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Regularized linear discriminant analysis and its

application in microarrays
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Abstract

In this paper, we introduce a modified version of linear discriminant

analysis, called the “shrunken centroids regularized discriminant analysis”

(SCRDA). This method generalizes the idea of the “nearest shrunken cen-

troids” (NSC) (Tibshirani et al., 2003) into the classical discriminant anal-

ysis. The SCRDA method is specially designed for classification problems

in high dimension low sample size situations, for example, microarray data.

Through both simulated data and real life data, it is shown that this method

performs very well in multivariate classification problems, often outperforms

the PAM method (using the NSC algorithm) and can be as competitive as
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the SVM classifiers. It is also suitable for feature elimination purpose and

can be used as gene selection method. The open source R package for this

method (named “rda”) is available on CRAN (http://www.r-project.org)

for download and testing.

1 Introduction

Discriminant analysis (DA) is widely used in classification problems. The tra-

ditional way of doing discriminant analysis was introduced by R. Fisher, known

as the linear discriminant analysis (LDA). For the convenience, we first describe

the general setup of this method so that we can follow the notation used here

throughout this paper.

Suppose there are G different populations, each assumed to have a multivariate

normal distribution with a common covariance matrix Σ of dimension p × p and

mean vectors µg (g = 1, . . . , G), both of which are assumed known for the time

being. Now suppose we have a random sample of n observations from these

populations with their true group labels being unknown. The question is how to

correctly identify the population from which each observation comes. To be more

explicit, let x1,1, . . . , x1,n1
be observations from population 1, x2,1, . . . , x2,n2

from

population 2, and so on. Thus n = n1 + n2 + . . . + nG

xg,i ∼ MV N(µg, Σ), 1 ≤ g ≤ G, 1 ≤ i ≤ ng.

The idea of LDA is to classify observation xg,i to a population g̃ which mini-
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mizes (xg,i − µg̃)
T Σ−1(xg,i − µg̃), i.e.,

g̃ = argming′(xg,i − µg′)
T Σ−1(xg,i − µg′).

Under the above multivariate normal assumptions, this is equivalent to finding

the population that maximizes the likelihood of the observation. More often,

people have some prior knowledge as to the proportion of each population. For

example, let πg be the proportion of population g such that π1 + . . . + πG = 1.

Then, instead of maximizing the likelihood, we maximize the posterior probability

the observation belongs to a particular group, i.e.,

xg,i ∈ population

(
g̃ = argming′

[
1

2
(xg,i − µg′)

T Σ−1(xg,i − µg′) − log πg′

])
.

The linearity of this discriminant analysis method comes from the assumption

of common covariance matrix, which simplifies the above criterion as

xg,i ∈ population
(
g̃ = argmaxg′dg′(xg,i)

)
, (1.1)

where

dg(x) = xT Σ−1µg −
1

2
µT

g Σ−1µg + log πg

is the so-called discriminant function.

In reality, both µg and Σ are unknown and therefore need to be estimated

from the sample. Almost always, one uses the maximum likelihood estimates for

these parameters,

µ̂g = x̄g =
1

ng

ng∑

i=1

xg,i, Σ̂ =
1

n
(X − X̄)(X − X̄)T ,
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where X is a p × n matrix with columns corresponding to the observations and

X̄ is a matrix of the same dimensions with each column corresponding to the

sample mean vector of the population that column belongs to. Therefore a more

practical form, the sample version discriminant function is usually used in the

linear discriminant analysis,

d̂g(x) = xT Σ̂−1x̄g −
1

2
x̄T

g Σ̂−1x̄g + log πg. (1.2)

When the assumption of common covariance matrix is not satisfied, one uses

an individual covariance matrix for each group and this leads to the so-called

quadratic discriminant analysis (QDA) as the discriminating boundaries are quadratic

curves. There is also an intermediate method between LDA and QDA, which is a

regularized version of discriminant analysis (RDA) proposed by Friedman (1989).

