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Abstract: K-means clustering is a widely used tool for cluster analysis
due to its conceptual simplicity and computational efficiency. However, its
performance can be distorted when clustering high-dimensional data where
the number of variables becomes relatively large and many of them may
contain no information about the clustering structure. This article proposes
a high-dimensional cluster analysis method via regularized k-means clus-
tering, which can simultaneously cluster similar observations and eliminate
redundant variables. The key idea is to formulate the k-means clustering in a
form of regularization, with an adaptive group lasso penalty term on cluster
centers. In order to optimally balance the trade-off between the clustering
model fitting and sparsity, a selection criterion based on clustering stabil-
ity is developed. The asymptotic estimation and selection consistency of
the regularized k-means clustering with diverging dimension is established.
The effectiveness of the regularized k-means clustering is also demonstrated
through a variety of numerical experiments as well as applications to two
gene microarray examples. The regularized clustering framework can also
be extended to the general model-based clustering.
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1. Introduction

Cluster analysis is to assign observations into a number of clusters such that
observations in the same cluster are similar to each other. The similarity is of-
ten quantified by some distance measures, such as the Euclidean distance [15]
and correlation [2]. To optimize the similarity measures, various clustering al-
gorithms are developed. Among others, k-means clustering is one of the most
popular clustering algorithms, which aims at minimizing the within-cluster dis-
similarity measured by the Euclidean distance. While the k-means clustering
is conceptually simple and computationally efficient, its performance can be
severely deteriorated when clustering high-dimensional data where the num-
ber of variables becomes large and many of them may contain no information
about the clustering structure. Furthermore, the interpretability of the k-means
clustering can be impeded as it usually includes all the variables and produces
complicated clustering models. To overcome these difficulties in clustering high-
dimensional data, a more appropriate clustering algorithm that can simultane-
ously perform cluster analysis and select informative variables is in demand.

In statistical literature, two major kinds of variable selection techniques are
developed in the context of high-dimensional data analysis. The first kind is to
pre-screen the redundant variables by conducting a multiple testing procedure
and controlling certain error rates, such as [7] and the reference therein. The
second kind is the shrinkage method, which penalizes the model fitting with
various types of regularization terms that encourage model sparsity, such as the
LASSO regression in [20]. Although variable selection for regression has been
extensively studied, analogous result for clustering is limited, such as [19, 16, 26,
24, 12, 10]. Focusing on the k-means and hierarchical clustering, [25] proposed a
general sparse clustering framework using a similar idea as nonnegative garrote
[4], however the asymptotic consistency was not discussed in their framework.

In this article, we propose a regularized k-means clustering, which can per-
form cluster analysis and variable selection at the same time. The key idea is
to formulate k-means clustering in a form of regularization, with an adaptive
group lasso penalty term on cluster centers. Note that all cluster centers share
the same set of variables, so the group lasso penalty term is employed to select
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the variables in a group fashion; i.e., a variable is redundant if it is not used in
any cluster center. The regularized k-means clustering framework can also be
extended to the model-based clustering, where the EM algorithm is employed to
minimize the regularized negative log-likelihood function. To optimally balance
the trade-off between model fitting and sparsity, a model selection criterion is
developed based on the clustering stability in [3, 23]. The key idea is that if
multiple samples are available from the same distribution, a good clustering
algorithm should yield clustering assignments of observations that do not vary
much from one sample to another. An efficient estimation scheme based on
bootstrap is proposed to accurately estimate the clustering stability in high-
dimensional clustering. Furthermore, the asymptotic estimation and selection
consistency of the proposed regularized k-means clustering with diverging di-
mension is established. Whereas the selection consistency in regression has been
obtained in [9, 29], analogous results in the context of cluster analysis seem rare.
The effectiveness of the proposed algorithms is also demonstrated in a variety
of simulated examples as well as applications to two gene microarray examples.

The rest of the paper is organized as follows. Section 2 reviews the standard k-
means clustering. Section 3 presents the proposed regularized k-means clustering
as well as its efficient implementation. Section 4 introduces the stability-based
model selection criterion for tuning the regularized k-means clustering. Asymp-
totic estimation and selection consistency is established in section 5. Extension
to the regularized model-based clustering is provided in section 6, followed by
simulation studies in section 7 and two real gene examples in section 8. A brief
discussion is given in section 9. Technical details are provided in Appendix.

2. Clustering analysis and k-means clustering

In the k-means clustering, assume that n data points X1, . . . , Xn are available
with Xi = (Xi1, . . . , Xip)

T , and the number of clusters is pre-specified as K.
The K clusters are denoted by A1, . . . ,AK with centers C1, . . . , CK , where
Ck = (Ck1, . . . , Ckp)

T . The k-means clustering then attempts to solve

min
Ak,Ck

K∑

k=1

∑

Xi∈Ak

‖Xi − Ck‖2, (1)

where ‖ · ‖ is the standard Euclidean norm.
Note that the global minimization in (1) is NP-hard and requires integer

programming due to the discrete feature of Ak. As a remedy, an iterative scheme
[14] is often employed to approximate the solution of (1), which updates Ak and
Ck separately at each iteration pretending the other one is fixed. Specifically,

at t-th iteration, for the fixed K centers C
(t−1)
1 , . . . , C

(t−1)
K , A(t)

k is updated by

assigning each observation Xi to the closest cluster; and then for the fixed A(t)
k ,

C
(t)
k = |A(t)

k |−1
∑

Xi∈A
(t)
k

Xi, where |A(t)
k | is the cardinality of A(t)

k .

