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Abstract

For many supervised learning problems, we possess priavlkdge about which
features yield similar information about the target valéaln predicting the topic
of a document, we might know that two words are synonyms, amehvperform-

ing image recognition, we know which pixels are adjacenthsaynonymous or
neighboring features are near-duplicates and should beceegbto have similar
weights in an accurate model. Here we present a frameworkdoiarized learn-
ing when one has prior knowledge about which features areat®g to have sim-
ilar and dissimilar weights. The prior knowledge is encode network whose
vertices are features and whose edges represent sireaaiid dissimilarities be-
tween them. During learning, each feature’s weight is peedlby the amount
it differs from the average weight of its neighbors. For teldssification, reg-
ularization using networks of word co-occurrences outens manifold learn-

ing and compares favorably to other recently proposed sepervised learning
methods. For sentiment analysis, feature networks caststitfrom declarative
human knowledge significantly improve prediction accuracy

1 Introduction

For many important problems in machine learning, we haven#dd amount of labeled training
data and a very high-dimensional feature space. A commoroapp to alleviating the difficulty

of learning in these settings is to regularize a model by lEng a norm of its parameter vector.
The most commonly used norms in classificatibn,and Ly, assume independence among model
parameters [1]. However, we often have access to informatimut dependencies between param-
eters. For example, with spatio-temporal data, we usualbnkwhich measurements were taken at
points nearby in space and time. And in natural languagegssieg, digital lexicons such as Word-
Net can indicate which words are synonyms or antonyms [2]tH@biomedical domain, databases
such as KEGG and DIP list putative protein interactions [3Ahd in the case of semi-supervised
learning, dependencies can be inferred from unlabeled8a8. Consequently, we should be able
to learn models more effectively if we can incorporate deleery structure directly into the norm
used for regularization.

Here we introduce regularized learning with networks ofdess, a framework for constructing cus-
tomized norms on the parameters of a model when we have praovledge about which parameters
are likely to have similar values. Since our focus is on dfasdion, the parameters we consider are
feature weights in a linear classifier. The prior knowledgerncoded as a network or graph whose
nodes represent features and whose edges representifigsilaagtween the features in terms of how
likely they are to have similar weights. During learning¢ledeature’s weight is penalized by the
amount it differs from the average weight of its neighborkisTregularization objective is closely



connected to the unsupervised dimensionality reductiothaoak locally linear embedding (LLE),

proposed by Roweis and Saul [7]. In LLE, each data instanessamed to be a linear combina-
tion of its nearest neighbors on a low dimensional maniftriathis work, each feature’s weight is
preferred (though not required) to be a linear combinatfdh@weights of its neighbors.

Similar to other recent methods for incorporating prior wiexige in learning, our framework can
be viewed as constructing a Gaussian prior with non-dialgumariance matrix on the model pa-
rameters [6, 8]. However, instead of constructing the dawae matrix directly, it is induced from
a network. The network is typically sparse in that each fieghas only a small number of neigh-
bors. However, the induced covariance matrix is generatsd. Consequently, we can implicitly
construct rich and dense covariance matrices over largerfeapaces without incurring the space
and computational blow-ups that would be incurred if wemfited to construct these matrices
explicitly.

Regularization using networks of features is especiallgrapriate for high-dimensional feature
spaces such as are encountered in text processing wherectiledistances required by tradi-
tional manifold classification methods [9, 10] may be diffido estimate accurately, even with
large amounts of unlabeled data. We show that regularizatith feature-networks derived from
word co-occurrence statistics outperforms manifold regoation and another, more recent, semi-
supervised learning approach [5] on the task of text classifin. Feature network based regu-
larization also supports extensions which provide fleitibin modeling parameter dependencies,
allowing for feature dissimilarities and the introductioffeature classes whose weights have com-
mon but unknown means. We demonstrate that these exterisipnave classification accuracy
on the task of classifying product reviews in terms of howofable they are to the products in
guestion [11]. Finally, we contrast our approach to relaggilarization methods.

