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Abstract. A regularized algorithm for the recovery of band-limited signais 
from noisy data is described. The regularization is characterized by a single 
parameter. Itérative and non-iterative implementations of the algorithm are 
shown to have useful properties, the former oflfering the advantage of flexibility 
and the latter a potential for rapid data processing. Comparative results, using 
expérimental data obtained in laser anemometry studies with a photon correlator, 
are presented both with and without regularization. 

1. Introduct ion 
l ' h e problem of inverting expérimental data to dérive explicit information 

conceming the structure of a source or scatterer bas in récent years generated a vast 
literature [1, 2]. A spécifie problem which arises in Fourier optics consists in finding 
a solution to a Fredholm intégral équation of the first kind, which bas the gênerai 
form 

g(y) = 
'b 

K{x,y)Kx)dx, (1) 

•where g{y) is the measured image function (the image distribution) f rom which / (x) 
(the object distribution) has to be determined. For a space-invariant System wbere 
the difFraction-limited cohérent image is formed by a one-dimensional clear pupil 
extending over ( —Q, Q), the kernel takes the form 

sin [Çl(y-x)] 
K(x, y) = — (2) 

n(y — x) 

and for an object lying between —X and +X, the image field distribution becomes 

sin[n(>'-A:)] 
giy) = —; ^— /(^) (i^-

I t is well known that a t tempts at inverting Fredholm intégral équations of the 
first kind (for example, by matrix inversion), can, wben the data are less than perfect, 
lead to highly erroneous results. Methods of imposing stability on the solution by the 
use of known or plausible constraints are available, bowever, and have been the 
subject of many studies [3]. A powerful itérative technique for solving thèse 
équations has also been proposed as a gênerai solution to équation (1) by Landweber 

t Some of the material contained in this paper formed part of a communication presented 
at the ICO-12 Meeting, Graz, Austria, 1981. 
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[4], and in a form specifically for application to équation (3) by Gerchberg [5]. Th i s 

procédure, now usually known as the Gerchberg method , has been shown to 

converge to the t rue solution in the absence of noise [6, 7]. It can be realized for 

computat ional purposes in a form which makes use of Four ier t ransforms alone, and 

can also be used to achieve explicit analytic cont inuat ion of a signal in a highly 

efficient manner . However , in its basic form the procédure is inherent ly unstable 

when the data are cor rupted by noise or distorted in some other way. In this paper , 

therefore, we discuss me thods for stabilizing the Gerchbe rg procédure and show 

how the computa t ion can be reduced to a single opérat ion on the original data set. W e 

then demonst ra te the per formance of our a lgori thms by application to expérimental 

data obtained in laser anemomet ry studies with a photon correlator. 

Before describing the method in détail, we introduce the notation for the band-

limiting and domain- l imi t ing operators and Dx'-

Bn[h{x)\ = h(x)* 
sin (Çïx) 

nx 

sin [Q(ji<;—j)] 

n{x—y) 
h{y) dy (4) 

and 

h{x), \x\^X, 

0, \x\>X, 
(5) 

where h belongs to the space L^(— oc, oo) of square- integrable funct ions. W e dénote 

the complément of by D^; 

Dx[h(x)] = 
0, 

h(x), 

\x\^X, 

\x\>X. 

T h u s , if / i s the identi ty operator , Dx = I— Dx- Wi th the above notat ion, équat ion (3) 

becomes 

g = B,,Dxf. (6) 

Here we shall always be concerned with the class of objects for which Dxf=f. W e 

dénote P'ourier t ransforms bv the use of a circumfîex: 

h(a})-- h{l) e x p ( —/ojOdt. 
I 

W e also require certain simple rules for manipula t ing S j j and Dx'. 

Bnh=D,,h, 

Dxh = Bxk 

B ^ ^ = D,,Bxh, 

D ^ = BxDiÂ 
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2. T h e i térat ive so lut ion 

T h e basis for the Gerchberg method [5] of solving équation (3) is that, since the 

object is of finite extent, the Fourier t ransform of the object field distribution is an 

entire function [8] and can be analytically continued [9,10]. (The solution is also 

unique.) T h e actual procédure consists, at each itération, of first t runcat ing the latest 

estimate of the object to { — X , X ) and calculating its Fourier t ransform over the 

desired extrapolation length. T h e portion of this function in the range ( —£2, Q) is 

then replaced by the true spectrum over this range (that is, by the Fourier t ransform 

of the infinité image) and the resulting composite function is Fourier- t ransformed to 

form the new estimate. Thus , at the «th itération the Fourier t ransform of the 

estimate of the object, say/„, is given by 

that is 

f„=g + D,,Bj„^^. (7) 

(The process is begun by se t t ing /o equal to g.) T h e nth estimate of the object is 

therefore 

fn=g + D^f„.,-B,,D,f„_, 

or 

f„=g + {I-B,,)DJ„_,. (8) 

Numerous computer studies have demonstrated the performance of algorithms 

based on équation (7) for simulated data, and implementations of the method for 

various applications have been proposed [11-15]. 

