subGaussian
distribution, a thresholded version of the sample covariance matrix Tu(̂(0)) =
{̂ij (0)1|̂ij (0)|>u

} can perform consistent estimation if (0) belongs to the fol-
lowing uniformity class of approximately sparse matrices:

Uτ

(
q, c0(p),M

) :=
{
� :σii ≤ M,

p∑
j=1

|σij |q ≤ c0(p), for all i

}
.

Next, we establish consistent estimation for time series data, provided that the
underlying process is stable. The effect of dependence on the estimation accuracy
is captured by the stability measures introduced in Section 2. Asymptotic theory
for sparse covariance estimation was also considered in Chen, Xu and Wu (2013),
assuming a decay on the functional dependence measure.

PROPOSITION 5.1. Let {Xt }nt=1 be generated according to a p-dimensional
stationary centered Gaussian process with spectral density fX , satisfying As-
sumption 2.1. Then, uniformly on Uτ (q, c0(p),M), for sufficiently large M ′, if
un = M(fX,2)M ′√logp/n and n �M2(fX,2) logp, then

∥∥Tun

(
̂(0)

) − (0)
∥∥ = Op

(
c0(p)

(
M2(fX,2)

logp

n

)(1−q)/2)
,

1

p

∥∥Tun

(
̂(0)

) − (0)
∥∥
F = Op

(
c0(p)

(
M2(fX,2)

logp

n

)1−(q/2))
.
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5.2. Sparse regression with nonconvex penalties. There is a vast body of lit-
erature on regularized regression using nonconvex penalties for i.i.d. data [Fan
and Li (2001), Zhang (2010)]. A recent line work has derived unified theoretical
treatments of these procedures and compared their estimation accuracy to con-
vex procedures such as lasso [Fan and Lv (2013), Loh and Wainwright (2013)].
These results indicate that in certain high-dimensional regimes, the estimation er-
ror of nonconvex penalties like SCAD, MCP scales roughly in the same order
as lasso. Next, we argue that similar conclusions hold for time series models, as
well.

Consider a stochastic regression problem of Section 3 subject to a SCAD or
MCP penalty. Loh and Wainwright (2013) establish that under suitable restricted
strong convexity (RSC) condition on the loss function Ln(·), if the sup norm of
the gradient ‖∇(L)n(β

∗)‖∞ scales with
√

logp/n, then any local solution of
the penalized objective function has an estimation error at most O(

√
k logp/n).

For the choice of a least squares loss function, Ln(β) = ‖Y − Xβ‖2/2n and
∇Ln(β

∗) = −X ′E/n.
Since the loss function is convex, their RSC takes the form

1

n

‖X�‖2

‖�‖2 ≥ α1‖�‖2 − τ1
logp

n
‖�‖2

1 for all ‖�‖ ≤ 1.

This is in the spirit of the RE conditions verified in Section 4 and can be proven
using similar discretization arguments presented in this paper, if we assume (0)

satisfies an RE condition with the restricted eigenvalue α1 is at least as large as
1/(a − 1) for SCAD and 1/b for MCP.

The deviation condition on ‖∇Ln(β
∗)‖∞ is identical to the one considered in

this paper, and the results presented here are directly applicable.

5.3. Regularized regression with structured sparsity. In a recent review pa-
per, Negahban et al. (2012) established a unified framework to analyze a class
of decomposable penalties. This includes the popular group lasso penalty for high-
dimensional regression under structured sparsity and nuclear norm penalty for ma-
trix estimation under low-rank assumption. In a time series context, these methods
have been proposed in the literature to incorporate information on different eco-
nomic sectors and the assumption of latent factors driving the market [Negahban
and Wainwright (2011), Song and Bickel (2011)]. As before, the theoretical re-
sults rely crucially on two key conditions: a restricted strong convexity on the
loss function and a suitable deviation bound on the gradient. The restricted eigen-
value assumption for group lasso can be verified using the deviation inequalities of
Proposition 2.4 and a discretization argument modified for group structures. The
deviation inequalities can be derived along the same line. For low-rank model-
ing of VAR(1) process, we can prove that the minimum eigenvalue of X ′X /N is
bounded away from zero with high probability, and the deviation bounds on the op-
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erator norm of X ′E/N can be established using the deviation inequality of (2.11)
and a discretization argument presented in [Basu (2014)]. This leads to new re-
sults on group lasso for stochastic regression and extends the results of Negahban
and Wainwright (2011) to the entire class of stable VAR(1) models. We leave the
details to the reader, as the proofs follow the same road map used in this paper.