2 Regularized Learning with Networks of Features

We assume a standard supervised learning framework in winéchre given a training set of in-
stanced” = {(x;,y:)}", with x; € R? and associated labels € ). We wish to learn a linear
classifier parameterized by weight vectorc R? by minimizing a convex loss functialtx, i ; w)
over the training instancesx;, y;). For many problems, the dimensiaf,is much larger than the
number of labeled instances, Therefore, it is important to impose some constraintsvorHere
we do this using a directed network or gragh,whose verticesy” = {1, ..., d}, correspond to the
features of our model and whose edges link features whosghtgeare believed to be similar. The
edges of7 are non-negative with larger weights indicating greatenilsirity. Conversely, a weight
of zero means that two features are not beliewpdori to be similar. As has been shown elsewhere
[5, 6, 8], such similarities can be inferred from prior domlanowledge, auxiliary task learning, and
statistics computed on unlabeled data. For the time beingssame thar is given and defer its
construction until section 4, experimental work.

The weights of are encoded by a matrif, whereP;; > 0 gives the weight of the directed edge
from vertexi to vertex;. We constrain the out-degree of each vertex to sum tophel;; = 1, so
that no feature “dominates” the graph. Because the sensaoftihe graph are that linked features
should have similar weights, we penalize each feature'ghitdiy the squared amount it differs from
the weighted average of its neighbors. This gives us thevatig criterion to optimize in learning:
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where we have added a ridge term to make the loss strictlyesorivhe hyperparametessand 5
specify the amount of network and ridge regularization eesipely. The regularization penalty can
be rewritten asv " Mw whereM = o (I — P) " (I — P)+ 3 I. The matrixM is symmetric positive
definite, and therefore our criterion possesses a Bayasiamietation in which the weight vector,
w, is a priori normally distributed with mean zero and covariance mafix—'.

Minimizing equation (1) is equivalent to finding the MAP eséite forw. The gradient of (1) with
respect tow is Vy, loss = Z?:l Vw l(%:, 3 ; W) + 2Mw and therefore requires only an additional
matrix multiply on top of computing the loss over the tramidata. If P is sparse, as it is in
our experiments—i.e., it has onkyl entries fork < d—then the matrix multiply isD(d). Thus



equation (1) can be minimized very quickly. Additionallpetinduced covariance matrix/ —*
will typically be dense even though is sparse, showing that we can construct dense covariance
structures ovew without incurring storage and computation costs.

2.1 Relationship to Locally Linear Embedding

Locally linear embedding (LLE) is an unsupervised learnimgthod for embedding high dimen-
sional data in a low dimensional vector space. The datg”_, is assumed to lie on a low dimen-
sional manifold of dimension within a high dimensional vector space of dimensionith ¢ < d.
Since the data lies on a manifold, each point is approximateonvex combination of its nearest
neighbors on the manifold. That i&,; ~ D jmi P;;X;, wherej ~ i denotes the sampleg, which

lie close toi on the manifold. As above, the matriX has non-negative entries and its rows sum to
one. The set of low dimensional coordinatés;}™_,, ¥; € R¢, are found by minimizing the sum
of squares cost:

cost{Vi}) = D _IIVi = > PyYil3, @

subject to the constraint that t§&; } have unit variance in each of thedimensions. The solution
to equation (2) is found by performing eigen-decompositiarthe matrix(I — P)" (I — P) =
UAUT whereU is the matrix of eigenvectors antl is the diagonal matrix of eigenvalues. The
LLE coordinates are obtained from the eigenvectars,.., u. whose eigenvaluesy,, ..., \., are
smallest by settingﬁ- = (u1i, .-, ue;) . LOOKING at equation (1) and ignoring the ridge term, it is
clear that our feature network regularization penalty eniital to LLE except that the embedding
is found for the feature weights rather than data instartdesiever, there is a deeper connection.