2.1. The regularized solution 
U p to this point, we have considered only opérations involving idéal data, 

uncorrupted by noise or any other distorting factor. However, in the présence of 

per turbat ions to the data, the problem of inverting Fredholm intégral équations of 

the first kind, such as équation (1), is ill-posed, in the sensé that the solution does not 

dépend continuously on the data, even if it is unique [3, 16]. Stability can be restored, 

and the effect of noise in the data controlled, by imposing on the solution a suitable 

constraint which may be derived from known or assumed object characteristics. Th i s 

is the basis of the so-called regularization techniques of object and image restoration 

in optics [17,18]. It should be noted that regularization involves essentially a 

modification of the original problem, which is t ransformed into one possessing the 

desired properties. 

Let us dénote the perturbat ions to the data (for example, the efîects of noise) by 

the function r and rewrite équation (6) in the form 

g = Af+r, (9) 

where 

A = BnD^. (10) 

A regularized s o l u t i o n , / say, can be derived in the following way [16, 18]. 
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Suppose that e is a measure in the root-mean-square sensé of the quanti ty of noise 

in the image. We shall seek so lu t ions / 'wh ich satisfy the inequality 

\\g-Af W^E, I (11) 

where II || dénotes the norm: 

\giyfdy. 

T h e set of functions satisfying équation (11) is, however, unbounded , and in 

order to restrict the solution set still fur ther we suppose that some aprï'or? knowledge 

o f / ' is also available, expressible in the form 

| C / ' | | < £ , (12) 

where C is a constraint operator and E is some positi\ e number . If C is the identity 

operator, E represents an upper bound for the norm of / ' . (In some physical 

applications, this constraint would appear naturally as an energy bound.) 

T h e constraints (11) and (12) can be combined in the single inequality 

\\g-AfV + | C / ' | P < 2 e ' (13) 

Among the set of objects satisfying équation (13), a physically reasonable choice 

would be that objec t , / say , which minimizes the left-hand side of the inequality. Th i s 

solution satisfies the équation 

A^A + \ - 1 C+C (14) 

where the dagger dénotes the adjoint operator. In our problem, A is the operator 

BQDX and it is not difficult to show that its adjoint is OxB^^. Hence équation (14) 

becomes 

J=DxB,,g, 

since Bl^ = Bii. 
As the simplest possible case, we take C to be the identity operator / , whence 

v2 

DxBnDx + l^-j iy=DxBç,g. 

Since DxJ=J, this équation can also be written in the form 

{DxB,,Dx + oiDx)f=DxB,,g, (15) 

where a. = {e,/E)^ is the so-called regularization parameter [3]. 

Fur ther détails of thèse techniques, together with extensive bibliographies of the 

subject, are available [3,17,19] . 

file:///giyfdy
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2.2. Itérative methods for obtaining regularized solutions 
An itérative procédure which incorporâtes regularization, and reintroduces the 

original data se t^ at each step, can be derived in the following way. Equation (15) is 

first rewritten in the form 

/=/+ D^Bç,g - (D^B^D^ + aDx)f 

or 

/= D^B,,g +[{l-a)D^- D,B,,D,] f . (16) 

Th i s suggests that the regularized version of équation (8) might take the form 

/„ = D.Bng + [(\-a)D,- D,B,,D,] /„ _ , . (17) 

Four ier - t ransforming équation (17), and using the rules stated previously for the 

manipulat ion of the various operators, we obtain 

/„ = BAD,,g + ( A i - o i I ) B j „ . , ] . 

