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Abstract
We present a tecchnique for denoising speech using temporally
regularized nonnegative matrix factorization (NMF). In previ-
ous work [1], we used a regularized NMF update to impose
structure within each audio frame. In this paper, we add frame-
to-frame regularization across time and show that this additional
regularization can also improve our speech denoising results.
We evaluate our algorithm on a range of nonstationary noise
types and outperform a state-of-the-art Wiener filter implemen-
tation.

Index Terms: speech enhancement, source separation, speech
modeling, speech processing

1. Introduction
This paper describes the use of a temporally regularized NMF
update for denoising speech in nonstationary noise. Speech de-
noising in nonstationary noise is an important problem with
increasingly broad applications as cellular phones and other
telecommunications devices make electronic voice communi-
cation more common in a wide range of challenging environ-
ments, from urban sidewalk to construction site to factory floor.
Standard approaches such as spectral subtraction and Wiener
filtering require signal and/or noise estimates and therefore are
typically restricted to stationary or quasi-stationary noise in
practice.

Nonnegative matrix factorization, popularized by Lee and
Seung [2], finds a locally optimal choice ofW and H to solve
the matrix equation V ≈ WH for nonnegative V , W , and H .
This provides a way of decomposing a signal into a convex com-
bination of nonnegative building blocks. When the signal, V , is
a spectrogram and the building blocks,W , are a set of specific
spectral shapes, Smaragdis [3] showed how NMF can be used to
separate single-channel mixtures of sounds by associating dif-
ferent sets of building blocks with different sound sources. In
Smaragdis’s formulation, H becomes the time-varying activa-
tion levels of the building blocks. The building blocks in W
constitute a model of each source, and because H allows acti-
vations to vary over time, this decomposition can easily model
nonstationary noises. ([3] refers to its algorithm as probabilistic
latent semantic analysis (PLSA). Under proper normalization
and for the KL objective function used in this paper, NMF and
PLSA are numerically equivalent [4], so the results in [3] are
equally relevant to NMF or PLSA.)

NMF works well for separating sounds when the building
blocks for different sources are sufficiently distinct. For ex-
ample, if one source, such as a flute, generates only harmonic
sounds and another source, such as a snare drum, generates only
nonharmonic sounds, the building blocks for one source will
be of little use in describing the other. In many cases of prac-

tical interest, however, there is much less separation between
sets of building blocks. In particular, human speech consists
of harmonic sounds (possibly at different fundamental frequen-
cies at different times) and nonharmonic sounds, and it can have
energy across a wide range of frequencies. For these reasons,
many interfering noises can be represented, at least partially, by
the speech building blocks. In a speech denoising application,
where one “source” is the desired speech and the other “source”
is interfering noise, this overlap between speech and noise mod-
els will degrade performance.

There is additional structure in speech and many other
sounds, however. For example, a human speaker will never
generate a simultaneous combination of two harmonic sounds
with harmonically unrelated pitches. Our previous work,
[1], exploited this type of signal structure by imposing a
signal-specific covariance structure on the activation coeffi-
cients within each frame.

Another type of structure present in audio signals is frame-
to-frame temporal structure. For example, two men with sim-
ilar vocal tracts may, in any given audio frame, be producing
sounds with very similar spectra, but if one is a fast-talking car
salesman and the other is a laid-back surfer, we can use the dif-
ferences in their speech rates to distinguish them. Many types
of noise, such as a jackhammer at a construction site or loud
music at a bar, have distinctive temporal structure that can be
exploited to distinguish them from speech. In this paper, we
exploit this temporal structure to improve the speech denoising
performance of our algorithm.

This paper makes two contributions. First, we present an
NMF update that is regularized both across audio frames and
across activation coefficients within a frame. These regulariza-
tion terms encourage the denoised output signal to have statis-
tics similar to the known statistics of our source model across
both time and frequency. Second, we evaluate the speech de-
noising performance of NMF with and without different forms
of regularization and compare it to a state-of-the-art Wiener fil-
ter implementation.