If we let L(Y, Xw) denote the unregularized loss over the training set wieigthen x d matrix
of instances andl” is then-vector of class labels, we can express equation (1) in ri@inn as

w* = argmin L(Y, Xw)+w' (a(I—P)" (I —P)+81)w. (3)

Defining X to be XU (aA + 3 1)~/ wherelU andA are from the eigen-decomposition above, it is
not hard to show that equation (3) is equivalent to the &étiéra ridge regularized learning problem

W* = argmin L(Y, XW) + w ' W. (4)

w

That is, the two minimizersy andw, yield the same prediction’ = Xw = Xw. Consequently,
we can view feature network regularization as: 1) finding mtedding for the features using LLE
in which all of the eigenvectors are used and scaled by ther$evsquare-roots of their eigenvalues
(plus a smoothing term3I, that makes the inverse well-defined); 2) projecting the dlastances
onto these coordinates; and 3) learning a ridge-penalizetkhior the new representation. In using
all of the eigenvectors, the dimensionality of the featurdedding is not reduced. However, in
scaling the eigenvectors by the inverse square-roots ofdlgenvalues, the directions of least cost
in the network regularized problem become the directionsmiaximum variance in the associated
ridge regularized problem, and hence are the directioreast lcost in the ridge problem. As aresult,
the effective dimensionality of the learning problem isueeld to the extent that the distribution
of inverted eigenvalues is sharply peaked. When the bestseptation for classification has high
dimension, itis faster to solve (3) than to compute a largemiector basis and solve (4). In the high
dimensional problems of section 4, we find that regulariratvith feature networks outperforms
LLE-based regression.

3 Extensions to Feature Network Regularization

In this section, we pose a number of extensions and altgastid feature network regularization as
formulated in section 2, including the modeling of classkfeatures whose weights are believed
to share the same unknown means, the incorporation of gedtssimilarities, and two alternative

regularization criteria based on the graph Laplacian.

IMore precisely, eigenvectois, ..., u.,1 are used so that th&} are centered.



3.1 Regularizing with Classes of Features

In machine learning, features can often be grouped intsetassuch that all the weights of the
features in a given class are drawn from the same underlystighdition. For example, words can
be grouped by part of speech, by meaning (as in WordNet'sesghor by clustering based on the
words they co-occur with or the documents they occur in. gaimappropriately constructed feature
graph, we can model the case in which the underlying digtaba are believed to be Gaussians with
known, identical variances but with unknown means. Thahis,case in which there akedisjoint
classes of feature@Oi}f:1 whose weights are drawn i.i.dN (u;, 02) with z; unknown buts?
known and shared across all classes.

The straight-forward approach to modeling this scenarighineem to be to link all the features
within a class to each other, forming a clique, but this doaslead to the desired interpretation.
Additionally, the number of edges in this construction esajuadratically in the clique sizes, result-
ing in feature graphs that are not sparse. Our approachrisftite to creaté additional “virtual”
featuresfy, ..., fx, that do not appear in any of the data instances but whoséntgegig, ..., /i serve
as the estimates for the true but unknown means..., . In creating the feature graph, we link
each feature to the virtual feature for its class with an eafgeeight one. The virtual features,
themselves, do not possess any out-going links.

Denoting the class of featuieasc(i), and setting the hyperparametereind in equation (1) to

1/(20) ando, respectively, yields a network regularization coskof 2 "0, (w; — fi(;))?. Since

the virtual features do not appear in any instances, i.er Yhkies are zero in every data instance,
their weights are free to take on whatever values minimizentwork regularization cost in (1),
in particular the estimates of the class means,..., ux. Consequently, minimizing the network
regularization penalty maximizes the log-likelihood fbetintended scenario. We can extend this
construction to model the case in which the feature weigtgsleawn from a mixture of Gaussians
by connecting each feature to a number of virtual featuréls @dge weights that sum to one.

3.2 Incorporating Feature Dissimilarities

Feature network regularization can also be extended tacanéeatures to have opposing weights.
Such feature “dissimilarities” can be useful in tasks suglsentiment prediction where we would
like weights for words such as “great” or “fantastic” to hapgposite signs from their negated bigram
counterparts “not great” and “not fantastic,” and from tteitonyms. To model dissimilarities, we

construct a separate graph whose edges represent armiations between features. Regularizing
over this graph enforces each feature’s weight to be equlaétnegative of the average of the neigh-
boring weights. To do this, we encode the dissimilarity graping a matrixQ, defined analogously

to the matrixP, and add the terny", (w; + > Qij wj)2 to the network regularization criterion,

which can be written as ' (1+Q) " (I+Q)w. The matrix(I+Q) " (I+Q) is positive semidefinite
like its similarity graph counterpart. Goldberg et al. [1&e a similar construction with the graph
Laplacian in order to incorporate dissimilarities betweestances in manifold learning.