Since the operator Bx outside the brackets in this expression is redundant for ail 

intermediate steps, and will be needed only for the final estimate, the équation can be 

written as 

l = D,,g + (D,,-aI)Bj„_,. (18) 

By setting a = 0 the précise form of the Gerchberg algorithm in équation (7) is 

recovered, since from équation (6) 

Dnè=ê 

for noiseless data. However, for non-zero values of a the basic requirement of the 

Gerchberg method, that 

Dafn = Dçig 

for ail n, is not satisfied, since ctB^Jn-1 differs f rom zéro over the range ( —Q, Q) of ^. 

Hence we seek to modify équation (15) appropriately. 

Consider instead the regularization expressed by the équation 

[{\-a)D^BnD^ + OiD^]f=DxBç,g. (19) 

Rearranging as in équation (16), and setting A = l — a, we find that 

f=DxBç,g + X{Dx-DxBç,Dx)î (20) 

with the associated itération formula 

In = DxBng + X(Dx-DxBç,Dx)L-i- (21) 

In conjugate space, 

L = B M + X{Bx-B^DnBx)L-, 

which, since Bx = B\, can be written as 

L = Bx{D,,g+XDç,Bxh-,). (22) 
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Using again the redundancy of the operator outside the brackets for ail 

intermediate steps, we redefine the itérative procédure in the form 

(23) 

Each estimate is now identical with D^g over the range ( — fi, Q) and équation (7) 

is recovered by se t t inga = 0 (A = 1). Note that équation (22) will lead after n itérations 

to a band-l imited approximation 

fn — Bxfn> 

whereas équation (23) will not. However, provided^ that they converge, both 

procédures will lead ultimately to the same function, J^, say, which satisfies 

so that the approximate solution given by équations (22) and (23) should not differ 

significantly when the number of itérations is high enough. 

T h e convergence, for a given a, of équations (17) and (21) to the solutions of 

équations (15) and (19) respectively is guaranteed by the fact that the norms of the 

operators (1 —a.)Dx — OxB^^Dx and X{Dx — OxB^^Dx) are strictly bounded by unity if 

a < l . ( I f O < a < ^ , their norms are both 1 — a.) Th i s is easily established by using the 

well-known fact that the eigenvalues of DxBçiDx ail lie between 0 and 1 [6, 18, 20]. 

On the other hand, it can be shown by using appropriate theorems in 

regularization theory that équations (15) and (19) define regularized solutions to 

équation (6); i . e . /wi l l be close to the exact solution (if it exists) and will tend to it in 

some sensé as the noise on the da tag tends to zéro. Although the proofs are too long to 

be given in détail here, the necessary results and theorems can be found, for instance, 

in the book by Groetsch [21]. 

We now demonstrate the way in which the itérative scheme embodied in équation 

(23) can be reduced to a single opération on the original data. 

I 

2.3. The extrapolation matrix—a non-iterative regularized solution 
Both the regularized and unregularized itérative schemes embodied by équations 

(7) and (23) can easily be realized in a digital computer as a single matrix 

multiplication. Since 

Vw, (24) 

équation (23) can be rewritten as 

L = {Dn + XDç,Bx)I„-,. 

Hence 

f„ = {Da + XDi,BxrDng, 

where we have taken Jo = Pçig. 

A related non-iterative but unregularized algorithm has been derived [11, 22, 23], 

which requires, however, either the inversion of the matrix approximating the 

operator {I — DçiBx) or, equivalently, the summation of a power séries in DçiBx-

(25) 
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W e also remark at this point that other regularized itérative schemes can be 

constructed, which can again be implemented non-iteratively. For example, 

équation (15) can be rewritten in the form 

(1 + a)Dj= D^B,,g + {D^ - D^B^D^)J, 

leading to the itérative scheme, in the conjugate space, 

1 + a 

Because of the slight diflFerence in the numerical factors, which are in the ratio 

1/(1 — a'^), the final estimate generated by this scheme will difïer very slightly f rom 

that of équation (23). 

It should also be noted that if the index n in équation (25) is a power of 2, say 2", 

the number of matrix multiplications involved in raising + XD^^B-^ to the power n 
can be reduced from (« — 1) to w, with a significant réduction in computational t ime. 

Any practical computation based on équation (23) or (25) mus t involve a finite 

extrapolation from Q to, say, Z. \f Dy dénotes the related domain-Iimit ing operator, 

the appropriate algorithms for practical applications then take the forms 

î„=D,,g + XDyp,,Bj„_^ (26) 

and 

J„ = {D,, + WyA,B,rD,,g. (27) 

T h e estimâtes obtained from équations (26) and (27) will in fact converge not t o / 

but to a smoother solution, the resolution in which will dépend on the value of Z. 

