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Regularized iterative and non-iterative procedures for
object restoration from experimental datat
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Abstract. A regularized algorithm for the recovery of band-limited signals
from noisyv data is described. The regularization is characterized by a single
parameter. [terative and non-iterative implementations of the algorithm are
shown to have useful properties, the former offering the advantage of flexibility
and the latter a potential for rapid data processing. Comparative results, using
experimental data obtained in laser anemometry studies with a photon correlator,
are presented both with and without regularization.

1. Introduction

The problem of inverting experimental data to derive explicit information
concerning the structure of a source or scatterer has in recent years generated a vast
literature [1, 2]. A specific problem which arises in Fourier optics consists in finding
a solution to a Fredholm integral equation of the first kind, which has the general
form

b
glv)= I K(x, v) f(x) dx, (1)

where g(y) is the measured image function (the image distribution) from which f(x)
(the object distribution) has to be determined. For a space-invariant system where
the diffraction-limited coherent image is formed by a one-dimensional clear pupil
extending over (—€, Q), the kernel takes the form

4 sin [Q(y—x)]
i n(y—x)

K(x, v)

(2)

and for an object lying between — X and + X, the image field distribution becomes

¥ 3 b
e sin [Q(y —x)) f(x) dx. (3)
i -x m(y—x)

It is well known that attempts at inverting Fredholm integral equations of the
first kind (for example, by matrix inversion), can, when the data are less than perfect,
lead to highly erroneous results, Methods of imposing stability on the solution by the
use of known or plausible constraints are available, however, and have been the
subject of many studies [3]. A powerful iterative technique for solving these
equations has also been proposed as a general solution to equation (1) by Landweber
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[4], and in a form specifically for application to equation (3) by Gerchberg [5]. This
procedure, now usually known as the Gerchberg method, has been shown to
converge to the true solution in the absence of noise [6, 7). It can be realized for
computational purposes in a form which makes use of Fourier transforms alone, and
can also be used to achieve explicit analytic continuation of a signal in a highly
efficient manner. However, in its basic form the procedure is inherently unstable
when the data are corrupted by noise or distorted in some other way. In this paper,
therefore, we discuss methods for stabilizing the Gerchberg procedure and show
how the computation can be reduced to a single operation on the original data set. We
then demonstrate the performance of our algorithms by application to experimental
data obtained n laser anemometry studies with a photon correlator.

Before describing the method in detail, we introduce the notation for the band-
limiting and domain-limiting operators B, and Dy:

sin (Qx)
nx

J' © sin [Qx—y)]

Bolh(x)] = h(x)*

== _II(T— “—)_ M y)dy (4

and

hx), |x<X,
Dy[I(x)]= { (5)

0, |x>X,

where i belongs to the space L*( — o, 1) of square-integrable functions. We denote
the complement of Dy by Dy;

0, k<X,

Dy[h(x)] =
[t {I:(x). > X.

Thus, if / is the identity operator, Dy = I — Dy, With the above notation, equation (3)
becomes

g=BaDy f. (6)

Here we shall always be concerned with the class of objects for which Dy f=f. We
denote Fourier transforms by the use of a circumflex:

h(w) = f , h(t) exp (—iwt) dt.

-

We also require certain simple rules for manipulating By, and Dy:

2N -
Bnll = Dnll,

A %
D.‘h = Bxh,
Hﬁb — Dqu,;o
Dﬁ’:" =By Dxx’;-
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2. The iterative solution

The basis for the Gerchberg method [5] of solving equation (3) is that, since the
object is of finite extent, the Fourier transform of the object field distribution is an
entire function [8] and can be analytically continued [9, 10]. ('The solution is also
unique.) The actual procedure consists, at each iteration, of first truncating the latest
estimate of the object to (=X, X) and calculating its Fourier transform over the
desired extrapolation length. ‘T'he portion of this function in the range (=, Q) is
then replaced by the true spectrum over this range (that is, by the Fourier transform
of the infinite image) and the resulting composite function is Fourier-transformed to
form the new estimate. Thus, at the nth iteration the Fourier transform of the
estimate of the object, say f,, is given by

fi=8+ Dﬂ(b;]n- A

that is
jn=é+Danj"‘l' (7)

('The process is begun by setting f,, equal to §.) The nth estimate of the object is
therefore

fo=8+Dyxfo-y—BaDx [,

or
fi=g+(U—=Bg)Dyf, . (8)

Numerous computer studies have demonstrated the performance of algorithms
based on equation (7) for simulated data, and mmplementations of the method for
various applications have been proposed [11-15].

