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Abstract

Support vector machines (SVMs) have played an important role in the state-of-the-art language recognition systems.

The recently developed extreme learning machine (ELM) tends to have better scalability and achieve similar or much

better generalization performance at much faster learning speed than traditional SVM. Inspired by the excellent

feature of ELM, in this paper, we propose a novel method called regularized minimum class variance extreme learning

machine (RMCVELM) for language recognition. The RMCVELM aims at minimizing empirical risk, structural risk, and the

intra-class variance of the training data in the decision space simultaneously. The proposed method, which is

computationally inexpensive compared to SVM, suggests a new classifier for language recognition and is evaluated on

the 2009 National Institute of Standards and Technology (NIST) language recognition evaluation (LRE). Experimental

results show that the proposed RMCVELM obtains much better performance than SVM. In addition, the RMCVELM can

also be applied to the popular i-vector space and get comparable results to the existing scoring methods.

Keywords: Language recognition; Extreme learning machine; Single-hidden layer feedforward neural networks;

Support vector machine

1 Introduction
The task of spoken language recognition is to automat-

ically determine the identity of the language spoken in

a speech sample [1]. It has received increasing attention

due to its importance for the enhancement of automatic

speech recognition (ASR) [2] and multi-language transla-

tion systems [3, 4].

The most popular language recognition techniques can

usually be categorized as phonotactic [5–7] and acous-

tic approaches [8, 9]. The former method is based upon

phone recognizer followed by language models (PRLM),

parallel PRLM (PPRLM), and supper vector machines

PRLM. The later approach uses shifted-delta-cepstral

(SDC) coefficients as a means of incorporating temporal

information about the speech into the feature vector.

The introduction of support vector machines (SVMs)

into language recognition resulted in significant improve-

ment in performance [10]. SVMs have proven to be an

effective method and have been widely used for many
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years [11]. SVMs perform a nonlinear mapping from an

input space to an SVM feature space. The standard opti-

mization method is then used to find the solution of max-

imizing the separating margin of two different classes in

this potentially high-dimensional feature space while min-

imizing the training errors. In language recognition, we

usually adopt the one-versus-rest tactic to deal with mul-

ticlass classification problems when using SVMs, namely,

setting data from target language as the positive samples

and data from all the other languages as the negative sam-

ples. In this way, the amount of training samples between

the positive language and negative languages is unbal-

anced and sometimes it is even impossible to separate

them properly by a linear hyperplane. In addition, the

training of SVMs involves a quadratic programming (QP)

problem, the computational complexity of SVM training

algorithms is usually intensive, which is at least quadratic

with respect to the number of training samples.

In recent years, extreme learning machine (ELM)

[12, 13] has emerged and attracted the attention from

more and more researchers. ELM is a single-hidden layer

feedforward network (SLFN) which randomly selects

input weights and hidden neuron biases without training.
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The output weights are analytically determined byMoore-

Penrose generalized inverse. The input weights are the

weights of the connections between input neurons and

hidden neurons and the output weights are the weights

of the connections between hidden neurons and output

neurons. ELM overcomes the proposed challenges faced

by SVMs. Solving the regularized least square problem

in ELM is faster than solving the quadratic program-

ming problem in standard SVMs. Recent papers show

that predicting accuracy achieved by ELM is comparable

with or even higher than that of SVMs [14, 15]. Besides,

ELM can learn the training data not only one-by-one

but also chunk-by-chunk [16], so it provides a promis-

ing method to deal with big data. Moreover, traditional

kernel methods can also be applied to ELM [15]. Due to

its excellent features, ELM has been successfully used in

many areas and there has been increasing research inter-

est in it [17–19]. Many researchers have came up with

somemethods to improve ELM theories, such as ELMs for

noisy/missing data [20, 21] and imbalanced data [22]. In

[23], minimum class variance extreme learning machine

(MCVELM) was proposed for human action recognition

and achieved excellent performance. MCVELM borrows

the idea from minimum class variance support vector

machines (MCVSVM) [24] which is inspired from the

optimization of Fisher’s discriminant ratio. The objec-

tive of MCVELM is to minimize both the intra-class

variance of training data in the decision space and the

training errors. However, the MCVELM does not take the

structural risk into consideration, so it can lead to the

over-fitting problem.