2. Algorithm
Our technique for speech denoising consists of a training stage
and an application (denoising) stage. During training, we as-
sume availability of a clean speech spectrogram, Vs, of size
nf × nst, and a clean (speech-free) noise spectrogram, Vn,
of size nf × nnt, where nf is the number of frequency bins,
nst is the number of speech frames, and nnt is the number
of noise frames. Different objective functions lead to differ-
ent variants of NMF, a number of which are described in [5].
Kullback-Leibler (KL) divergence between V and WH , de-
noted D(V ||WH), was found to work well for audio source
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separation in [3], so we will restrict ourselves to KL divergence
in this paper. Generalization to other objective functions using
the techniques described in [5] is straightforward.

During training, we separately perform standard NMF
on the speech and the noise, minimizing D(Vs||WsHs) and
D(Vn||WnHn), respectively. Ws and Wn are each of size
nf × nb, where nb is the number of basis vectors chosen to
represent each source. Each column of W is therefore one of
the spectral “building blocks” we referred to earlier. Hs andHn

are of size nb × nst and nb × nnt, respectively, and represent
the time-varying activation levels of the basis vectors.

Also as part of the training phase, we estimate the statis-
tics of Hs and Hn. In [1], we computed the empirical means
and covariances of their log values assuming independence be-
tween frames, yielding μs, μn, ΛBs

, and ΛBn
where each μ is

a length nb vector and eachΛB is an nb×nb covariance matrix.
(The subscriptedB indicates that this covariance is across basis
functions within a frame.) We choose this implicitly Gaussian
representation for computational convenience, and we choose to
operate in the logarithmic domain because preliminary experi-
ments showed better results for the log domain than the linear
domain.

In this paper, we additionally compute empirical covari-
ances across frames, assuming independence across basis func-
tions. This corresponds to assuming that the log activation coef-
ficient for each basis function evolves over time as a stationary
Gaussian process. (Because a stationary Gaussian process can
be equally well characterized by either its autocovariance or its
power spectrum, our subsequent regularization can be thought
of as regularizing the modulation spectrum of each log activa-
tion coefficient.) This results in separate covariance matrices
for each basis function, kΛTs

and kΛTn
, k ∈ [1..nb]. (The

subscripted T indicates that these inter-frame covariances are
across time.) The size of these covariance matrices is nt × nt,
where nt is the number of frames in the spectogram being an-
alyzed. The details of how we construct and employ these co-
variance matrices are described below.

In the denoising stage, we fixWs andWn and assume that
they will continue to be good basis functions for describing
speech and noise. We concatenate the two sets of basis vec-
tors to form W of size nf × 2nb. This combined set of basis
functions can then be used to represent a signal containing a
mixture of speech and noise. Assuming the speech and noise
are independent, we also concatenate to form μ = [μs; μn]
and ΛB = [ΛBs

0; 0ΛBn
]. We now denote the combined

set of interframe covariance matrices as kΛT , k ∈ [1..2nb],
where k ∈ [1..nb] correspond to speech basis functions and
k ∈ [nb + 1..2nb] correspond to noise basis functions. We then
find anH to minimize the regularized objective function

Dreg(V ||WH) =
X

ik

(Vik log
Vik

(WH)ik

+ Vik − (WH)ik)

− αLB(H) − βLT (H) (1)

LB(H) = −
1

2

X

k

{(log H:,k − μ)TΛ−1

B (log H:,k − μ)

− log[(2π)2nb |Λ|]} (2)

LT (H) = −
1

2

X

k

{(log Hk,: − μk 1
T)

kΛ−1

T (log Hk,: − μk 1
T)T

− log[(2π)2nb |Λ|]} (3)

where 1T is a row vector of ones of length nt and where a colon
subscript indicates the use of an entire row or column ofH .
When α and β are zero, this is equal to the standard KL

divergence objective function [5]. For nonzero α and β, there
is an added penalty proportional to the negative log likelihood
under our jointly Gaussian models for log H . This term encour-
ages the resulting H to be consistent with the statistics of Hs

and Hn as empirically determined during training. Varying α
and β allows us to control the trade-off between fitting the ob-
served spectrogram of mixed speech and noise, V , and achiev-
ing high likelihood under our prior model, with α controlling
within-frame regularization and β controlling inter-frame reg-
ulariztion. Following [5], the multiplicative update rule for H
is