Although the k-means clustering has been reported successful in many real
applications, its performance can be less effective in high-dimensional cluster
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analysis. [13] pointed out that when the sample size is fixed and the dimension
diverges, the distances among observations tend to be deterministic. In specific,
the observations from the same cluster tend to lie symmetrically at the ver-
tices of a regular simplex, and the distance between observations from different
clusters is determined by the cluster difference relative to the data dimension.
Consequently, if the cluster difference is relatively small compared with the di-
verging data dimension, the k-means clustering based on the Euclidean distance
will operate in a degenerate fashion, assigning all the observations to the same
cluster. In addition, the k-means clustering tends to include all the variables
no matter if the variable contains information about the clustering structure or
not. This is undesirable in high dimensional cluster analysis, where the cluster-
ing structure often lies in a low dimensional subspace and the majority of the
variables are redundant in capturing the structure.

3. Regularized k-means clustering

This section proposes the regularized k-means clustering for high dimensional
cluster analysis, which allows simultaneous clustering model fitting and variable
selection.

The key idea of the regularized k-means clustering is to extend the k-means
clustering in (1) by adding an adaptive group lasso penalty term on cluster
centers. Specifically, the regularized k-means clustering is formulated as

min
Ak,Ck

1

n

K∑

k=1

∑

Xi∈Ak

‖Xi − Ck‖2 +
p∑

j=1

J(C(j)), (2)

where the training data X1, . . . , Xn are centralized so that the mean of each
variable is zero. In (2), the first term is equivalent to the k-means clustering,
which measures the within-cluster distance from each observation to its corre-
sponding cluster center, the second term J(C(j)) is a regularization term on
each variable, where C(j) = (C1j , . . . , CKj)

T and Ckj is the j-th element of
Ck. Particularly, the regularization term J(C(j)) can be group LASSO penalty
λ‖C(j)‖ [27], or adaptive group LASSO penalty J(C(j)) = λj‖C(j)‖ [22], where
λ and λj , j = 1, . . . , p are tuning parameters that control the balance between
the clustering model fitting and sparsity. Whereas the group LASSO penalty
uses the same λ for all dimensions and may ignore the relative importance of
each dimension [28], the adaptive group LASSO penalty associates each dimen-
sion with a different λj so that the relative importance of each dimension can
be incorporated. For illustration, we set J(C(j)) = λj‖C(j)‖ in this article and
note that it can be generalized to other types of regularization terms such as
the group LASSO penalty and the L∞-norm penalty [24].

To solve the optimization in (2), we adopt a similar iterative scheme as in
solving the k-means clustering. That is, we update Ak and Ck separately at each
iteration pretending the other one is fixed. When Ck is fixed, Ak is updated
by assigning each observation Xi to the closest cluster. When Ak is fixed, the
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following Lemma 3.1 suggests that Ck can be solved in a componentwise fashion,
which can substantially facilitate the computation in high-dimensional cluster
analysis.

Lemma 3.1.

1

n

K∑

k=1

∑

Xi∈Ak

‖Xi − Ck‖2 +
p∑

j=1

J(C(j))

=

p∑

j=1

( 1
n
(X(j) − LC(j))

T (X(j) − LC(j)) + J(C(j))
)
,

where X(j) = (X1j , . . . , Xnj)
T is the j-th variable across all sample points, L is

a cluster assignment matrix with Lik = 1(Xi ∈ Ak); i = 1, . . . , n, k = 1, . . . ,K,

and 1(·) is an indicator function.

Lemma 3.1 follows immediately from the following equality,

K∑

k=1

∑

Xi∈Ak

‖Xi − Ck‖2 =

n∑

i=1

∑

Xi∈Ak

p∑

j=1

(Xij − Ckj)
2

=

p∑

j=1

(X(j) − LC(j))
T (X(j) − LC(j)).

A direct consequence of Lemma 3.1 is that when L is fixed, solving (2) can be
simplified to

min
C(j)

1

n
(X(j) − LC(j))

T (X(j) − LC(j)) + J(C(j)) (3)

for each individual variable, where J(C(j)) = λj‖C(j)‖ with λj = λ‖C̃(j)‖−1,

and C̃(1), . . . , C̃(p) are the estimated cluster centers from the standard k-means
clustering.

The details of the proposed regularized k-means clustering are as follows.

Algorithm 1 (Regularized k-means clustering).

Step 1. Initialize centers C
(0)
1 , . . . , C

(0)
K by the standard k-means clustering.

Step 2. Until the termination condition is met, repeat

(a). Given C
(t−1)
1 , . . . , C

(t−1)
K , find the cluster assignment matrix L(t).

(b). Given L(t), update C(t) by minimizing (3) for each j.

As computational remarks, to overcome the sensitivity to the initialization in
Step 1 the standard k-means clustering is randomly started multiple times and
the one with smallest within-cluster distance is selected as the initialization. In
Step 2 the iteration stops when L(t) does not change any more. Based on our
limited numerical experience, the algorithm stops often within no more than
five iterations.
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4. Selection of tuning parameters

In the proposed regularized k-means clustering formulation, two tuning param-
eters, K and λ, need to be appropriately determined so that the clustering per-
formance can be optimized. In this section, the tuning parameters are selected
through a selection criterion based on clustering stability.

The key idea of clustering stability is that if we repeatedly draw samples
from the same population and apply the regularized clustering algorithm, a good
clustering algorithm should produce clustering assignments that are similar from
one sample to another. In the proposed regularized k-means clustering, different
values of K and λ define different clustering algorithms, therefore we select the
values of K and λ such that the resulting clustering algorithm has the maximal
clustering stability.

