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Abstract: Inverse problem approaches for image reconstruction can improve resolution recovery
over spatial filtering methods while reducing interference artifacts in digital off-axis holography.
Prior works implemented explicit regularization operators in the image space and were only able
to match intensity measurements approximatively. As a consequence, convergence to a strictly
compatible solution was not possible. In this paper, we replace the non-convex image recon-
struction problem for a sequence of surrogate convex problems. An iterative numerical solver is
designed using a simple projection operator in the data domain and a Nesterov acceleration of
the simultaneous Kaczmarz method. For regularization, the complex-valued object wavefield
image is represented in the multiresolution CDF 9/7 wavelet domain and an energy-weighted
preconditioning promotes minimum-norm solutions. Experiments demonstrate improved resolu-
tion recovery and reduced spurious artifacts in reconstructed images. Furthermore, the method is
resilient to additive Gaussian noise and subsampling of intensity measurements.

c© 2017 Optical Society of America

OCIS codes: (090.1995) Digital holography; (100.3190) Inverse problems; (100.3010) Image reconstruction techniques;
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1. Introduction

Digital holography is a technique to capture simultaneously the amplitude and the phase of an

incoming wavefront using a digital image sensor. Various configurations for holographic setups

exist [1], such as Gabor holography, Fourier holography, phase-shifting holography and off-axis

holography. In off-axis holography, the object wavefront is retrieved by using a high-frequency

off-axis carrier wave to separate the desired first order from the unwanted zero order and twin

image terms in the Fourier domain.

The off-axis geometry allows users to capture the wavefront with a single recording, unlike

e.g. in phase-shifting holography, in which stability is crucial for a realization of at least three

exposures. Single exposure holography is mandatory when the recorded object is dynamic.

However, the drawback is that diffraction orders must be well-separated in the Fourier domain

for subsequent filtering. Stringent constraints have to be put on the placement and bandwidth of

the first order term. This will cause much of the digital bandwidth to be underused and thereby,

discarding information about the object. Advanced reconstruction methods are therefore essential

for resolution recovery.

Classical approaches for extracting a complex wavefield from intensity measurements relies

on direct manipulations in the Fourier domain [2]. Assuming that the object under investigation is

band-limited, the Fourier filtering technique may become optimal using clever non-linear filters

that are implemented using a log-transform on the intensity measurements [3, 4]. Unfortunately,

strict bandlimitation is not a realistic hypothesis in lens-free setups.

Inverse problem approaches have been successfully applied for resolution recovery in a wide

range of modalities. The seminal works in digital holography by Sotthivirat and Fessler [5–7]
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propose to reconstruct the complex wavefront using a penalized likelihood objective function

with an edge-preserving filter for regularizing the solution image. They solved a surrogate

problem using the optimization transfer principle and demonstrated, on horizontally-modulated

artificial data, the feasibility of reconstructing complex images from arbitrary reference beams.

Subsequently, the work of Bourquard et al. [8] devised a practical method for the reconstruction

of acquired data. They represented the solution complex image with a dense array of pixels

and used a dual-loop method where data similarity is ensured up to a given precision, then the

solution is regularized in the image space, using a total variation minimization prior [9].

In principle, this method is only able to match the measurements approximately and the

interleaving of two separate objective functions in the data and solution spaces leads to slow

convergence. Indeed, an exhaustive line search was used for solving the two optimization

problems. Nonetheless, they demonstrated encouraging results as the method reduced greatly

border artifacts and slightly increased resolution recovery compared to classical direct Fourier

filtering. Furthermore, their inverse approach was robust to data undersampling and measurement

noise could be mitigated by tuning the tolerance bound in the data fidelity objective.

Reconstruction from undersampled data has been initially investigated by Riverson et al. [10],

in the case where complex measurements are recorded, for example through multiple acquisitions

with a controlled global phase shift. In this case, the reconstruction problem is convex but

underdetermined if fewer measurements than image pixels are recorded. This draws a link with

the compressive sensing framework [11,12] that relies on sparse regularization. Marim et al. [13]

have used compressive sensing in the hologram space for explicitly recovering missing values.

In this work, we took a different stance on the inverse problem approach for reconstructing a

regularized image from off-axis intensity measurements. We propose a numerical method that

is able to converge to a strictly compatible solution to the non-convex image reconstruction

problem using a simple consistent projection operator in data domain. We use as solver a fast

Nesterov acceleration of the simultaneous Kaczmarz iterative method. No explicit regularization

is implemented in image space, but instead we select the minimum-norm representation of the

solution in a multiresolution wavelet domain. Experiments conducted on a synthetic resolution

chart demonstrate drastic resolution recovery improvements in comparison to the best compro-

mise we can achieve with direct Fourier reconstruction. Moreover, robustness to noise on the

intensity measurements can be obtained with a modified projection operator.