6. Numerical experiments.

6.1. Stochastic regression. In this experiment, we demonstrate how the esti-
mation error of lasso scales with n and p, when the dependence parameters do not
change. We simulate predictors from a p-dimensional (p = 128,264,512,1024)
stationary process {Xt } with independent components following a Gaussian AR(2)

process Xt
i = 1.2Xt−1

i − 0.36Xt−2
i + ξ t , Xj

(0) = 1. We simulate the errors {εt }
according to a univariate MA(2) process εt = ηt − 0.8ηt−1 + 0.16ηt−2, {ηt } Gaus-
sian white noise. For different values of p, we generate sparse coefficient vec-
tors β∗ with k ≈ √

p nonzero entries, with a signal-to-noise ratio of 1.2. Using
a tuning parameter λn = √

logp/n, we apply lasso on simulated samples of size
n ∈ (100,3000). The �2-error of estimation ‖β̂ − β∗‖ is depicted in Figure 5. The
left panel displays the errors for different values of p, plotted against the sample
size n. As expected, the errors are larger for larger p. The right panel displays the
estimation errors against the rescaled sample size n/k logp. The error curves for
different values of p now align very well. This demonstrates that lasso can achieve
an estimation error rate of

√
k logp/n, even with stochastic predictors and serially

correlated errors.

FIG. 5. Estimation error of lasso ‖β̂ − β∗‖ in stochastic regression with serially correlated error.
Note that the error curves align perfectly, showing the errors scale as

√
k logp/n. (a) ‖β̂ − β∗‖ vs.

n, (b) ‖β̂ − β∗‖ vs. n/k logp.
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6.2. VAR estimation. We evaluate the performance of �1-LS and �1-LL on
simulated data and compare it with the performance of ordinary least squares
(OLS) and Ridge estimates. Implementing �1-LL requires an estimate of �ε in
the first step. We use the residuals from �1-LS to construct a plug-in estimate �̂ε .
To evaluate the effect of error correlation on the transition matrix estimates more
precisely, we also implement an oracle version, �1-LL-O, which uses the true �ε

in the estimation. Next, we describe the simulation settings, choice of performance
metrics and discuss the results.

We design two sets of numerical experiments: (a) SMALL VAR (p = 10, d =
1, T = 30,50) and (b) MEDIUM VAR (p = 30, d = 1, T = 80,120,160). In each
setting, we generate an adjacency matrix A1 with 5 ∼ 10% nonzero edges selected
at random and rescale to ensure that the process is stable with SNR = 2. We gen-
erate three different error processes with covariance matrix �ε from one of the
following families:

(1) Block-I: �ε = ((σε,ij ))1≤i,j≤p with σε,ii = 1, σε,ij = ρ if 1 ≤ i �= j ≤ p/2,
σε,ij = 0 otherwise;

(2) Block-II: �ε = ((σε,ij ))1≤i,j≤p with σε,ii = 1, σε,ij = ρ if 1 ≤ i �= j ≤ p/2
or p/2 < i �= j ≤ p, σε,ij = 0 otherwise;

(3) Toeplitz: �ε = ((σε,ij ))1≤i,j≤p with σε,ij = ρ|i−j |.

We let ρ vary in {0.5,0.7,0.9}. Larger values of ρ indicate that the error processes
are more strongly correlated. Figure 6 illustrates the structure of a random transi-
tion matrix used in our simulation and the three different types of error covariance
structures.

We compare the different methods for VAR estimation (OLS, �1-LS, �1-LL,
�1-LL-O, Ridge) based on the following performance metrics:

(1) Model Selection. Area under ROC curve (AUROC);
(2) Estimation error. Relative estimation accuracy ‖Â1 − A1‖F /‖A1‖F .

We report the results for small VAR with T = 30 and medium VAR with
T = 120 averaged over 1000 replicates in Tables 1 and 2. The results in the other
settings are qualitatively similar, although the overall accuracy changes with the

FIG. 6. Adjacency matrix A1 and error covariance matrix �ε of different types used in the simu-
lation studies. (a) A1, (b) �ε : Block-I, (c) �ε : Block-II, (d) �ε : Toeplitz.
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TABLE 1
VAR(1) model with p = 10, T = 30

Block-I Block-II Toeplitz

ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

AUROC �1-LS 0.78 0.77 0.74 0.74 0.7 0.64 0.76 0.72 0.63
�1-LL 0.79 0.79 0.76 0.77 0.77 0.76 0.78 0.76 0.74

�1-LL-O 0.84 0.83 0.8 0.82 0.82 0.82 0.83 0.82 0.8

Estimation OLS 1.51 1.67 2.31 1.73 2.16 3.57 1.7 2.14 3.57
error �1-LS 0.74 0.75 0.76 0.77 0.8 0.87 0.77 0.8 0.88