Denote that Z = {X1, . . . , Xn} is a random sample of size n from some
unknown distribution F (x) with x ∈ Rp. Following [23], we define clustering
assignment ψ(x) to be a mapping: Rp → {1, . . . ,K}, and the regularized k-
means clustering Ψ(·;K,λ) generates a clustering assignment ψ when applied
to a sample Z. The clustering distance between any two clustering assignments
ψ1(x) and ψ2(x) is defined as

d(ψ1, ψ2) = P
(
{ψ1(X) = ψ1(Y )} ∧ {ψ2(X) = ψ2(Y )}

)
, (4)

where X and Y are independently sampled from F , and A ∧ B = (A \ B) ∪
(B \ A). Clearly, the distance between ψ1 and ψ2 measures the probability of
their disagreement. The clustering instability of regularized k-means clustering
Ψ(·;K,λ) is then

S(Ψ,K, λ, n) = E(d{Ψ(Z1;K,λ),Ψ(Z2;K,λ)}), (5)

where Ψ(Z1;K,λ) and Ψ(Z2;K,λ) are clustering assignments obtained by ap-
plying Ψ(·;K,λ) to two independent samples Z1 and Z2 respectively.

To accurately estimate S(Ψ,K, λ, n), we propose the bootstrap resampling
scheme. Consider the candidate algorithms {Ψ(·,K, λ) : K = 2, . . . ,K.max;λ ≥
0}, where K.max specifies the largest possible number of clusters, and K = 1 is
excluded as it assigns all observations into the same cluster and thus provides lit-
tle structural information of the data. Given n observations (X1, . . . , Xn), three
independent bootstrap samples of the same size n, Z∗b

1 , Z
∗b
2 , Z

∗b
3 , are generated,

where b = 1, . . . , B denotes the b-th replication. Two clustering assignments,
Ψ(Z∗b

1 ;K,λ) and Ψ(Z∗b
2 ;K,λ) are constructed based on Z∗b

1 and Z∗b
2 respec-

tively, and S(Ψ,K, λ, n) is estimated as the distance between Ψ(Z∗b
1 ;K,λ) and

Ψ(Z∗b
2 ;K,λ) on Z∗b

3 ,

Ŝ∗b(Ψ,K, λ, n)

=

(
n

2

)−1∣∣∣(i, j)i<j : I(ψ̂
∗b
1 (X

(3)
i ) = ψ̂∗b

1 (X
(3)
j )) 6= I(ψ̂∗b

2 (X
(3)
i ) = ψ̂∗b

2 (X
(3)
j ))

∣∣∣,
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where ψ̂∗b
1 = Ψ(Z∗b

1 ;K,λ) and ψ̂∗b
2 = Ψ(Z∗b

2 ;K,λ), X
(3)
i and X

(3)
j are ele-

ments in sample Z∗b
3 , and |A| is the cardinality of set A. Then the optimal

K and λ can be estimated by the following voting scheme. For each λ, K̂λ =
mode{K̂∗1

λ , . . . , K̂∗B
λ }, where K̂∗b

λ = argmin2≤K≤K.maxŜ
∗b(Ψ,K, λ, n), then the

optimal K is estimated as K̂ = mode{K̂λ}. Given the estimated K̂, the optimal

λ is estimated as λ̂ = mode{λ̂∗1, . . . , λ̂∗B}, where λ̂∗b = argminλŜ
∗b(Ψ, K̂, λ, n).

5. Consistency of regularized k-means clustering

We now present the asymptotic estimation and selection consistency of the pro-
posed regularized k-means clustering with diverging dimension. The estimation
consistency assures that the estimated cluster centers converge almost surely
to the true cluster centers based on population, and the selection consistency
shows that the uninformative variables are eliminated from the estimated cluster
centers with probability tending to one.

Let X1, . . . , Xn be a random sample from an unknown distribution P , and
denote Pn as the associated empirical measure. Regarding (2) as a function of
cluster centers and the empirical measure Pn, the regularized k-means clustering
is to minimize

W (C,Pn) =

∫
min
Ck∈C

‖x− Ck‖2Pn(dx) +

p∑

j=1

J(C(j)) (6)

over C = (C1, . . . , CK)T . Denote Ĉ = (Ĉ1, . . . , ĈK)T as the estimated cluster
centers by solving (6), C̄ = (C̄1, . . . , C̄K)T as the true cluster centers which
minimizes

W (C,P ) =

∫
min
Ck∈C

‖x− Ck‖2P (dx),

and L̂, L̄ as the cluster assignment matrices of X1, . . . , Xn based on Ĉ and C̄
respectively.

Theorem 1. Under Assumptions (i) − (vi) in the Appendix, if n1/2λp → 0

and n−2λ−2p → 0 as n → ∞, then Ĉ → C̄ almost surely and ‖Ĉ − C̄‖ =
Op(n

1/2λp−1).

Theorem 1 shows that the regularized k-means clustering with a properly
selected λ attains similar asymptotic estimation consistency as the standard
k-means clustering in [17, 18]. Note that the dimension p is allowed to diverge
to infinity at an order of o(min(n2λ2, n−1/2λ−1)). In specific, if p = O(na) with
0 < a < 1/3, setting λ = O(n−(a+3)/4) satisfies the order conditions. These
conditions have also been used in [9] for establishing the asymptotic consistency
of high-dimensional regularized regression.

