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Regularized, Fast, and Robust Analytical Q-Ball Imaging

Maxime Descoteaux,1∗ Elaine Angelino,2 Shaun Fitzgibbons,2 and Rachid Deriche1

We propose a regularized, fast, and robust analytical solution for
the Q-ball imaging (QBI) reconstruction of the orientation distri-
bution function (ODF) together with its detailed validation and a
discussion on its benefits over the state-of-the-art. Our analyti-
cal solution is achieved by modeling the raw high angular reso-
lution diffusion imaging signal with a spherical harmonic basis
that incorporates a regularization term based on the Laplace–
Beltrami operator defined on the unit sphere. This leads to an
elegant mathematical simplification of the Funk–Radon trans-
form which approximates the ODF. We prove a new corollary of
the Funk–Hecke theorem to obtain this simplification. Then, we
show that the Laplace–Beltrami regularization is theoretically
and practically better than Tikhonov regularization. At the cost
of slightly reducing angular resolution, the Laplace–Beltrami
regularization reduces ODF estimation errors and improves
fiber detection while reducing angular error in the ODF maxima
detected. Finally, a careful quantitative validation is performed
against ground truth from synthetic data and against real data
from a biological phantom and a human brain dataset. We show
that our technique is also able to recover known fiber cross-
ings in the human brain and provides the practical advantage of
being up to 15 times faster than original numerical QBI method.
Magn Reson Med 58:497–510, 2007. © 2007 Wiley-Liss, Inc.
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INTRODUCTION

Diffusion MRI (1,2) is a noninvasive tool widely used
in medical imaging applications to obtain information
about the neural architecture in vivo and to understand
functional coupling between cortical regions of the brain.
Because of the well-known limitations of diffusion tensor
imaging (DTI) in regions of low anisotropy and multiple
fiber crossings, recent works have attempted to general-
ize the existing DTI model (3) with new higher resolution
acquisition techniques such as Q-space imaging (QSI) (4,5),
high angular resolution diffusion imaging (HARDI) (6) and
Q-Ball Imaging (QBI) (6). There are currently two classes
of high order processing methods for these high resolution
acquisition techniques. The first is based on apparent dif-
fusion coefficient (ADC) modeling (7–13) and the other is
based on the estimation of the probability density function
(PDF) of the average spin displacement of water molecules
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or variants of this function (14–29). This article focuses on
the second class of methods.

Existing techniques in this class approximate the PDF or
variants of it arising from various types of high angular res-
olution signal data. The existing functions in the literature
are the persistent angular structure (PAS) (16) of the PDF,
the fiber orientation distribution (FOD) (18,19), diffusion
orientation transform (DOT) (27), and the diffusion orien-
tation distribution function (ODF) (17). We mainly focus on
the diffusion ODF, which captures important angular infor-
mation and can be viewed as the probability that the water
molecule will diffuse into any solid angle. For all these
high angular resolution functions, the important property
is that their maxima agree with the underlying fiber dis-
tribution. However, these methods are based on numerical
methods, lack a straightforward regularization process and
fail to take into account the useful tools for both estimation
and regularization that have been developed for the fitting
of the ADC profile (13).

In this paper, the backbone tool used to analyze HARDI
data is the spherical harmonic (SH). Frank (8), Alexander
et al. (7), Zhan et al. (10), Tournier et al. (18), Ozarslan
et al. (27), Anderson (23), Hess et al. (28,29), and oth-
ers seem to have converged to this methodological tool
which has many powerful properties. This is reassuring
and SH seem to be a natural way to decompose signals
that live on the sphere, just as the Fourier transform is the
widespread tool used to decompose images. Hence, it is not
surprising that Anderson (23), Hess et al. (28,29), and our
group (25,26) have recently developed separately and in
parallel an analytical solution for the ODF reconstruction
in QBI. Despite the fact that the three analytical solutions
are similar, the regularized estimation part, the derivation,
the experimental results, and the validation phase are quite
different. In the rest of the article, we carefully present our
work and put up front the differences in derivations and
contributions between our proposed method and the two
papers (23,28).

More precisely, our solution is obtained by modeling
the signal with high order SH series using a Laplace–
Beltrami regularization method developed for the ADC
profile estimation in (13). This leads to an elegant mathe-
matical simplification of the Funk–Radon transform which
approximates the ODF. We prove a new corollary of the
Funk–Hecke theorem to obtain this simplification. We then
obtain a fast algorithm for the extraction of a robust reg-
ularized model-independent ODF approximation at each
voxel of the raw HARDI data, which offers advantages
over previous numerical approaches. Another contribu-
tion is its quantitative validation on synthetic data and
on real data obtained from a biological rat phantom and
from a human brain dataset. Overall, the contributions of
the paper are threefold: (1) Our ODF estimation is up to
15 times faster than Tuch’s numerical method. (2) Our
ODF estimation is regularized with the Laplace–Beltrami
operator, which is theoretically and practically better than
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Tikhonov regularization (28) as well as more robust to
noise. (3) At the cost of slightly reducing angular resolu-
tion, our ODF estimation reduces errors and improves fiber
detection while reducing angular error in the ODF maxima
detected.

THEORY

Q-Ball Imaging

QBI (6,17), introduced by D. Tuch, is a HARDI technique
that reconstructs the diffusion ODF of the underlying fiber
population of a biological tissue. QBI aids in the inference
of fiber bundles with crossing, kissing or diverging config-
urations, with advantages over DTI in these situations. The
ODF is also intuitive and gives a good representation of the
underlying fiber distribution. The ODF in a unit direction
u, �(u), is given by the radial projection of the diffusion
PDF in q-space, where q = q/|q| is given by q = γ δG/2π ,
with γ the nuclear gyromagnetic ratio, G the applied dif-
fusion gradient vector and δ the gradient pulse duration.
Tuch (17) showed that this ODF could be estimated directly
from the raw HARDI signal S on a single sphere of q-space
by the Funk–Radon transform (FRT) G. This FRT is essen-
tially a smoothed version of the true ODF (17). In practice,
the FRT value at a given spherical point u is the great
circle integral of the signal on the sphere defined by the
plane through the origin with normal vector u. This can be
written as

G[S](u) =
∫

|w|=1
δ(uT w)S(w)dw. [1]

Figure 1 shows the qualitative effect of the Funk–Radon
transform on 1 and 2 fiber examples of synthetic signals.

The QBI reconstruction has several advantages that have
made it a popular high angular resolution reconstruction in
recent works (17,22–25,28,30–32) for fiber tracking and for
characterizing white matter architecture. In theory, sam-
ples are only taken on a single sphere in q-space and
thus, the imaging time is much smaller than that of the
QSI despite significantly higher angular resolution mea-
surements. Furthermore, since a relatively small constant
value of q can be chosen, the signal to noise ratio is
greatly improved. Finally, QBI also has the advantage of
being model-independent which is not the case for multi-
fiber Gaussian models (14) and spherical deconvolution
approaches (18,19) where a fiber response function needs
to be assumed a priori to use a deconvolution kernel.
In (19), the response function is a standard Gaussian kernel
whereas in (18), the response function is estimated from
the signal attenuation profile in 300 voxels with highest
fractional anisotropy, that is regions likely to have a single
coherent fiber population.

Analytical Q-Ball Imaging

As mentioned in the introduction, we are proposing a sim-
ilar analytical QBI solution for the ODF reconstruction as
Anderson (23) and Hess et al. (28,29). However, despite
the similarity of the analytical solution, the derivations are

quite different and use other properties of the SH basis that
are worth reviewing.