3.3 Regularizing Features with the Graph Laplacian

A natural alternative to the network regularization cieargiven in section (2) is to regularize the
feature weights using a penalty derived from the graph Lagtg13]. Here, the feature graph’s edge
weights are given by a symmetric matrix;, whose entrieslV;; > 0, give the weight of the edge
between featuresand;. The Laplacian penalty i§ ZM Wi;;(w; —w;)? which can be written as

w ' (D—W)w,whereD = diag(1/ 1) is the vertex degree matrix. The main difference between the
Laplacian penalty and the network penalty in equation (1has the Laplacian penalizes each edge
equally (modulo the edge weights) whereas the network pepahalizes each feature equally. In
graphs where there are large differences in vertex dedreé.aplacian penalty will therefore focus
most of the regularization cost on features with many neigfib Experiments in section 4 show
that the criterion in (1) outperforms the Laplacian penakywell as a related penalty derived from
the normalized graph Laplaciaél,zi_j Wi;(wi//Di; — w;/+/D;;)?. The normalized Laplacian
penalty assumes that'D;;w; ~ /D;;w;, which is different from assuming that linked features
should have similar weights.
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Figure 1:Left: Accuracy of feature network regularization (FNR) and fiveddmes on “20 newsgroups” data.
Right: Accuracy of FNR compared to reported accuracies of threer atmi-supervised learning methods.

4 Experiments

We evaluated logistic regression augmented with featungor& regularization on two natural lan-
guage processing tasks. The first was document classificatidhe 20 Newsgroups dataset, a
well-known document classification benchmark. The secoasl sentiment classification of prod-
uct reviews, the task of classifying user-written reviewsading to whether they are favorable or
unfavorable to the product under review based on the reva&t11]. Feature graphs for the two
tasks were constructed using different information. Faruoent classification, the feature graph
was constructed using feature co-occurrence statistezngld from unlabeled data. In sentiment
prediction, both co-occurrence statistics and prior dorkabwledge were used.

4.1 Experiments on 20 Newsgroups

We evaluated feature network based regularization on thee@@groups classification task using
all twenty classes. The feature set was restricted to thH&/6Myvords which occurred in at least 20
documents, not counting stop-words. Word counts werefivam&d by adding one and taking logs.
To construct the feature graph, each feature (word) wagsepted by a binary vector denoting its
presence/absence in each of the 20,000 documents of theetlal@ measure similarity between
features, we computed cosines between these binary vediaich feature was linked to the 25
other features with highest cosine scores, provided tieedd¢bres were above a minimum threshold
of 0.10. The edge weights of the graph were set to these cesores and the matri® was
constructed by normalizing each vertex’s out-degree totsuome.

Figure 1 (left) shows feature network regularization coragaagainst five other baselines: logis-
tic regression with arl., (ridge) penalty; principal components logistic regresgIBCR) in which
each instance was projected onto the largest 200 rightlsingectors of the: x d matrix, X ; LLE-
logistic regression in which each instance was projected tive smallest 200 eigenvectors of the
matrix (I — P) T (I — P) described in section 2; and logistic regression reguldrigethe normalized
and unnormalized graph Laplacians described in sectionRe3ults at each training set size are
averages of five trials with training sets sampled to cordaairqual number of documents per class.
For ridge, the amount aof» regularization was chosen using cross validation on thgitm set.
Similarly, for feature network regularization and the Lagan regularizers, the hyperparameters
andj were chosen through cross validation on the training segusisimple grid search. The ratio
of «a to 5 tended to be around 100:1. For PCR and LLE-logistic regpessihe number of eigenvec-
tors used was chosen to give good performance on the testlsethalarge and small training set
sizes. All models were trained using L-BFGS with a maximun2@® iterations. Learning a sin-
gle model took between between 30 seconds and two minutdscanvergence typically achieved
before the full 200 iterations.



Books DVDs Electronics Kitchen Appliances

2 O sim O sim O sim O sim
O sim+dissim O sim+dissim O sim+dissim O sim+dissim
| O ridge O ridge O ridge O ridge
o |
4
o
- 14l
n
2 10 50 250 1000 2 10 50 250 1000 2 10 50 250 1000 2 10 50 250 1000
Training Instances Training Instances Training Instances Training Instances

Figure 2: Accuracy of feature network regularization on the sentindatasets using feature classes and
dissimilarity edges to regularize the small sent of SentiiMet features.

