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Abstract

The concept of using functional maps for representing dense correspondences between deformable shapes has

proven to be extremely effective in many applications. However, despite the impact of this framework, the prob-

lem of recovering the point-to-point correspondence from a given functional map has received surprisingly little

interest. In this paper we analyze the aforementioned problem and propose a novel method for reconstructing

point-wise correspondences from a given functional map. The proposed algorithm phrases the matching problem

as a regularized alignment problem of the spectral embeddings of the two shapes. Opposed to established methods

our approach does not require the input shapes to be nearly-isometric, and easily extends to recovering the point-

to-point correspondence in part-to-whole shape matching problems. Our numerical experiments demonstrate that

the proposed approach leads to a significant improvement in accuracy in several challenging cases.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Shape Analysis

1. Introduction

While identifying the similarity and correspondence of two
shapes can be done quite accurately by a human observer,
the automation of this shape matching task remains a chal-
lenging problem in many computer vision and graphics ap-
plications, see [KZHCO11] for an overview. The introduc-
tion of functional correspondences by Ovsjanikov et al. in
[OBCS∗12] is one of the most influential recent advances
in the case where the two shapes are related by a non-rigid
deformation. Instead of finding point-to-point mappings be-
tween the two shapes the authors proposed to determine a
linear operator, the so-called functional map, that maps be-
tween the spaces of square integrable functions on the re-
spective shapes. The recovery of a point-wise correspon-
dence can be seen as the limiting case of mapping peaks on
one shape to peaks on the other. The key advantage of the
functional map idea is that it can be represented quite com-
pactly as a low-dimensional matrix under a proper choice of
basis functions. In [OBCS∗12] the authors suggest the use
of the Laplacian eigenfunctions as a natural basis for smooth
functions on the respective shapes. Additionally, Laplacian
eigenfunctions have the desirable property of being invari-
ant to isometric transformations. Since smooth functions are
well approximated by the first few Laplacian eigenfunctions,
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Figure 1: Given a functional map as input, our method al-

lows to accurately recover and refine the underlying point-

to-point mapping, even under non-isometric deformations.

In the first row, color encodes distance to the ground-truth,

increasing from white to red. The input map and its opti-

mized version are shown in the second row.

one can “truncate” the representation of the functional map
by setting the images of all but the first few basis functions to
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zero. This leads to a very low dimensional representation of
the functional map while still keeping a good approximation
to the true shape correspondence.

Extensions of the functional map framework have been
proposed by several authors, covering the problem of
non-isometric deformations [PBB∗13, KBB∗13, RBW∗14,
KBBV15], partial similarity [RCB∗16, LRB∗16], clutter
[CRM∗16], shape exploration [ROA∗13, HWG14] and im-
age segmentation [WHG13] among others. However, despite
the success of these methods, there has been a general lack
of interest on the inverse problem of accurately reconstruct-

ing a point-wise map from its functional representation – a
common requirement in many practical applications.

The approach established by Ovsjanikov et al.

[OBCS∗12] recovers a point-wise map by a nearest-
neighbor search in the embedded functional space. While
this technique works well if the given functional map is
sufficiently close to a point-wise map, its performance
decreases significantly as the number of basis functions
for the functional map is reduced. An iterative technique
that alternates between estimating point-to-point correspon-
dences and updating the functional map can improve the
matching accuracy, however, only works under specific
assumptions on the initial functional map and the type
of deformation between the shapes. Extensions of such
iterative techniques have recently been applied to retrieve
exact bijections [VLR∗17], for near-isometric partial
matching [RCB∗16], and in a correspondence-less setting
for shape retrieval tasks [GT15].

Taking a slightly different direction of research,
[KBBV15] proposed to evaluate the quality of a functional
map without recovering a point-to-point correspondence by
adopting a soft error criterion.

Contribution. This paper builds upon our previous work
[RMC15] on the problem of accurate point-wise map recov-
ery from a given functional map. The following aspects are
our key contributions:

• To the best knowledge of the authors, we are the first to
rigorously state and analyze the point-wise map recovery
problem.

• We propose to consider the point-wise map recovery prob-
lem as a point cloud alignment problem in the embed-
ded functional space, and use a regularized probabilistic
model to ensure locally consistent point matching. Most
importantly, our model is not based on the (common)
assumption of the two shapes being related by a near-
isometry, and therefore extends to a significantly larger
class of possible applications.

We extend the results from our conference publication
[RMC15] in several different ways, including:

• The extension of the proposed technique to the part-to-full
shape matching problem.