We observed that if the detector would be able to measure the complete complex values, i.e.

both the amplitude and phase information of the incident light, then the inverse reconstruction

problem would be convex and could be solved using well established numerical methods. We

create a sequence of intermediate surrogate convex problems using inferred complete complex

data. This inference step uses simple data-consistency conditions and shifts the complexity

away from the numerical solver. Our method is also robust to data undersampling and implicitly

interpolates the missing intensity data using both wavelet decompositions and an accurate

physically-based forward propagation model using the angular spectrum operator.

For regularization, the real and imaginary parts of the complex sample image to reconstruct

are represented in the Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet space [14]. Our prior

studies [15] demonstrated that combining CDF wavelets with the angular spectrum light transport

operator was a more appropriate choice over Fresnelets [16]. This indirect minimum norm

objective in coefficient space yields global multiresolution image regularization that is very

different than direct processing in image space.

The remainder of the paper is structured as follows. We first present the geometry of off-axis

holography and the image formation model in Section 2. Our regularized inverse reconstruction

method is derived in Section 3. Experiments on noisy and undersampled synthetic data are

shown in Section 4, as well as results from resolution charts and biological samples. Finally, we

conclude with an outreach on future works in Section 5.
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Fig. 1. Geometry of an off-axis holographic acquisition setup. The intensity of the interfer-

ence between a slightly tilted reference wavefield and the object wavefield is recorded by

the digital CCD sensor. The phase information of the observed sample is then encoded in

slight local displacements of fringe patterns appearing on the detector plane.

2. Off-axis holography

Following the illustration in Fig. 1, an off-axis intensity hologram is measured on the digital de-

tector as an interference pattern I formed by the superimposition of an object beam O containing

the object information and a tilted incident carrier planar wave, called the reference beam R. For

more details, the fundamentals of holography have been studied extensively [17, 18].

Let I ∈ R
N
+ be a rectangular recorded intensity image defined with N = Nx × Ny pixels

that are vectorized in lexicographical order. In off-axis holography, we express intensities as

energy measurements of the interference between a reference beam R ∈ C
N and the sought

object wavefield O ∈ CN illuminating the sample under investigation. Although the waveform is

complex-valued, we acquire only an intensity image

I = |O + R|2 (1)

= |O |2 + |R|2 + R ◦O∗ +O ◦ R∗ (2)

where ∗ denotes the complex conjugate and ◦ is the Hadamard product.

2.1. Image formation

The distance from the detector to the sample is relatively short and therefore in this work, we rely

on the angular spectrum method [18] for the light transport operator from the object wavefield

Od ∈ CN at the sample plane towards the detector. The detector plane is located at the origin and

the sample is displaced by a distance d along the z-axis. The angular spectrum transforms point

sources to apodized chirp functions on the detector plane. The following forward and adjoint

backward relations hold for small propagation distances d:

O = ΨdOd = F−1 (Kd ◦ F(Od )) and Od = Ψ−dO = F−1 (K−d ◦ F(O)) . (3)

The multiplication before inverse Fourier transform F−1 is equivalent to a convolution in the

spatial domain. Specifically, the Hadamard product of Kd and the spectrum of Od , followed by

the inverse Fourier transformation, is equivalent to the convolution of Od with the point spread

function F−1(Kd ), with the optical transfer function

Kd =
1

K−d

= exp

(

−2iπ
d

λ
D

)

(4)
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Fig. 2. Direct image reconstruction in the Fourier domain. The complex-valued object

wavefield image O is recovered from the intensity hologram I = |O + R|2 by demodulation

and band-pass filtering of higher frequencies for removing the fringe modulation pattern of

the reference beam R. Finally, the wavefield is refocused on the sample plane.

where the distance field image D ∈ RN
+ defined by

D(x , y) =

√

√

1 −












λ

p

x − Nx/2 − 1
2

Nx













2

−












λ

p

y − Ny/2 − 1
2

Ny













2

, (5)

with the wavelength λ of the coherent illumination source, the distance d from the sample plane

to the detector, the pixel pitch p and the integer coordinates x ∈ [1 . . . Nx ] and y ∈ [1 . . . Ny ].

In off-axis geometry, the reference beam R is a slightly slanted planar wave such that the time

delay of arrival on the detector draws a modulating carrier signal that shifts the spectrum of O to

obtain O ◦ R∗. Prior to acquiring I, the reference wavefield R is determined from recording a

calibration intensity hologram IR ∈ RN
+ of the interference of R and the blank object wavefield

OR ∈ CN that is is obtained without sample in the field of view. Therefore, both the object beam

amplitude attenuations and phase shifts at the sample plane are known to be zero.