Next we establish the asymptotic selection consistency of the regularized k-
means clustering, which is desirable in high-dimensional cluster analysis where
many variables are redundant and contain no information about the clustering
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structure. Without loss of generality, we assume that only the first p0 < p
variables are informative in that ‖C̄(j)‖ 6= 0 for j ≤ p0 and ‖C̄(j)‖ = 0 for
j > p0. The informative variable set is denoted as A = {1, . . . , p0} and the
uninformative variable set is then Ac = {p0 + 1, . . . , p}.
Theorem 2. Under Assumptions (i) − (vii) in the Appendix, if n1/2λp → 0

and n−2λ−2p→ 0 as n→ ∞, then P (‖Ĉ(j)‖ = 0) → 1 for any j ∈ Ac.

Theorem 2 establishes the asymptotic selection consistency in the sense that
the regularized k-means clustering can eliminate the uninformative variables in
the estimated cluster centers with probability tending to one. As a summary,
Theorems 1 and 2 demonstrate that the proposed regularized k-means clustering
is capable of performing cluster analysis and variable selection at the same time.

Note that the asymptotic estimation and selection consistency is established
assuming the number of clusters K is pre-specified. When the true number of
clusters is available, the asymptotic results assure that the true cluster centers
and the informative variables can be accurately recovered. When the true num-
ber of clusters is not known, [23] shows the selection consistency of the number of
clusters in the un-penalized clustering framework. However, it remains unclear
whether similar consistent results can be obtained for the regularized methods
due to the difficulty of tuning K and λ simultaneously. A numerical experiment
has been conducted in section 7.2 to demonstrate the superior performance of
tuning K and λ via the selection criterion in section 4.

6. Regularized model-based clustering

The regularized clustering framework can be extended to the regularized model-
based clustering with the adaptive group lasso penalty. As opposed to the L1

penalty in [16], adaptive group lasso penalty encourages the selection of variables
in a factor fashion with each variable as one factor.

In general, assume each observation Xi, i = 1, . . . , n is drawn from a mix-
ture model with f(x) =

∑K
k=1 πkfk(x; θk), where πk is the mixture weight and

fk(x; θk) can be any distribution function of the mixture component indexed by
parameter θk. For illustration, fk(x; θk) is assumed to be a multivariate normal
distribution,

fk(x, θk) = (2π)−p/2|Vk|−1/2 exp

{
−1

2
(x− Ck)

TV −1
k (x− Ck)

}
, (7)

where θk = (Ck, Vk) and |Vk| is the determinant of covariance matrix Vk. The
regularized log-likelihood function for the observed data can be then formulated
as

n∑

i=1

log

(
K∑

k=1

πkfk(Xi, θk)

)
− nλ

p∑

j=1

‖C(j)‖
‖C̃(j)‖

. (8)

To facilitate the high-dimensional clustering as in [16], we further assume that
a common diagonal covariance matrix is shared among the mixture components.
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In specific, Vk = V = diag(σ2
1 , . . . , σ

2
p) for all k’s. An EM algorithm can be

employed to maximize (8), where the cluster assignment Lik is treated as missing
data.

If Lik is available, the regularized log-likelihood function for the compete
data is

n∑

i=1

K∑

k=1

Lik[log πk + log fk(Xi; θk)]− nλ

p∑

j=1

‖C(j)‖
‖C̃(j)‖

. (9)

In the expectation step, the conditional expectation of (9) is denoted as

Q(θ, θ(t)) =

K∑

k=1

n∑

i=1

L
(t)
ik [log πk + log fk(Xi; θk)]− nλ

p∑

j=1

‖C(j)‖
‖C̃(j)‖

. (10)

where L
(t)
ik =

π
(t)
k

fk(Xi;θ
(t)
k

)
∑

K
k=1 π

(t)
k

fk(Xi;θ
(t)
k

)
. In the Maximization step, maximizing (10)

yields the update of the parameters,

π̂
(t+1)
k =

n∑

i=1

L
(t)
ik

n
,

(σ̂2
j )

(t+1) =

K∑

k=1

n∑

i=1

L
(t)
ik (Xij − C

(t)
kj )

2

n
.

The centers can be obtained by a direct calculation based on the Karush-
Kuhn-Tucker conditions. Specifically, for any C(j) 6= 0,

∂Q

∂C(j)
=
LT (t)Xij1n

σ2
j

− diag(LT (t)1n)

σ2
j

− nλC(j)

‖C̃(j)‖‖C(j)‖
.

For any C(j) = 0,

‖L
T (t)Xij1n

σ2
j

− diag(LT (t)1n)

σ2
j

‖ ≤ nλ

‖C̃(j)‖
.

These two conditions imply that

Ĉ
(t+1)
(j) =

(
IK −

nλ(σ2
j )

(t+1)(diag(LT (t)1n))
−1

‖C̃(j)‖‖(diag(LT (t)1n))−1LT (t)Xij1n‖

)
+

×
(
(diag(LT (t)1n))

−1LT (t)Xij1n

)
,

where IK is K ×K identity matrix, 1n is the vector of all 1’s. Note that (A)+
above is component-wise, so (A)+ = (aij+), where aij+ = max(0, aij). There-

fore the element Ĉ
(t+1)
kj = 0 if

λ >
‖C̃(j)‖‖(diag(LT (t)1n))

−1LT (t)Xij1n‖
∑n

i=1 L
(t)
ik

n(σ2
j )

(t+1)
.

The details of the EM algorithm are as follows.
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Algorithm 2 (Regularized model-based clustering).

Step 1. Initialize centers C
(0)
1 , . . . , C

(0)
K by the standard k-means clustering

and π
(0)
k = 1

K .
Step 2. Until the termination condition is met, repeat

(a) E-step. Find L
(t)
ik =

π
(t)
k

fk(Xi;θ
(t)
k

)
∑

K
k=1 π

(t)
k

fk(Xi;θ
(t)
k

)
.