• Extended numerical experiments further reinforcing our
claim that our method significantly outperforms the exist-
ing methods in both, the nearly-isometric and the inter-
class settings.

• Improving the applicability to large shape matching prob-
lems by providing an efficient gpu implementation of the
proposed approach.

2. Background

We model shapes as two-dimensional Riemannian mani-
folds M (possibly with boundary) with area element dµ.
We denote the space of square-integrable functions on the
manifold M by L2(M) = { f : M → R |

∫
M f 2dµ <

∞}, and use the standard L2(M) inner product 〈 f ,g〉M =∫
M f gdµ. In analogy to the Laplace operator in flat spaces,

the symmetric Laplace-Beltrami operator ∆M provides us
with all necessary tools for extending Fourier analysis to
manifolds. In particular, the manifold Laplacian yields an
eigen-decomposition ∆Mφi = λiφi for i ≥ 1, with eigenval-
ues 0 = λ1 < λ2 ≤ . . . and eigenfunctions {φi}i≥1 forming

an orthonormal basis of L2(M). Due to this property, any
function f ∈ L2(M) can be represented via the (manifold)
Fourier series expansion

f (x) = ∑
i≥1

〈 f ,φi〉Mφi(x) . (1)

Functional correspondence. Consider two manifolds M
and N , and let T : M → N be a bijective mapping be-
tween them. While classical shape matching approaches try
to identify point-to-point correspondences, i.e., the bijec-
tion T , directly, the idea of functional maps proposed by
Ovsjanikov et al. [OBCS∗12] is to consider an operator
TF : L2(M) → L2(N ), mapping functions on M to func-
tions on N via the composition TF ( f ) = f ◦ T−1. It is re-
markable that this seemingly simple idea allows to move
from identifying a map between manifolds to identifying a
linear operator between Hilbert spaces.

Because TF is a linear operator, it is fully defined by the
images of any basis {φi}i≥1 of L2(M). By also choosing a

basis {ψi}i≥1 of L2(N ), the operator TF can equivalently
be represented by coefficients (ci j), e.g., for orthonormal
{φi}i≥1 and {ψi}i≥1 and arbitrary f ∈ L2(M) one finds

TF ( f ) = ∑
i j≥1

〈 f ,φ j〉M 〈TF (φ j),ψi〉N
︸ ︷︷ ︸

ci j

ψi . (2)

The application of TF is expressed by linearly transforming
the expansion coefficients of f from basis {φi}i≥1 onto ba-
sis {ψi}i≥1. Since the transformation is encoded in the co-
efficients ci j, the (possibly infinite) matrix C = (ci j) pro-
vides a representation of TF for given bases. Seeking a func-
tional correspondence among the two shapes then amounts
to determining the unknown C that satisfies certain mapping
constraints (e.g., preservation of descriptors) [OBCS∗12]
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Figure 2: The matrix representation of a functional map

w.r.t. harmonic basis functions has a diagonal structure, with

an angle depending on the amount of surface overlap be-

tween the two shapes. Note how the map between M and

Npart (bottom) is manifestly low rank, with a rectangular

sub-matrix Cr and a bottom block consisting of zeros. On

the left, corresponding points are assigned the same color.

or manifesting a specific structure (e.g., diagonally domi-
nant) [PBB∗13, KBBV15].

Remark. When choosing indicator vectors supported at
each point as the finite bases {φi}

n
i=1, {ψ j}

m
j=1, one obtains

the classical representation of the correspondence as a n×m

binary matrix (a permutation matrix if n = m and T is as-
sumed to be bijective).

Basis truncation. As suggested in [OBCS∗12], the eigen-
functions {φi}i≥1, {ψi}i≥1 of the respective Laplacians
yield a particularly interesting choice for the aforementioned
bases: In case the two shapes to be compared are related by a
near-isometry, the equality ψi = ±φi ◦T−1 holds (approxi-
mately) for all i≥ 1, which leads to the matrix representation
C of the functional map being diagonal, ci j = 0 if i 6= j.

With this choice of a basis, the authors of [OBCS∗12] pro-
posed to truncate the series (2) after the first k coefficients,
which is equivalent to taking the upper left k×k submatrix of
C as an approximation of the full map. The matrix is diago-
nally dominant with an off-diagonal spread at the high end of
the spectrum (see Fig. 2 top). Such a structure is manifested
due to the approximate equality ci j = 〈TF (φ j),ψi〉N ≈±δi j .