2.1, The regularized solution

Up to this point, we have considered only operations involving ideal data,
uncorrupted by noise or any other distorting factor. However, in the presence of
perturbations to the data, the problem of inverting Fredholm integral equations of
the first kind, such as equation (1), is ill-posed, in the sense that the solution does not
depend continuously on the data, even if itisunique [3, 16]. Stability can be restored,
and the effect of noise in the data controlled, by imposing on the solution a suitable
constraint which may be derived from known or assumed object characteristics, "T'his
1s the basis of the so-called regularization techniques of object and image restoration
in optics [17,18]. It should be noted that regularization involves essentially a
modification of the original problem, which 1s transformed mnto one possessing the
desired properties.

Let us denote the perturbations to the data (for example, the effects of noise) by
the function r and rewrite equation (6) in the form

g=Af+r, 9)
where
A= Bqu‘ (10)

A regularized solution, f say, can be derived in the following way [16, 18].
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Suppose that £is a measure in the root-mean-square sense of the quantity of noise
in the image. We shall seek solutions f’ which satisfv the inequality

lg—Af| <e, (11)

where | | denotes the L? norm:
lefl®= J. le(v)|* dy.

The set of functions satisfying equation (11) is, however, unbounded, and in
order to restrict the solution set still further we suppose that some a priori knowledge
of f" 1s also available, expressible in the form

Cr|

where (7 is a constraint operator and E is some positive number. If (7 is the identity
operator, E represents an upper bound for the norm of f. (In some physical
applications, this constraint would appear naturally as an energy bound.)

The constraints (11) and (12) can be combined in the single inequality

<E, (12)

g2 (13)

cr

le-art+(5)’

Among the set of objects satisfying equation (13), a physically reasonable choice
would be that object, fsay, which minimizes the left-hand side of the inequality. This
solution satisfies the equation

2
[A*.»H(%) (‘f(']f=A*g, (14)

where the dagger denotes the adjoint operator. In our problem, A is the operator
BoDy and it is not difficult to show that its adjoint is D B,. Hence equation (14)
becomes

\2
[DxBan + (;7) ('+(-‘] J=DyBqg,

since B(Z,EB".
As the simplest possible case, we take C to be the identity operator I, whence

e 2
[DxBan""(E) l]]= D]Bng.

Since Dy f=F, this equation can also be written in the form
(DyBoDy+aDy)f=DyBqg, (15)
where a=(¢/E)? is the so-called regularization parameter [3].

Further details of these techniques, together with extensive bibliographies of the
subject, are available [3, 17, 19].
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2.2. Iterative methods for obtatning regularized solutions

An iterative procedure which incorporates regularization, and reintroduces the
original data set g at each step, can be derived in the following way. Equation (15) is
first rewritten in the form

]=]+ D;\‘Bﬂg—(DIBllDX.*—aDX)]
or
]= DxBnA""[U—G)Dx-DxBan]]- (16)

This suggests that the regularized version of equation (8) might take the form
Fo=DyBag+[(1 =)Dy — DyBaDy1 £, - - (17)

Fourier-transforming equation (17), and using the rules stated previously for the
manipulation of the various operators, we obtain

fo=By[Doi+(Dg—al)By ], ).