3. Appl icat ions to laser a n e m o m e t r y data obta ined w i t h a photon 

corre lator 

Dur ing the past décade, laser anemometry bas been intensively developed as a 

research tool in expérimental fîuid dynamics. In the most common arrangement the 

primary optical signal consists of the light scattered out of a pair of intersecting laser 

beams by small particles borne along with the flow. T h e Doppler shift in the 

frequency of this light is proportional to a component of the scattering particle 's 

velocity; the direction of this component dépends on the précise geometry of the 

arrangement . In applications where this scattered light is extremely weak—for 

example, in studies of high-speed flows over relatively long optical paths—data 

acquisition and processing may have to be carried out by photon-count ing detectors 

and digital correlators operating in parallel with signal réception [24]. However, 

thèse instruments, which may be required to operate at sample times of 10 ns or less, 

are expensive to construct, and the number of output channels is usually restricted to 

100 or so. Such a restriction can subsequently pose problems in the extraction from 

the data ' record of the required information concerning flow velocity. 

Th i s information may consist, if the signal is sufficiently strong, of a single 

velocity estimate corresponding to each transit of the measurement région by a 

scattering particle, or an estimate of the probability density function of the velocity if 

the autocorrélation function has been integrated over many particle transits. In 

either case, the velocity information can be extracted from the autocorrélation 

function by means of a Fourier t ransform [25]. We now show how, by exploiting 
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such a relationship, the resolution problem takes the same mathematical form as the 

optical example discussed above. W e then make use of both the itérative and non-

iterative procédures to achieve super-resolut ion of photon-correla t ion data. 

W e suppose that there is some upper limit, say u^, to the suppor t of the velocity 

dis tr ibut ion funct ion p{u). After some initial processing [25], the autocorrélation 

funct ion G{x) is related to p{u) by a Fourier cosine t ransform: 

G ( T ) = p{u) cos {2nux) du. (28) 

Note that if négative as well as positive values of M cont r ibute to the data, only P(|M|) is 

recoverable f rom équation (28); where necessary, however, appropria te expéri-

menta l a r rangements can be made to ensure that the effective contr ibut ions are 

always positive [25]. By using the W i e n e r - K h i n c h i n e theorem, équation (28) can be 

inverted to give 

p{u) = A G ( T ) COS (27tMT) dx. (29) 

In practice G(T) is known only over (0, x^). The re fo re the image of p{u) is a b lurred 

one, g{u), say: 

= 4 

G{x) cos {2nux) dx 

cos {Inux) dx p(v) cos (2nvx) dv. 

If we make p{u) an even funct ion by letting/>( — «)=/)(«) , and also use the fact that 

G{x) = G{ — x), we can reduce the above équation to the form 

q{u) = 
sin \2nxjiu — v)\ 

n(u — v) 
p{v) dv. (30) 

Since équat ion (30) is mathematical ly équivalent to the imaging problem of équation 

(3), the itérative and non-i terat ive regularized algori thms of équat ions (26) and (27) 

can be directly applied to laser anemomet ry data obtained by photon-correlat ion 

techniques . 

If a lower limit M, for the suppor t of the velocity dis tr ibut ion is also known 

a priori, équat ion (30) becomes 

q{u) = 2 
' sin [2nx^{u — v)] 

n{u — v) 
p{v) dv. (31) 

T h e définit ion of the operator Dx is modif ied appropriately, with the object now 

lying within the range 

I 

T h e data used in the compute r exper iments were obtained du r ing a s tudy of the 

interaction between a shock-wave and a tu rbulen t boundary layer [26], us ing a 

64-channel correlator. F igure 1 shows the autocorrélat ion funct ion, af ter initial 

processing, derived f rom a par t of the flow which was known to be close to a shock 

wave. Because of the f luctuations in the location of the interaction, the position of the 
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Figure 1. Autocorrélation function near a shock wave. 

Figure 2. Fourier cosine transform of data of figure 1; peaks at 12 80 and 14 23 MHz. 

shock-wave structure varied while the data were being acquired over a small 

streamwise distance, which included the measurement région. T h e data thus 

represent a t ime- and space-averaged velocity distribution, including subsonic and 

supersonic components, although turbulence levais were expected to be low in this 

part of the flow. T h e Fourier cosine t ransform of the data (figure 2) shows thèse 

characteristics clearly. T h e peaks corresponding to the subsonic and supersonic flow 

régions occur at 12-80 and 14-23 M H z . (Velocity can be calculated from Doppler 

frequency by means of known calibration constants.) 