First, Anderson (23, Appendix B) proposes an analyti-
cal solution using SH. It is not the focus of the article and
this is the reason why Anderson has not studied the full
potential of the solution as Hess et al. did and as we do in
this article. Nonetheless, the derivation is simple and dif-
ferent from that of both Hess et al. and ours. The idea is
that the signal on the sphere can be represented in terms of
the standard polar angles (θ , φ) or in terms of coordinates
in a rotated frame. Using the Wigner rotation matrix, there
is a simple relation between SHs evaluated at (θ , φ) and
SHs evaluated at the same physical angle but expressed in
the rotated frame. This is used to evaluate and simplify the
FRT by expressing the integral in a carefully chosen rotated
frame.

Second, the solution of Hess et al. (28,29) is based on
the analytical solution to great circle integrals over SHs.
This is based on a previous work by Backus (33) for an
application to geophysical data. Two important proper-
ties of the SH are exploited in this proof: (1) any rotated
SH can be uniquely expressed as a linear combination of
SH of the same degree and (2) SH satisfy the addition
theorem. that is for any two directions (θ , φ) and (θ ′, φ′)
separated on the sphere by the angle (�, �), Y 0

	 (θ ′, 0) =
(1/Y 0

	 (0, 0))
∑	

m=−	 Ȳ m
	 (�, �)Y m

	 (θ , φ), where 	 denotes the
order of the SH.

In our case, we use the 3D Funk–Hecke theorem to analyt-
ically evaluate integrals of functions on the sphere. Before
describing this new derivation, we need to review the main
steps of some of our previous work (13) in which we devel-
oped a simple and efficient way to estimate the continuous
function on a q-ball that best approximates discrete and
sparse measurements using SHs. This SH formulation is
crucial for our analytical simplification of QBI and allows
the introduction of the Laplace–Beltrami regularization
criterion for the solution.

Signal Approximation with the Spherical Harmonics

The SH, normally indicated by Y m
	 (	 denotes the order and

m the phase factor), are a basis for complex functions on
the unit sphere. Explicitly, they are given as follows

Y m
	 (θ , φ) =

√
2	 + 1

4π

(	 − m)!
(	 + m)! Pm

	 (cos θ )eimφ , [2]

where (θ , φ) obey physics convention (θ ∈ [0, π ], φ ∈
[0, 2π ]) and Pm

	 is an associated Legendre polynomial. For
k = 0, 2, 4, . . . , 	 and m = −k, . . . , 0, . . . , k, we define the
new index j := j(k, m) = (k2 + k + 2)/2 + m and define our
modified basis Y with elements Yj such that

Yj =




√
2 · Re

(
Y m

k

)
, if − k ≤ m < 0

Y 0
k , if m = 0√
2 · Img

(
Y m

k

)
, if 0 < m ≤ k

, [3]

where Re(Y m
	 ) and Img(Y m

	 ) represent the real and imag-
inary parts of Y m

	 respectively. The basis is designed to



Regularized, Fast, and Robust Analytical QBI 499

FIG. 1. Funk–Radon Transform illustrated for the input diffusion attenuation signal S(b = 1,000 s/mm2) with 1 fiber (left) and two orthogonal
fibers (right). The thin lines are the true underlying fiber directions and the thicker tubes are the detected maxima. One must imagine these
functions as living on the surface of the sphere. Here, for visualization purposes, the radius of the respective spheres are scaled by the
corresponding value on the surface. Blue to red colors represent low to high spherical values.

be symmetric, real and orthonormal. Symmetry is ensured
by choosing only even order SH and the ratios in front of
each term also ensure that the modified basis is real and
orthonormal with respect to the inner product < f , g >=∫



f̄ gd
, where 
 denotes integration over the unit sphere
and f̄ is the complex conjugate of f . We thus approximate
the signal at each of the N gradient directions i as

S(θi , φi) =
R∑

j=1

cjYj (θi , φi), [4]

where R = (	 + 1)(	 + 2)/2 is the number of terms in the
modified SH basis Y of order 	. Letting S be the N ×1 vector
representing the input signal for every encoding gradient
direction, C the R × 1 vector of SH coefficients cj and B is
the N × R matrix constructed with the discrete modified

SH basis

B =



Y1(θ1, φ1) Y2(θ1, φ1) · · · YR(θ1, φ1)
...

...
. . .

...
Y1(θN , φN ) Y2(θN , φN ) · · · YR(θN , φN )


 , [5]

we can write the set of equations as an over-determined
linear system S = BC. We want to solve for the SH series
coefficients cj , where cj = ∫



S(θ , φ)Yj (θ , φ)d
.

At this point, instead of simply evaluating the integrals
directly as done by Frank in (8) or performing a straight-
forward least-squared minimization as in (7,18), we add
local regularization directly into our fitting procedure. This
is to be able to use a high order estimation without over-
modeling the small perturbations because of noise in the
input diffusion MRI signal. We thus define a measure, E,
of the deviation from smoothness of a function f defined

FIG. 2. Laplace–Beltrami regularization reduces ODF estimation errors. Plotted is the point-wise Euclidean squared error [f , f ′] of Eq. [19]
between the ground truth f and estimated normalized ODFs f ′. (a) In the first simulation, the SNR was fixed to 35 while varying the b-value
between 500 and 12,000 s/mm2 for combinations of regularization parameter and estimation order of (λ = 0.006, 	 = 8) in blue, (λ = 0, 	 = 8)
in red and (λ = 0, 	 = 4) in black. (b) In the second simulation, we fix the b-factor to b = 3,000 s/mm2 and estimation order to 	 = 8 while
varying the SNR between 5 and 50. Here, the point-wise Euclidean squared error [f , f ′] is lower with λ = 0.006 in blue than with λ = 0 in red
and Tuch’s numerical method in green. In both tests, we randomly choose the number of fibers n per voxel to be 1, 2, or 3.
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on the unit sphere as E(f ) = ∫



(�bf )2d
, where �b is the
Laplace–Beltrami operator. The Laplace–Beltrami opera-
tor, which is the extension of the Laplacian operator to
functions defined on surfaces, is a natural measure of
smoothness for functions defined on the unit sphere. If
the spherical function f is parameterized with SH, the
Laplace–Beltrami operator is very simple to evaluate when
acting on this parameterization as it satisfies the relation
�bY m

	 = −	(	 + 1)Y m
	 . Note that this relation also holds for

our modified SH basis Y. Using the orthonormality of the
modified SH basis, the above functional E can be rewritten
straightforwardly as

E(f ) =
∫




�b


∑

p

cpYp


 �b


∑

q

cqYq


 d


=
R∑

j=1

c2
j 	2

j (	j + 1)2 = CTLC, [6]

where L is simply the R × R matrix with entries 	2
j (	j + 1)2

along the diagonal (	j is the order associated with the jth
coefficient). We thus obtain a closed-form expression for
the regularization term. Therefore, the quantity we wish to
minimize can be expressed in matrix form as

M (C) = (S − BC)T(S − BC) + λCTLC, [7]

where λ is the weight on the regularization term. The
coefficient vector minimizing this expression can then be
determined just as in the standard least-squares fit (λ = 0),
from which we obtain the generalized expression for the
desired SH series coefficient vector

C = (BTB + λL)−1BTS. [8]

From this SH coefficient vector we can recover the signal
on the q-ball for any (θ , φ) as

S(θ , φ) =
R∑

j=1

cjYj (θ , φ). [9]

Intuitively, this approach penalizes an approximation func-
tion for having higher order terms in its modified SH series.
Therefore, higher order terms will only be included in
the fit if they significantly improve the overall accuracy of
the approximation. This eliminates most of the high order
terms due to noise while leaving those that are necessary
to describe the underlying function. However, obtaining
this balance depends on choosing a good value for the
parameter λ. We use the L-curve numerical method (34) and
experimental simulations to determine a good smoothing
parameter.