Since the operator B outside the brackets in this expression is redundant for all
intermediate steps, and will be needed only for the final estimate, the equation can be
written as

F1=Dog+(Do—aD)Byf, ;. (18)

By setting =0 the precise form of the Gerchberg algorithm in equation (7) is
recovered, since from equation (6)

Dmé’ — é

for noiseless data. However, for non-zero values of « the basic requirement of the
Gerchberg method, that

Dnj n= Dné

for all n, is not satisfied, since 2B, f, -, differs from zero over the range (—Q, Q) of 2.
Hence we seek to modify equation (15) appropriately.
Consider instead the regularization expressed by the equation

[(1 =)Dy BoDy+aDy] f=DBqg. (19)
Rearranging as in equation (16), and setting 2= 1—2, we find that
F=DyBag+ M Dy—DxBaDy) ] (20)
with the associated iteration formula
Ju=DyBag+ A Dy—DyBaDy)J, ;. (21)

In conjugate space,
fn=Ban§+ MBy—ByDoBy)f,-
which, since By = B3, can be written as

juv:BX(Dﬂé"';'DQijn-l)' (22)
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Using again the redundancy of the operator outside the brackets for all
intermediate steps, we redefine the iterative procedure in the form

jn=D(1&"+;-Dan7n-t- (23)

Each estimate is now identical with Dy, g over the range ( —Q, Q) and equation (7)
is recovered by setting =0 (4= 1). Note that equation (22) will lead after n iterations
to a band-limited approximation

ju=BXfm

whereas equation (23) will not. However, provided that they converge, both
procedures will lead ultimately to the same function, f, say, which satisfies

fo=Byfu.

so that the approximate solution given by equations (22) and (23) should not differ
significantly when the number of iterations is high enough.

The convergence, for a given «, of equations (17) and (21) to the solutions of
equations (15) and (19) respectively is guaranteed by the fact that the norms of the
operators (1 —a)Dy — DB, Dy and A(Dy — Dy B, Dy) are strictly bounded by unity if
a<1.(1f0<x <}, their norms are both 1 —a.) This is easily established by using the
well-known fact that the eigenvalues of DyBgDy all lie between 0 and 1 [6, 18, 20].

On the other hand, it can be shown by using appropriate theorems in
regularization theory that equations (15) and (19) define regularized solutions to
equation (6); i.e. f will be close to the exact solution (if it exists) and will tend to it in
some sense as the noise on the data g tends to zero. Although the proofs are too long to
be given in detail here, the necessary results and theorems can be found, for instance,
in the book by Groetsch [21].

We now demonstrate the way in which the iterative scheme embodied in equation
(23) can be reduced to a single operation on the original data.

2.3. The extrapolation matrix—a non-iterative regularized solution

Both the regularized and unregularized iterative schemes embodied by equations
(7) and (23) can ecasily be realized in a digital computer as a single matrix
multiplication. Since

Dog=Dof..1, Vn, 24)

equation (23) can be rewritten as

o= Do+ iDaBy) f,- ;.

Hence

-

Jo= Do+ ADaBy)" Dy, (25)

where we have taken f,= D é.

A related non-iterative but unregularized algorithm has been derived [11, 22, 23],
which requires, however, either the inversion of the matrix approximating the
operator (I—DgyBy) or, equivalently, the summation of a power series in Dy By.
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We also remark at this point that other regularized iterative schemes can be
constructed, which can again be mmplemented non-iteratively. For example,
equation (15) can be rewritten in the form

(1+a)Dy f=DyBag+(Dy— DyBoDy)F,

leading to the iterative scheme, in the conjugate space,

]..=Il?(l)ul:'+ DBy, ).

Because of the slight difference in the numerical factors, which are in the ratio
1/(1 —=a%), the final estimate generated by this scheme will differ very slightly from
that of equation (23).

It should also be noted that if the index » in equation (25) is a power of 2, say 2™,
the number of matrix multiplications involved in raising D, + 4 Do B to the power n
can be reduced from (n— 1) to m, with a significant reduction in computational time.

Any practical computation based on equation (23) or (25) must involve a finite
extrapolation from Q to, say, Z. If DD, denotes the related domain-limiting operator,
the appropriate algorithms for practical applications then take the forms

Jo=Dog+ ’:Dtﬁuﬁxjn—l (26)
and
Jo=(Da+iD,DoBy)"Dyg. (27)

T'he estimates obtained from equations (26) and (27) will in fact converge not to f
but to a smoother solution, the resolution in which will depend on the value of Z.