The first image in Fig. 2 shows a typical intensity hologram and its characteristic Fourier

power spectrum. The vertical and horizontal off-axis angles of incidence have been calibrated

such that the modulated object wavefield fills one full quadrant of the Fourier spectrum. This

configuration leads to an optimal use of the available image bandwidth.

2.2. Direct Fourier reconstruction

From the recorded intensity hologram I, an approximation of the focused complex object wave-

field Od can be reconstructed through simple manipulations in the Fourier domain. Intensities

from I are decomposed into the -1, 0 and +1 diffraction orders: the first two terms in (2) corre-

spond to the zero order, the third term is the so-called twin image and the last term contains the

sought object beam O modulated by the complex conjugate of the reference beam R.

Since R is known, and assuming noise-free measurements, the possible solutions for R +O

in every pixel lie on a circle in the complex plane. The right subfigure shows the corona of

acceptable solutions, within an interval of confidence. The width of that interval depends on the

assumed noise variance. As Fourier reconstructions do not allow to model noise, we consider in

this section, solely the noise-free case.
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First, we remove the non-modulated intensity information from the known reference beam:

Ĩ = I − |R|2 (6)

= |O |2 + R ◦O∗ +O ◦ R∗ , (7)

then, we demodulate the intensity signal by dividing with the complex conjugate of R:

Õ =
Ĩ

R∗
(8)

=
|O |2

R∗
+

R ◦O∗

R∗
+O (9)

and finally, we crop the Fourier spectrum with a smoothed circular cropping disc for explicitly

removing the two first demodulated terms and thereby isolating O. This filtering step is crucial

for removing interference artifacts from the remaining zero order term |O |2/R∗ and the unwanted

twin image depending on O∗.

We define a circularly-symmetric function with its center at the origin of the frequency domain

as follow. First, we generate a smoothed circular mask CH ∈ RN
[0,1]

, starting from a disc indicator

function with linear ramp on the edge:

C(x , y) = min

(

1,max

(

0, r −
√

(x − r − 0.5)2 + (y − r − 0.5)2

)

/w

)

, (10)

with the quadrant cropping radius r = Nx/4 − 1, the width w of the linear ramp at the window

border and the pixel coordinates x and y defined above. Finally, we remove discontinuities in the

first derivative by applying the Hermite polynomial "smoothstep" function:

CH (x , y) = C(x , y)2 (3 − 2 C(x , y)) . (11)

After masking the frequency response for selecting the object wavefield O in the Fourier

domain, the result is refocused by reversing the effect of light transport from the detector plane

to the sample position. All in one, the final propagated object wavefield is

Õd = F−1
(

K−d ◦ (Õ ◦ CH )
)

. (12)

where K−d is a diagonal matrix which applies a phase delay based on the propagation distance d.

3. Regularized inverse reconstruction

From the recorded intensity hologram I, an improved approximation of the propagated complex

object wavefield Od can be reconstructed through iterative refinement of a regularized complex

solution in the CDF 9/7 wavelet domain. One important property of the sought propagated object

beam in sample plane Od is that not all valid wavefronts O on the detector plane satisfying

Eq. 2 are statistically equally likely: neighboring pixels will generally be highly correlated in

the focused image Od . These correlations can be reduced significantly by using a sparsifying

multiresolution transform [19]. By doing so, the signal will be well-approximated with only a

few coefficients that are selected according to their energy in the decomposition.

In the forward model shown in Fig. 3, we chose a discrete Wavelet transform (DWT) for the

image transform. The DWT is a multiscale transform that allows for the simultaneous spatial and

frequency analysis of signals [20]. It separates a discrete signal into a low-pass and a high-pass

signal by means of a dyadic transform, followed by a downsampling. This operation is applied

recursively on the ensuing low-pass signal, resulting in a multiscale representation. For this

application, we chose the biorthogonal CDF 9/7 wavelet transform. This wavelet was chosen for
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Fig. 3. Forward image formation model used in inverse image reconstruction. CDF 9/7

wavelet coefficients represent the amplitude and phase components of the sample wavefield

Od . Angular spectrum light transport and the interference between the propagated wavefield

O and the near-uniform off-axis reference beam R generates a fringe pattern in I.

its symmetry, superior energy compaction and compression performance [21]. Since the CDF

wavelets are not orthogonal, the transpose operator will not be equal to the inverse one. For more

details on the efficient implementation of the transpose, we refer the reader to Appendix 5.

Reconstructing the two channels of the complex sample wavefield Od from intensity measure-

ments I only is ill-posed in two ways. First, the problem is physically ill-posed since many

different sets of complex values for Od may be compatible with the intensity measurements of I,

regardless of the optics and detector definition, i.e., the number of intensity samples. Secondly,

the problem may be algebraically ill-posed if we record M < N samples. In that case, the

number of measurements is smaller than the number of unknowns leading to an underdetemined

inverse problem with more solution elements than data constrains.