Partial functional correspondence. In case one of the two
shapes has holes or missing parts, the functional representa-
tion of the correspondence still has a meaningful structure,
as recently shown in [RCB∗16]. Let N be a partial shape,
M a full shape, and let M′ ⊂ M be the region of M cor-
responding to N under a near-isometry T : N →M′. Then,
for each eigenfunction ψi of N there exists an eigenfunc-
tion φ j of M for some j ≥ i, such that φ j ≈±ψi ◦T−1 (see
Fig. 3). In other words, the eigenfunctions of the Laplacian
are still compatible under partiality, but some eigenfunctions

ψ2 ψ3 ψ4 ψ5 ψ6

φ2 φ5 φ6 φ8 φ10

Figure 3: Each eigenfunction ψi of the Laplace-Beltrami

operator of a partial shape (top row) can be put into approx-

imate correspondence with an eigenfunction φ j of a near-

isometric full shape (bottom row) for some j ≥ i. The vice

versa does not hold.

of the full shape do not have a corresponding counterpart
on the partial shape. This results in a matrix C manifesting
a slanted diagonal structure (Fig. 2 bottom), with an angle
depending on the area ratio of the two surfaces [RCB∗16].
Note that in this paper we only consider the part-to-whole
case as done in [RCB∗16,CRB∗16], i.e., only one of the two
shapes is allowed to have missing parts.

3. Point-wise map recovery

The functional map representation greatly simplifies
correspondence-based tasks. If the harmonic basis is trun-
cated to k basis functions, the shape matching problem boils
down to solving for k2 unknowns, where k is possibly very
small (typically in the range of few tens / hundreds) . At the
same time, the truncation has the effect of ‘low-pass’ filter-
ing, thus producing smooth correspondences. In many ap-
plications, however, it is desirable to reconstruct the point-
to-point mapping induced by the functional map. Thus, the
interest shifts to the inverse problem of recovering the map
T from its functional representation TF .

Let us now consider the discretized problem. Let M and
N be represented by triangular meshes with m and n nodes
respectively (with M being possibly a partial shape), and as-
sume that the matrices Φ∈R

m×k, Ψ∈R
n×k contain the first

k basis vectors of some ordered basis, e.g., arising from the
eigendecomposition of the discretized shape Laplacians. For
the sake of simplicity we assume Φ and Ψ to be weighted
versions of the true eigenfunctions, allowing us to consider
the standard scalar product in all equations instead of the
manifold inner product. Note that in this case the truncated
bases matrices meet Φ⊤Φ = Ik, but ΦΦ⊤ 6= Im (due to trun-
cation), and similarly for Ψ.

Throughout this paper we take the simplifying assump-
tion that nodes can be matched exactly; in other words,
we assume either the same tessellation, or a uniform point

submitted to COMPUTER GRAPHICS Forum (4/2017).



4 E. Rodolà, M. Moeller, D. Cremers / Regularized point-wise map recovery from functional correspondence

distribution on the two shapes. This assumption allows us
to represent the pointwise map T as a binary matrix P ∈
{0,1}n×m. In the specific case in which it is known that the
given shapes originate from two different deformations of
the same template, then n = m and matrix P is expected
to be a permutation. Such a setting arises, for instance, in
shape modeling and texture transfer applications [KS04]. In
the general nearly-isometric setting with n 6= m it is always
possible to consider an equal number of points on the two
shapes (obtained, for instance, by farthest point sampling),
and seek for a permutation among the two reduced point
sets [MDK∗16]. In the sequel we will work with the gen-
eral case n 6= m, which also models the setting in which one
of the two shapes has missing parts.

In matrix notation, the expression for ci j (2) is written as

C = Ψ⊤
PΦ , (3)

where C = (ci j) ∈ R
k×k. Note that the matrix C is now a

rank-k approximation of TF . The problem of recovering the
point-wise map from a given functional map, which is the
objective of this work, can now be stated mathematically as
finding the matrix P from the sole knowledge of C, Φ, Ψ.

Assumptions. In order to be as general as possible, we do
not assume the matching process which generated the given
functional map to be known. Additionally, we do not require
any particular properties of C (e.g., orthogonality), hence al-
lowing to recover maps between shapes undergoing arbitrary
deformations. Our main focus is on the adoption of the func-
tional map representation for the purpose of shape match-
ing. Within this context, our only requirement is that the
matrix representation C is given w.r.t. known bases Φ, Ψ.
These bases, in turn, may come from diverse optimization
processes such as [PP93, KBB∗13, NVT∗14].