However, the regularization used in that method is different from the one we will

propose Here. A detailed source about the LDA, QDA and Friedman’s RDA meth-

ods can be found in the book by Hastie et al. (2001). As we can see, the concept

of discriminant analysis certainly embraces a broader scope. But in this paper,

our main focus will be solely the LDA part and henceforth the term “discriminant

analysis” will stand for LDA unless otherwise emphasized.

This paper is arranged as follows. In Section 2, we will first discuss in details

our version of regularization in discriminant analysis, its statistical properties and

some computational issues (Section 2.1). Then we introduce the SCRDA method

based on this regularization (Section 2.2). In Section 3, we compare our SCRDA
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method against other classification approaches through several publicly available

real life microarray data sets. We also discuss an important issue about how to

choose the optimal parameter pairs (α, ∆) for our methods (Section 3.4). Section

4 is devoted to a simulation study, where we generate data sets under different

scenarios to evaluate the performance of our SCRDA method. In Section 5, we

briefly discuss the feature selection property of SCRDA method. Section 6 is the

discussion.

2 Shrunken Centroids RDA

2.1 Regularization in discriminant analysis

LDA is straightforward in the cases where the number of observations is greater

than the dimensionality of each observation, i.e., n > p. In addition to being easy

to apply, it also has nice properties, like robustness to deviations from model as-

sumptions and almost-Bayes optimality. However, it becomes a serious challenge

to use this method in the microarray analysis settings, where p >> n is always

the case. There are two major concerns here. First, the sample covariance matrix

estimate is singular and cannot be inverted. Although we may use the generalized

inverse instead, the estimate will be very unstable due to lack of observations.

Actually, the performance of LDA in high dimensional situations is far from being

optimal (Dipillo, 1976, 1977). Second, high dimensionality makes direct matrix
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operation formidable, hence hindering the applicability of this method. Therefore

we will make some changes to the original LDA to overcome these problems. First,

to resolve the singularity problem, instead of using Σ̂ directly, we use

Σ̃ = αΣ̂ + (1 − α)Ip (2.1)

for some α, 0 ≤ α ≤ 1. Some other forms of regularization on Σ̂ can be

Σ̃ = λΣ̂ + Ip (2.2)

or

Σ̃ = Σ̂ + λIp (2.3)

for some λ, λ ∈ [0,∞). It is easy to see that if we ignore the prior constant, the

three forms of regularization are equivalent in terms of the discriminant function.

In this paper, the form (2.1) will be applied in all of our computational examples

due to its convenience to use.

The formulations above are not entirely new and actually have been frequently

seen in situations like the ridge regression (Hoerl and Kennard, 1970), where the

correlation between predictors is high. By introducing a slightly biased covariance

estimate, not only do we resolve the singularity problem, we also stabilize the

sample covariance estimate. For example, the discriminant function (2.5) below is

the main formula that we will be using in this paper. It utilizes the regularization

form (2.1). Figure 1 and 2 show how the discriminant function (2.5) behaves in

a 2-class discriminant analysis setup, where data are generated according to our
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model assumptions in Section 1. As we can see, regularization both stabilizes

the variance and reduces the bias of the discriminant function (2.5). And as a

result, the prediction accuracy is improved. In Figure 1, the identity covariance

matrix is used to generate the data. From the plot we can see that the optimal

regularization parameter α is very close to 0, which means the optimal regularized

covariance matrix tends to look like the true identity covariance matrix, regardless

the sample size and data dimension. On the other hand, in Figure 2, an auto-

regressive covariance structure (4.2) is used and the optimal α now lies somewhere

between 0 and 1. Furthermore, the sample size and data dimension now have

effect on choosing the optimal regularization parameter α. When the sample size

is greater than the data dimension as is the case in the two top plots of Figure

2, the sample covariance matrix can be accurately estimated and since it is also

unbiased for the true population covariance matrix, it is more favored in this case.

When sample size is less than data dimension as is the case in the two bottom

plots of Figure 2, the sample covariance matrix estimate will be highly variable.

Although it is still unbiased for the true covariance matrix, a biased estimator

will be favored due to the bias-variance trade-off. Hence the optimal value of

α is shifted towards 0. These plots give indications on the conditions when the

regularized discriminant analysis can work well. We will discuss this point later

by using more data examples.