Inspired by its successful application to classification

problems, in this paper, we introduce ELM into spoken

language recognition, hoping to open up a new research

direction for language recognition community. A new

method referred to as regularizedminimum class variance

extreme learning machine (RMCVELM) is proposed and

used as classifier for language recognition. Different from

MCVELM, the proposed RMCVELM also minimizes the

output weight norm directly which can effectively pre-

vent the over-fitting problem. Therefore, the proposed

RMCVELM can be considered as minimizing empirical

risk, structural risk, and the intra-class variance of the

training data in the decision space simultaneously. Since

RMCVELM is based on structural risk minimization, it

can be expected to provide better generalization ability.

To evaluate the effectiveness of the proposed

RMCVELM, in this work, two types of acoustic features

are used, GMM supervectors (GSVs) [25] and i-vectors

[26]. The GSV has been widely used for many years and

the i-vector approach, which provides an elegant way to

capture the majority of useful variabilities of an utterance,

has proven to be one of the most successful methods for

language recognition nowadays [27, 28].

The outline of the paper is as follows. In Section 2,

we introduce the ELM algorithm briefly. The proposed

RMCVELM is described in detail in Section 3. In

Section 4, experimental setup is introduced. In Section 5,

we demonstrate the potential of the algorithm by applying

it to language recognition task. In Section 6, computa-

tional complexity is analyzed. Finally, some conclusions

are given in Section 7.

2 Overview of extreme learningmachine
2.1 Basic extreme learningmachine

ELM was first proposed by Huang [12] as an extremely

simple and efficient method to train the single-hidden

layer feedforward network. He has proven that the SLFN

network with randomly chosen input weights and hidden

neuron biases can approximate any continuous function

to any desirable accuracy [29]. The input weights and hid-

den biases need not be tuned after randomly selected,

and the output weights are analytically calculated using

Moore-Penrose generalized pseudo-inverse.

Let us denote the training data as ℵ = {(xi, ti) |xi ∈ Rd,

i = 1, . . . ,N}, where d is the dimension of training data

and N is the number of training data. ti is the label of xi
which is a vector of lengthm,m is the number of classes. If

xi belongs to class j, then all elements of ti are zero except

the jth element, which takes the value 1.

The structure of ELM is shown in Fig. 1. L is the number

of hidden nodes. wj and bj are the input weights and bias

of the jth hidden node, respectively. Hidden node param-

eters wj and bj remain fixed after randomly generated. β j

is the output weights of the jth hidden node. The output

of hidden layer with respect to training data xi is h(xi),

h(xi) =

[
g

(
wT
1 xi + b1

)
. . . g

(
wT
L xi + bL

)]
(1)

where g(wT
j xi + bj) is the activation function of the jth

hidden node. Many activation function can be used, such

as sigmod, sine, and RBFs. The most widely used is the

sigmod function.

g
(
wT
j xi + bj

)
=

1

1 + exp
(
−

(
wT
j xi + bj

)) (2)

From the perspective of ELM, h(xi) is a feature map which

transforms the sample xi into ELM feature space.

The hidden layer output matrixH is defined as:

H =

⎡
⎢⎣

g
(
wT
1 x1 + b1

)
. . . g

(
wT
L x1 + bL

)

... · · ·
...

g
(
wT
1 xN + b1

)
. . . g

(
wT
L xN + bL

)

⎤
⎥⎦

N×L

(3)

the jth column of H is the jth hidden node output with

respect to inputs x1, . . . , xN .
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Fig. 1 Single-hidden layer feedforward network

The target of original ELM is to minimize the training

error, namely

minimize :‖ Hβ − T‖22 (4)

where

β =

⎡
⎢⎣

βT
1
...

βT
L

⎤
⎥⎦

L×m

T =

⎡
⎢⎣
tT1
...

tTN

⎤
⎥⎦

N×m

(5)

The solution of the above linear system is:

β = H†T (6)

The orthogonal projection method can be efficiently

used in ELM, namely H† =
(
HTH

)−1
HT if HTH is

nonsingular orH† = HT
(
HHT

)−1
ifHHT is nonsingular.