3. Applications to laser anemometry data obtained with a photon
correlator

During the past decade, laser anemometry has been intensively developed as a
research tool in experimental fluid dynamics. In the most common arrangement the
primary optical signal consists of the light scattered out of a pair of intersecting laser
beams by small particles borne along with the flow. The Doppler shift in the
frequency of this light is proportional to a component of the scattering particle’s
velocity; the direction of this component depends on the precise geometry of the
arrangement. In applications where this scattered light is extremely weak—for
example, in studies of high-speed Hows over relatively long optical paths—data
acquisition and processing may have to be carried out by photon-counting detectors
and digital correlators operating in parallel with signal reception [24]. However,
these instruments, which may be required to operate at sample times of 10 ns or less,
are expensive to construct, and the number of output channels 1s usually restricted to
100 or so. Such a restriction can subsequently pose problems in the extraction from
the data’record of the required information concerning flow velocity.

This information may consist, if the signal is sufficiently strong, of a single
velocity estimate corresponding to each transit of the measurement region by a
scattering particle, or an estimate of the probability density function of the velocity if
the autocorrelation function has been integrated over many particle transits. In
either case, the velocity mformation can be extracted from the autocorrelation
function by means of a Fourier transform [25]. We now show how, by exploiting
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such a relationship, the resolution problem takes the same mathematical form as the
optical example discussed above. We then make use of both the iterative and non-
iterative procedures to achieve super-resolution of photon-correlation data,

We suppose that there is some upper limit, say u,,, to the support of the velocity
distribution function p(u). After some initial processing [25], the autocorrelation
function G(t) is related to p(u) by a Fourier cosine transform:

G(1)= f "~ p(aé) cos (i) s, (28)
i

(

Note that if negative as well as positive values of u contribute to the data, only p(|u|) is
recoverable from equation (28); where necessary, however, appropriate experi-
mental arrangements can be made to ensure that the effective contributions are
always positive [25]. By using the Wiener-Khinchine theorem, equation (28) can be
inverted to give

p(u)=4j G(7) cos (2rur) dr. (29)
0

In practice G(t) is known only over (0, 7.,). Therefore the image of p(u) is a blurred
one, glu), say:

g(u)=4 J"m G(t) cos(2nur) dt
0

=4J. cos (2rut) dt I p(v) cos (2rvt) dv,
0 0
If we make p(u) an even function by letting p( —u)=p(u), and also use the fact that
G(1)=G(—1), we can reduce the above equation to the form

¢m=j“ sin [2nt(u—1)]

n(u—v)

p(v) dv. (30)

Since equation (30) is mathematically equivalent to the imaging problem of equation
(3), the iterative and non-iterative regularized algorithms of equations (26) and (27)
can be directly applied to laser anemometry data obtained by photon-correlation
techniques.

If a lower limit u, for the support of the velocity distribution is also known
a priort, equation (30) becomes

ﬂwzzj”ﬁﬂﬁﬁﬂzﬁﬂﬂﬂmn 31)

s m(u—v)

The definition of the operator Dy is modified appropriately, with the object now
lying within the range

4Y] S'.\" Q.Yz.

The data used in the computer experiments were obtained during a study of the
interaction between a shock-wave and a turbulent boundary layer [26], using a
64-channel correlator. Figure 1 shows the autocorrelation function, after nitial
processing, derived from a part of the flow which was known to be close to a shock
wave. Because of the fluctuations in the location of the interaction, the position of the
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Figure 1. Autocorrelation function near a shock wave,

(Arbitrary units)

Figure 2. Fourier cosine transform of data of figure 1; peaks at 12:80 and 1423 MHz.

shock-wave structure varied while the data were being acquired over a small
streamwise distance, which included the measurement region. The data thus
represent a time- and space-averaged velocity distribution, including subsonic and
supersonic components, although turbulence levels were expected to be low in this
part of the flow. The Fourier cosine transform of the data (figure 2) shows these
characteristics clearly. The peaks corresponding to the subsonic and supersonic flow
regions occur at 12:80 and 1423 MHz. (Velocity can be calculated from Doppler
frequency by means of known calibration constants.)