Recently, Hess et al. (28,29) proposed to use a Tikhonov
regularization method while solving for the SH coefficients
when a large harmonic order approximation is wanted
(	 > 4) and standard 	 = 4 estimation otherwise. It is
a simple technique used to numerically better condition
the matrix involved in the pseudo-inverse of Eq. [8]. The
solution is expressed in the same form as Eq. [8] but the
Laplace–Beltrami matrix L is replaced with the identity
matrix I. The regularization is thus uniform, that is lower

and higher order coefficients are weighted in the same way
which is less desirable than a smoothing that minimizes
perturbing effects occurring mainly at higher order har-
monics. Moreover, the underlying assumption of Tikhonov
regularization is that the space where the data lives is a
flat manifold. This is a rough approximation in the ODF
reconstruction problem since the data actually lives on a
sphere, for which the right and appropriate tool to use is the
Laplace–Beltrami operator. Finally, other works propose
some postprocessing of the ODF to reduce errors involved
in high frequency harmonics. In Tournier et al. (18), higher
order terms of the SH fiber ODF reconstruction are atten-
uated by a heuristic amount. In Tuch (17), an isotropic
spherical smoothing filter of a certain width is applied to
the reconstructed ODFs.

Funk-Radon Transform Using Spherical Harmonics

We now prove a corollary to the Funk-Hecke theorem
needed to solve the FRT integral. Here, we write the dot
product between two vectors u, w ∈ R3 as uTw. The key
observation is that any continuous function f on the inter-
val [−1, 1] extends to a continuous function of two variables
g(u, w) on the sphere defined by g(u, w) = f (uTw). With
this formulation, the Funk–Hecke formula is a theorem that
relates the inner product of any SH with the projection on
the sphere of any continuous function f (t) defined on the
interval [−1, 1]. The theorem was first published by Funk
in 1916 and by Hecke in 1918 (35, chapter 9) and here, we
give only its 3D version.

Funk-Hecke Theorem: Let f (t) be continuous on [−1, 1]
and H	 any SH of order 	 in C3, the space of 3D complex
functions. Then, given a unit vector u∫

|w|=1
f (uTw)H	(w)dw = λ(	)H	(u), [10]

where

λ(	) = 2π

∫ 1

−1
P	(t)f (t)dt

with P	 the Legendre polynomial of degree 	.

In our case, recall that the Funk-Radon transform of the
signal in a unit direction u is the integral over the great cir-
cle perpendicular to u, as stated in Eq. [1]. Hence, replacing
the signal by the SH series approximations of Eq. [9], we
have

G[S](u) =
∫

|w|=1
δ(uTw)S(w)dw

=
∫

|w|=1
δ(uTw)

R∑
j=1

cjYj (w)dw

=
R∑

j=1

cj

∫
|w|=1

δ(uTw)Yj (w)dw︸ ︷︷ ︸
Ij

[11]

Note that if the Dirac delta function δ was continuous on
the interval [−1, 1], Ij could be directly evaluated using the
Funk–Hecke formula of Eq. [10]. However, δ(t) is discon-
tinuous at zero. To overcome this problem, we approximate
the delta function with a delta sequence δn(x) and take the
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limit as n goes to infinity. We only need the existence of
such a sequence and for example, the Gaussian of decreas-
ing variance 1/n2, given by δn(x) = (n/

√
π ) exp(−n2x2), is

a well-known delta sequence. As n goes to infinity, the vari-
ance of this Gaussian tends to zero, so that this sequence
of functions satisfies the defining property of the delta
sequence, i.e. that

lim
n→∞

∫ ∞

−∞
δn(x)f (x)dx = f (0). [12]

Since the Gaussian is continuous on the interval [−1, 1],
the delta sequence δn is also continuous on [−1, 1] for all n.
Hence, we can evaluate Ij using the Funk–Hecke formula
of Eq. [10] and the delta sequence property of Eq. [12]. We
obtain

Ij (u) =
∫

|w|=1
δ(uTw)Yj (w)dw

=
∫

|w|=1
lim

n→∞ δn(uTw)Yj (w)dw

= lim
n→∞

∫
|w|=1

δn(uTw)Yj (w)dw

= 2π

(
lim

n→∞

∫ 1

−1
δn(t)P	j (t)dt

)
Yj (u) (used Eq. [10])

= 2πP	(0)Yj (u), (used Eq. [12])
[13]

where 	j is the order associated with the jth element
of the SH basis, i.e. for j = {1, 2, 3, 4, 5, 6, 7, . . .}, 	j =
{0, 2, 2, 2, 2, 2, 4, . . .}. The strength of this derivation is that
it greatly simplifies the Funk–Radon integral. We have thus
proved the following corollary of the Funk–Hecke theorem
in 3D:

Corollary of the Funk-Hecke Theorem: Let δ(t) be the Dirac
delta function and H	 any SH of order 	. Then, given a unit
vector u ∫

|w|=1
δ(uTw)H	(w)dw = 2πP	(0)H	(u), [14]

where P	(0) the Legendre polynomial of degree 	 evaluated
at 0,

P	(0) =



0 	 odd

(−1)	/2 1 · 3 · 5 · · · (	 − 1)
2 · 4 · 6 · · · 	 	 even

[15]

Note that had we used a standard SH basis, the odd
coefficients of the ODF estimation would have vanished.

Therefore, Funk–Hecke theorem may be useful for any-
one working with SH and seeking solutions to integrals
over the sphere. Referring back to Eq. [11], the Funk–Radon
transform of a function given in terms of our modified SH
series in a given unit vector direction u is simply given by

G[S](u) =
R∑

j=1

2πP	j (0)cjYj (u). [16]

Thus, the SHs are eigenfunctions of the Funk–Radon trans-
form with eigenvalues depending only on the order 	 of the

SH series. When the signal S is parameterized by the vec-
tor C of SH coefficients, that is S = BC as before, the ODF
reconstruction in terms of SH coefficients, denoted by the
R × 1 vector C′, is simply a diagonal linear transformation
given by

C′ =




. . .

2π (−1)	j/2 1 · 3 · 5 · · · (	j − 1)
2 · 4 · 6 · · · 	j

. . .







...
cj
...




[17]

The detailed steps of the analytical QBI reconstruction
algorithm are presented in Table 1. Note that if one is
interested in a final estimated ODF on the sphere, it can
be obtained using the matrix multiplication BC′ (B from
Eq. [5]).