For the aforementioned reasons, regularization is needed to select a unique solution among

all compatible realizations. More importantly, the solution should be plausible as well. We

propose in this work to use a minimum-norm regularization prior in the CDF 9/7 wavelet domain

for selecting a unique solution among all combinations of amplitude and phase pairs that are

compatible with the M recorded samples from the full intensity hologram I.

More formally, let x ∈ CNx ×Ny be the unique minimum-norm solution representing the object

wavefield Od = W−1x where the matrix W ∈ C
Nx ×Ny is a complete dictionary of complex

wavelet basis functions such that the vector-matrix product can be implemented with a fast

transform. One could aim first at solving the following non-convex problem:

argmin
x

‖x‖ subject to I = |R + ΨdW−1x |2 , (13)

in which the data compatibility constraint only applies to squared magnitudes from complex

values and therefore the phase information of the solution is implicitly lost. There are no globally

convergent numerical algorithms for solving this problem and some sort of heuristic search

method should be used instead. Since the problem is large, we will pursue along another path.

Let’s assume for a moment that the detector could measure both the real and imaginary parts of

the complex object wavefield instead of the squared magnitudes only. From these complex-valued

measurements of O, we could solve the simpler convex problem

argmin
x

‖x‖ subject to O = ΨdW−1x , (14)
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Fig. 4. Exact (left) and relaxed (right) projection operators infering complex-valued measure-

ments from the current solution O. The closest value from O is selected such that addition

to the reference beam R intersects the circular region of all compatible intensity values.

in which the data compatibility constraint applies to both the amplitude and phase information

and a convergent convex numerical method may be used to find this unique regularized solution.

3.1. Projection operators

In this work, we define two projection operators that infer new complex measurements O using a

pilot estimate of wavelet coefficients x. At each step of a convex iterative solver, a projection

will be applied such that data consistency conditions are respected. This procedure is similar in

spirit to the Gerchberg-Saxton method for phase retrieval [22]. This method alternately modifies

the amplitude of the solution in the spatial and Fourier domain, while we update both channels

simultaneously in a non-alternating scheme.

Starting from a zero vector of coefficients x0 = 0, we first infer, at each iteration t > 0, the

complex-valued measurements from the current object wavefield estimate with

O = ΨdW−1xt , (15)

then, we use an orthogonal projection for recovering the phase and amplitude information from

data consistency constraints.

In off-axis holography, we have intensity measurements that set the squared magnitude of

complete complex values. When the measurements are assumed to be noise-free and unbiased,

we can plug-in an approximation of the phase information into the current complex data estimate

O using the following geometric non-linear data projection operator

P(O) =
√

I
(O + R)

|O + R| − R . (16)

This exact projection operator is illustrated in the left panel in Fig. 4. The current solution will

subsequently be updated using the minimum-norm difference vector such that data consistency

is ensured and therefore, we have

I = |P(O) + R|2 . (17)

When intensity measurements are corrupted by Gaussian noise or some mismatch with the

forward model remains, then a relaxed data consistency condition is more practical. Assuming a
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tolerance margin with respect to the expected noise variance ǫ2, we use

P̃(O) =
√

Iǫ
(O + R)

|O + R| − R with Iǫ =























max(I − ǫ2 , 0) if |O + R|2 < max(I − ǫ2 , 0)

I + ǫ2 if |O + R|2 > I + ǫ2

|O + R|2 otherwise

(18)

A relaxed version of the projection operator is updating the current solution using the minimum-

norm difference vector such that only approximate data consistency is ensured and thus, complex

values are restricted to lie inside the corona of radius ǫ2 around
√

I:

√

max(I − ǫ2 , 0) ≤ |P̃(O) + R| ≤
√

I + ǫ2 . (19)

This relaxed approximate projection operator is illustrated in the right panel in Fig. 4.

For initialization, we assume a blank object wavefield O = ∅ and therefore we only use the

reference beam inside the projection. This gives us the initial complex measurements

P(O) = R

√
I − |R|
|R| . (20)

The resulting initial wavefield does obviously not correspond to the ground truth image. A

particularity is that fringes will appear both in the amplitude and the phase images. Therefore,

the wavelet decomposition of this complex image will require lots of high-frequency coefficients

to encode the fringes. The energy evaluated as the sum of squared wavelet coefficients will be

considerably high. An energy-minimization prior will tend to suppress fringes from the solution,

as this information is already present in the reference beam R.