Hab ← Hab

P
i
WiaVib/(WH)ib

[
P

k
Wka + αϕB(H) + βϕT (H)]ε

(4)

ϕB(Hab) = −
∂LB(H)

∂Hab

= −
(Λ−1

B (log H:,b − μ))a

Hab

ϕT (Hab) = −
∂LT (H)

∂Hab

= −
(aΛ−1

T (log Ha,: − μa 1
T)T)b

Hab

where [ ]ε indicates that any values within the brackets less than
the small positive constant ε should be replaced with ε to pre-
vent violations of the nonnegativity constraint and avoid divi-
sions by zero.
Finally, to reconstruct the denoised spectrogram, we com-

pute V̂speech = WspeechH1:nb
, using the speech basis func-

tions and the top nb rows ofH to approximate the target speech.
In [1], we demonstrated the usefulness of within-frame reg-

ularization. In this paper, we focus on the usefulness of inter-
frame regularization. Figure 1 gives a simple toy example of
separating with and without inter-frame regularization. Here
we set nf = nb = 2, and we assume that for both speech and
noise, one basis function represents the high frequency and the
other represents the low frequency. The original signals are in
the left column, the unregularized NMF reconstructions are in
the center column, and the regularized NMF reconstructions are
in the right column. Source 1 is like a laid-back “surfer dude”
with slowly varying spectra, and source 2 is like a fast-talking
car salesman. Because the basis functions for the speech and
noise are the same, unregularized NMF is completely unable to
reconstruct the individual sources. Note however that its cho-
sen reconstructions do sum to accurately model the mixture sig-
nal, indicating that it successfully minimizedD(V ||WH). (Al-
though not shown, within-frame regularization also fails com-
pletely because the within-frame statistics of the two sources are
identical.) The temporally regularized NMF is able to exploit
the differences in modulation rates to accurately reconstruct the
two signals given only the mixture signal and their statistical
models. This example is extreme in that the two sources’ bases
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Figure 1: A toy example showing the advantage of regularizing across frames. Each panel is a spectrogram, where the horizontal axis
represents time and the vertical axis represents frequency. Darker colors represent higher intensity. The leftmost column shows the
original signals. For source 1, high- and low-frequency energies are modulated slowly and independently. For source 2, high- and
low- frequency energies are modulated rapidly and independently. In the middle column, unregularized NMF finds a reconstruction
that perfectly models the mixture signal, but each individual source is poorly reconstructed. In the rightmost column, near-perfect
reconstruction of individual sources is achieved by regularization.

and within-frame statistics are identical while their inter-frame
statistics are quite different, but it makes the potential of tempo-
ral regularization clear. We show in the following section that
incorporating this regularizing prior term does improve speech
denoising in practice.

3. Results
We tested NMF and regularized NMF on a variety of speak-
ers and with four different types of nonstationary background
noise (jackhammer noise, bus/street noise, combat noise, and
speech babble noise). All parameters remained at fixed val-
ues across all experiments. We used 16 kilohertz audio with
nf = 513 and nb = 80. When within-frame regularization
was used α = 0.25. When inter-frame regularization was used
β = 0.05. (The numerical values of α and β are meaning-
less without knowing the magnitude of the spectrogram values,
but we want to emphasize that they remained fixed throughout.)
To estimate ΛB , we simply estimate the empirical covariance
of the activation coefficients in our clean training data, assum-
ing that each frame is an independent observation. To estimate
the kΛT , we first compute the empirical autocovariance of our
clean training data out to a fixed maximum lag dmax (12 frames
in our experiments). We then form kΛT , a symmetric Toeplitz
band matrix with bandwidth 2dmax + 1, by putting the autoco-
variance at lag zero on the main diagonal and the autocovariance
for other lags on the corresponding minor diagonals. Because
there are nb separate kΛT , and because of its special structure,
it is much more efficient to exploit this structure in solving for
the elements of ϕT (H) than to invert kΛT explicitly. We sim-
ply use Matlab’s sparse solver, but additional optimizations may
be possible. Matlab implementations of NMF and regularized
NMF run in near real-time on a 3GHz PC.