3.1. The inverse problem of point-to-point map recovery

Considering the problem of recovering P from a given C

according to (3) as a (highly underdetermined) ill-posed in-
verse problem, the natural recovery problem to consider is

P
∗ = arg min

P∈{0,1}n×m
D(C,Ψ⊤

PΦ)+αJ
P(P) (4)

s.t. P
⊤

1 = 1 , P1 ≤ 1 , (5)

for a suitable measure of distance D, a regularization func-
tion JP to possibly impose some kind of desired smoothness
of the transformation, and a regularization parameter α de-
termining a trade-off between fidelity and regularity. In gen-
eral, the minimization of (4)-(5) can be very challenging. As
we showed in [RMC15], for n = m and by considering the
equality P1 = 1 we get a quadratic assignment problem as
a special case. We start our discussion by analyzing the cur-
rently adopted approximations of the latter problem.

Mapping indicator functions. The simplest and most di-
rect way for reconstructing the pointwise map T from TF

consists in mapping highly peaked Gaussian functions δx for
each point x ∈M via TF , obtaining the image g = TF (δx),
and then declaring T (x) ∈N to be the point at which g

attains the maximum [OBCS∗12]
(such a procedure applies without
changes to the partial case). Such
a method, however, suffers from at
least two drawbacks. First, it re-
quires mapping delta functions for
all shape points, which can get ex-
pensive for large meshes. Second,
the low-pass filtering due to the ba-
sis truncation has a delocalizing effect on the maximum of
g (see inset), affecting the quality of the final pointwise as-
signment.

Linear assignment problem. Instead of applying general
greedy methods or relaxation techniques to (4), let us recall
some observations from [OBCS∗12]. In particular, note that
the delta function δx : M→{0,1} around point x has coeffi-
cients (φi(x))i=1,...,k in the Laplacian basis. This can be seen

by observing that the inner product Φ⊤δx is selecting the
column of Φ⊤ corresponding to point x. Therefore, the im-
age via TF of all indicator functions centered at points of M
is simply given by CΦ⊤. Recovering the point-to-point map
could then be solved by finding the correspondence between
the columns of CΦ⊤ and the columns of Ψ⊤.

In the full-to-full case with n = m, measuring the proxim-
ity between these columns in the ℓ2 sense gives rise to the
linear assignment problem (LAP):

min
P∈{0,1}n×n

‖CΦ⊤−Ψ⊤
P‖2

F (6)

s.t. P
⊤

1 = 1 , P1 = 1 . (7)

We refer to the Appendix for a proof of equivalence between
(6)-(7) and the LAP in standard form.

Although the problem above admits a polynomial time so-
lution [Kuh55], typical shape sizes (several thousands of ver-
tices) make computing this solution very expensive in prac-
tice [BÇ99]. Furthermore, the LAP formulation requires an
equal number of samples on the two shapes and the absence
of partiality.

Nearest neighbors. The authors of [OBCS∗12] circumvent
the computational costs of the above approach by proposing
a nearest-neighbor technique for the recovery of the point-to-
point correspondence. In the light of our previous analysis
their idea is to consider the matching of every point, i.e.,
column of CΦ⊤, to its nearest neighbor in Ψ⊤ separately.

Mathematically, the nearest-neighbor approach can be
seen as a relaxation of problem (6)-(7), in which one seeks
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for the best left-stochastic approximation P, i.e.,

min
P∈{0,1}n×m

‖CΦ⊤−Ψ⊤
P‖2

F (8)

s.t. P
⊤

1 = 1 . (9)

In other words, in comparison to (7) one omits the constraint
of P1 = 1. The omission allows to minimize the problem
above by independently solving for columns of P, one per
query. Note that such a separable optimization approach may
produce one-to-many mappings as a result of the recovery
process. Moreover, it is an asymmetric method: looking for
nearest neighbors from Ψ⊤ to CΦ⊤, or vice-versa, will in
general produce different results. The nearest-neighbor ap-
proach was also applied in [RCB∗16] for the partial case.

Our method. The analysis we provided above puts in evi-
dence two major drawbacks, namely: 1) The linear assign-
ment and the nearest-neighbor approaches rely on the as-
sumption that the input functional map C aligns well the
columns of Φ⊤ with those of Ψ⊤ in the ℓ2 sense. 2) None
of the above approaches incorporates regularity assumptions
for the alignment process, i.e., the regularization term JP in
the general inverse problem formulation (4) was omitted.