(b) M-step. Given L(t), update π
(t+1)
k , (σ2

j )
(t+1) and C

(t+1)
(j) .

Similar as Algorithm 1, the standard k-means clustering in Step 1 is ran-
domly started multiple times to overcome its sensitivity to the initialization.
The iteration in Step 2 stops when L(t) does not change any more.

7. Simulation study

This section examines the effectiveness of the proposed regularized k-means
clustering and regularized model-based clustering, and compares them against
the standard k-means and the sparse k-means. As shown by [25], the sparse k-
means outperforms many other popular high-dimensional clustering algorithms
in a variety of numerical experiments. To assess the performance of various
clustering algorithms, the clustering error is defined as the estimated distance
between an estimated clustering assignment ψ̂ and the true assignment ψ of the
sample data X1, . . . , Xn.

D(ψ̂, ψ) =

(
n

2

)−1∣∣∣{(i, j) : I(ψ̂(Xi) = ψ̂(Xj)) 6= I(ψ(Xi) = ψ(Xj)); i < j}
∣∣∣.

The simulated data consist of 80 observations Xi ∈ Rp; i = 1, . . . , 80 gener-
ated as follows. First, Yi’s are uniformly sampled from {1, 2, 3, 4}, which indicate
the cluster memberships. Then for each i, the first 50 informative variables are
generated from N(µ(Yi), I50), where

µ(Yi) = (−µ1T
25, µ1

T
25)

T I(Yi = 1) + µ150I(Yi = 2)

+ (µ1T
25,−µ1T

25)
T I(Yi = 3)− µ150I(Yi = 4),

and 125 is a vector of 25 ones, and the last p− 50 noise variables are generated
from N(0, 1). To examine the clustering performance in various scenarios, we
set p = 50, 200, 500 or 1000 and µ = 0.4, 0.6 or 0.8. Clearly, the four clusters
are well separated when µ is large, and can be heavily overlapped when µ is
small. Furthermore, when the data dimension p increases the first 50 informative
variables become harder to identify as more noise variables are present.

Two scenarios are considered. In scenario I, we focus on the clustering perfor-
mance of various clustering algorithms pretending the true number of clusters
is given. In scenario II, with K unknown, we compare the clustering perfor-
mance of various clustering algorithms after adjusted to the tuning parameter
selection. In both scenarios, the selection criterion in section 4 is used to select
tuning parameters for the standard k-means, the regularized k-means cluster-
ing and the regularized model-based clustering, and gap statistic [21] is used to
select tuning parameters for the sparse k-means as suggested in [25].
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Table 1

The averaged clustering errors and their estimated standard deviations for various

clustering algorithms in section 7.1

µ Methods p=50 p=200 p=500 p=1000
K-means .085(.009) .193(.007) .284(.008) .330(.005)

0.4 Sparse k-means .230(.021) .212(.018) .266(.012) .302(.005)
Reg. k-means .087(.008) .181(.009) .249(.008) .296(.006)

Reg. model-based .094(.005) .196(.007) .291(.010) –
K-means .007(.002) .025(.003) .060(.006) .142(.007)

0.6 Sparse k-means .018(.003) .016(.002) .025(.008) .058(.017)
Reg. k-means .007(.002) .013(.003) .020(.003) .044(.009)

Reg. model-based .004(.001) .015(.002) .038(.006) –
K-means 0(0) .001(.001) .004(.002) .015(.002)

0.8 Sparse k-means .001(.001) 0(0) .002(.001) .004(.002)
Reg. k-means 0(0) .001(.001) .001(.001) .001(.001)

Reg. model-based 0(0) 0(0) .001(.001) –

Table 2

The averaged numbers of selected variables and their estimated standard deviations for

various clustering algorithms in section 7.1

µ Methods p=50 p=200 p=500 p=1000
K-means 50(0) 200(0) 500(0) 1000(0)

0.4 Sparse k-means 33.3(3.05) 84.6(15.80) 127.0(39.30) 362.6(87.80)
Reg. k-means 36.6(1.68) 35.9(4.20) 45.1(9.20) 60.3(11.90)

Reg. model-based 45.2(0.61) 109.5(5.92) 98.0(15.13) –
K-means 50(0) 200(0) 500(0) 1000(0)

0.6 Sparse k-means 45.2(0.99) 128.3(9.57) 182.8(41.46) 43.6(6.04)
Reg. k-means 49.8(0.12) 52.1(1.77) 47.3(2.30) 64.8(9.80)

Reg. model-based 50(0) 50.6(2.09) 45.8(2.9) –
K-means 50(0) 200(0) 500(0) 1000(0)

0.8 Sparse k-means 46.4(1.09) 157.1(7.53) 126.8(30.40) 44.9(4.41)
Reg. k-means 50(0) 65.5(1.08) 53.2(1.85) 65.3(7.03)

Reg. model-based 50(0) 148.4(0.61) 56.7(3.06) –

7.1. Scenario I: K is known

In scenario I, the number of clusters is fixed as 4 in all clustering algorithms. For
all the sparse k-means, the regularized k-means clustering and the regularized
model-based clustering, the tuning parameters are selected through a grid search
over 20 grid points {10−2+4l/19; l = 0, . . . , 19}. For fair comparison, the number
of bootstrap samples is set as B = 10 in both the stability-based selection
criterion in section 4 and the gap statistics, and all clustering algorithms are
randomly started 100 times to overcome their dependence on the initialization.
Following the setup by [25], each simulation is replicated 20 times, and the
averaged clustering error and averaged number of selected informative variables
are summarized in Tables 1 and 2.