3.2. Iterative solver

From the projected data-compatible complex measurements y = P(O), we seek for the minimum-

norm regularized solution x by using the Moore-Penrose pseudo-inverse system matrix

x = (A∗A)−1 A∗y . (21)

with the linear system matrix A = ΨdW−1. In practice, the square Gram matrix (A∗A) is not

explicitly computed when inverted, but the minimum-norm solution x is found by an iterative

method, given a pair of functions computing the forward operator y = Ax and its Hermitian

adjoint x = A∗y. The inverse wavelet transform and the conjugate transpose of the inverse

wavelet transform are computed with fast lifting schemes that are detailed in Appendix 5.

3.2.1. Simultanous Kaczmarz method

At first, the simultaneous algebraic reconstruction technique (SART) [23] is adapted to our

problem. SART is a parallel acceleration of the classical sequential row-action Kaczmarz updates

[24] that can be seen as an averaged stochastic gradient algorithm [25, 26]. The convergence

is monotonous as the norm of the solution increases from iteration to iteration while the mean

squared data residuals decrease accordingly.

Starting from an empty initial image at t = 0, the norm of the solution is incrementally

increased at each iteration with a simple incremental update rule:

xt+1 = xt + ∆t (22)

and the following simultaneous incremental update

∆t =
2

M

M
∑

i=1

[P(O)]i − [A]i xt

‖[A]i ‖2
[A∗]i (23)
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Fig. 5. Comparison of the overall increasing norm as a function of the iteration number for

the reference Kaczmarz method and the two Nesterov accelerated methods discussed in

this work. Nesterov methods reach quadratic convergence speed instead of the much slower

linear convergence of the Kaczmarz method plotted in light gray.

where the sum runs over any subset of measurements 1 ≤ M ≤ N . This update is a simultaneous

row-action, as only the ith row [A]i is needed for computing the corresponding term in the sum.

The structure of the update contributions inside the sum is simple and interesting: The

difference term on the numerator is the discrepancy between the complex measurement [P(O)]i
that is inferred from the current solution and the footprint of the current solution [A]i x, after

propagation towards the detector plane. The differences are normalized by the energies ‖[A]i ‖2
in data space before backprojection in the wavelet space using the adjoint operator A∗.

The energy normalization values do not depend on the solution nor on data and are precom-

puted before reconstruction. Note that detector sampling and rows of the system matrix are not

explicitly stored; rather, results of multiplications with all matrix row vectors [A]i and [A∗]i are

implemented using fast transforms. The Kaczmarz method has been recently used for the closely

related phase retrieval problem [27]. However, convergence is extremely slow and accelerations

are needed in practice, without resorting to hazardous numerical over-relaxation.

3.2.2. Nesterov accelerations

The 1983 vintage of Nesterov accelerations [28] uses the difference with wavelet coefficients at

the previous iteration for increasing convergence speed. This variant is proven to be convergent,

even though the norm of the solution may decrease after subsequent iterations. This first acceler-

ated gradient update proposed by Nesterov introduces an initial relaxation value λ0 = 1 and a

temporary solution vector initialized as y0 = x0. This quantity is incrementally updated as in the

Kaczmarz method using

yt+1 = xt + ∆t , (24)

then, the solution is updated using a supplemental additive term as

xt+1 = yt+1 +
λ t − 1

λ t+1

(yt+1 − yt ) with λ t+1 =
1 +

√

1 + 4λ2
t

2
. (25)

This second step is akin to updating the solution with a finite difference approximation

of the gradient. This update is therefore related to the Newton method and inherits from the

quadratic O(1/t2) convergence speed instead of the much slower linear O(1/t) convergence of
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Fig. 6. Progressive sharpening of the solution until convergence. The regularization prior in

the inverse reconstruction method selects the minimum-norm solution that is compatible with

the intensity measurements. Stopping early the iterative process yields a blurry intermediate

solution that may already be of sufficient quality for the operator.

the Kaczmarcz method. A remarkable property of the Nesterov acceleration, is that no extra

calculations are needed beside a simple difference with the previous solution. At almost the same

computational cost, we get a stable method with a guaranteed quadratic convergence regime.

The 2005 version of Nesterov’s methods [29] further improves convergence speed by using

an accumulated history of all previous incremental updates since the beginning of the iterative

process. In addition to the above procedure, we keep track of the accumulated weighted updates:

ut+1 = ut + λ t∆t (26)

with u0 = x0. Then, the final update is replaced by the linear combination

xt+1 =

(

1 − 1

λ t+1

)

yt+1 +
1

λ t+1

ut+1 with λ t+1 =
1 +

√

1 + 4λ2
t

2
. (27)

and we iterate until the convergence is satisfactory. Note that the recent work of Kim and

Fessler [30] has shown that the increment in (26) may be doubled while preserving convergence.