We propose to cast the point-to-point map recovery as a
probability density estimation problem to obtain both, a bet-
ter measure of proximity than the ℓ2 distance and a tool to
impose regularity assumptions on the alignment map. Within
our model, we interpret the columns of CΦ⊤ as modes of a
continuous probability distribution defined over Rk (the em-
bedded functional space), while columns of Ψ⊤ constitute
the data, i.e., a discrete sample drawn from the distribution.
The task is then to align the modes to the data, such that the
point-to-point mapping can be recovered as the maximum
posterior probability.

As a model for the distribution we consider a Gaussian
mixture (GMM) with m components, having the columns
of CΦ⊤ as centroids in R

k. For simplicity, we assume the
components have uniform weight 1

m , and equal covariances

σ2. Furthermore, in order to account for partiality, we relax
the surjectivity requirement on the map and add a dummy
node to the mixture. The purpose of this node is to absorb
mismatches and outliers, acting as a slack variable; a similar
approach was taken, e.g., in [GR96, MS10, PBB∗13]. With
this model, the GMM density function is:

p(y j) = (1−w)
1
m

m

∑
i=1

p(y j|xi;σ2)+w
1
m
, (10)

where we write y j and xi to denote the columns of

Ψ⊤ and CΦ⊤ respectively, and define p(y j|xi;σ2) =

1
(2πσ2)k/2 exp(−‖y j−xi‖

2

2σ2 ). The coefficient w ∈ [0,1] weighs

the relative contribution of the GMM and the slack (the lat-
ter being modeled as a uniform distribution) and reflects our
prior knowledge on the amount of overlap (i.e., surface in
common) between the two shapes.

Now let Rθ : Rk → R
k denote the (unknown) transforma-

tion aligning the centroid locations xi to the data points, ac-
cording to a set of transformation parameters θ. The align-
ment problem can then be solved by maximizing the like-
lihood, or equivalently by minimizing the negative log-
likelihood function

L(θ,σ2) =−
n

∑
j=1

log

(

(1−w)
1
m

m

∑
i=1

p(y j|Rθ(xi);σ2)+w
1
m

)

.

(11)

Note that the argument that minimizes (11) can be also inter-
preted as the argument that minimizes the Kullback-Leibler
(KL) divergence between a continuous GMM distribution
(represented by the xi = (CΦ⊤)i) and a mixture of Dirac
distributions (represented by the y j = (Ψ⊤) j). By following
the notation of Eq. (4), the above probabilistic model can be
written in matrix form as

P
∗ = argmin

σ,P∈[0,1]n×m,P⊤1=1

D
σ
KL(CΦ⊤,Ψ⊤

P)+αJ
P(P) .

(12)

The data term implements the loss (11), which measures
the Kullback-Leibler divergence between the two point sets
arising from the spectral representation of the two shapes.
Before we detail our choice of the regularization JP(P) in
the next paragraph let us mention that for a given solution
P∗ of (12), one could consider the posterior probabilities
(P∗)i j = p(xi|y j) in order to produce the final assignment.
In our numerical experiments we, however, found the ap-
plication of the nearest neighbor method to the non-rigidly
aligned point clouds to yield superior results. Note that this
results in a binary assignment P∗, hence no further post-
processing is needed.

Regularization. The above probabilistic model leaves
some freedom for the specific choice of a transformation Rθ

(see Eq. (11)). A simple example is choosing this transfor-
mation as a simple rotation, parametrized by θ. To be more
flexible we instead propose to regularize the displacement
field defined by V := CΦ⊤ −Ψ⊤P, which consists of the
displacement vectors for aligning each point (CΦ⊤)i with
its corresponding point (Ψ⊤P)i. This corresponds to a gen-
eral non-rigid transformation of one point set onto the other.
Assuming that the true displacement field is locally smooth
gives rise to using the Tikhonov regularization ‖ΓΓΓV‖2 pro-
posed in [YG89,MS10]. Here ΓΓΓ denotes a low-pass operator
promoting smoothly changing velocity vectors, and hence a
locally coherent motion.

More precisely, it was shown in [MS10] that the mini-
mization of ‖ΓΓΓV‖2 is equivalent to regularizing

∞

∑
l=0

wl

∫
‖D

l
v(x)‖2

dx

for weights wl and the derivative operator D such that
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Figure 4: A few iterations of the minimization process for

problem (13). The shape shown inside the plot is matched

to the reference shape on the left. The curve shows the av-

erage geodesic error induced by the point-wise correspon-

dence obtained at each iteration. The error is visualized as

a heat map encoding distance to ground truth, growing from

white to hot colors (white means zero error).