Hence, by using the SH for the approximation of the sig-
nal attenuation function at a given radius in q-space, the
QBI can be solved analytically, as also shown in Refs. 23,
28. An important contribution in favor of our approach
is that this solution can be obtained while imposing
a well-defined regularization criterion. The accuracy of

Table 1
Summary of the Regularized, Fast, and Robust Analytical QBI
Algorithm

Input
V : X × Y × Z × N diffusion weighted MRI volume
Sxyz : N × 1 diffusion weighted signal vector at voxel (x , y , z )
� : 2 × N matrix of gradient encoding directions in spherical

coordinates, i.e. �i = (θi , φi ) for each i ∈ {1, N}
	 : order of SH basis =⇒ R = (1/2)(	 + 1)(	 + 2)
λ : regularization parameter

Output
C ′

xyz : R × 1 diffusion ODF vector in SH coefficients at voxel
(x , y , z )

Algorithm:
B := Eq. [5] : Construct N × R matrix of SH basis elements

using � and modified SH basis Y = (Y1, . . . , YR )T defined by
Eq. [3].

	j : order associated with element Yj
for j = {1, 2, 3, 4, 5, 6, 7, 8, . . .}, 	j = {0, 2, 2, 2,

2, 2, 4, 4, . . .}.

L =




. . .
	2

j (	j + 1)2
. . .


 : R × R Laplace-Beltrami

smoothing matrix

P =




. . .
2πP	j (0) . . .


 : R × R FRT matrix (P	j (0) from

Eq. [15])
T = P (BTB + λL)−1BT : R × N signal to ODF transform

matrix

For each (x , y , z ) ∈ V
C ′

xyz = TSxyz : Compute SH coefficients of the ODF in one
step
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the modified SH series approximation with the Laplace–
Beltrami smoothing was established in Ref. 13 for sparse
measurements on the sphere. The analytical ODF estima-
tion method offers the advantages that the discrete interpo-
lation over many equators is eliminated and the solution
for all directions is obtained in a single step (Eq. [17]).
We now validate our new analytical QBI method and ana-
lyze the computational complexity gain. We also point out
the different and complementary results obtained in Hess
et al. (28).

METHODS

Numerical QBI Implementation

The implementation (17) involves several numerical com-
putations such as a regridding to find points outside the
actual measurements required to compute the discrete
points on each great circle. Our implementation of Tuch’s
numerical QBI is adapted from Campbell et al’s. (22)
QBI computation which is successfully used for multiple
fiber characterization and tracking. Given N points spaced
approximately uniformly on the surface of the sphere, the
interpolation on each unit great circle can be done at every
(1/2)

√
2π/N radians to take full advantage of the N discrete

measurements. This gives k = √
8πN points per equator.

We also set the width parameter (angular width) of the
spherical Gaussian interpolation kernel automatically to
three times the angle between equator points, i.e. σ =
(3/2)

√
2π/N .1 This heuristic choice gives a good trade-off

between the accuracy and stability in our experiments.

Synthetic Data Generation

We generate synthetic data using the multi-tensor model (7,
17,28,36,36), which leads to an analytical computation of
the exact ODF. For a given b-factor, noise level and encod-
ing direction i, we generate the diffusion-weighted signal
S(ui) = ∑n

k=1 pke−buT
i Dkui + noise, where i = 1, . . . , N for

N = 81 or N = 321 gradient directions on the hemi-
sphere (for 3rd or 7th order tessellation of the icosahedron
respectively), n is the number of fibers, pk is the propor-
tion of the kth fiber and Dk the kth diffusion tensor profile
with eigenvalues [300, 300, 1,700]×10−6 mm2/s (Fractional
Anisotropy (FA) = 0.8) oriented randomly. In practice, we
impose a minimum random angle between fibers of 45◦ and
relative random weights between 0.3 and 0.7 for 2-fiber and
between 0.2 and 0.4 for 3-fiber distributions. The noise is
generated with a complex Gaussian noise with a standard
deviation of σ , producing a S0 signal with SNR = 1/σ , that
is we define SNR as the ratio of maximum signal intensity
of S0 to the standard deviation σ of the complex Gaussian
noise. As in (28), we vary SNR values between 5 and 50.
This SNR range covers expected low to high quality of in
vivo HARDI data. The step by step procedure to generate
this synthetic data is extensively detailed in (13).

The exact ODF is given in Tuch (17) for a single Gaussian
fiber and by linearity, we can easily obtain the exact ODF

1In Tuch (17), k is set to 48◦ and σ to 5◦ although it is argued that
k and σ can be selected for a desired level of numerical precision.

for n fibers and normalization constant Z (17),

�(ui) =
n∑

k=1

pk

Z

√
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i Dk

−1ui
. [18]

Diffusion MRI Data Acquisitions

A Biological Phantom

The rat phantom was produced by Campbell et al. at the
McConnell Brain Imaging Center and Montreal Neurologi-
cal Institute (22) on a 1.5T Sonata MR scanner using a knee
coil. It was created from two excised Sprague-Dawley rat
spinal cords embedded in 2% agar. The acquisition was
done with a single-shot spin-echo planar sequence with
twice-refocused balanced gradients, designed to reduce
eddy current effects. The dataset is acquired with 90
pairs of points generated using electrostatic repulsion
algorithm (37). The q-ball protocol was used with b =
3,000 s/mm2, q = 0.35 µm−1, TR= 6.4 s, TE= 110 ms,
FOV 360 × 360 mm2, 128 × 128 matrix, 2.8 mm isotropic
voxels and four signal averages per direction. The SNR of
the b = 0 image S0 was estimated to be ∼70 for the averaged
phantom and around 10 for the cord at b = 3,000 s/mm2.

Human Brain Data

We performed ODF reconstructions on two real human
brain datasets, one with a high b-value of 3,000 s/mm2

and the other with a more standard clinical b-value of
1,000 s/mm2. The first dataset, brain#1, was acquired using
a Siemens 3T MR scanner 8 channel head coil, using 99
pairs of points generated with the electrostatic repulsion
algorithm (37), has 63 slices of 2 mm each, covering the
entire cerebrum. The FOV was 256×256 mm2, TR = 11.1 s,
TE = 121 ms, b = 3,000 s/mm2 (q = 0.35 µm−1), BW
1346 Hz/Pixel, 128 x 128 matrix and phase partial Fourier
7/8. Ten b = 0 images were acquired and averaged to pro-
duce the S0 image. The SNR in the white matter of this S0

image was then estimated to be ∼41. In the second dataset,
brain#2, diffusion weighted images were acquired at the
Leipzig Max Planck Institute on a whole-body 3 Tesla Mag-
netom Trio scanner (Siemens, Erlangen) equipped with an
8-channel head array coil (38). The spin-echo EPI sequence,
TE = 100 ms, TR = 12 s, 128 × 128 image matrix, FOV
= 220 × 220 mm2, consists of 60 evenly distributed diffu-
sion encoding gradients (37) with a b-value of 1000 s/mm2

and 7 images without any diffusion weightings. The mea-
surement of 72 slices with 1.7 mm thickness (no gap),
which covered the whole brain, was repeated three times,
resulting in an acquisition time of about 45 min. Hence,
the S0 image is the average of 21 b = 0 images. The SNR
in the white matter of this S0 image was estimated to be
∼37. Additionally, fat saturation was employed, 6/8 partial
Fourier imaging, Hanning window filtering, and parallel
GRAPPA imaging with a reduction factor of 2.