Another intuitive way of regularization modifies the sample correlation matrix
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Figure 1: The two plots on the left show the variance and bias of the discriminant

function (2.5) as a function of the regularization parameter α in (2.1) for different

sample sizes and dimensions. The large difference between two plots is due to different

n/p ratios. The two plots on the right show the prediction error of the discriminant

function for the corresponding conditions on the left. The data points are generated

from a p-dimensional multivariate normal distribution with Σ = I.
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Figure 2: The data are generated from a p-dimensional multivariate normal distribution with

an auto-regressive correlation matrix similar as in (4.2). The auto-correlation is ρ = 0.6

R̂ = D̂−1/2Σ̂D̂−1/2 in the same way,

R̃ = αR̂ + (1 − α)Ip, (2.4)

where D̂ is the diagonal matrix taking the diagonal elements of Σ̂. Then we com-

pute the regularized sample covariance matrix by Σ̃ = D̂1/2R̃D̂1/2. In this paper,
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we will consider both cases and their performance will be compared. Now, having

introduced the regularized covariance matrix, we can define the corresponding

regularized discriminant function as,

d̃g(x) = xT Σ̃−1x̄g −
1

2
x̄T

g Σ̃−1x̄g + log πg, (2.5)

where the Σ̃ can be from either (2.1) or (2.4).

Our next goal is to facilitate the computation of this new discriminant function.

We have addressed the issue that direct matrix manipulation is impractical in

microarray settings. But if we employ the singular value decomposition (SVD)

trick to compute the matrix inversion, we can get around this trouble. This

enables a very efficient way of computing the discriminant function and reduces

the computation complexity from the order of O(p3) to O(pn2), which will be a

significant saving when p >> n. For more details about the algorithm, please

refer to Hastie et al. (2001).

2.2 Shrunken centroids RDA (SCRDA)

In this section, we define our new method “shrunken centroids RDA” based on the

regularized discriminant function (2.5) in the previous section. The idea of this

method is similar to the “nearest shrunken centroids” (NSC) method (Tibshirani

et al., 2003), which we will describe briefly first. In microarray analysis, a widely

accepted assumption is that most genes do not have differential expression level

among different classes. In reality, the differences we observe are mostly due
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to random fluctuation. The NSC method removes the noisy information from

such fluctuation by setting a soft threshold. This will effectively eliminate many

non-contributing genes and leave us with a small subset of genes for scientific

interpretation and further analysis. In the NSC method, the group centroids of

each gene are shrunken individually. This is based on the assumption that genes

are independent of each other, which however, for most of the time is not totally

valid. Notice that after shrinking the group centroids of a particular gene g, they

compute the following gene-specific score for an observation x∗,

dg,k(x
∗

g) =
(x∗

g − x̄′

g,k)
2

2s2
g

=
(x∗

g)
2

2s2
g

−
x∗

gx̄
′

g,k

s2
g

+
(x̄′

g,k)
2

2s2
g

, (2.6)

where x∗

g is the g-th component of the p×1 vector x∗, x̄′

g,k is the shrunken centroid

of group k for gene g and sg is the pooled standard deviation of gene g. Then x∗

is classified to group k if k minimizes the sum of the scores over all genes (If the

prior information is available, a term log πk should be included.), i.e.,

x∗ ∈ group

(
k = argmink′

p∑

g=1

dg,k′(x∗

g) − log πk′

)

which is also equivalent to

x∗ ∈ group
(
k = argmink′(x∗ − x̄′

k′)T D̂−1(x∗ − x̄′

k′) − log πk′

)
,

given D̂ = diag(s2
1, . . . , s

2
p). This is similar to the discriminant function (2.5)

except that we replace Σ̃ with the diagonal matrix D̂ and the centroid vector

x̄g with the shrunken centroid vector x̄′

k′. Therefore, a direct modification in the
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regularized discriminant function (2.5) to incorporate the idea of the NSC method

is to shrink the centroids in (2.5) before calculating the discriminant score, i.e.,

x̄′ = sgn(x̄)(|x̄| − ∆)+. (2.7)