Evidently, our proposed regularized k-means clustering and regularized model-
based clustering deliver superior results against their competitors in terms of
both clustering error and variable selection. In Table 1, the regularized k-means
clustering yields smaller clustering error than both the standard k-means and the
sparse k-means when p > 50, except that both the proposed regularized model-
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based clustering and sparse k-means lead to perfect clustering when µ = 0.8
and p = 200. When p = 50 with no noise variable present the regularized
model-based clustering yields the best performance for µ = 0.6 and 0.8, while
the standard k-means clustering has great advantage for µ = 0.4, whereas the
performance of the sparse k-means appears to be less competitive. In Table 2,
the number of selected variables by the regularized k-means clustering is much
closer to the truth than that of the sparse k-means in most cases, whereas the
standard k-means clustering does not performance any variable selection at all.
When p = 1000, in the examples of µ = 0.6 and µ = 0.8, the regularized k-means
clustering tends to include a few more variables than the sparse k-means, yet it is
still reasonably close to the number of true informative variables. Furthermore,
the regularized model-based clustering performs similarly as the regularized k-
means clustering, but it requires substantially higher computational cost. As a
consequence, the results of the regularized model-based clustering for p = 1000
is omitted in Tables 1 and 2 because of the long computational time.

7.2. Scenario II: K is unknown

Now we conduct a comparison of all clustering algorithms in a more realistic
scenario, where the number of clusters is unknown. For illustration, we only
consider p = 200 and µ = 0.8. To select the number of clusters and tuning
parameters, similar tuning procedures as in section 7.1 are applied. The grid
search is conducted over K ∈ {2, . . . , 10} and the same grid points for λ as in
section 7.1. The simulation is replicated 20 times and the averaged clustering
errors and averaged number of selected variables are summarized in Table 3.

Again the regularization k-means clustering and regularized model-based
clustering deliver superior performance in both clustering and variable selec-
tion, and outperforms the sparse k-means and the standard k-means. The per-
formance of sparse k-means is severely deteriorated as gap statistic selects the
wrong number of clusters 18 out of 20 times. The difficulty of gap statistic in
selecting number of clusters is also pointed out in [25]. On the contrary, the se-
lection criterion based on clustering stability appears to perform well in selecting
the number of clusters and the tuning parameters.

To illustrate the effectiveness of the clustering stability based selection cri-
terion, we randomly select one replication and display the estimated clustering
instability and the clustering error for various values of K and λ. In Figure 1,

Table 3

The selected numbers of clusters, averaged numbers of selected variables, averaged clustering

errors and their estimated standard deviations in section 7.2

Methods K=2 K=4 No. selected variables Clustering error
K-means 0 20 200(0) .001(.001)

Sparse k-means 18 2 138.0(4.11) .228(.017)
Reg. k-means 0 20 50.0(0.05) 0(0)

Reg. model-based 0 20 45.9(0.26) .0006(.0003)
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Fig 1. The plots of clustering instability and clustering error as functions of number of

clusters K and tuning parameter λ respectively.

Table 4

The estimated numbers of clusters, numbers of selected variables, and clustering errors with

various sample sizes in section 7.2

Sample size n No. clusters No. selected variables Clustering error
20 3 86 .153
40 4 63 0
80 4 49 0

it is clear that there is a positive relevance between clustering instability and
clustering error for various K or λ’s.

Furthermore, we examine the behavior of the regularized k-means cluster-
ing and the tuning parameter selection criterion as sample size grows. The
simulation is conducted for regularized k-means clustering with sample size
n = 20, 40, 80. The estimated number of clusters, number of selected variables
and clustering errors over 20 replications are summarized in Table 4. As sample
size increases, the true number of clusters is selected with higher probability,
the noninformative variables are tending not to be selected, and the clustering
errors decrease implying better estimate of the clustering centers.

8. Applications to gene microarray analysis

In this section, we apply the proposed regularized k-means clustering to two
benchmark microarray datasets, Leukemia [11] and Lymphoma [1]. In the
Leukemia data, [11] studied microarray gene expression data to discovery two
types of human acute leukemias: acute myeloid leukemia(AML) and acute lym-
phoblastic leukemia(ALL). This dataset consists of 72 patients in total, 25 pa-
tients with AML and 47 patients with ALL. The Gene expression levels were
measured by Affymetrix microarrays containing 6817 human genes. Distinguish-
ing ALL from AML is clinically significant for successful treatment because those
chemotherapy regimens for ALL patients are different from AML patients, in
which case using ALL therapy for AML (and vice versa) cases may result in
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Table 5

The selected numbers of clusters and informative genes and clustering errors in two gene

microarray examples

Data Methods No. clusters No. genes Clustering error
K-means 2 3571 2/72

Leukemia Sparse k-means 4 2577 2/72
Reg. k-means 2 211 2/72

K-means 2 4026 4/62
Lymphoma Sparse k-means 3 3025 2/62

Reg. k-means 3 66 1/62

distinctly reduced cute rates and possible toxicities. In the lymphoma data set,
the total sample size is 62 and the number of genes is 4026. Three types of most
prevalent adult lymphoid malignancies were studied: 42 cases of diffuse large
B-cell lymphoma (DLBCL), 9 samples of follicular lymphoma (FL), and 11 ob-
servations of B-cell chronic lymphocytic leukemia (CLL). A specialized cDNA
microarray was used to measure the gene expression levels. Both data sets are
provided by [6] and available at http : //stat.ethz.ch/˜dettling/bagboost.html.