To illustrate the performance of the non-iterative extrapolation matrix algorithm
based on equation (27), the record of figure 1 was truncated to include the first
21 data points only; the maximum value of 7 is now (#4 us. 'The Fourier transform of
this shortened record is given in figure 3; note that the separate peaks of figure 2 are
no longer distinguishable.

Asa priori information in the calculation of the analytically continued record, the
true distribution was assumed to lie between the frequency limits defined by the first
zero-crossings on either side of the central peak in figure 3. These limits are used to
define the operator By of equation (27), while the operator Dy, 1s defined by the length
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Figure 3. Fourier cosine transform of shortened data record (1 =0-0r4 us).
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Figure 4. Shortened data record extrapolated from t=04 us to =128 us using equation
(27). Unregularized: 2=1.(2'° iterations.)

of the shortened record. (Note that if the limits assigned to the distribution are
too narrowly set, some distortion will inevitably result.) ‘T'he non-regularized matrix
(4A=1) was computed for extrapolation from the initial 21 data points to the 65 data
points of the original record, and for 2'™ (1024) iterations; figure 4 shows the
extrapolated function. Itis evident that the maximum excursions in the extrapolated
part are significantly greater than those of the basic data set. With further iteration
this imbalance increases.

In figure 5 this unstable behaviour has been controlled (for the same extra-
polation length) by introducing regularization, the parameter /£ having the value of
0993, In the Fourier transform plane (figure 6), the single peak is now clearly
resolved into the expected two components, Closer examination reveals that the peak
positions are at 12:88 and 14:30 MHz; thus the errors in location, compared with
figure 2, are about (15 per cent. Further iteration, as far as 2?° (over 10°), introduces
no signs of instability. At 2% iterations the object amplitude distribution has in fact
already converged to within (-5 per cent of its final state.
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Figure 6. Object estimate corresponding to figure 5: peaks at 12-88 and 1430 MHz.

For this degree of extrapolation, no advantage is found by using smaller values
of 4; the effect is simply to reduce the degree of resolution in the Fourier transform
plane. Controlled extrapolation to greater record lengths can be achieved with a
smaller 4, but the final result is very similar to figure 6. The optimal value for 4 will
depend on the criteria used to assess the final estimate, as well as on the properties of
the original data. This problem has been discussed by several authors (see, for
example, [3, 27]) and is under investigation for the particular application considered
here.

It should be remarked here that the large excursions in the data at the end of the
experimental record of figure 1 arise from noise on the signal, which is amplified by
the preprocessing technique used. These features do not appear in the extrapolated
functions shown in figures 4 and 5; their absence is attributable to the smoothing
properties of the band-limiting operators involved. On the other hand, distortions of
the data occurring at very small values of T (which originate in the detector) are
preserved as part of the basic data set. Since both backward and forward
extrapolation are possible with the procedures considered in this paper, these
distortions could also be reduced by appropriate minor modifications of the
algorithms,
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Figure 7. Data extrapolated from =04 pus to t= 128 us using equation (26). Positivity
constraint only (A=1); 2'” iterations.
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Figure 8. Object estimate corresponding to figure 7,

A disadvantage of the non-iterative method embodied in equation (27) is the
apparent impossibility of incorporating the powerful additional constraint of
positivity, when this is known to be a characteristic of the object function, Since this
is certainly the case for the velocity probability density distributions considered
above, the effect of incorporating positivity in the calculations has been explored
with the aid of the iterative formula of equation (26). Starting with the same
shortened experimental record, it was first confirmed that with and without
positivity the same results were obtained as before, for various values of the
regularization parameter 4 and the same extrapolation factor. However, application
of the positivity constraint alone was now sufficient to suppress the instability
previously encountered for A=1 (see figure 4). The extrapolated function and the
corresponding object are shown in figures 7 and 8. In fact, the requirement that the
object be positive, when combined with the blurring of formula (27), can be viewed
as a form of regularization [28].