During the test stage, a test data x is scored using the

following equation,

f(x) = h(x)β = h(x)(HTH)−1HTT (7)

or

f(x) = h(x)β = h(x)HT
(
HHT

)−1
T (8)

2.2 Regularized extreme learning machine

The basic ELM described previously directly uses the nor-

mal equations for the least squares problem, so it can be

considered as based on empirical risk minimization and

tends to have over-fitting problems. Adding a regulariza-

tion term to the error function can control over-fitting

[30]. Based on this idea, the objective function of regu-

larized extreme learning machine (RELM) can be written

as,

Minimize : ‖ Hβ − T‖22 +
C

2
‖ β‖22 (9)

where C is the user specified parameter and provides a

tradeoff between the training error and the regularization

term ‖ β‖22. Similar to ELM, the solution to RELM can be

written as,

β =

(
HTH + CI

)−1
HTT (10)

In [13], Huang has discussed the similarities between

RELM and SVM and proven that to minimize the norm of

the output weight ‖ β ‖2 is actually to maximize the dis-

tance of the separating margins of two different classes in



Xu et al. EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:22 Page 4 of 10

the ELM feature space, which is similar to SVM. This con-

clusion is quite important and will be further discussed

when introducing the RMCVELM.

3 Regularizedminimum class variance extreme
learningmachine

Based on the previous introduction, in this section, we

will describe RMCVELM in detail. We will first introduce

theMCVELM and show some of it advantages when deal-

ing with classification problems under certain conditions.

Then the drawback of this algorithm is illustrated and

RMCVELM is proposed to overcome the challenge faced

by MCVELM.

3.1 Minimum class variance extreme learningmachine

In [23], minimum class variance extreme learning

machine (MCVELM) was proposed for human action

recognition. MCVELM borrows the idea from minimum

class variance support vector machines (MCVSVM) [24]

which is inspired from the optimization of Fisher’s dis-

criminant ratio. Instead of finding the maximum separat-

ing margin, MCVSVM aims at finding a hyperplane along

which the intra-class variance of the training data is mini-

mum. Similar to MCVSVM, the objective of MCVELM is

to minimize both the intra-class variance of training data

in the decision space and the training errors. The objective

function of RMCVELM has the form

Minimize :
1

2

N∑

i=1

‖ ξ i‖
2
2 +

C

2
tr

(
βTSwβ

)

Subject to :h (xi) β = tTi − ξTi , i = 1, . . . ,N (11)

where tr() is the trace of a matrix and ξ i =
[
ξi,1, . . . , ξi,m

]T
is the training error vector of the m output nodes with

respect to the training sample xi. Sw is the within-class

scatter matrix of the training samples in the ELM space

defined by

Sw =

m∑

k=1

∑

i∈Ck

(h (xi) − mk) (h (xi) − mk)
T (12)

where Nk is the number of training samples in the class k

andmk = 1
Nk

∑Nk
i=1 h (xi) is the mean vector of class k. So

the term tr
(
βTSwβ

)
represents intra-class variance of all

the training samples in the decision space. The solution to

MCVELM can be written as

β =

(
HTH + CSw

)−1
HTT (13)

Compared with RELM, MCVELM takes the distribu-

tion of all the training data in the ELM feature space into

consideration, not only the data near the separating mar-

gin. From Fig. 2, we can easily find the difference between

RELM and MCVELM. In Fig. 2, some synthetic data are

used to simulate samples in the ELM feature space. Two
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Fig. 2 Illustration of RELM and MCVELM optimization problems in the ELM space
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classes of Gaussian distribution data are randomly gen-

erated and several samples are added near the margin

between the two classes. Then RELM and MCVELM are

used to classify the data. As shown in Fig. 2, RELM tries

to find a maximum separating margin, but this separating

hyperplane can not effectively describe the data distri-

bution so it loses some information which is helpful to

classification. In this case, MCVELM can find a more

rational separating hyperplane which is more consistent

with the data distribution.

3.2 Regularized minimum class variance extreme

learning machine

From previous analysis, we can see that MCVELM, which

tries to find a separating hyperplane along which the intra-

class variance is minimum can work better than RELM

under certain conditions; however, there will be a seri-

ous problem when the samples are distributed as shown

in Fig. 3. From Fig. 3a–d, the mean of each Gaussian

is changed gradually along the x2-axis. Here we denote

the mean vector of Class1 as μ1 and the mean vector

of Class2 as μ2. μ1 and μ2 in the four sub-figures are

shown in Table 1. In this case, it is obvious that the hyper-

plane based onMCVELM can not separate the two classes

properly. When there are slight changes in the relative

position between the two classes, the separating hyper-

plane obtained by MCVELM varies greatly, as shown in

Fig. 3b–d, it rotates clockwise greatly. Besides minimizing

training error, MCVELM always tries to find a separat-

ing line along which the intra-class variance is minimum,

while the samples near the margin which can provide

more important classification information are neglected.