T o illustra te the performance of the non-iterative extrapolation matrix algorithm 

based on équation (27), the record of figure 1 was truncated to include the first 

21 data points only; the maximum value of T is now 0-4//s. T h e Fourier t ransform of 

this shortened record is given in figure 3; note that the separate peaks of figure 2 are 

no longer distinguishable. 

As a priori information in the calculation of the analytically continued record, the 

true distr ibution was assumed to lie between the frequency limits defined by the first 

zero-crossings on either side of the central peak in figure 3. Thèse limits are used to 

define the operator Bx of équation (27), while the operator Dç^ is defined by the length 
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Figure 3. Fourier cosine transform of shortened data record (T = 0-0-4/is). 

Figure 4. Shortened data record extrapolated from T = 0-4/;s to T= l-28/(s using équation 

(27). Unregularized: A=l. (2'° itérations.) 

of the shortened record. (Note that if the limits assigned to the distribution are 

too narrowly set, some distortion will inevitably resuit.) T h e non-regularized matrix 

{À=\) was computed for extrapolation from the initial 21 data points to the 65 data 

points of the original record, and for 2 ' ° (1024) itérations; figure 4 shows the 

extrapolated function. 11 is évident that the maximum excursions in the extrapolated 

part are significantly greater than those of the basic data set. With fur ther itération 

this imbalance increases. 

In figure 5 this unstable behaviour has been controlled (for the same extra-

polation length) by introducing regularization, the parameter X having the value of 

0-993. In the Fourier t ransform plane (figure 6), the single peak is now clearly 

resolved into the expected two components. Gloser examination reveals that the peak 

positions are at 12-88 and 14-30 M H z ; thus the errors in location, compared with 

figure 2, are about 0-5 per cent. Fur ther itération, as far as 2'^° (over 10''), introduces 

no signs of instability. At 2^ itérations the object ampli tude distr ibution has in fact 

already converged to within 0-5 per cent of its final state. 
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Figure 5. Extrapolation as for figure 4. Regularized: / = 0-993. 

< 
1 5 . 2 2 
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Frequency {MHz) 

Figure 6. Object estimate corresponding to figure 5: peaks at 12-88 and 14-30 MHz. 

For this degree of extrapolation, no advantage is found by using smaller values 

of A; the efïect is simply to reduce the degree of resolution in the Fourier t ransform 

plane. ControUed extrapolation to greater record lengths can be achieved with a 

smaller / , bu t the final resuit is very similar to figure 6. T h e optimal value for A will 

dépend on the criteria used to assess the final estimate, as well as on the properties of 

the original data. Th i s problem has been discussed by several authors (see, for 

example, [3, 27]) and is under investigation for the particular application considered 

here. 

It should be remarked here that the large excursions in the data at the end of the 

expérimental record of figure 1 arise from noise on the signal, which is amplified by 

the preprocessing technique used. Thèse features do not appear in the extrapolated 

functions shown in figures 4 and 5; their absence is at tr ibutable to the smoothing 

properties of the band-l imit ing operators involved. On the other hand, distortions of 

the data occurring at very small values of x (which originate in the detector) are 

preserved as part of the basic data set. Since both backward and forward 

extrapolation are possible with the procédures considered in this paper, thèse 

distortions could also be reduced by appropriate minor modifications of the 

algorithms. 
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Figure 8. Object estimate corresponding to figure 7. 

A disadvantage of the non-iterative method embodied in équation (27) is the 

apparent impossibility of incorporating the powerful additional constraint of 

positivity, when this is known to be a characteristic of the object function. Since this 

is certainly the case for the velocity probability density distr ibutions considered 

above, the efïect of incorporating positivity in the calculations has been explored 

with the aid of the itérative formula of équation (26). Starting with the same 

shortened expérimental record, it was first confirmed that with and without 

positivity the same results were obtained as before, for various values of the 

regularization parameter A and the same extrapolation factor. However, application 

of the positivity constraint alone was now sufficient to suppress the instability 

previously encountered for À=l (see figure 4). T h e extrapolated function and the 

corresponding object are shown in figures 7 and 8. In fact, the requirement that the 

object be positive, when combined with the blurr ing of formula (27), can be viewed 

as a form of regularization [28]. 