We now consider the application of the iterative procedure of equation (26) to
improving the estimation of the variance of a narrow distribution in the Fourier
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Figure 9. Autocorrelation function at a point upstream of interaction region.
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Figure 10. Fourier cosine transform of data of figure 9. Apparent turbulence intensity =
34 per cent.

transform plane, The experimental data, shown in figure 9, are again taken from the
laser anemometry studies described above. In this case the measurement was made
upstream of the interaction features at a point in the test section where the flow
velocity was supersonic and low turbulence levels were expected. 'T'urbulence
intensity is defined as the ratio of the standard deviation of the velocity distribution
to the mean; an accurate estimation of the standard deviation is thus of fundamental
importance in the determination of low turbulence intensity.

Figure 10 is the distribution obtained by Fourier-transforming the data of
figure 9. T'he width of this distribution is predominantly due to the truncation of the
experimental data, and the apparent turbulence intensity (about 3-4 per cent) 1s well
above the expected value in this part of the flow. For a purely cosinusoidal record
(that is, for laminar flow) this apparent turbulence intensity, { say, would be due
entirely to truncation broadening, and in fact can be calculated exactly. If the record
contains 7 cvcles, where 7 is not necessarily an integer, it can be shown [29] that
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Figure 11. Data of figure 9 extrapolated to t=48us using equation (26). Positivity
constraint only (A=1); 2'° iterations.
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Figure 12. Object estimate corresponding to figure 11, Apparent turbulence intensity =
1:25 per cent.

where

X

k*=2n J.. smxdx:

-%

From tables, k~4-82. For figure 9, J/ is found to have the value of 0:033 (33 per cent).
In order to extract a better estimate of the turbulence level, the data of figure 9 were
analytically continued, using equation (26) and applying the positivity constraint
only (4 being set equal to 1), from an initial maximum of 7= 064 us to values which
progressively reduced the effect of broadening due to truncation, The band limits for
the extrapolation were again taken to be the first zero-crossings on either side of the
peak. Figures 11 and 12 show the extrapolated function and the object estimate,
obtained after 1024 iterations, for extrapolation by a factor of 7°5 (the maximum
attempted); both functions remain well behaved, The inclusion of the positivity
constraint had little effect on the behaviour of the function at small extrapolation
lengths when compared with extrapolation without positivity (4= 1 for all cases). For
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Figure 13. Apparent turbulance against extrapolation factor.

greater lengths, however, positivity alone was found to be sufficient to provide
adequate control of the extrapolation process. In figure 13 the apparent turbulence
intensity computed from the Fourier transform of the extrapolated function is
plotted for several different extrapolation factors. From this curve it would appear
that the ‘true’ turbulence intensity isabout 1:25 per cent. (Genuine turbulence in this
partofthe flow is probably well below this level. Acoustic disturbances originating in
the upstream boundary layer could, however, be expected to contribute fluctuations
of about 1 per cent (K. G. Winter 1982, private communication).)

4. Discussion

In recent years the Gerchberg algorithm has been the subject of considerable
interest, and despite an underlying instability its performance in the presence of
noise has often proved more controlled than might be expected from, for example,
arguments based on an eigenfunction analysis of equation (3) [7, 20, 30]. Some effort
has also been directed towards improving the rate of convergence of the basic
algorithm [31, 32]. However, if the method is to be generally applicable, some form
of regularization is clearly necessary; to the best of our knowledge the modifications
described here, developed initially for use in photon correlation anemometry, have
not been previously proposed. The regularized scheme of Cesini et al. [33], which is
also based on an iterative filtering technique, uses a different operator for the
generation of successive estimates. They demonstrate that, in the limit, their
procedure i1s equivalent to Wiener filtering. Other classes of regularized iterative
scheme have been proposed for more general Fredholm integral equations of the first
kind [27, 34].