Following the pre-processing steps in [8], both data sets are pre-processed by
first setting a thresholding window [100, 16000] and then excluding genes with
max/min ≤ 5 or (max − min) ≤ 500. Finally a logarithmic transformation
and standardization are applied. For the original lymphoma data set, some
arrays contain genes with missing values. As suggested in [8], a simple 5 nearest
neighbor algorithm is employed to impute the missing values.

All the clustering algorithms are randomly started 100 times to overcome
their dependence on the initialization. To optimally tune the algorithms, a grid
search over K and tuning parameter λ as in section 7.2 is conducted to optimize
the clustering instability or gap statistic. Note that there is no true clustering
assignment in both gene microarray data sets, we compare the estimated clus-
tering assignments to the available cancer types of each tumor. The comparison
results are summarized in Table 5.

In the Leukemia data, the regularized k-means clustering correctly selects 2
clusters and makes only 2 misclassification out of 72 samples. In the Lymphoma
data, the regularized k-means clustering correctly selects 3 clusters and yields
the smallest clustering error with only 1/62. Clearly, the regularized k-means
clustering achieves competitive clustering performance with much less selected
important genes compared with the sparse k-means and the standard k-means
clustering algorithms. Furthermore, in the leukemia data the number of the
selected important genes by the regularized k-means clustering agrees with the
observations in [11, 5].

To scrutinize the performance the regularized k-means clustering in the gene
microarray examples, we plot the heatmap of the Lymphoma data based on the
66 selected genes in Figure 2. The three clusters are distinct on the heatmap
in that genes 1, . . . , 22 have significant signals in detecting FL and CLL, genes
23, . . . , 27 have significant signals in discriminating FL, and genes 28, . . . , 66
have significant signals in distinguishing DLBCL.
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Fig 2. Heatmap of the Lymphoma data set based on 66 genes selected by the regularized

k-means clustering. Each row represents one of the 62 sample tumors and each column rep-

resents one of the 66 selected genes.

9. Discussion

This article proposes the regularized k-means clustering which is able to simulta-
neously cluster high-dimensional observations and select informative variables.
To optimally balance the tradeoff between model fitting and model sparsity, a
tuning parameter selection criterion based on clustering stability is developed.
The proposed methods deliver superior performance in both cluster analysis
and variable selection, and outperform their competitors in simulated and real
experiments. A possible future direction is to extend the framework of the reg-
ularized k-means clustering to other clustering algorithms, like fuzzy c-means,
which relaxes the constraints of the discrete and nonnegative clustering assign-
ment of k-means.

Appendix

Assumptions:

(i) X(j) = L̄C̄(j) + ǫ(j) for j = 1, . . . , p, where ǫ(j) = (ǫ1j , . . . , ǫnj)
T with ǫij

independent, Eǫij = 0 and Eǫ2ij <∞.

(ii) The true cluster centers C̄ is unique up to relabeling of its coordinates;
(iii)

∫
‖X‖2P (dx) <∞;

(iv) Probability measure P has a continuous density f on Rp;
(v) There exists a g(·) such that f(x) ≤ g(‖x‖) and rpg(r) integrable with
r ∈ [0,∞);
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(vi) Matrix Γ defined in [18] is positive definite at C̄;
(vii) argmin1≤k≤K ‖X − Ck‖2 is unique with probability one.

Here Assumption (i) is a standard assumption for Euclidean distance based
cluster analysis. Assumptions (ii)–(vi) are analogous to the assumptions in [17,
18], where p is allowed to diverge as n → ∞. Assumption (vii) is necessary to
prevent the ambiguity in estimating the cluster assignment matrix.

Proof of Theorem 1. First we show the estimated cluster centers Ĉ1, . . . , ĈK lie
in a compact region of Rp when n is large enough. It suffices to show there
exists a sufficiently large closed ball B(M) centered at the origin and of radius
M , which contains all the estimated cluster centers when n is sufficiently large.

Note that minimization of (6) is equivalent to the minimization of

∫
min
Ck∈C

‖x− Ck‖2Pn(dx), s.t.

p∑

j=1

‖C(j)‖
‖C̃(j)‖

≤ sn, (11)

where sn → ∞ as n → ∞. As proved in [17], under the assumptions (ii) and
(iii), there is an M1 so large that, when n is large enough, the estimated cluster
centers {C̃1, . . . , C̃K} based on the standard k-means are contained in B(M1).
By the fact that sn → ∞, there exists a sufficiently large sN such that the

set {C :
∑p

j=1
‖C(j)‖

‖C̃(j)‖
≤ sN} ⊃ B(M1). Therefore, B(M) = B(M1) contains

{Ĉ1, . . . , ĈK} when n is sufficiently large.
Next we show that, almost surely, W (C,Pn) − W (C,P ) converges to zero

uniformly over the subsets of B(M), and then minimizing W (·, Pn) is asymp-
totically equivalent to minimizingW (·, P ). Without loss of generality, we assume
that B(M) is large enough such that C̄ ∈ B(M). Note that

sup
C∈B(M)

|W (C,Pn)−W (C,P )|

= sup
C∈B(M)

∣∣∣
∫

min
Ck∈C

‖x− Ck‖2Pn(dx) +

p∑

j=1

λj‖C(j)‖ −
∫

min
Ck∈C

‖x− Ck‖2P (dx)
∣∣∣

≤ sup
C∈ B(M)

∣∣∣
∫

min
Ck∈C

‖x− Ck‖2Pn(dx)−
∫

min
Ck∈C

‖x− Ck‖2P (dx)
∣∣∣

+ sup
C∈B(M)

p∑

j=1

λj‖C(j)‖.