a) b)

c) d)

Fig. 3 a–d Illustration of RELM and MCVELM optimization problems in the ELM space
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Table 1 Mean vectors in Fig. 3

Fig. 3 a b c d

μ1 [−2,−2] [−2,−1.9] [−2,−1.7] [−2,−1.5]

μ2 [2,2] [2,1.9] [2,1.7] [2,1.5]

This objective makes the MCVELM too sensitive to the

changes in the relative position between the two classes,

even when the changes are not so big. So MCVELM tends

to find separating hyperplanes as shown in Fig. 3. In this

case, the samples from the two classes tend to overlap

if they are projected onto the direction onto which the

intra-class variance of training samples is minimum. The

RELM, on the contrary, which aims at finding the max-

imum separating margin is not so sensitive to the slight

position changes. Its separating hyperplane only rotates

clockwise slightly. Under this condition, the samples near

the margin can provide much more important informa-

tion for classification, so RELM can work better than

MCVELM. Therefore, the maximummargin term is quite

important and should be taken into consideration.

From another point of view, as stated in Section 2.2,

regularization term ‖ β‖22 can also be considered as struc-

tural risk. According to statistical learning theory, the

real prediction risk of learning is consisted of empirical

risk and structural risk. A model with good generaliza-

tion ability should have the best trade-off between the

two risks. However, MCVELM does not take the struc-

tural risk into consideration. ThereforeMCVELM can not

always achieve good generalization performance.

From the previous analysis, we can see that under

certain conditions RELM can work quite better than

MCVELM and vice versa. Each algorithm has its own

advantages and drawbacks and no algorithm can work

well under all conditions. However, the differences

between the two algorithms also suggest that RELM and

MCVELM could be complementary to each other. That

means a combination of the two algorithms can provide a

more robust classification algorithm. Based on this idea,

in this work, we propose the regularized minimum class

variance extreme learning machine (RMCVELM) which

minimizes the empirical risk, structural risk, and intra-

class variance of training data in the decision space simul-

taneously. Different from MCVELM, the output weight

norm is minimized directly. The objective function of

RMCVELM has the form

Minimize :
1

2

N∑

i=1

‖ ξ i‖
2
2 +

C1

2
‖ β‖22 +

C2

2
tr

(
βTSwβ

)

Subject to :h (xi)β = tTi − ξTi , i = 1, . . . ,N

(14)

As stated before, ‖ β‖22 is the regularization term

which aims at finding maximum separating margin in

the ELM space and preventing over-fitting problem and

tr
(
βTSwβ

)
represents intra-class variance of all the train-

ing samples in the decision space.

By submitting the constraints into the objective func-

tion, we obtain the following equivalent unconstrained

optimization problem,

Minimize :
1

2
‖ Hβ − T‖22 +

C1

2
‖ β‖22 +

C2

2
tr

(
βTSwβ

)

(15)

The gradient of this objective function with respect to β

can be written as,

∇ = HT (Hβ − T) + C1β + C2Swβ (16)

By setting the gradient to zero, we obtain the solution to

the RMCVELM,

β =

(
HTH + C1I + C2Sw

)−1
HTT (17)

During the test stage, a test data x is scored by the

following equation,

f(x) = h(x)β (18)

The RMCVELM algorithm is summarized as follows.

Algorithm 1 RMCVELM Algorithm

Given hidden node output function g(wjx+bj) and hidden

node number L:

1: Randomly generate hidden nodes parameters

(wj, bj), j = 1, . . . , L.

2: Calculate the hidden output matrixH.

3: Calculate the within-class scatter matrix Sw in the

ELM space.

4: Calculate the output matrix β using Eq. (17).

5: calculate score for a test data x using Eq. (18).

We should note that RMCVELM can be considered as

a unified mode for basic ELM, RELM, and MCVELM.