W e now consider the application of the itérative procédure of équation (26) to 

improving the estimation of the variance of a narrow distribution in the Fourier 
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Figure 9. Autocorrélation function at a point upstream of interaction région. 

Figure 10. Fourier cosine transform of data of figure 9. Apparent turbulence intensity = 
3 4 per cent. 

t ransform plane. T h e expérimental data, shown in figure 9, are again taken from the 

laser anemometry studies described above. In this case the measurement was made 

upstream of the interaction features at a point in the test section where the flow 

velocity was supersonic and low turbulence levais were expected. Turbu lence 

intensity is defined as the ratio of the standard déviation of the velocity distr ibution 

to the mean; an accurate estimation of the standard déviation is thus of fundamental 

importance in the détermination of low turbulence intensity. 

Figure 10 is the distribution obtained by Four ier - t ransforming the data of 

figure 9. T h e width of this distribution is predominantly due to the truncation of the 

expérimental data, and the apparent turbulence intensity (about 3 4 per cent) is well 

above the expected value in this part of the flow. For a purely cosinusoidal record 

(that is, for laminar flow) this apparent turbulence intensity, \jj say, would be due 

entirely to truncation broadening, and in fact can be calculated exactly. If the record 

contains y cycles, where y is not necessarily an integer, it can be shown [29] that 
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4 , 8 

Delay (/j.s) 

Figure 11. extrapolated to T = 4-8/is using équation (26). Positivitj 

Frequency (MHz) 

Figure 12. Object estimate corresponding to figure 11. Apparent turbulence intensity = 
125 per cent. 

I 

where 

-dx: 

From tables, ^~4 -82 . For figure 9, ^ is found tohave the value of0-033 (3-3 percent ) . 

In order to extract a bet ter estimate of the turbulence level, the data of figure 9 were 

analytically continued, using équation (26) and applying the positivity constraint 

only (A being set equal to 1 ), from an initial maximum of T = 0 64 /is to values which 

progressively reduced the effect of broadening due to truncation. T h e band limits for 

the extrapolation were again taken to be the first zero-crossings on either side of the 

peak. Figures 11 and 12 show the extrapolated function and the object estimate, 

obtained after 1024 itérations, for extrapolation by a factor of 7-5 (the maximum 

attempted); both functions remain well behaved. T h e inclusion of the positivity 

constraint had little eflfect on the behaviour of the function at small extrapolation 

lengths when compared with extrapolation without positivity {X=\ for ail cases). For 
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E x t r a p o l a t i o n f a c t o r 

Figure 13. Apparent turbulance against extrapolation factor. 

greater lengths, however, positivity alone was found to be sufFicient to provide 

adéquate control of the extrapolation process. In figure 13 the apparent turbulence 

intensity computed from the Fourier t ransform of the extrapolated function is 

plotted for several diflFerent extrapolation factors. From this curve it would appear 

that the ' t rue ' turbulence intensity is about 125 per cent. (Genuine turbulence in this 

part of the flow is probably well below this level. Acoustic disturbances originating in 

the upstream boundary layer could, however, be expected to contr ibute fluctuations 

of about 1 per cent (K. G. Winter 1982, private communication).) 

4. D i s c u s s i o n 

In récent years the Gerchberg algorithm has been the subject of considérable 

interest, and despite an underlying instability its performance in the présence of 

noise has often proved more controlled than might be expected from, for example, 

arguments based on an eigenfunction analysis of équation (3) [7, 20, 30]. Some effort 

has also been directed towards improving the rate of convergence of the basic 

algorithm [31, 32]. However, if the method is to be generally applicable, some form 

of regularization is clearly necessary; to the best of our knowledge the modifications 

described here, developed initially for use in photon corrélation anemometry, bave 

not been previously proposed. T h e regularized scheme of Cesini et al. [33], which is 

also based on an itérative filtering technique, uses a diflFerent operator for the 

génération of successive estimâtes. They demonstrate that, in the limit, their 

procédure is équivalent to Wiener filtering. Other classes of regularized itérative 

scheme have been proposed for more gênerai Fredholm intégral équations of the first 

kind [27,34]. 