However, in addition to shrinking the centroids directly, there are also two

other possibilities. One is to shrink x̄∗ = Σ̃−1x̄, i.e.,

x̄∗′ = sgn(x̄∗) (|x̄∗| − ∆)+ , (2.8)

and the other is to shrink x̄∗ = Σ̃−1/2x̄, i.e.,

x̄′

∗
= sgn(x̄∗) (|x̄∗| − ∆)+ . (2.9)

Although, it has been shown in our numerical analysis that all three shrinking

methods have very good classification performance, only (2.8) will be the main

focus of this paper as it also possesses the feature elimination property, which we

will discuss later. Hence we will refer to the discriminant analysis resulted from

(2.8) as SCRDA without differentiating whether Σ̃ comes from (2.1) or (2.4). We

will say more specifically which method is actually used when such a distinction

is necessary.

3 Comparison Based on Real Microarray Data

In this section, we will investigate how well our new method works on some real

data sets. A few existing classification methods are used as standards for com-

parison. The first two methods are the penalized logistic regression (PLR) and
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the support vector machines (SVM), both via univariate ranking (UR) and recur-

sive feature elimination (RFE). They are proposed by Zhu and Hastie (2004)

and are shown to have good classification performance. Two data sets, the

Tamayo and Golub data sets from their paper are also used (Section 3.1 and

3.2). The third example uses the Brown data set. SVM via UR is used as com-

parison. In addition, as the sibling method of SCRDA, PAM, whose core idea

is NSC, is naturally included in all three examples. In the supplementary ma-

terial (http://www.biostatistics.oxfordjournals.org), we will give more real data

examples showing the performance of different methods.

3.1 Tamayo data

The Tamayo data set (Ramaswamy et al., 2001; Zhu and Hastie, 2004) is divided

into a training subset, which contains 144 samples and a test subset of 54 samples.

They consist of totally 14 different types of cancers and the number of genes in each

array is 16063. Since there are two tuning parameters in the SCRDA method,

i.e., the regularization parameter α and the shrinkage parameter ∆, we choose

the optimal pairs (α, ∆) for α ∈ [0, 1) and ∆ ∈ [0,∞) using cross-validation on

the training samples. And then we calculate the test error based on the tuning

parameter pairs we chose and compare it with the results from Zhu and Hastie

(2004). The results are summarized in Table 1. Based on how the covariance

matrix is regularized in (2.8), two different forms of SCRDA are considered. In the
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table, we use “SCRDA” to denote the one from regularization on the covariance

matrix and “SCRDAr” for the regularization on the correlation matrix. We can see

that SCRDA clearly dominates PAM and slightly outperforms the last 4 methods

in the table. Meanwhile it also does a good job on selecting informative gene

subset.

3.2 Golub data

The Golub data (Golub et al., 1999; Zhu and Hastie, 2004) consists of 38 training

samples and 34 test samples from two cancer classes. The number of genes on

each array is 7129. As there are only two groups to predict, this data set is

much easier to analyze than the Tamayo data. The classification performance

is generally impressive for most methods such that the difference among them is

almost negligible. The result is summarized in Table 2.

3.3 Brown data

The Brown data set, similar to the Tamayo data, is also a complex cancer data

set. It contains a large number of samples (n = 348) and classes (G = 15, 14

cancer types and 1 normal type). The number of genes on the arrays is smaller

(p = 4718) than the Tamayo data (p = 16013). As we can see (Table 3), the

SCRDA method dominates PAM by a large margin and is as good as SVM.
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Table 1: Tamayo Data. The last four rows are excerpted from Zhu and Hastie (2004)

for comparison. The SCRDA and SCRDAr methods correspond to the situations where

Σ̃ in (2.5) comes from (2.1) and (2.4) respectively.