When C1 = C2 = 0, RMCVELM is equivalent to basic

ELM. If C1 = 0 RMCVELM is equivalent to MCVELM

and if C2 = 0 RMCVELM is equivalent to RELM. From

this point of view, RMCVELM takes advantage of the

good features of ELM, RELM, andMCVELM, so it has the

potential to deal with more complicated data and tends

to achieve more robust performance. In Figs. 2 and 3, we

also show the hyperplanes obtained by RMCVELM. It is

easy to note that the hyperplanes found by RMCVELM

are between the hyperplanes of RELM and MCVELM. In

Fig. 2, RMCVELM can get a hyperplane which is consis-

tent with the data distribution. In Fig. 3, the hyperplanes

found by RMCVELMnot only reflect the data distribution
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but also use the samples near the margin which play an

important role in classification. So RMCVELM can work

well in these two cases.

4 Experimental setup
4.1 Training, development and evaluation data

The experimental setup for this work is based on the

NIST 2009 Language Recognition Evaluation (LRE) [31].

The 2009 LRE consisted of 23 linguistic classes. The

23 linguistic classes are Amharic, Bosnian, Cantonese,

Creole, Croatian, Dari, English-American, English-

-Indian, Farsi, French, Georgian, Hausa, Hindi, Korean,

Mandarin, Pashto, Portuguese, Russian, Spanish, Turkish,

Ukrainian, Urdu, and Vietnamese. Both conversational

telephone speech utterances (CTS) and narrow band

telephone segments from Voice of America broadcasts

(VOA) are used as data sources for the 23 linguistic

classes.

The training data consists of both CTS and VOA data.

The CTS samples come from previous NIST LRE (2007)

and the CallFriend, CallHome, OGI-22 collections. The

VOA data consist of narrow band segments from VOA

broadcasts. We totally have about 30,000 samples for the

whole training set.

The calibration back-end described in Section 4.3 was

trained on development dataset, which comprises data

from the dataset provided by NIST for the 2003, 2005, and

2007 LRE and VOA. Only data of the 23 target languages

are used. This set has about 10,000 samples.

The evaluation set consists of all the data from the

NIST 2009 LRE. Experiments are performed on the 23

languages closed-set task. The criterion for evaluation

is pooled equal error rate (EER) and average cost Cavg

defined by NIST.

4.2 Feature extraction

For feature extraction, we first extract 13-dimensional

MFCC features and the cepstral features are processed

with RASTA filtering. Then SDCC features [8] are used

with a 7-1-3-7 parameterization.

A language and gender independent UBM [32] is trained

using all of the training data with eight iterations of

EM adapting all parameters-means, mixture weights, and

diagonal covariances. The number of mixture compo-

nents is 512.

After that, two different kinds of features are extracted

for each utterance, namely GMM Supervectors (GSVs)

[25] and i-vectors [26].

For the GSV extraction, a GMM is trained for each

utterance, only means are adapted for GMM MAP train-

ing. The GSV for a given utterance is the stacked mean

supervector which is normalized as follows,

m̃i =
√

λi�
−1/2
i mi (19)

where λi, �i and mi are the mixture weight, covariance

and mean of the ith GMM component. A 28,672 dimen-

sional GSV is extracted for each utterance. The GSVs are

then compensated using Nuisance Attribute Projection

(NAP) [33].

The i-vectors framework has become very popular in

speaker and language recognition. The main idea is that

the GMM supervector (vector created by stacking all

mean vectors from the GMM) for a given utterance can be

modeled as follows,

M = m + Tw (20)

wherem is the language- and channel-independent mean

supervector (which can be taken to be the UBM supervec-

tor), T is a rectangular matrix of low rank and the i-vector

w is a random vector having a standard normal distribu-

tion. For a given utterance, we use the standard method to

extract the i-vector as described in [26]. The dimension of

each i-vector is 400.

4.3 Calibration back-end

The calibration back-end [34] uses the scores from the

classifiers described above rather than the GSVs or the i-

vectors. It is trained on the separate development dataset

described in Section 4.1 to obtain well-calibrated scores.

Here, we use the MMI back-end [35] for calibration.

5 Experimental result
5.1 GSV systems

In order to evaluate the effectiveness of the proposed

RMCVELM algorithm on language recognition perfor-

mance, we first compare its performance with that of

SVM, MCVELM, and RELM on the GSV features.

In our RMCVELM system, the input weight wi is ran-

domly generated between −0.5 and +0.5, and bi is ran-

domly generated between 0 and +1. The number of

hidden node is 20,000. Here we use cross-validation tech-

nique on the training data to determine the parameters C1

and C2. The training data is partitioned into four groups.