D2lv = ∆lv and D2l+1v =∇∆lv, for ∆ denoting the Laplace
operator. Note that our regularization includes the penal-
ization of ‖∇v(x)‖2, which is also known as the Dirich-
let energy. Although the Dirichlet energy has been con-
sidered in the context of shape matching in [KBBV15]
before, here we take a significantly different approach:
While the Dirichlet energy was used in [KBBV15] to
induce smooth images of indicator functions under the
functional mapping, we use it as a regularization for
the displacement field aligning the two point clouds aris-
ing from the spectral representation of the two shapes.
To illustrate this idea, the inset
shows a smooth velocity field with
coherent correspondences (blue)
and a mismatch produced by simple
nearest-neighbors (red). Combining the motion coherence
regularization with the objective function we obtain

P
∗ = argmin

σ,P∈[0,1]n×m,P⊤1=1

D
σ
KL(CΦ⊤,Ψ⊤

P)

+λ‖ΓΓΓ(CΦ⊤−Ψ⊤
P)‖2 , (13)

where λ > 0 is a trade-off parameter between likelihood and
regularity (set to λ= 3 in our experiments). We refer to Fig. 5
for a sensitivity analysis with respect to this parameter.

General alignment problems like (13) have been widely
researched in computer vision, and several robust algo-
rithms exist for these tasks [CR00, TK04, MS10, JV11].
Most of these approaches follow an iterative scheme, opti-
mizing w.r.t. {V ≈ CΦ⊤ −Ψ⊤P,σ} and P = (p(xi|y j))i j

in an alternating fashion until convergence (EM algorithm
[DLR77]). In our experiments, we used publicly available
code from [MS10], which allows to optimize over smooth
displacements as in Eq. (13).

In Fig. 4 we show a few iterations of the EM recovery
process applied to a pair of nearly-isometric shapes, starting
from a functional map obtained as described in Section 5.
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Figure 5: Effect of the regularization parameter λ (see

Eq. (13)) on the quality of the recovered point-wise map.

For λ →∞ we enforce the Dirichlet energy of the displace-

ment to be zero and hence restrict ourselves to a rigid align-

ment, which naturally leads to approximating the accuracy

of ICP (red line). For λ = 0 (no regularization) we do not

enforce consistent motion at all and obtain slightly worse

results than ICP.

4. Point-wise map refinement

As a general representation for shape correspondences, func-
tional maps can be adopted to compactly encode (via Eq. (3))
dense point-to-point maps obtained by any matching algo-
rithm such as [KLF11, RBW∗14]. Therefore, one can con-
sider improving an input noisy point-to-point map (i.e., to
remove mismatches that are manifested as high-frequency
noise) by following a simple two-step procedure: First, the
input map is represented as a functional correspondence C;
then, the point-to-point map P is recovered again by follow-
ing the robust recovery method we described in the previous
section. Naturally, one can repeat such a strategy and iterate
between updating the point-to-point correspondence and the
functional map. Images of delta functions under the result-
ing ‘refined’ functional map will be sharper and exhibit less
spread than the initial map.

Such an iterative procedure was first considered in
[OBCS∗12], where the authors proposed to use the classical
Iterative Closest Point (ICP) algorithm [BM92]. The latter
updates P according to the nearest-neighbor approach (8),
followed by a refinement of C via

min
C∈Rk×k

‖CΦ⊤−Ψ⊤
P‖2

F (14)

C
⊤

C = Ik , (15)

which is an orthogonal Procrustes problem. Intuitively, this
can be seen as a rigid alignment in R

k between point sets
Φ⊤ and Ψ⊤P (see Fig. 7(b) for an example). The alternating
minimization w.r.t. C and P is repeated until convergence.

Although the ICP approach described above allows to
achieve significant improvements in terms of map accuracy,
the orthogonality constraints (15) imposed on the functional
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RC (35.85%) R C (15.98%)

= ×

Figure 6: Solving problem (16) gives rise to the refined func-

tional map shown on the left, where k = 20. The refined map

attains a higher percentage of exact matches (reported in

parentheses) than the initial map. The optimal transforma-

tion (middle) essentially delineates the refinement process as

a perturbation of the identity.

correspondence limit its applicability to a specific class
of transformations, namely the class of volume-preserving

isometries (see [OBCS∗12] Theorem 5.1). Therefore, the
method cannot be applied to refine maps between shapes un-
dergoing arbitrary deformations.