We therefore used that variant in our numerical experiments. Figure 5 compares the evolution of

the norm of the solution in function of the iteration number. Nesterov accelerations are essential

for reaching reasonable computing performances.

4. Experiments

We implemented the described reconstruction methods in MATLAB. The source code is available

upon request to the authors. We conducted experiments on both simulated and optically acquired

data of a USAF-1951 resolution chart and two biological samples. The simulated resolution chart

used the very same geometry for matching closely the experimental conditions of the acquisition

setup. For the biological samples, we started from a real amplitude and phase image of a blood

sample acquired on an iLine F holographic microscope from Ovizio Imaging Systems. We then

generated artificial intensity holograms using the complex image as the ground truth. We used

this realistic phantom for evaluating the impact of noise and subsampling on the image quality.
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Simulated USAF-1951 Acquired USAF-1951 Simulation, hematology sample Acquired pollen seeds

Fig. 7. The four simulated and optically acquired intensity hologram data used in experiments

(top row) and their frequency power spectrum (second row). The blank scan for recording

the reference beam amplitude are shown as well (third row) along with the amplitude (fourth

row) and phase shift (bottom row) reference results with direct Fourier reconstruction.
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PSNR 34.64dB

Relaxed projection, 99.7% interval
PSNR 32.97dB

Reference reconstruction

Fig. 8. Impact of the relaxed data projection operator for avoiding the introduction of noise

artifacts into the solution. A bias-variance trade-off is driven by the radius of the intensity

tolerance region, expressed as a fraction of the standard deviation of the noise realization.

We also reconstructed an acquisition of pollen seeds from the hologram used in the work of

Seelamantula et al. [4]. The optics used for that acquisition used bandlimiting filters, and in

this case theoretically exact reconstruction is possible using their specific direct Fourier filtering

technique. In practice, slight crosstalk between the zero order terms and the modulated complex

wavefield is still present in the data whereas regularization alleviates artifacts appearing in the

direct Fourier filtering image reconstructions.

Figure 7 shows the two simulated and acquired intensity holograms and their Fourier power

spectra. Additional rows in this array show the amplitude images of the reference beam used for

inverse reconstruction. the best result we could obtain using the direct Fourier reconstruction

approach is shown as well. For simulations, we implemented a slight Gaussian fall-off intensity

profile for modeling the effect of laser beam expansions to an approximate planar wave.

4.1. Data simulations and acquisitions

In our simulations and laboratory experiments on the USAF-1951 test target we built a digital

holographic setup in transmission mode as shown in Fig. 1. The sample is illuminated using

a JDSU Uniphase 1135P He-Ne laser of 20 mW operating at a wavelength of λ = 632.8 nm.

The planar sample was placed at a distance of 125 mm from the CCD camera: The Ximea

MD120MU-SY, which is a 12-bit monochrome camera with a resolution of 4242 × 2830 pixels

and a pixel pitch of δx = 3.1 µm. The exposure time was optimized for using the full dynamic

range of the camera without signal clipping from saturation.

We recorded both the amplitude of the reference beam R and the off-axis hologram formed by

the interference pattern. For the phase of the reference beam, a square crop was taken from the

camera, followed by a four-fold downsampling to 256 × 256 pixels. We chose to modulate R as

to have the carrier frequency of the first order to lie in the center of a quadrant of the Fourier

domain. This configuration optimally uses the detector bandwidth in the off-axis geometry. The

exact same geometry and procedure were used for the simulated hematology sample.

4.2. Results

We first evaluated the effective monotonous convergence of the iterative inverse method. As the

norm of the solution increases, the complexity of the solution increases as well. From iteration

to iteration, we observe a progressive sharpening until convergence. The convergence at early

iterations is faster, suggesting that relaxation strategies could possibly be introduced for later
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Reference reconstruction

Fig. 9. Progressive quality improvement with increasing amount of intensity measurements

used for constraining the solution. In comparison to a full-data reference reconstruction, a

high quality phase image is recovered from one quarter of all detector pixels only.

iterations. Figure 6 shows the progressive improvement of the solution on the phase image

channel. The amplitude image is jointly sharpened in a similar way.

In terms of running time, the process converges to a high-quality solution after about 200

iterations. The required number of iterations depends on the complexity of the image content.

For each iteration, the forward model and its adjoint are evaluated. Each of these operations is

roughly equivalent to the computing cost of a direct Fourier extraction plus a wavelet transform,

hence the required computing budget is about 600 fold in comparison to simple refocusing

in Fourier space. A key advantage of the inverse problem approach is its resolution gain with

flexible regularization priors, its ability to model noise and missing measurements. The phase

shifting pattern also may be arbitrary instead of being restricted to a planar modulation wave.

When implemented on GPU, the whole iterative image reconstruction task requires less than a

second of computation.