Then three of the groups are used to train a set of mod-

els that are then evaluated on the remaining group. This

procedure is then repeated for all four possible choices for

the groups, and the four performance scores are then aver-

aged. According to this cross-validation technique, the

optimal parameters are set to be C1 = 2000 and C2 = 5.

In the SVM system, we use the proposed one-versus-

rest strategy which is the standard method widely used for

language recognition. The C value for SVM is set to be 0.8,

it is tuned by the cross-validation technique as stated in

the RMCVELM system.

In the MCVELM system, C1 is set to be 0 and C2 = 1.5

which is achieved by the cross-validation technique stated

above. Similarly, in the RELM system, C2 is set to be 0 and

C1 = 3000. In the Basic ELM system, C1 = C2 = 0.
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We also train a standard neural network (NN) with the

same architecture as the ELM for comparison. The hid-

den node number is 120 and learning rate is 0.05. Besides,

dropout method is used, the dropout fraction is 0.8. In

addition, the weight penalty term based on L2 norm is

also taken into consideration. The coefficient of the weight

penalty term is 0.005. We find that the dropout method

and the weight penalty term must be used or there will be

a serious over-fitting problem. All the above parameters

are set by the cross-validation technique stated above.

Results for the various systems on GSV features are

shown in Table 2.

First, we can easily note that the proposed RMCVELM

outperforms SVM at all the three different durations.

Especially, RMCVELM can greatly enhance the perfor-

mance at the 30-s duration, obtaining at most 15 %

(EER) and 19 % (Cavg) relative improvement compared

with SVM, respectively. In addition, RMCVELM works

quite better than MCVELM and RELM, which verifies

our theory. RMCVELM is more robust compared with

MCVELM and RELM.

We should also note that the NN is better than the

basic ELM which has no regularization term and com-

parable to the RELM. This is because the regularization

term plays an important role in preventing the over-fitting

problem. However, the NN does not achieve better per-

formance than RELM, one reasonable explanation is that

the NN tends to have the local minima problem. The

advantages of ELM compared to NN has been discussed

in detail in [12] which shows that ELM can achieve better

performance than NN in many applications.

5.2 I-vector systems

For the i-vector inputs, all the i-vectors are centered on

the origin and then linear discriminant analysis(LDA) is

used to reduce the dimension. Since we have 23 target lan-

guages, each i-vector is reduced to 22 dimensions. Each

i-vector is unit normalized after LDA, here we use li
to denote the normalized i-vector after LDA for a given

utterance i.

Table 2 Comparison of EERs (%) and Cavg for different training

methods based on GSV at different durations for the 23 proposed

languages of LRE09

System EER Cavg

30 s 10 s 3 s 30 s 10 s 3 s

SVM 3.21 8.77 21.88 3.24 8.76 21.69

ELM 4.32 12.17 25.93 4.30 12.46 26.13

MCVELM 4.12 11.58 26.17 4.20 11.58 26.17

RELM 2.89 7.79 22.00 2.82 7.86 21.97

NN 2.97 7.98 22.56 2.95 7.97 22.56

RMCVELM 2.70 7.59 20.74 2.62 7.60 20.62

We first apply the cosine distance scoring (CDS) to

score the i-vector, which has been widely used in language

recognition [36].

scorel = mT
l ∗ ltest (21)

whereml is the model of language l,

ml =

∑Nl
i=1 li

‖
∑Nl

i=1 li ‖ 2

(22)

In addition, a widely used generative model called Gaus-

sian back-end (GB) [28] is also used for comparison. In

this case, i-vector distribution for each language is mod-

eled by a Gaussian distribution, here a full covariance

matrix is shared across all languages. During the test stage,

each i-vector ltest is scored as:

scorel = −
1

2
lTtest�

−1ltest+lTtest�
−1μl−

1

2
μT
l �−1μl+const

(23)

where μl is the mean vector for language l and � is the

covariance matrix.

Then SVM, NN, and RMCVELM are applied to the i-

vector. The C value for SVM is 1.2. For the NN, the hidden

node number is 80, and learning rate is 0.01. The dropout

fraction is 0.45, and the coefficient of the L2 norm weight

penalty term is 0.006. For the RMCVELE system, The

number of hidden node is 3000 (experiments show that

there is no significant improvement when the number of

hidden node increases), and C1 = 2100,C2 = 3. All

the parameters are determined as that in the GSV feature

space.