The results in figure 1 show that feature network regulanmawith a graph constructed from unla-
beled data outperforms all baselines and increases agdw@®6-17% over the plain ridge penalty,
an error reduction of 17%-30%. Additionally, it outperfasthe related LLE regression. We conjec-
ture this is because in tuning the hyperparameters, we cgptiadly tune the dimensionality of the
underlying data representation. Additionally, by scalihg eigenvectors by their eigenvalues, fea-
ture network regularization keeps more information ablbedirections of least cost in weight space
than does LLE regression, which does not rescale the eigegdut simply keeps or discards them
(i.e. scales them by 1 or 0).

Figure 1 (right) compares feature network regularizatigaiast two external approaches that lever-
age unlabeled data: a multi-task learning approach callethating structure optimization (ASO),
and our reimplementation of a manifold learning method Wiie refer to as “local/global consis-
tency” [5, 10]. To make a fair comparison against the rembrésults for ASO, training sets were
sampled so as not to necessarily contain an equal numbeicafrdmts per class. Accuracies are
given for the highest and lowest performing variants of Ag@arted in [5]. Our reimplementation
of local/global consistency used the same document prepsatg described in [10]. However, the
graph was constructed so that each document hadrdy 10 neighbors (the authors in [10] use
a fully connected graph which does not fit in memory for thérer0 newsgroups dataset). Clas-
sification accuracy of local/global consistency did notyvaruch with K and up to 500 neighbors
were tried for each document. Here we see that feature nletwgularization is competitive with
the other semi-supervised methods and performs best attahdsmallest training set size.

4.2 Sentiment Classification

For sentiment prediction, we obtained the product revietasis used in [11]. Each dataset con-
sists of reviews downloaded froAmaz on. comfor one of four different product domains: books,
DVDs, electronics, and kitchen appliances. The revieweg laavassociated number of “stars,” rang-
ing from 0 to 5, rating the quality of a product. The goal of thsk is to predict whether a review
has more than (positive) or less than (negative) 3 starei@$sd with it based only on the text in the
review. We performed two sets of experiments in which primmdin knowledge was incorporated
using feature networks. In both, we used a list of sentinigrtharged words obtained from the
SentiWordNet database [14], a database which associadéwp@nd negative sentiment scores to
each word in WordNet. In the first experiment, we construetedt of feature classes in the manner
described in section 3.1 to see if such classes could be abedt-strap weight polarities for groups
of features. In the second, we computed similarities betwesgds in terms of the similarity of their
co-occurrence’s with the sentimentally charged words.

From SentiWordNet we extracted a list of roughly 200 wordthvhigh positive and negative sen-
timent scores that also occurred in the product reviewsaat 800 times. Words to which Senti-
WordNet gave a high ‘positive’ score were placed in a “pusitivords” cluster and words given
a high ‘negative’ score were placed in a “negative words5tu As described in section 3.1, all
words in the positive cluster were attached to a virtualfieatepresenting the mean feature weight
of the positive cluster words, and all words in the negatluster were attached to a virtual weight
representing the mean weight of the negative cluster waksalso added a dissimilarity edge (de-
scribed in section 3.2) between the positive and negatugeals’ virtual features to induce the two
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Figure 3:Accuracy of feature network and ridge regularization orr feentiment classification datasets.

classes of features to have opposite means. As shown in figumgosing feature clusters on the
two classes of words improves performance noticeably whédeddition of the feature dissimilarity
edge does not yield much benefit. When it helps, it is onlytierdmallest training set sizes.

This simple set of experiments demonstrated the applitabfifeature classes for inducing groups
of features to have similar means, and that the words ertidodm SentiWordNet were relatively
helpful in determining the sentiment of a review. Howevle humber of features used in these
experiments was too small to yield reasonable performanag applied setting. Thus we extended
the feature sets to include all unigram and bigram wordufest which occurred in ten or more
reviews. The total number of reviews and size of the featet®is given in table 1.