We used speech from the TIMIT database [7], testing two
sentences from each of ten speakers in each of our four chosen
types of background noise. We normalized speech and noise

so that the average signal-to-noise ratio (SNR) for each mixture
was 0 dB. We trained a separate noise model for each of the four
noise types, and we trained a single speaker-independent speech
model on a group of several speakers from outside our test set.
This single model was then used to denoise noisy signals from
all test speakers.

Our results are shown in Figure 2. All results are shown
as improvement relative to the score of the unprocessed 0 dB
SNR mixture, and each bar represents an average value over ten
speakers. To quantify our results, we use the ITU Perceptual
Evaluation of Speech Quality (PESQ) [8], a metric designed to
match mean opinion scores of perceptual quality. PESQ scores
range from 1 through 5, and PESQ improvements on the order
of 0.5, which we achieve in many cases, are quite noticeable.

In addition to NMF and regularized NMF, we processed
each example with the ETSI Aurora front end’s Wiener filtering
[6], a European telecommunications standard which has been
carefully tuned for good performance in denoising speech. It
is important to note that, in contrast to the ETSI Wiener filter,
all of our NMF variants use both a training and a testing stage,
so they benefit from environment-specific noise models. The
ETSIWiener filter has no training stage, so its noise model must
be estimated online using a voice activity detector and assump-
tions about the stationarity of the noise. However, the ETSI
Wiener filter has an advantage as long as its voice activity de-
tector works properly because it can then completely silence
intervals with no speech activity, yielding very good denoising
in those intervals. Because of the major differences between the
two types of denoising, detailed comparisons of the results are
of limited use, but we feel that it is important to compare to an
established baseline and that some general conclusions are pos-
sible. The PESQ scores for both regularized and unregularized
NMF are almost always greater than for the ETSI Wiener filter,
and in many cases are substantially greater.

Overall, there is little difference between the results for
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Figure 2: Speech denoising performance for our chosen noise types. “ETSI” is the front end Wiener filtering described in [6]. “NMF”
is applying the iterative update in Equation 4 with no regularization, α = β = 0. “Inter” is applying Equation 4 with inter-frame
regularization only, α = 0, β = 0.05. “Intra” is applying Equation 4 with within-frame regularization only, α = 0.25, β = 0.
“Intra+inter” is applying Equation 4 with both types of regularization, α = 0.25, β = 0.05.

male speakers and female speakers. Note that regularization
in any form almost always substantially improves on the un-
regularized NMF results. This shows that the additional struc-
ture imposed by regularization (within-frame, across-frame, or
both) consistently improves the denoising performance across a
variety of background noises. Inter-frame and intra-frame reg-
ularization results are comparable, with inter-frame performing
better on jackhammer and bus noise. Jackhammer noise has
obvious temporal structure, and the bus noise includes a lot of
slowly idling engine noise, which also has pronounced tempo-
ral structure. We had hoped to see an additional jump in per-
formance by combining the two regularization terms, but with
the exception of a small improvement for jackhammer noise,
this did not happen. We speculate that the values of α and β
that were chosen for each individual type of regularization may
not be the best choices for the combined regularization. In the
future, we plan to more carefully explore the joint parameter
space.

The aforementioned trends are relatively consistent across
three of the four noise types, but performance on “babble” noise
departs from these trends. For “babble,” it appears that regular-
ization is not as helpful. We believe that regularization is not
as useful for babble because the distribution of the speech-like
babble noise is very similar to the distribution for speech itself,
both within a frame and between frames.

4. Conclusion
We have shown that NMF can be used to denoise speech in the
presence of nonstationary noise, and we have shown that by reg-
ularizing NMF based on a simple statistical model of speech and
noise, we can exploit additional signal structure to improve per-
formance. In particular, we showed that the use of inter-frame
regularization can improve speech denoising, especially when
the interfering noise has a pronounced temporal structure. Our
results equal or surpass results from a state-of-the-art Wiener
filter implementation on a range of noise types.

In the future, we would like to more carefully explore the
combination of intra- and inter-frame regularization, and we
plan to explore multi-scale temporal regularization to capture
even longer-term patterns.
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