For assessing the robustness to measurement noise, we corrupted measurements with 10%

Gaussian noise. A 10% standard deviation from the maximum peak intensity is much higher

than what is accustomed in current holographic exposures. The possibility to model noise allows

however for new ultra-fast acquisitions protocols, using less sensitive detectors and/or low-light.

Figure 8 shows the impact of the tolerance radius in the relaxed data projection operator in

the left part of Fig. 4. We obtained a pleasant visual result for a confidence interval of 95%,

corresponding to a radius of 1.96 times the standard deviation of the assumed Gaussian noise

realization. Quantitative evaluations in terms of PSNR confirmed the 95% rule for trading-off

optimally between blur and variance in the final image.

Our inverse method may use subsets of intensity samples in detector space for updating the

complex solution wavefront. We selected quasi-randomly detector pixels using a mask retaining

10%, 25% and 50% of all available data. The low-discrepancy image sampling technique was

designed for avoiding regularities that could interfere with the regular fringe pattern and introduce

aliasing artifacts in the reconstruction [31].

Figure 9 shows the progressive image improvement as more data are collected. As expected,

the data loss translates into loss of resolution that manifests as blur artifacts instead of high

frequency artifacts that could be dangerously interpreted as small image features. The norm of

the solution is systematically lower as less data are processed.

For illustrating experiments on the simulated and acquired USAF test targets, we extracted

crops in the image region showing the boundary of resolution capabilities. Figure 10 shows
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Simulated, direct reconstruction Simulated, inverse reconstruction Acquired, direct reconstruction Acquired, inverse reconstruction

Fig. 10. Side-by-side comparison of resolution recovery in a similar region of interest in both

the simulated and acquired USAF-1951 test targets. Parallel bars are crisper with the inverse

reconstruction technique, while spurious low-frequency background noise is reduced.

Amplitude (inverse) Amplitude (direct) Phase (inverse) Phase (direct)

Fig. 11. Amplitude and phase shift images recovered by iterative reconstruction (top row).

A side-by-side comparison in a region of interest (bottom row) shows a slightly crisper

recovery in comparison to a Fourier reconstruction. Note that in this case, a bandlimiting

filter was used in the optical line for optimizing quality of the direct reconstruction solution.
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the side-by-side comparison between the best results we could obtain using direct Fourier

reconstruction and the regularized inverse reconstruction method. On simulation, the effective

resolution gain was more prominent than on the optical acquisition.

However, we observed a slight discrepancy between the acquisition of the reference beam

intensity image and the hologram intensities. This issue has been encountered as well in the

work of Bourquard et al. [8] and we used a first order gain correction factor as described in

Appendix 5. The discrepancy may be explained by detector non-linearities and possible optical

aberrations. We expect further gain with a more precise modeling of the detector response.

Finally, we reconstructed the pollen seeds sample images that were acquired in a setup with

a bandlimited numerical aperture and magnification lenses. Figure 11 shows the whole image

result with the iterative approach and makes the comparison with the direct Fourier method in

regions of interest. The effect of non-exact lens rectification can be observed by the wave patterns

at the border of the image domain. We do not observe any discrepancy between the acquisition

of the blank scan for the reference beam intensity and the actual hologram, therefore no adaptive

gain correction was used for this reconstruction.

The resolution improvement is more noticeable in the amplitude image, suggesting that

the surface of pollens is relatively smooth. Note that the optical bandlimitation may also be

responsible for limited resolution gain in the phase image. Moreover, not any parameter tweaking

was needed for using the reconstruction method on the two different acquisition setups. The

sole regularization through norm minimization is generic enough for selecting a plausible single

complex solution image among all possible object beams that are compatible with measurements.

5. Conclusion

With transmissive off-axis holographic acquisition setups, it is possible to capture both the

amplitude and phase information of light that is encoded implicitly in fringe interferences of

a known modulating reference beam and the sought object wavefield. This work presented a

convergent iterative method for image reconstruction of the complex wavefront from intensity

holograms only. The reconstruction problem is ill-posed and a minimum-norm regularization

prior selects a low-energy unique solution. Unfortunately, this objective function is non-convex

and we solve instead a sequence of surrogate convex linear problems using a data projection

operator at each iteration. The projection steps infer complex measurements that are consistent

with recorded intensities. The method progressively sharpens the reconstructed image and does

not require any tunable parameter except for the number of iterations. Arbitrary reference

beam may be used beside off-axis modulation. Furthermore complete measurement data are not

required and sparse sampling may be applied for reducing input data. Experiments demonstrate

improvements in terms of resolution recovery, compared to direct Fourier reconstruction.