The method used to construct the feature graph
in the 20 newsgroups experiments was not well

suited for sentiment prediction since plain featurePataset Instances _ Features  Edges
co-occurrence statistics tended to find groups obooks 13,161 29,404 470,034
words that showed up in reviews for products of theDVDs 13,005 31,475 419,178
same type, e.g., digital cameras or laptops. Whileglectronics 8,922 15,104 343,890
such similarities are useful in predicting what type kitthen 7,760 11,658 305,926

of product is being reviewed, they are of little help
in determining whether a review is favorable or un-  Table 1: Sentiment Data Statistics
favorable. Thus, to align features along dimensions

of ‘sentiment,’ we computed the correlations of all featunéth the SentiwordNet features so that
each word was represented as a 200 dimensional vector @flaiions with these highly charged
sentiment words. Distances between these correlationngeaere computed in order to determine
which features should be linked. We next computed eachrieatliO0 nearest neighbors. Two fea-
tures were linked if both were in the other’s set of nearestr€ighbors. For simplicity, the edge
weights were set to one and the graph weight matrix was themoymalized in order to construct
the matrixP. The number of edges in each feature graph is given in table 1.

The ‘kitchen’ dataset was used as a development datasetlén tor arrive at the method for con-
structing the feature graph and for choosing the hyperpatenvalues:c = 9.9 ands = 0.1.
Figure 3 gives accuracy results for all four sentiment dataat training sets of 50 to 1000 in-
stances. The results show that linking features which amnéasiy correlated with sentiment-loaded
words yields improvements on every dataset and at evenjirigpset size.

5 Related Work

Most similar to the work presented here is that of the fusedddTibshirani et al. [15]) which can
be interpreted as using the graph Laplacian regularizewlihtan L; norm instead ofL; on the
residuals of weight difference”, >, [w; — w;| and all edge weights set to one. As the authors
discuss, arl; penalty prefers that weights of linked features be exadjlyaéso that the residual
vector of weight differences is sparde, is appropriate if the true weights are believed to be exactly
equal, but in many settings, features aear copies of one another whose weights should be similar
rather than identical. Thus in these settings, penalizqugeed differences rather than absolute
ones is more appropriate. Optimizirdg feature weight differences also leads to a much harder
optimization problem, making it less applicable in largaledearning. Li and Li [13] regularize



feature weights using the normalized graph Laplacian iir therk on biomedical prediction tasks.
As shown, this criterion does not work as well on the text ptsah problems considered here.

Krupka and Tishby [8] proposed a method for inducing featuegght covariance matrices using
distances in a “meta-feature” space. Under their framewwornk features positively covary if they
are close in this space and approach independence as thegigtant. The authors represent each
featurei as a vector of meta-featuras,, and compute the entries of the feature weight covariance
matrix,C;; = exp(— 52z ||u; — u;|?). Obviously, the choice of which is more appropriate, a fesitu
graph or metric space, is application dependent. Howensrl@ss obvious how to incorporate fea-
ture dissimilarities in a metric space. A second differeisdbat our work defines the regularizer in
terms ofC~! =~ (I — P)" (I — P) rather tharC itself. WhileC~! is constructed to be sparse with a
nearest neighbors graph, the induced covariance métrirged not be sparse. Thus, working with
C~1 allows for construct dense covariance matrices withouittgeto explicitly store them. Finally,
Raina et al. [6] learn a feature-weight covariance matoxfauxiliary tasks on unlabeled data. Our
approach is similar to theirs in that we use unlabeled datacioce feature covariances. However,
their approach uses the computationally intensive seffiniitke embedding to ensure that the co-
variance matrix is positive definite. Consequently, they rastricted to learning smaller models,
consisting of hundreds rather than tens of thousands afriest

6 Conclusion

We have presented regularized learning with networks dafifea, a simple and flexible framework
for incorporating expectations about feature weight dnties in learning. Feature similarities

are modeled using a feature graph and the weight of eachréeimtypreferred to be close to the
average of its neighbors. On the task of document classdficateature network regularization

is superior to several related criteria, as well as to a no&hiearning approach where the graph
models similarities between instances rather than betfesgares. Extensions for modeling feature
classes, as well as feature dissimilarities, yielded benafi the problem of sentiment prediction.
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