The first term converges almost surely to zero because p = o(n) and the uniform
SLLN of standard k-means [17], and the second term converges almost surely
to zero because ‖C(j)‖ and ‖Ĉ(j)‖ are bounded on B(M) and n1/2λp → 0.

Finally we prove that ‖Ĉ− C̄‖ = Op(n
1/2λp−1). Denote an empirical process

Gn(·) = n1/2(Pn(·)− P (·)) and denote φ(x,C) = min1≤k≤K ‖x− Ck‖2. Then

W (Ĉ, Pn) = Pnφ(·, Ĉ)+

p∑

j=1

λj‖Ĉ(j)‖ = Pφ(·, Ĉ)+n−1/2Gnφ(·, Ĉ)+

p∑

j=1

λj‖Ĉ(j)‖.
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Therefore under the conditions (iii) and (iv), Lemma D in [18] implies that

W (Ĉ, Pn) = W (C̄, Pn)− n−1/2ZT
n (v(Ĉ)− v(C̄))

+
1

2
(v(Ĉ)− v(C̄))TΓ(v(Ĉ)− v(C̄)) +

p∑

j=1

λj‖Ĉ(j)‖

−
p∑

j=1

λj‖C̄(j)‖+ op(n
−1/2rn) + op(r

2
n).

where rn = ‖Ĉ − C̄‖, v(Ĉ) and v(C̄) are the vectorized Ĉ and C̄, Zn ∈ Rkp is
asymptotically N(0, V ) with V ∈ Rkp×kp as defined in Lemma D of [18]. By the

definition of Ĉ, W (Ĉ, Pn) ≤W (C̄, Pn). Therefore,

−n−1/2ZT
n (v(Ĉ)− v(C̄)) +

1

2
(v(Ĉ)− v(C̄))TΓ(v(Ĉ)− v(C̄))

+

p∑

j=1

λj(‖Ĉ(j)‖ − ‖C̄(j)‖) + op(n
−1/2rn) + op(r

2
n) ≤ 0.

Assumption (vi) guarantees that (v(Ĉ) − v(C̄))TΓ(v(Ĉ) − v(C̄)) = Op(pr
2
n),

and the fact that the elements of Zn are in the order of Op(1) implies that

−n−1/2ZT
n (v(Ĉ) − v(C̄)) = Op(n

−1/2p1/2rn). By the fact that λj = λ‖C̃(j)‖−1

and central limit theorem of C̃, which is extended from standard k-means clus-
tering in [18],

∑p
j=1 λj(‖Ĉ(j)‖ − ‖C̄(j)‖) = Op(n

1/2λrn). According to the as-

sumption n−2λ−2p→ 0,

Op(pr
2
n) +Op(n

1/2λrn) ≤ Op(n
−1/2p1/2rn) + op(n

−1/2rn) + op(r
2
n)

implies that rn = Op(n
1/2λp−1).

Proof of Theorem 2. We only prove P (‖Ĉ(p)‖ = 0) → 1 by contradiction, and

similar treatment can yield that P (‖Ĉ(j)‖ = 0) → 1, for all p0+1 ≤ j ≤ p−1. If

Ĉ(p) 6= 0, then ‖Ĉ(p)‖ is differentiable with respect to its components. Karush-
Kuhn-Tucker (K.K.T.) condition implies that

0 = − 2√
n
L̂T (X(p) − L̂Ĉ(p)) +

√
nλp

Ĉ(p)

‖Ĉ(p)‖

= − 2√
n
(L̂T − L̄T )(X(p) − L̂Ĉ(p))−

2√
n
L̄T (X(p) − L̂Ĉ(p)) +

√
nλp

Ĉ(p)

‖Ĉ(p)‖
= − 2√

n
(L̂T − L̄T )(X(p) − L̄Ĉ(p)) +

2√
n
(L̂T − L̄T )(L̂ − L̄)Ĉ(p)

− 2√
n
L̄T (X(p) − L̄Ĉ(p)) +

2√
n
L̄T (L̂ − L̄)Ĉ(p) +

√
nλp

Ĉ(p)

‖Ĉ(p)‖
=

2√
n
(L̂T − L̄T )L̄Ĉ(p) −

2√
n
(L̂T − L̄T )ǫ(p) +

2√
n
(L̂T − L̄T )(L̂− L̄)Ĉ(p)

+
2√
n
L̄T (L̂− L̄)Ĉ(p) −

2√
n
L̄T ǫ(p) +

( 2
n
L̄T L̄+

λp

‖Ĉ(p)‖
I
)√

nĈ(p).
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Note that Ĉ → C̄ in Theorem 1 together with Assumption (vii) implies that

the estimated cluster assignment matrix L̂ converges in probability to the true
cluster assignment matrix L̄. Therefore, in the last equality, the first four terms
are of the order op(1), and the fifth term is of the order Op(1) due to assump-
tion (i). It follows from the fact that 2

n L̄
T L̄ is a nonnegative matrix and the

component-wise central limit theorem of standard k-means that

∥∥∥∥∥
( 2
n
L̄T L̄+

λp

‖Ĉ(p)‖
I
)√

nĈ(p)

∥∥∥∥∥ ≥
∥∥∥∥∥

λp

‖Ĉ(p)‖
√
nĈ(p)

∥∥∥∥∥ =

√
nλ

‖C̃(p)‖
= O(nλ).

Note that nλ → ∞ according to the assumption n−2λ−2p → 0. So the last
term diverges to infinity and dominates the first five terms, which leads to the
contradiction to the above K.K.T. condition. Therefore, Ĉ(p) must be equal to
0 with probability tending to one. This completes the proof.
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