T h e increase in resolution for the low-turbulence example of figures 9 to 13, as 

measured by the ratio of the standard déviations of the initial and final velocity 

distributions, is about 2-7, the maximum extrapolation factor being 7-5. By analysing 

the Gerchberg procédure with the aid of the prolate spheroidal wavefunctions (the 

eigenfunctions of the low-pass filter of équation (3)), De Santis and Gori [7] have 

established that in the absence of noise the computational efîort involved in 
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extrapolating band-l imited signais dépends directly on the t ime-bandwidth (or 

space-bandwidth) product c corresponding to the original measurement . They 

showed that increasing the number of itérations is équivalent to increasing the 

resolution; the lovver the value of c, the smaller the number of itérations required for 

a given increase in resolution. For the photon corrélation data described above, and 

with the définition used by De Santis and Gori [7] {c = Au^x^ in our notation), the 

t ime-bandwidth product bas the values 24 4 for figure 3 and 26-9 for figure 10. In 

assessing the results presented here, however, account should also be taken of the 

non-zero lower limits assumed for the velocity distribution support; thus, for the 

band-pass filter of équation (31), the appropr ia te ' t ime-bandwidth product c is 

defined by 

C' = 4 ( M „ , - M I ) T „ . ; 

Although the complète numerical behaviour of the eigenvalues for the band-pass 

kernel bas not been explicitly determined, investigations by Landau [35] suggest that 

in this case the significant number of eigenvalues is approximately c'; for figures 3 

and 10, c' has the values 5 3 and 3 8 respectively. Bertero and Pike [36] ha\'e shown in 

the case of the low-pass filter (équation (3)) that, as c fa l lsbelowabout 5, the degree of 

super-resolution attainable begins to rise rapidly, the predicted values dependingof 

course on the ratio of signal to noise in the data. It would seem that data obtained in 

photon corrélation laser anemometry experiments on flows characterized by narrow 

velocity distr ibutions may be particularly suitable for the application of procédures 

designed to achieve super-resolution. 

It should be remarked that the theory presented here is based on the properties of 

continuous functions, whereas the data to which the results have been applied consist 

of discrète measurements . For both sets of data (figures 1 and 9) thèse measurements 

were made at well above the Nyquist rate. T h e question of the précise relationship 

between the sampling rate and the characteristics of the reconstructed object is still 

under investigation. 

5. Conc lus ions 

In this paper we have concentrated on the application of the algorithms to one-

dimensional signais, but the procédures could, in principle, be extended to two-

dimensional object restoration problems. Implementat ion in two dimensions would 

also be possible in a simple and very efficient manner with passive optical 

components . T h e regularization parameter A could be incorporated in Marks ' 

scheme [13], for example, by the addition of a neutral density filter at the input 

mirror . 

Expérimental data obtained from laser anemometry studies of a transonic airflow 

have been used to demonstrate the performance of regularized algorithms based on 

the Gerchberg itérative procédure for achieving analytic continuation of band-

limited signais, and it has been shown that the efïects of noise in the data can be 

controlled by a suitable choice of the regularization parameter . T h e imposition of a 

positivity constraint on the object estimate was found, for one type of object at least, 

to have an effect similar to that of regularization. T h e non-iterative method of 

équation (27) has been found to be capable of conferring an advantage in speed of 

processing over the itérative procédure of équation (26). T h e itérative technique is, 

however, more flexible and makes possible the incorporation of other constraints, 

such as positivity or variable band limits. 
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On décrit un algorithme régularisé pour la restitution de signaux à bande limitée à partir de 
données bruitées. La régularisation est caractérisée par un seul paramétre. On montre que des 
utilisations itératives et non itératives de l'algorithme ont des propriétés utiles, d'abord en 
offrant l'avantage de la flexibilité et ensuite pour la possibilité de traitement de donnéesrapide. 
Des résultats comparatifs, utilisant des données expérimentales obtenues dans des études de 
vélocimétrie laser avec un corrélateur de photons, sont présentés à la fois avec et sans 
régularisation. 

Es wird ein regularisierter Algorithmus fur die Rùckgewinnung von bandbegrenzten 
Signalen aus verrauschten Signalen beschrieben. Die Regularisierung wird durch einen 
einzigen Parameter charakterisiert. Itérative und nichtiterative Versionen des Algorithmus 
haben nùtziiche Eigenschaften gezeigt, wobei die ersteren den Vorteil der Flexiblitat und die 
letzteren die Moglichkeit schneller Datenverarbeitung bieten. Vergleichbare Ergebnisse, 
sowohl mit als auch ohne Regularisierung werden prâsentiert, wobei experimentelle Daten 
aus Laser-Anemometrie-Studien mit einem Photonenkorrelator benutzt werden. 
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