The performance of the different methods are shown

in Table 3. The results demonstrate that RMCVELM can

achieve comparable performance to the widely used CDS

and GB method. So it can also be successfully applied to

the i-vector space.

In addition, we can easily note that the CDS and GB

which are used as baselines can achieve similar perfor-

mance. Here we think that the CDS can approximate the

GB. Since all i-vectors are unit vectors and centered on

the origin, the mean of the Gaussian distribution for each

Table 3 Comparison of EERs (%) and Cavg for different training

methods based on i-vector at different durations for the 23

proposed languages of LRE09

System EER Cavg

30 s 10 s 3 s 30 s 10 s 3 s

CDS 2.63 6.72 20.22 2.59 6.80 20.36

GB 2.65 6.77 19.90 2.60 6.86 20.02

SVM 2.70 6.78 19.92 2.62 6.97 19.80

NN 2.95 7.87 21.32 2.93 7.92 21.54

RMCVELM 2.65 6.67 19.65 2.58 6.79 19.70
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language is approximately on the circle centered on the

origin. The CDS averages i-vectors for a language, the

model can roughly be regarded as a vector pointing from

the origin to the mean of the Gaussian distribution for this

language, so the separating margin between two classes

is a linear hyperplane which is through the origin and

equally divides the angle formed by the models of the

two classes. The GB uses a shared covariance matrix, so

the separating margin between two classes is also a linear

hyperplane. If the covariance matrix is a diagonal matrix

and the diagonal elements are the same, the GB hyper-

plane also will be through the origin and will be quite close

to the CDS hyperplane. In this experiment, we find that

the main diagonal elements of the full covariance matrix

aremuch larger than other elements, so the full covariance

matrix is close to a diagonal matrix. In addition, the main

diagonal elements are close to each other. In this case, we

can assume that the CDS is almost equivalent to the GB.

So the two methods can achieve similar performance.

Besides, the NN can not get good performance as it is

often very sensitive to many parameters, such as learn-

ing rate and dropout fraction, and tends to have the local

minima problem.

5.3 Discussion

The experimental results show that in most cases,

RMCVELM can achieve better performance than SVM.

Compared with SVM, RMCVELM has some potential

advantages.

In [13], the differences and similarities between SVM

and ELM has been discussed. ELM and SVM have sim-

ilar optimization formula. However, in SVM optimal

Lagrange multipliers αi are found from the hyperplane∑N
i=1 αiti = 0, so SVM often obtains a suboptimal

optimization. Different from SVM, ELM does not need

to satisfy this condition, so ELM has milder optimiza-

tion constraints and can find αi from the entire space.

RMCVELM, which is an extension of ELM, naturally

inherits this good feature.

In addition, RMCVELM can be considered as a uni-

fied mode for ELM, regularized ELM, and MCVELM. It

considers the training error, generalization ability, and dis-

tribution of all the training data in the ELM space simulta-

neously. By adjusting parameters C1 and C2, RMCVELM

can learn much better even when the data distribution

varies greatly. So it has the potential to deal with more

complicated data. From this point of view, RMCVELM is

more robust.

6 Computational complexity
In this section, the computational complexity is compared

between SVM and RMCVELM. Training time for the two

algorithms are shown in Fig. 4. We can note that the pro-

posed RMCVELM is much faster than traditional SVM.

The main computational cost for SVM comes from a QP

problem, which is at least quadratic with respect to the

number of training data. So the computational complex-

ity of SVM is usually intensive when dealing with large

problems. However, RMCVELM gets a solution based on

Eq. (17), where the size of (HTH+C1I+C2Sw) is L∗L. In

most applications, the number of hidden node L is much

smaller than the number of training data: L << N . So

RMCVELM can greatly reduce the training time.

Fig. 4 Comparison of training time for SVM and RMCVELM on different features
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7 Conclusions
In this paper, we proposed a novel algorithm regular-

ized minimum class variance extreme learning machine

for language recognition. The RMCVELM aims at min-

imizing empirical risk, structural risk, and the intraclass

variance of the training data in the decision space simul-

taneously. The proposed method improves the perfor-

mance for language recognition and can learn at a much

faster speed compared with traditional SVM. In addi-

tion, RMCVELM can also be applied to i-vector space

and achieves an equivalent performance compared with

the CDS and GB method. To our best knowledge, this

is the first time such an approach is applied to language

recognition.
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