Methods 6-fold CV Error Ave. TE # of genes selected Min. TE1 Min. TE2

SCRDA 24/144 8/54 1450 8/54 7/54

Harda SCRDA 21/144 12/54 1317 12/54 9/54

SCRDAr 27/144 15/54 16063 15/54 12/54

Hard SCRDAr 28/144 13/54 16063 13/54 12/54

(Hard SCRDAr) 30/144 17/54 3285 17/54 12/54

PAM 54/144 19/54 1596 NA 19/54

SVM UR 19/144 12/54 617 NA 8/54

PLR UR 20/144 10/54 617 NA 7/54

SVM RFE 21/144 11/54 1950 NA 11/54

PLR RFE 20/144 11/54 360 NA 7/54

aHard SCRDA means the hard thresholding instead of the soft one is used.

bFor SCRDA, “Ave TE” is calculated as the average of the test errors based on the optimal

pairs. For the last 5 methods, “Ave TE” just means test error.

c“Min. TE1” is the minimal test error one can get using the optimal (α, ∆) pairs; “Min. TE2”

is the minimal test error one can get over the whole parameter space.

d A method in parentheses means for that method, if we would like to sacrifice a little cross-

validation error, then the number of genes selected can be greatly reduced than the row

right above it.
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Table 2: Golub data. This table is similar to Table 1.

Methods 10-fold CV Error Ave. TE # of genes selected Min. TE1 Min. TE2

SCRDA 0/38 1/34 46 1/34 1/34

Hard SCRDA 2/38 3/34 123 3/34 1/34

SCRDAr 3/38 6/34 1234 6/34 1/34

Hard SCRDAr 1/38 4/34 92 4/34 1/34

PAM 2/38 2/34 149 1/34 1/34

SVM UR 2/38 3/34 22 NA NA

PLR UR 2/38 3/34 17 NA NA

SVM RFE 2/38 5/34 99 NA NA

PLR RFE 2/38 1/34 26 NA NA

Table 3: Brown data (n = 349, p = 4718, G = 15).

Methods 4-fold CV Error Ave. TE # of genes selected Min. TE1 Min. TE2

SCRDA 24/262 6/87 4718 5/87 5/87

Hard SCRDA 23/262 6/87 4718 5/87 5/87

SCRDAr 22/262 5/87 4718 5/87 5/87

Hard SCRDAr 21/262 6/87 4718 6/87 4/87

PAM 51/262 17/87 4718 17/87 17/87

SVM UR 25/262 6/87 2364 6/87 6/87

3.4 Choosing the optimal parameters (α, ∆) in SCRDA

In this section, we discuss the issue on how to choose the optimal tuning parame-

ters. We have mentioned briefly that cross-validation should be used in determin-

ing the parameters. However, in practice, this process can be somewhat confusing.
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The main problem is that there are many possible tuning parameter pairs giving

the same cross-validation error rate. Yet, the test error rate based on them may

vary differently. Therefore, how to choose the best parameter pairs is an essential

issue in evaluating the performance of the SCRDA method. Therefore, we will

suggest two rules for choosing the parameters based on our experience.

First let’s take a look at how the classification errors and the number of

genes remained are distributed across the varying scopes of the tuning param-

eters (α, ∆). The two plots in Figure 3 show the cross-validation error and test

error given by the SCRDA method for the Tamayo data. α is chosen to lie between

0 and 1 while ∆ between 0 and 3. Figure 4 shows the number of genes remained

for the same range of the parameters. In all three plots, the stars correspond to

the parameter pairs that yield the minimal cross-validation error. The round dots

correspond to the 1 standard error boundary around the minimal cross-validation

error points. The diamond dot in the test error plot (Figure 3, right) corresponds

to the parameter pair that gives the minimal test error in the whole parameter

space.

The most significant pattern we can observe in Figure 4 is the decreasing

gradient approximately along the 45 degree diagonal line, i.e., the number of genes

remained decreases as ∆ increases or α decreases. This makes sense by intuition

and has been consistently observed for all the real data and simulation data we

have worked on. On the other hand, the distribution of the classification errors
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Figure 3: Distribution maps the cross-validation error (left) and test error (right) of

SCRDA for the Tamayo data. In each plot, the x- and y- axes correspond to ∆ and

α respectively. The gray scale at the bottom shows the magnitude of the errors. The

stars correspond to the parameter pairs that yield the minimal cross-validation error.