The increase in resolution for the low-turbulence example of figures 9 to 13, as
measured by the ratio of the standard deviations of the initial and final velocity
distributions, is about 2:7, the maximum extrapolation factor being 7-5. By analysing
the Gerchberg procedure with the aid of the prolate spheroidal wavefunctions (the
eigenfunctions of the low-pass filter of equation (3)), De Santis and Gori [7] have
established that in the absence of noise the computational effort involved in
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extrapolating band-limited signals depends directly on the time-bandwidth (or
space-bandwidth) product ¢ corresponding to the original measurement. They
showed that increasing the number of iterations is equivalent to increasing the
resolution; the lower the value of ¢, the smaller the number of iterations required for
a given increase in resolution. For the photon correlation data described above, and
with the definition used by De Santis and Gori [7] (c=4u,1,, in our notation), the
time-bandwidth product has the values 24-4 for figure 3 and 26-9 for figure 10. In
assessing the results presented here, however, account should also be taken of the
non-zero lower limits assumed for the velocity distribution support; thus, for the
band-pass filter of equation (31), the appropriate” time-bandwidth product ¢’ is
defined by

¢ =Hug, —uy)t,,.

Although the complete numerical behaviour of the eigenvalues for the band-pass
kernel has not been explicitly determined, investigations by Landau [35] suggest that
in this case the significant number of eigenvalues is approximately ¢'; for figures 3
and 10, ¢' has the values 5-3 and 3-8 respectively. Bertero and Pike [36] have shown in
the case of the low-pass filter (equation (3)) that, as ¢ falls below about 5, the degree of
super-resolution attainable begins to rise rapidly, the predicted values depending of
course on the ratio of signal to noise in the data. It would seem that data obtained in
photon correlation laser anemometry experiments on flows characterized by narrow
velocity distributions may be particularly suitable for the application of procedures
designed to achieve super-resolution.

It should be remarked that the theory presented here is based on the properties of
continuous functions, whereas the data to which the results have been applied consist
of discrete measurements. For both sets of data (figures 1 and 9) these measurements
were made at well above the Nvquist rate. The question of the precise relationship
between the sampling rate and the characteristics of the reconstructed object is still
under investigation.

5. Conclusions

In this paper we have concentrated on the application of the algorithms to one-
dimensional signals, but the procedures could, in principle, be extended to two-
dimensional object restoration problems. Implementation in two dimensions would
also be possible in a simple and very efficient manner with passive optical
components, The regularization parameter 4 could be incorporated in Marks'
scheme [13], for example, by the addition of a neutral density filter at the input
mirror,

Experimental data obtained from laser anemometry studies of a transonic airflow
have been used to demonstrate the performance of regularized algorithms based on
the Gerchberg iterative procedure for achieving analytic continuation of band-
limited signals, and it has been shown that the effects of noise in the data can be
controlled by a suitable choice of the regularization parameter. The imposition of a
positivity constraint on the object estimate was found, for one type of object at least,
to have an effect similar to that of regularization. The non-iterative method of
equation (27) has been found to be capable of conferring an advantage in speed of
processing over the iterative procedure of equation (26). The iterative technique is,
however, more flexible and makes possible the incorporation of other constraints,
such as positivity or variable band limits.
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On decritun algorithme regularisé pour la restitution de signaux a bande limitee a partir de
donnees bruitées. La regularisation est caractérisee par un seul parametre. On montre que des
utilisations itératives et non itératives de 'algorithme ont des propriétes utiles, d'abord en
offrant 'avantage de la flexibilité et ensuite pour la possibilite de traitement de donnéesrapide.
Des resultats comparatifs, utilisant des données experimentales obtenues dans des etudes de
vélocimeétrie laser avec un corrélateur de photons, sont presentes a la fois avec et sans
régularisation.

Es wird ein regularisierter Algorithmus fir die Rickgewinnung von bandbegrenzten
Signalen aus verrauschten Signalen beschrieben. Die Regularisierung wird durch einen
einzigen Parameter charakterisiert, Iterative und nichrtiterative Versionen des Algorithmus
haben niitzliche Eigenschaften gezeigt, wobei die ersteren den Vorteil der Flexiblitat und die
letzteren die Moglhichkeit schneller Datenverarbeitung bieten. Vergleichbare Ergebnisse,
sowohl mit als auch ohne Regularisierung werden prasentiert, wobei experimentelle Daten
aus Laser-Anemometrie-Studien mit einem Photonenkorrelator benutzt werden.
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