Appendix A. Lifting schemes for the CDF 9/7 wavelet transforms and their ad-
joints

The DWT may be implemented as a pair of convolution filters, followed by downsampling

operations. However, it is more practical to use a lifting scheme representation [32]. Lifting

schemes are generic methods for constructing "second-generation" wavelets, and can be seen

as a special case of a filter bank. They have more flexibility, as they allow to define wavelet

bases on intervals, irregularly sampled grids and even non-linear transforms. Additionally, lifting

steps have reduced computational complexity and memory constraints w.r.t. the convolutional

approach. The generic lifting scheme is summarized on Fig. 12.

Lifting methods can be explained by polyphase matrix representations. The z-transform of a

signal is defined as

x(z) =
∑

k

xk z−k , (28)
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Fig. 12. Lifting scheme block diagram where an input signal x is split into even and

odd samples (xe and xo ). Then a series of convolution-accumulate operations is applied

alternately on the two divided signals, using prediction (si ) and update (ti ) filters. Finally,

the channels are scaled with constants Ki , resulting in the final approximation signal λ and

detail signal γ.

thus, the z-transform of a finite impulse response filter h = {hkb , ..., hke } where hkb , hke , 0 is

h(z) =

ke
∑

k=kb

hk z−k . (29)

Filtering a signal x by a filter h is simply described in the z-domain as an ordinary multipli-

cation: y(z) = h(z)x(z). Using this notation we can decompose a signal x(z) into even (xe (z))

and odd (xo (z)) components as x(z) = xe (z2) + z−1xo (z2), where

xe (z2) =
x(z) + x(−z)

2
and xo (z2) =

z

2
[x(z) − x(−z)] . (30)

After splitting the signal into odd and even parts, the signal can be transformed by a filter pair

(h, g) represented by the polyphase matrix P(z):
(

λ(z)

γ(z)

)

= P(z)

(

xe (z)

xo (z)

)

. (31)

Any polyphase matrix P(z) representing a wavelet transform with finite impulse response

filters can be factored into a product of a diagonal matrix and multiple unit upper and lower

triangular matrices [33], matching the primal and dual lifting steps:

P(z) =

(

he (z) ho (z)

ge (z) go (z)

)

=

(

K1 0

0 K2

) m
∏

i=1

(

1 si (z)

0 1

) (

1 0

ti (z) 1

)

. (32)

Furthermore, we can directly compute the inverse transform as

P(z)−1 =















1
∏

i=m

(

1 0

−ti (z) 1

) (

1 −si (z)

0 1

)















(

1/K1 0

0 1/K2

)

. (33)

For efficiently solving the gradient descent problem using Nesterov’s method, we not only

need the inverse transform but its transpose as well. The inverse transpose transform will only

be equal to the forward transform when the DWT is orthogonal. Using the formalism of the

lifting scheme we can construct the transpose transform of any non-orthogonal wavelet, or more

generally any linear lifting-based filter bank, as follows:

(P(z)−1)⊤ =

(

1/K1 0

0 1/K2

) m
∏

i=1

(

1 0

−si (z) 1

) (

1 −ti (z)

0 1

)

. (34)

In particular, we have implemented our system using the CDF 9/7 wavelet transform. The

specific prediction, update and scaling constants are given in Table 1.
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Table 1. Numerical values of the prediction and update filters for the CDF 9/7 DWT.

Filter Value

t1(z) −0.052980118572961 (1 + z−1)

s1(z) −1.586134342059924 (1 + z)

t2(z) +0.443506852043971 (1 + z−1)

s2(z) +0.882911075530934 (1 + z)

K1 = 1/K2 +1.230174104914001

K2 = 1/K1 +0.812893066115961

Appendix B. Gain estimation of the reference wavefield

For acquired intensity holograms, it is essential that the overall brightness remains identical for

both the recording of the reference beam amplitude as well as the generated interference of the

reference beam and the object wavefield. In our setup, we often observe a slight discrepancy

in the intensity scales: A practical issue that was also pointed out in the work of Bourquard et

al. [8]. Instead of a spatially variant approach, we used a single global gain calibration factor that

was estimated by equaling the mean intensity of the input hologram with the predicted intensities

using the current solution. Formally, we computed the gain

α =

√

√

∑N
i=1 Ii

∑N
i=1 |Ri + [ΨdW−1x]i |2

≈ 1 , (35)

and the calibrated data projection in (16) is generalized by

P(O) =
√

I
(O + αR)

|O + αR| − αR . (36)

The multiplicative gain correction factor α is estimated at each iteration and its value gradually

decreases until convergence. Since the mean estimates may be statistically significant with fewer

samples than pixels in the recorded hologram, one could evaluate the sum over a much smaller

random subset of pixels for decreasing the computational run-time. In this work, we used the

gain calibration only for the reconstructions from the acquired USAF 1951 resolution chart.
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