The round dots correspond to the 1 standard error boundary around the minimal cross-

validation error points. The diamond in the test error plot (right) corresponds to the

parameter pair that gives the minimal test error in the whole parameter space.

(both CV and test) as in Figure 3 doesn’t have such a clearly consistent pattern.

They may change dramatically from one data set to another. Further, as it is not

possible to establish a unified correspondence between the distribution map of the

classification error and the number of genes remained, we need to consider two
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Figure 4: Distribution map of the number of genes by SCRDA remained for the Tamayo

data. The stars and round dots have the same notations as in Figure 3.

distribution maps at the same time to achieve improved classification performance

using a reasonably reduced subset of genes. We hence suggest the following two

rules for identifying the optimal parameter pair(s) (α, ∆): the “Min-Min” rule

and the “One Standard Error” rule.
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The “Min-Min” Rule

1. First, find all the pairs (α, ∆) that correspond to the minimal cross-

validation error from training samples.

2. Select the pair or (pairs) that use the minimal number of genes.

The “One Standard Error” Rule

1. First, identify all the pairs (α, ∆) that correspond to the minimal

cross-validation error from the training samples.

2. Find the one standard error boundary points (α, ∆).

3. On the boundary, find the pair (α, ∆) that gives the smallest number

of genes remained.

If there is more than one optimal pair, it is recommended to calculate the

averaged test error based on all the pairs chosen as we did in this paper. There is

no theoretical justification yet why these two rules are suggested. But from our

empirical experience, both methods worked and provided no significant difference

in terms of classification accuracy. For consistency, we have been using the “Min-

Min” rule throughout this paper.
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4 Simulation Study

It was encouraging to see how our new method performs on some real microarray

data sets. In this section, we investigate the performance of the SCRDA method

in a more controlled manner. We deliberately construct 3 different simulation

setups to study the conditions under which our SCRDA method would work well.

Particularly, we choose the PAM method as our competitor.

4.1 Two-group independence structure

The first setup is the simplest. There are two classes of multivariate normal

distributions: MV N(µ1, Σ) and MV N(µ2, Σ), each of dimension p = 10, 000.

The true covariance structure is the independence structure, i.e., Σ = Ip. Also,

for simplicity, all components of µ1 are assumed to be 0 and for µ2, the first 100

components are 1/2 while the rest are all 0 as well, i.e., µ1 = {0}10000 and µ2 =

(1/2, · · · , 1/2︸ ︷︷ ︸
100

, 0, · · · , 0︸ ︷︷ ︸
9900

). For each class, we generate n = 100 training samples and

m = 500 test samples.

This is not a situation where we see much advantage of the SCRDA method

over the PAM method (Table 4). In this situation, all methods produce basically

the same results. PAM seems to be even slightly better than the SCRDA method.

However, it is hard to declare PAM as a clear winner in this case as the margin

of betterment is still within the range of error fluctuation. There are two reasons.

First, the number of classes is only two, the simplest case in all classification
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problems. As people are aware of, it is much easier for most classification methods

to work well in the 2-group classification problems and often it is hard to really

observe the advantage of one method over another, e.g., the Golub data example.

Second, the data is generated from the covariance structure of identity matrix.

This suits exactly the assumption in the PAM method to make it work well.

As we can see in the next two examples, when the number of classes increases,

especially when data is more correlated, the SCRDA method will start to show

true advantage over the PAM method.

Table 4: Setup I — two groups with independent structure.