For a more general refinement procedure, we drop the or-
thogonality constraints (15) and instead optimize over a gen-
eral transformation R that is applied to the given C . Specif-
ically, we consider the general problem

min
R∈Rk×k

‖RCΦ⊤−Ψ⊤
P‖2

F +βJ
C(R), (16)

for a regularization functional JC which could encourage RC

to correspond to a smooth transformation, or could require
R to be a small perturbation of the identity. While for the
specific example

J
C(R) =

{

0 if (RC)⊤RC = Ik,
∞ else,

problem (16) coincides with the rigid alignment problem
arising from the constraint (15), a less restrictive choice
for the regularization functional JC makes the method suit-
able for recovering functional maps for non-isometric shape
matching problems.

In our experiments we found that when (16) is com-
bined with our proposed regularized probabilistic model (13)
(which provides the input assignment P), it is sufficient to
simply update R in a least-squares sense: In other words, we
simply set β = 0 and solve the resulting problem. By do-
ing so, R is determined to be a perturbation of the identity
as illustrated in Fig. 6. The fact that C is refined in a non-

rigid fashion can improve the refinement results significantly
in comparison to orthogonal updates of C as illustrated in
3d in Fig. 7. A similar alignment procedure was considered
in [MHK∗08, LGPC13] in lower dimensions for articulated
object matching.

Partial matching. In the partial setting, the refinement pro-
cess is complicated by the fact that the two shapes are re-
lated by a non-rigid transformation mapping the spectral em-

reference

(a) (b) (c)

Figure 7: The refinement of a rank-k functional map can be

seen as the alignment of two point sets in R
k. Here the ref-

erence shape (left) is matched to the pose shown in the three

columns. In the top row we illustrate the action of different

refinement methods when k = 3, with the two point sets be-

ing plotted as red and white point clouds. (a) Initial map; (b)
Solution after orthogonal refinement (14); (c) Solution ob-

tained with our approach (16). In the bottom row we show

the color-coded pointwise matches w.r.t. the reference shape

(corresponding points have the same color) when k = 50.

bedding of the partial shape (Ψ⊤) to some unknown subset

of the embedding of the full shape (CΦ⊤). The two spec-
tral embeddings overlap only partially, with a pre-alignment
provided by the initial C (see Fig. 8 left). In [RCB∗16]

Ψ⊤

Φ⊤

CΦ⊤

Figure 8: Left: When the two shapes have missing parts,

their embeddings in R
k overlap partially. Shown here are

the first three dimensions of Ψ⊤ (red) and CΦ⊤ (white) for

Npart and M from Fig. 2. Right: Multiplication by C in the

partial case jointly aligns and projects the spectral embed-

ding of the full shape onto a lower-dimensional subspace.

the authors showed how to compute such a pre-alignment,
and subsequently used the nearest-neighbor approach to re-
cover a partial pointwise map. Specifically, their optimal C

is such that CC⊤ ≈
(

Ir 0
0 0

)

. This property induces a slanted-

diagonal structure on C, with the top non-zero block Cr be-
ing orthogonal (see Fig. 2) – hence resembling the ICP pro-
cedure of (14)-(15).

We note here that multiplying Φ⊤ by a slanted-diagonal C

has a double action. First, as in the full case, the application
of C has the effect of aligning the point sets Φ⊤ and Ψ⊤;
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by the requirement that CrC⊤
r ≈ I, this alignment is asked

to be as rigid as possible. Second, the zero block of C sets
the last k− r coordinates of the aligned point set CΦ⊤ to
zero. This corresponds to an orthogonal projection onto a r-
dimensional subspace of Rk, where the point sets align well.
This joint effect is illustrated for k = 3 and r = 2 in Fig. 8.

A similar interpretation can be given to our probabilis-
tic recovery procedure. We now seek for the best non-rigid

alignment between Ψ⊤ and the projected point set CΦ⊤.
Following Eq. (10), we also need an estimate w ∈ [0,1] for
the overlap between full and partial shape. While this can
be easily obtained by computing the area ratio of the two
shapes, a better option is to use once again an estimate of
the rank of C (in fact, as a consequence of Weyl’s law, we
get |N | ≈ r

k |M| [RCB∗16]). Our choice is motivated by the
fact that the ratio of r over k is more aware of the deforma-
tion relating the two shapes than the simple ratio of surface
areas. Hence, we set w = 1− r

k . Note that this estimate is
general in that it also applies to the full-to-full case, since in
this case one obtains w ≈ 0.