Validation

Computational Complexity Analysis

We refer to Table 1 for the analytical QBI and to (17, Table 1)
for the numerical QBI. Assuming that the input diffusion
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MRI volume is of size X ×Y ×Z×N , we have a diffusion sig-
nal vector of N ×1 at each voxel, where N is the number of
gradient directions taken. We let k be the number of points
on each equator over which the numerical Funk–Radon
integral is computed. In our technique, we have defined
R = (1/2)(	 + 1)(	 + 2) to be the number of elements in
the SH basis. It is straightforward to see that the analyti-
cal ODF reconstruction is O(XYZNR) because of the O(NR)
matrix multiplication at every voxel, while the original
ODF reconstruction is O(XYZNk) because of the integra-
tion of k equator points for each sampling direction N
at every voxel. Therefore, the difference in computational
complexity between the two methods can be explained
by the difference between R and k, where R is generally
smaller than k. For example, at orders 	 = 4, 6, 8, for our
method R = 15, 28, 45 respectively; in Tuch (17) k is set to
be 48.

Robustness to Noise

To evaluate the ODF reconstruction methods, we gener-
ate HARDI signal profiles using the multi-tensor model
described earlier for a single voxel. We perform two simula-
tions to evaluate the ODF estimation. In the first simulation,
SNR was fixed to 35 while varying the b-value between
500 and 12,000 s/mm2 for estimation order 	 = 4 and
	 = 8. In the second simulation, we fix the b-factor to
b = 3, 000 s/mm2 and estimation order to 	 = 8 while vary-
ing the SNR between 5 and 50. In both tests, we randomly
choose the number of fibers n per voxel between 1, 2, and
3. The optimal regularization λ parameter can be obtained
from the L-curve numerical method (34). To avoid having
to compute the optimal λ for each HARDI profile at every
iteration, we set λ = 0.006 for the rest of the article, a value
shown to provide good separation of 1-fiber from 2-fiber
distributions over a large range of SNR and b-values (13).
We apply the transformation given in Eq. [17] to obtain the
estimated SH coefficients of the ODF and use Eq. [9] to
obtain the corresponding discrete function on the sphere
for the N sampling directions.

ODF Shape Comparison

Letting f represent the exact ODF and f ′ the estimated ODF,
we compute the average Euclidean squared error between
f and f ′ over all tests and N samplings of the sphere, i.e.

[f , f ′] = 1
N

N∑
i=1

(
f ′
i − fi

)2. [19]

This method is used to compare ODF shapes through-
out the Results section, including experiments using syn-
thetic data, data from the biological phantom and human
brain data. However, other appropriate distances such as
Kullback–Leibler divergence could also be considered.

Fiber Detection and Angular Resolution

It is generally assumed that the fiber directions are sim-
ply given by the local maxima of the normalized [0,1] ODF,

where the function surpasses a certain threshold (here, we
use 0.5). This relation can be used to extract local fiber
orientation estimates for comparison with an estimated
ground truth as done in (31) and is also useful for visu-
alization purposes, overlaying the maxima over the ODF,
e.g. (18,25,30).

To evaluate fiber detection differences between Laplace-
Beltrami and Tikhonov regularization, we test on synthetic
HARDI data generated using a 3rd order tessellation of the
icosahedron that gives 81 samplings on the hemisphere, a
SNR of 10 and 2 orthogonal fibers. We vary estimation order
	 and use two b-factors of 3,000 and 1,000 s/mm2. (1) We
generate 1,000 such HARDI data separately, (2) we estimate
ODFs with/without Laplace–Beltrami and Tikhonov regu-
larization, (3) we count the number of times we correctly
detect 2 ODF maxima, and (4) we report the percentage and
average angular error ± standard deviation in degrees over
all 1,000 trials.

Finally, we perform a numerical experiment to evaluate
angular resolution limitations of the ODF reconstruction
with/without Laplace–Beltrami and Tikhonov regulariza-
tion. We generate noise-free synthetic HARDI profiles for 2
fibers, for b-factors of 3,000 and 1,000 s/mm2 and for spher-
ical sampling densities N = 81 and N = 321. Then, we vary
the crossing angle between fibers to determine the critical
angle at which only a single maxima starts to be detected
instead of two. We report this critical angle as the angular
resolution of the estimation.

RESULTS

We show four contributions of our regularized analytical
QBI method; (1) it is up to 15 times faster than Tuch’s
numerical method, (2) it is robust to noise, (3) it improves
accuracy in ODF maxima detection at the cost of slightly
reducing angular resolution, and (4) it recovers fiber cross-
ings from synthetic data, from a biological phantom and
from real human brain data.

Running Time Comparison

Table 2 shows that analytical QBI is up to 15 times faster
than Tuch’s numerical QBI in practice. Computation is per-
formed on a Dell single processor, 3.4 GHz, 2 GB RAM
machine. Given N samples on the sphere and a SH basis of
order 	, the theoretical speed-up factor for order 	 = 4, 6, 8
is ∼3, 2, 1 respectively. However, in practice the running
time of the analytical QBI is nearly 15 times faster. The
factor of 5 gap between the theoretical and experimental
speed-up is because of the constant time operation hid-
den and not accounted for in the “big O” analysis of the
running time in theory. This is mainly due to the inter-
polation kernel width of Tuch’s approach which is not
considered in the complexity analysis and which adds a
constant number of operations (4–7 in practice) at every
equator point. The reading/writing of 4D volumes with
4th dimension N instead of R is also slower. Thus, as
mentioned in (28), there are interesting potential data
compression applications offered by the SH basis, since
only a few harmonic coefficients need to be stored per
voxel.
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Table 2
Analytical QBI is up to 15 Times Faster than Tuch’s Numerical QBI in Practice

Analytical QBI

Tuch QBISize 	 = 4, R = 15 	 = 6, R = 28 	 = 8, R = 45

Dataset X × Y × Z × N Time (min:sec) Time (min:sec) Time (min:sec) k Time (min:sec)

Rat 35 × 17 × 35 × 91 0:01.27 0:01.61 0:02.09 48 0:13.59
Brain#1 128 × 128 × 63 × 100 0:40.42 0:53.06 1:49.37 50 13:27.12
Brain#2 93 × 116 × 93 × 61 0:27.07 0:35.76 0:58.38 45 5:43.86

Tuch’s numerical QBI is O(XYZNk ) and our analytical QBI is O(XYZNR). Computation experiments are performed on a Dell single processor,
3.4 GHz, 2 GB RAM machine.

ODF Shape Comparison and Robustness to Noise

Figure 2 shows that the Laplace–Beltrami regularization
reduces ODF estimation errors.

First, Fig. 2a shows that the estimation is precise. As
expected, we observe that for optimal b-value, the error
is less than 1%. Note also that the best results are not
for the highest b-values because in this case, the diffusion
weighted signal decreases sharply in SNR. This is because
the signal intensity of the Gaussian-like profile of the sig-
nal varies more rapidly with ADC. At the extremity of
very high b-values, most of the signal is lost. One would
need to choose a much higher λ to prevent the regularized
curve from approaching the unregularized curve. It is also
expected that for low b-values, the accuracy of the estima-
tion is reduced. This is mostly due to the Bessel function
averaging effect (17). The signal is too smooth and there is
very small contrast. Regularization is unnecessary in these
cases. It is also interesting to note that a lower estimation
order (	 = 4) can outperform the regularized and unregular-
ized estimation of order 	 = 8 for low b-values (b < 1,500
s/mm2). the higher angular resolution afforded by higher
estimation order is not possible. Finally, lowest error is
observed in a plateau of relatively high b-values between
2,000 and 6,000 s/mm2, which agrees with reported results
in the literature (6,18). How to choose the optimal b-value
for a particular HARDI acquisition is still an open ques-
tion but in our particular synthetic experiment, we find
the smallest error occurring for b-factors between b = 4,000
and 5,000 s/mm2.