Methods 10-fold CV Error Ave. TE # of genes selected Min. TE1 Min. TE2

SCRDA
8/200 30/1000

240 29/1000 29/1000
(± 0.62%) (± 0.54%)

Hard SCRDA
11/200 35/1000

186 33/1000 24/1000
(± 0.72%) (± 0.58%)

SCRDAr

11/200 33/1000
229 32/1000 29/1000

(± 0.72%) (± 0.56%)

Hard SCRDAr

13/200 27/1000
110 27/1000 27/1000

(± 0.78%) (± 0.51%)

PAM
10/200 24/1000

209 24/1000 22/1000
(± 0.69%) (± 0.48%)

The numbers in parentheses are the standard deviations for the corresponding point estimates.
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4.2 Multi-group independence structure

The second simulation setup is slightly more complicated than the first one. We

generate a multiple groups (G = 14) classification scenario. Again each class is

assumed to have distribution MV N(µg, Σ) with dimension of p = 10000. Σ is still

assumed to be Ip as in setup I. The components of each mean vector µg is assumed

to be all 0 except for l = 20 components, which are set to be 1/2. The positions

of the non-zero components are selected randomly for each mean vector and they

don’t overlap. Again a total of n = 200 training samples and m = 1000 test

samples are generated with equal probabilities for each class. This time, we start

to observe noticable differences among these methods (Table 5). Particularly, the

SCRDA method starts to outperform the PAM method as we would expect.

4.3 Two-group dependence structure

In the last case, we produce a scenario that more resembles the real microarray

data. The simulation structure is as follows. We again consider a two-group

classification problem as in setup I. Two distributions are still MV N(µ1, Σ) and

MV N(µ2, Σ) with p = 10, 000. µ1 is assumed to be the same as in setup I while

µ2 = (1/2, · · · , 1/2︸ ︷︷ ︸
200

, 0, · · · , 0︸ ︷︷ ︸
9800

) is slightly different. Σ is no longer the identity

matrix. Instead, we assume the following block diagonal structure:
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Table 5: Setup II — multiple groups with independent structure.

Methods 10-fold CV Error Ave. TE # of genes selected Min. TE1 Min. TE2

SCRDA
31/200 154/1000

785 154/1000 150/1000
(± 1.1%) (± 1.1%)

Hard SCRDA
48/200 259/1000

169 259/1000 191/1000
(± 1.4%) (± 1.4%)

SCRDAr

41/200 207/1000
1398 207/1000 197/1000

(± 1.3%) (± 1.3%)

Hard SCRDAr

67/200 323/1000
140 323/1000 269/1000

(± 1.5%) (± 1.5%)

PAM
36/200 179/1000

769 179/1000 166/1000
(± 1.2%) (± 1.2%)

Σ =




Σρ 0 0
. . .

. . .
. . .

0 Σ(−ρ) 0 0
. . .

. . .

0 0 Σρ 0
. . .

. . .

. . . 0 0 Σ(−ρ) 0
. . .

. . .
. . .

. . . 0
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .




10000×10000

, (4.1)
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with each diagonal block being the following autoregressive structure:

Σρ =




1 ρ . . . ρ98 ρ99

ρ 1
. . .

. . . ρ98

...
. . .

. . .
. . .

...

ρ98 . . .
. . .

. . . ρ

ρ99 ρ98 . . . ρ 1




100×100

. (4.2)

The block size is 100 × 100 and there are totally k = 100 blocks. We assume

the autocorrelation within each block is |ρ| = 0.9 and we set alternating signs for

each block. n = 200 training samples and m = 1000 test samples are generated

with half from each class.

This simulation setup does have sound basis in real microarray data. It is

common knowledge that genes are networked together in pathways. Although it

is true that weak connections between groups may exist, independence between

groups is usually a reasonable assumption. Also, within each group, genes are

either positively or negatively correlated and due to their relative distance in

the regulatory pathway, the further apart two genes, the less correlation between

them. These are exactly the reasons why we use the above simulation model. From

the results in Table 6, we can clearly see that the SCRDA method outperforms

PAM by a significant margin. Considering this is only a two-group classification

problem mimicking the real microarray data, we should expect the difference will
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be more significant when the number of classes is large as we have observed for

the Tamayo and Brown data.

Table 6: Setup III — two groups with dependent structure.