�1-LL 0.7 0.7 0.69 0.73 0.72 0.72 0.73 0.73 0.74
�1-LL-O 0.65 0.64 0.63 0.66 0.65 0.63 0.66 0.66 0.65

Ridge 0.78 0.78 0.79 0.77 0.78 0.8 0.8 0.82 0.85

sample size. We find that the regularized VAR estimates outperform ordinary least
squares uniformly in all the cases.

In terms of model selection, the �1-penalized estimates perform fairly well, as
reflected in their AUROC. OLS and ridge regression do not perform any model
selection. Further, for all three choices of �ε , the two variants of �1-LL outper-
form �1-LS. The difference in their performance is more prominent for larger val-
ues of ρ. Among the three covariance structures, the difference between LS- and
LL-based methods is more prominent in the Block-II and Toeplitz families, since
the error processes are more strongly correlated. Finally, in all cases, the accuracy
of �1-LL lies between �1-LS and �1-LL-O, which suggests that a more accurate
estimation of �ε might improve the model selection performance of regularized
VAR estimates.

In terms of estimation error, the conclusions are broadly the same. The effect
of over-fitting is reflected in the performance of ordinary least squares. In many

TABLE 2
VAR(1) model with p = 30, T = 120

Block-I Block-II Toeplitz

ρ 0.5 0.7 0.9 0.5 0.7 0.9 0.5 0.7 0.9

AUROC �1-LS 0.91 0.87 0.8 0.82 0.75 0.63 0.92 0.88 0.77
�1-LL 0.91 0.89 0.85 0.85 0.85 0.85 0.93 0.92 0.91

�1-LL-O 0.93 0.91 0.87 0.88 0.88 0.88 0.95 0.94 0.92

Estimation OLS 1.65 1.91 2.74 2.33 2.98 4.94 1.77 2.24 3.74
error �1-LS 0.68 0.73 0.8 0.83 0.9 0.98 0.68 0.72 0.85

�1-LL 0.67 0.67 0.67 0.78 0.77 0.74 0.65 0.62 0.57
�1-LL-O 0.63 0.63 0.63 0.74 0.73 0.7 0.61 0.57 0.52

Ridge 0.8 0.81 0.83 0.86 0.89 0.92 0.8 0.82 0.86
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settings, the estimation error of ordinary least squares is even twice as large as
the signal strength. The performance of ordinary least squares deteriorates when
the error processes are more strongly correlated; see, for example, ρ = 0.9 for
block-II. Ridge regression performs better than ordinary least squares, as it applies
shrinkage on the coefficients. However, the �1-penalized estimates show higher
accuracy than Ridge in almost all cases. This is somewhat expected as the data
were simulated from a sparse model with strong signals, whereas Ridge regression
tends to favor a nonsparse model with many small coefficients.

7. Discussion. In this paper, we consider the theoretical properties of regu-
larized estimates in sparse high-dimensional time series models when the data are
generated from a multivariate stationary Gaussian process. The Gaussian assump-
tion could be conceived as a limiting factor, since interesting models including
regression with categorical predictors, VAR estimation with heavy-tailed and/or
heteroscedastic errors, and popular models exhibiting nonlinear dependences such
as ARCH and GARCH are not covered. Note, however, that the only place in the
analysis where the Gaussian assumption is used is in developing the concentration
bound of S around its expectation (0). Since the spectral density characterizes
the entire distribution for this class, it has direct implications on the concentra-
tion behavior. For nonlinear and/or non-Gaussian processes, one needs to control
higher order dependence, and changing to higher order spectra could potentially be
useful. Although the use of covariance and higher order spectra is common in de-
veloping limit theorems of low-dimensional stationary process [Giraitis, Koul and
Surgailis (2012), Rosenblatt (1985)], developing a suitable concentration bound
for nonlinear/non-Gaussian dependence designs is not a trivial problem and is left
as a key topic for future developments.
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paper.

SUPPLEMENTARY MATERIAL

Supplement to “Regularized estimation in sparse high-dimensional time
series models” (DOI: 10.1214/15-AOS1315SUPP; .pdf). For the sake of brevity,
we moved the appendices containing many of the technical proofs and detailed
discussions to the supplementary document [Basu and Michailidis (2015)].
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