Last, Fig. 2b shows that the error decreases when the
noise level decreases, from more than 12% for a noisy
signal (small SNR) to less than 1% for high quality data
(large SNR). It is also important to compare the green curve
(numerical QBI) with the analytical QBI blue/red curves
with/without regularization that we have added in this test
to report robustness results of the different approaches. We
note that for high quality data, numerical QBI and analyt-
ical QBI with/without regularization are almost identical
whereas for noisy data, the analytical QBI with regular-
ization λ = 0.006 performs best, while numerical QBI is
better than analytical QBI without regularization (λ = 0).
Finally, as in Fig. 2a, we have analyzed the behavior of the
unregularized estimation of lower order 	 = 4. The unregu-
larized estimation errors of order 4 overlap the regularized
estimation errors of order 8 for low quality data with SNR
less than 20 and for high quality data with SNR larger than
20, the unregularized estimation errors of order 4 overlap
the unregularized estimation errors of order 8. Because of

these overlaps and for clarity of Fig. 2b, we do not plot the
curve.

Fiber Detection and Angular Resolution

In this section, we show four results: (1) Laplace–Beltrami
regularized ODFs decrease small perturbations due to noise
that can create false maxima, (2) Laplace–Beltrami regular-
ized ODFs improve the detection of crossing fibers while
reducing angular error as calculated from the maxima of
the ODF, (3) ODF maxima agree with the known underly-
ing fiber configurations under different signal parameters,
and (4) Angular resolution of the QBI method depends on
regularization technique, estimation order 	, acquisition
b-factor and spherical sampling density N .

First, Fig. 3 shows that Laplace–Beltrami regularized
ODFs remove small perturbations due to noise that can
create false maxima in ODFs estimated without regular-
ization and with Tikhonov regularization (last two rows
of Fig. 3). In particular, in this test, there are 3 maxima
detected for Tikhonov regularization at 	 = 8 and for no
regularization at 	 = 8, 10 and up to 4 maxima (one is less
obvious and comes out of the page) for Tikhonov regular-
ization at order 	 = 10. Hence, not only there is a danger of
over-modeling the data when using a high order (	 > 6)
with/without Tikhonov regularization but also, there is
an angular error made on the detected maxima at 	 = 6.
One can potentially tweak the threshold in the fiber detec-
tion method to remove some of the spurious maxima but
cannot correct for the angular error made. The Tikhonov
regularization results shown in Fig. 3 were obtained with
parameter λ = 2.

Second, Table 3 confirms the observation made in Fig. 3.
Table 3 shows that Laplace–Beltrami regularized ODFs
improve the detection of crossing fibers while reducing
angular error as calculated from the maxima of the ODF,
as seen in the example of 	 = 6 of Fig. 3. For these tests,
we recorded the percentage of correct 2-fiber ODF maxima
detected and noted the average angular error ± standard
deviation made in degrees. In the case there were more
than 2 maxima detected, the error was estimated on the
two closest ODF maxima to ground truth. With Laplace–
Beltrami regularization the detection is nearly perfect at
b = 3,000 s/mm2 and above 88% at b = 1,000 s/mm2

for all orders whereas the detection dramatically decreases
for high order estimations 	 = 6, 8, and 10 for Tikhonov
regularization and without regularization. Table 3 shows
also that Laplace–Beltrami smoothing reduces the average
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FIG. 3. ODF regularization
decreases small perturbations
due to noise that can cre-
ate false maxima. Thin lines
are the true underlying fiber
directions and thicker tubes are
the detected ODF maxima. Sim-
ulations are done with harmonic
order between 	 = 4, 6, 8, 10 with-
out regularization (λ = 0), with
Tikhonov regularization (λ = 2)
and with our Laplace–Beltrami
regularization (λ = 0.006). ODFs
are generated with 81 gradient
directions, SNR = 10, b = 3, 000
s/mm2 and orthogonal fibers
crossing.

angular error as calculated from the ODF maxima detected
and their ground truth. Overall, orthogonal fibers are
detected accurately by all methods for 	 = 4 even at
the lower b-value. The approximation is smooth enough
that effects due to noise are reduced. However, Laplace–
Beltrami regularization is necessary to obtain good results
for higher order (	 > 4).

The behavior of ODFs in Fig. 3 and better performance
in Table 3 because of the Laplace–Beltrami regularization
in the ODF estimation are expected. High-order modeling
error due to noise is avoided while minimally altering the
lower order coefficients involved in the description of the

ODF. The Tikhonov regularization used in Hess et al. (28)
is an approach mainly used to improve the numerical
conditioning of the matrices. However, it is not designed
to smooth the spherical functions as it perturbs the diag-
onal elements uniformly which has the effect of adding
λ to every eigenvalue. This does not change the overall
shape of the ODF and does not eliminate spurious peaks.
Moreover, in our experiments, we found that both Hess
et al. SH basis and our basis are well conditioned. That
is, the ratio of the largest over the smallest eigenvalue
of the BT B matrix involved in the least-square expres-
sion of Eq. [8] remains small, even when varying density

Table 3
Laplace–Beltrami Regularization Improves the Percentage of Detecting Crossing Fibers While Reducing Angular Error as Calculated from
the Maxima of the ODF

b-factor Order 	 Laplace–Beltrami (λ = 0.006) No regularization (λ = 0) Tikhonov (28)

3,000 s/mm2 4 99.9%, 2.1◦ ± 5.4◦ 99.6%, 1.6◦ ± 4.7◦ 99.6%, 1.6◦ ± 4.7◦
6 99.6%, 2.8◦ ± 6.1◦ 95.8%, 4.4◦ ± 7.2◦ 95.9%, 4.2◦ ± 7.0◦
8 99.4%, 2.5◦ ± 5.8◦ 62.9%, 4.6◦ ± 7.4◦ 63.1%, 4.5◦ ± 7.2◦

10 99.6%, 2.6◦ ± 5.8◦ 31.5%, 6.0◦ ± 7.5◦ 31.1%, 6.6◦ ± 7.7◦

1,000 s/mm2 4 96.2%, 8.6◦ ± 10.6◦ 96.1%, 7.1◦ ± 8.9◦ 96.2%, 7.0◦ ± 8.8◦
6 90.3%, 10.4◦ ± 10.8◦ 69.4%, 11.9◦ ± 10.1◦ 71.0%, 11.1◦ ± 9.7◦
8 88.5%, 10.8◦ ± 11.4◦ 23.4%, 11.3◦ ± 10.9◦ 24.3%, 11.1◦ ± 10.5◦

10 88.0%, 10.8◦ ± 11.3◦ 4.5%, 12.6◦ ± 10.7◦ 4.4%, 12.8◦ ± 10.2◦

Percentage reflects if ODF were correctly detected with 2 maxima. We report success %, average angular error in degrees ± standard
deviation in degrees for the ODF estimated with Laplace–Beltrami regularization, with Tikhonov regularization and without regularization. The
simulations are HARDI signal of 1,000 separate pairs of orthogonal fibers, with a SNR of 10 and spherical sampling density of N = 81, while
varying estimation order 	 and the b-factor. For 	 > 4, Laplace–Beltrami regularization is necessary to obtain good fiber detection.
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FIG. 4. ODFs recover mul-
tiple fiber crossing in syn-
thetic data generated with b =
1, 500 s/mm2, SNR = 15. (a)
90◦ crossing and (b) 60◦ cross-
ing. An order 8 estimation with
λ = 0.006 was used.