Methods 10-fold CV Error Ave. TE # of genes selected Min. TE1 Min. TE2

SCRDA
25/200 108/1000

282 107/1000 94/1000
(± 1.0%) (± 1.0%)

Hard SCRDA
21/200 96/1000

167 92/1000 86/1000
(± 1.0%) (± 1.0%)

SCRDAr

25/200 123/1000
283 123/1000 113/1000

(± 1.0%) (± 1.0%)

Hard SCRDAr

25/200 125/1000
116 125/1000 111/1000

(± 1.0%) (± 1.0%)

PAM
36/200 170/1000

749 170/1000 167/1000
(± 1.2%) (± 1.2%)

5 Feature Selection by the SCRDA Method

Remember that the discriminant function (2.5) is linear in X with coefficients

vector Σ̃−1x̄g. Now if the i-th element of the coefficients vector is 0 for all 1 ≤

g ≤ G, then it means gene i doesn’t contribute to our classification purpose

and hence can be eliminated. Therefore, SCRDA potentially can be used for

the gene selection purpose. For example, as shown in Table 7, the number of

genes that are truly differentially expressed is 100, 280 and 200 respectively in
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the 3 simulation setups above. Correspondingly, the SCRDA method picks out

240, 785 and 282 genes in each setup. Among these genes, 82, 204 and 138 are

truly differentially expressed respectively. The detection rate is at least 70% in

all situations. However, the false positive rate is also high, especially when the

number of classes is large. For now, there is not a good way to adjust this high

false positive rate. Therefore, SCRDA can be conservatively used as gene selection

method.

Table 7: Feature selection by SCRDA.

Setup I Setup II Setup III

# of True Positive (T ) 100 280 200

# of Total Positive Detected (A) 240 785 282

# of True Positive Detected (M) 82 204 138

Detection Rate (d = M/T ) 82.0% 72.8% 69.0%

False Positive (q = 1 − M/A) 65.8% 74.0% 51.1%

6 Discussion

Through comparisons using both real microarray data sets and simulated data

sets, we have shown that the SCRDA method can be a promising classification

tool. Particularly, it is consistently better than its sibling method, PAM in many

problems. This new method is also very competitive to some other methods, e.g.,

support vector machines.
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This new method is not only empirically useful in terms of classification perfor-

mance, it also has some interesting theoretical implications, which we will discuss

carefully in a future paper. For example, it can be shown that the regularized

discriminant function (2.5) is equivalent to the penalized log-likelihood method

and in some special cases, our new method SCRDA can be related to another

recently proposed new method called “elastic net” (Zou and Hastie, 2005). These

results are interesting since not only do they give different perspectives of statis-

tical methods, they also provide new computational approaches. For example, an

alternative method for estimating the shrunken regularized centroids other than

the way we have proposed in this paper is to solve the solution of the mixed L1-L2

penalty function. This has been made possible as the problem will convert to the

usual LASSO (Tibshirani, 1996) solution. And with the emergence of the new

algorithm LARS (Efron et al., 2004), efficient numerical solution is also available.

As mentioned before, choosing the optimal parameter pairs for the SCRDA

method is not as straightforward as in PAM and in some cases, the process can be

somewhat tedious. The guidelines given in Section 3.4 work generally well, at least

for all the data examples provided in this paper. However, it may require some

experience with the SCRDA method to get the best result. Also, the computation

in the SCRDA method is not as fast as in PAM due to two reasons. First, we have

two parameters (α, ∆) to optimize over a 2-dimensional grid rather than the 1-

dimensional one in PAM. Second, although the SVD algorithm is very efficient, the
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computation still involves large matrix manipulation in practice, while only vector

operations are involved in PAM. On the other hand, as shown in this paper, PAM

doesn’t always do a worse job than the SCRDA method. In some situations, e.g.,

when the number of classes is small or the covariance structure is nearly diagonal,

PAM is both accurate in prediction and computationally efficient. Therefore, we

recommend using the SCRDA method only when PAM cannot perform well in

classification.

Also, the SCRDA method can be used directly for gene selection proposes. As

we have seen in Section 5, the selection process of SCRDA is rather conservative,

tending to include many more genes unnecessary. But overall speaking, it is not

generally worse than PAM. And since it includes most of the genes that are truly

differentially expressed, it is a safer way of including the ones we really should

detect.
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