N for N = 30, 66, 81, 99, 130, and 321 samplings on the
hemisphere.

Next, Fig. 4 qualitatively shows that we are able to reli-
ably recover the underlying fiber population for imaging
parameters similar to clinical applications. The example
is generated with b-factor of 1,500 s/mm2, with sampling
density N = 81, with noise level of SNR = 15 and with
a 2-fiber population crossing at 90◦ and 60◦ respectively.
Other examples for b-factors (500, 1,500, 3,000 s/mm2)
and other SNR (5, 15, 34) can be found (25). Note that
the detected ODF maxima qualitatively agree with the
underlying fibers with some small angular error due to
noise level, even though a relatively low b-value is used.
The average angular error between ground truth directions
and detected maxima was calculated to be ∼10◦ for both
datasets. Simulation with a 3rd order tessellation gives
a 16◦ difference between each ODF reconstruction point.
The error is thus less than an angular sampling unit and
separating both fiber configurations is done with the same
quantitative precision. As one would expect, the smaller
the angle between fibers, the harder it is to distinguish
them.

Last, Table 4 illustrates the angular resolution of the
analytical QBI technique with respect to the SH order

	 and the regularization method used in the ODF esti-
mation as well as the b-factor and spherical sampling
density used to generate the synthetic signal. The criti-
cal separation angle is reported, that is the angle between
2 fibers under which only a single ODF maximum starts
to be detected. Five expected observations can be made
from Table 4. (1) It is harder to distinguish crossing
fibers for lower b-values. In fact, there is approximately
a 15◦ gain in angular resolution when going from
b-value 1,000 s/mm2 to b-value 5,000 s/mm2 and higher.
(2) For 	 > 4 there is an improvement in angular resolu-
tion of roughly 3◦ to 10◦ for all methods because higher
order estimation include higher order frequencies in the
approximation of the signal. The largest angular resolution
improvement occurs for high b-value and high spherical
sampling density (N = 321). (3) Tikhonov and no reg-
ularization have a better angular resolution than using
Laplace–Beltrami regularization. In the Laplace–Beltrami
case, the critical angle remains reasonable and about 0◦–
5◦ higher. This decrease in angular resolution is due to
smoothing of the higher frequency information in Laplace–
Beltrami regularization. Hence, there is a trade-off between
accuracy of the fiber detection and angular resolution.
(4) There is an improvement of a few degrees in angular
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Table 4
Angular Resolution Limitations of the ODF Reconstruction With/Without Laplace–Beltrami (LB) (λ = 0.006) and Tikhonov (TK) (28)
Regularization

b = 10,000 s/mm2 b = 5,000 s/mm2 b = 3,000 s/mm2 b = 1,000 s/mm2

Order 	 LB TK λ = 0 LB TK λ = 0 LB TK λ = 0 LB TK λ = 0

N = 81 4 57◦ 55◦ 55◦ 59◦ 56◦ 56◦ 63◦ 60◦ 60◦ 75◦ 71◦ 71◦
6 53◦ 49◦ 49◦ 55◦ 52◦ 53◦ 59◦ 53◦ 54◦ 74◦ 68◦ 68◦
8 52◦ 46◦ 48◦ 55◦ 50◦ 50◦ 58◦ 53◦ 53◦ 74◦ 68◦ 68◦

10 52◦ 46◦ 47◦ 55◦ 49◦ 49◦ 58◦ 52◦ 53◦ 74◦ 68◦ 68◦

N = 321 4 54◦ 54◦ 54◦ 56◦ 55◦ 55◦ 60◦ 59◦ 59◦ 72◦ 71◦ 70◦
6 44◦ 42◦ 43◦ 47◦ 45◦ 46◦ 52◦ 50◦ 50◦ 69◦ 67◦ 67◦
8 39◦ 35◦ 36◦ 44◦ 40◦ 41◦ 50◦ 46◦ 47◦ 69◦ 66◦ 67◦

10 36◦ 31◦ 31◦ 43◦ 38◦ 39◦ 50◦ 46◦ 46◦ 69◦ 66◦ 67◦

Noise-free synthetic HARDI profiles are generated for 2 fibers, for b-factors of 10,000, 5,000, 3,000 and 1,000 s/mm2 and for spherical
sampling density using N = 81 and N = 321. The crossing angle between fibers is varied to report the critical angle under which only a
single maxima starts to be detected instead of two.

resolution when increasing spherical sampling density
used to generate the synthetic data. (5) For higher b-values
and higher sampling density, there is an important angu-
lar resolution improvement of about 10◦ when comparing
the Laplace–Beltrami regularized estimation of order 	 > 4
with the Tikhonov and λ = 0 estimations at order 	 = 4.
This increase in angular resolution is even more apparent
at higher b-values.

In a different angular resolution study, Hess et al. (28)
have studied the theoretical relationship between the
approximation order 	 and angular resolution, as calcu-
lated from the full width half max of the main lobe
of the spherical point spread function. In particular, for
	 = 4, 6, 8, 10, the angular resolution is approximately
65◦, 45◦, 35◦, 30◦ respectively (described in Ref. 28, Fig. 1).
This study mainly looks at the impact of SH estimation
order without considering the HARDI signal parameters
or the regularization technique used in the estimation. In
practice, we observe critical angles that are higher because
there are many other parameters than order 	 that may
influence angular resolution of the solution. Not only have
we studied the SH order 	 but we have also studied

the regularization method and λ parameter as well as the
b-factor and the spherical sampling density N .

This section showed that there is a trade-off between
angular resolution and accuracy of the fiber detection.
Overall, Laplace–Beltrami regularization reduces errors
in fiber detection while keeping a reasonable angular
resolution, and in the case of high b-value acquisitions
with high number of sampling directions on the sphere, the
Laplace–Beltrami regularized solution for high orders
(	 > 4) has better angular resolution than the unregularized
solution at order 	 = 4.

Biological Phantom

Figure 5 shows that ODFs recover multiple fiber crossing
in the rat biological phantom. Note that the ODFs have
multiple peaks that agree with the known underlying fiber
population, which we have emphasized with the subfigure
showing only ODF maxima. This is not the case when look-
ing at the DTI ellipsoids which are flat and sphere-like in
the crossing. Moreover, ODF shapes shown in the second
row of Fig. 5 are qualitatively nearly identical. In fact, when

FIG. 5. ODFs recover multiple
fiber crossing in the rat biological
phantom. Ground truth orienta-
tions were obtained (31). An order
8 estimation with λ = 0.006 was
used.
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Table 5
Analytical and Numerical QBI Methods Yield Essentially the Same
Results on the Rat Phantom While Reducing Errors Obtained from
DTI

Comparison with ground truth directions

Median Mean ± std

Analytical QBI 12.20◦ 15.94◦ ± 15.32◦
Numerical QBI 12.19◦ 15.94◦ ± 15.40◦
DTI 15.2◦ 19.4◦ ± 16.2◦

Ground truth orientations and comparison are done as in Ref. 31.

computing the mean and standard deviation of the average
Euclidean squared difference (Eq. [19]) between the ODFs
at every voxel of the volume, we obtain a 0.55%±0.17% dif-
ference, demonstrating the strong agreement between the
methods. That is, ODFs computed from the analytical and
numerical QBI (17) are more than 99% in agreement.

Table 5 shows that analytical and numerical QBI (17)
methods yield essentially the same results on the rat
phantom while reducing errors obtained from DTI. To per-
form a quantitative evaluation of the ODF maxima, we
used the “ground truth” orientations from Ref. 31 (illus-
trated in Fig. 5). The orientations are in fact more like
a silver standard (a gold standard does not exist in a
biological phantom) as they were determined by extract-
ing the centerlines of each super-sampled rat cord and then
smoothly extended to the center of the boundaries. For each
ODF dataset and for the DTI ellipsoids, the maxima are
extracted. Then, at each voxel, the smallest angular differ-
ence between the available maximum(a) and ground truth

orientation(s) is recorded. The median and mean ± stan-
dard deviation (std) orientation errors in degrees are shown
in Table 5. The analytical and numerical QBI methods yield
essentially the same results while significantly reducing
the errors obtained from the DTI profiles. It is important to
note that because of the discrete sampling of the sphere,
even perfect ODF data will be expected to have some error
with respect to the ground truth orientations. This minimal
expected error is related to the solid angle subtended by one
facet of the sphere tessellation induced by the sampling.
For example, it can be found to equal 7.2◦ for a uniform
sampling of the hemisphere by 100 directions (31).

Human Brain Data

As for the rat biological phantom, if we compare ODFs on
the brain#1, the overall shapes of the ODFs are nearly the
same for the analytical and numerical QBI (17) methods.
We record a small mean and standard deviation of the aver-
age Euclidean squared difference (Eq. [19]) between ODFs
from the two methods of 0.68% ± 0.23%.

Qualitatively, Fig. 6 shows that ODFs recover multiple
fiber crossing in brain#2 where DTI profiles are limited.
Diffusion tensors and ODFs are overlaid on the classical
FA anisotropy measure and its high order generalization
GFA (17) respectively. We zoom on the ODFs in two ROI.
Again, ODF maxima agree with our knowledge of the cross-
ings between the cortical spinal tract (cst) and superior
longitudinal fibers (coming out of the plane) in ROI (a)
and crossings between the cst and corpus callosum (in the
plane) in ROI (b). Figure 6 also emphasizes the limitations
of DTI and the ability of the ODF to recover multiple fiber

FIG. 6. ODFs recovering mul-
tiple fiber crossing in a ROI of
brain#2 where DTI profiles are lim-
ited. The ODFs and diffusion ten-
sors are overlaid on the GFA and
FA measure respectively and we
zoom on the ODFs of two smaller
ROI. The ROI(a) shows crossing
fibers between the cortical spinal
tract (cst) and superior longitudi-
nal fibers (coming out of the plane)
and the ROI(b) shows crossing
between the corpus callosum (in
the plane) and the cst. ROI(a) is
tilted to see the fiber crossing bet-
ter. An order 8 estimation with λ =
0.006 was used.
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orientations that are nearly orthogonal even from a dataset
with relatively low b-value of 1,000 s/mm2.

DISCUSSION

We have proposed a regularized, fast and robust analytical
solution for the ODF estimation problem in QBI.

The main focus of the paper was on the ODF reconstruc-
tion. We have derived an analytical solution for QBI that
agrees with previous solutions (23,28) recently developed
in parallel in the literature. As already pointed out in the
article, the Hess et al. (28) paper is very close in spirit to our
article but both papers complement each other. Each paper
makes separate contributions that support the strength of
the analytical solution using spherical harmonics. Hess
et al. have shown interesting properties of the analytical
solution that we have not focused on, such as, the the-
oretical angular resolution limitation with respect to the
harmonic order 	 of the basis, the better performance of the
analytical solution for low sampling density of q-ball ODF
reconstruction compared to Tuch’s numerical technique
and the data compression potential of the approach.

Further, we have made additional contributions: (1) we
have introduced a new closed-form Laplace–Beltrami reg-
ularization in the signal-fitting step, (2) we have proved a
novel corollary to the Funk–Hecke theorem to derive the
analytical solution for ODF reconstruction, (3) we have
done a complexity analysis with a practical running time
experiment that shows an increase in speed by a factor of
15 over numerical QBI (17), (4) we have shown the advan-
tages of Laplace–Beltrami regularization theoretically and
experimentally at the cost of slightly reducing angular res-
olution, and (5) we have performed a careful validation of
both analytical and numerical QBI (17) techniques on noisy
synthetic data and real data where ground truth is known.

The new analytical solution comes from the fitting of the
signal with SH, which allowed us to impose the Laplace–
Beltrami regularization criterion. The Funk–Hecke corol-
lary was proved using a delta sequence so that the Funk–
Hecke formula could be used to solve the Funk–Radon
integral and obtain a simple regularized expression for
the ODF reconstruction. Without this derivation, the FRT
can only be computed with a more complicated numeri-
cal scheme. This solution eliminates the discrete numerical
integration step over each equator needed in Tuch’s numer-
ical QBI implementation which speeds up computation by
a factor up to 15, while solutions stay in close agreement. As
imaging techniques are improved and the number of gra-
dient directions are increased, this can potentially be an
important speed-up factor even with the optimal numer-
ical QBI implementation. It can also have potential data
compression applications (28).

We have also shown the better performance and robust-
ness of the ODF reconstruction in the presence of noisy
synthetic data. Theoretically, we have argued that the
Laplace–Beltrami is the right regularization criterion to
use. Experimentally, at the cost of slightly reducing angular
resolution, we have shown that it incorporates less noise
in the high order SH coefficients describing the ODF and
thus better describes voxels with multiple fibers, especially
in the presence of high noise level. Therefore, it is possi-
ble to use a high order approximation while limiting the

over-modeling of perturbations due to noise. This is not
the case without regularization or when using Tikhonov
regularization.

Determining the angular resolution of the analytical QBI
method is a difficult problem that depends on the SNR
of the signal, b-value and spherical sampling density N
used in the QBI acquisition, and regularization parameter
λ and estimation order 	 used in the ODF reconstruction.
Some answers to this angular resolution problem have been
proposed in the literature. Tuch (17) reported the angular
limitation of the QBI protocol due to the intrinsic bessel-
beam smoothing of the FRT whereas Hess et al. (28) studied
the theoretical angular limitation arising from the choice of
SH order 	. In general, it would be of great interest to know
the achievable angular resolution given the specific sam-
pling N , b-value and SNR in the diffusion-weighted data
and given the order 	 and regularization λ used in the ODF
reconstruction.

Overall, the article showed some of the powerful prop-
erties of the SH representation, which have interest-
ing postprocessing applications. First, Gaussian/Laplacian
smoothing on the sphere by the Laplace–Beltrami oper-
ator extension is trivial to compute and allows one to
impose a regularization criterion on the solution. Second,
derivatives and integrals on the sphere have analytical
expressions. This could allow for an automatic maxima
extraction on the ODFs. ODF sharpening is also an appli-
cation currently under investigation and was introduced
in Ref. 25. Using both the Laplace–Beltrami and the Funk–
Hecke theorem, we can define sharpening operations that
enhance maxima of the underlying fiber distribution. This
shows promising results especially when the dataset is
acquired with low b-values (25). The underlying fibers are
more easily detected from the sharpened diffusion ODF.
Finally, it is now important to integrate this analytical ODF
reconstruction in a high order tracking and segmentation
algorithm.
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