5. Experimental evaluation

We compare our iteratively refined probabilistic point-wise
map recovery method with the iterative refinement proce-
dure of Ovsjanikov et al. [OBCS∗12] (denoted as ICP, see
Section 4), and with the ICP-like procedure described in
[RCB∗16] for partial matching. The two methods are, to
the best of our knowledge, the only existing alternatives
to date. All algorithms were implemented in Matlab/MEX
and executed (single-core) on an Intel i7-3770 3.4GHz cpu
with 32GB memory. We also realized an accelerated gpu
implementation of our method, and tested it on an Nvidia
GTX 750s. Code and data for our method are available for
download at http://sites.google.com/site/erodola/
publications/.

As a measure of error, we use the quantitative criterion
that was introduced in [KLF11] to evaluate the quality of
point-wise maps. The input quantity in our case is a func-
tional map C, which is then converted to its point-wise coun-
terpart using each method. We plot cumulative curves show-
ing the percent of matches which have normalized geodesic
error smaller than a variable threshold.

Each method is evaluated quantitatively on the
FAUST [BRLB14] and KIDS [RBW∗14] datasets, and
qualitatively on the TOSCA [BBK08] dataset. The shapes
from TOSCA and KIDS were remeshed independently to
∼10K vertices each by iterative edge contractions [GH97],
so as to avoid identical meshings and make the data more
challenging. The three datasets include isometric as well
as non-isometric shapes; in particular, FAUST and KIDS
also include point-to-point ground truth matches between
shapes belonging to different classes. For the evaluation on
partial shapes we used the TOSCA “cuts” dataset that was
introduced in [RCB∗16].
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Figure 9: Left: Comparisons with nearly-isometric shapes;

in this setting, orthogonal refinement (ICP) already provides

accurate point-to-point recovery, which can be further im-

proved by applying our algorithm. Right: Reference for nor-

malized geodesic error. Colors are labeled by distance ac-

cording to the legend.
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Figure 10: Comparisons with non-isometric shapes. In this

case, the lack of orthogonality in C drives ICP to poor solu-

tions. This is especially evident with the KIDS dataset, where

the shapes have a larger variety in the geometry; here, our

method improves upon ICP by 40%. Note the different error

ranges for the two plots.

Comparisons. The functional maps used in the compar-
isons are constructed by solving a least-squares system
CA = B, where matrices A and B contain the Fourier co-
efficients of indicator functions for corresponding points on
the two shapes. The point-to-point correspondence is estab-
lished using the ground truth, while the indicator functions
are approximated as highly peaked Gaussians around each
point. We use 35 sparse matches for constructing the ini-
tial C, distributed according to a farthest point sampling us-
ing the Euclidean metric. This way, we simulate a matching
process that provides reasonably good solutions for further
refinement. Note that this process is more realistic than what
we did in [RMC15], where the functional map was initial-
ized by matching corresponding regions [RBC14].

We show comparisons both in the intra-class (near-
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Figure 11: Left: Performance of each method with func-

tional maps constructed from k ground-truth matches, as the

value of k increases from 3 to 35. Right: Performance at in-

creasing outlier ratio; in this experiment, random pairs of

points are injected in the set of matches used to construct

the input functional maps. Observe how both our method

and ICP remain stable at increasing noise levels.

isometric) and inter-class (non-isometric) settings. In the for-
mer case, we use the complete intra-class template subset of
FAUST, which consists of 90 pairs of humans in different
poses subdivided into 10 different individuals. All shapes
have n = 6890 points, and the functional map is computed
with k = 30 basis functions. Since we only use 35 known
matches to construct the initial C, this setup makes it chal-
lenging for any method to recover the exact point-wise map.
Results are reported in Fig. 9 (left), where we also included
plain nearest-neighbors (NN) as a baseline. From the plotted
curves we can see that orthogonal ICP is performing slightly
better than our method on near-isometric deformations, since
the approach is specifically tailored for this particular case.
However, initializing our method with the output of ICP al-
lows to achieve 10% further improvement on average.

In Fig. 10 we show the same curves for the non-
isometric case (inter-class matching) on the FAUST and
KIDS datasets, consisting respectively of 90 and 45 pairs of
different individuals under different poses. In this case, the
accuracy of orthogonal refinement worsens due to the dif-
ferent properties of the input functional maps, which now
relate shapes under non volume-preserving transformations.
On FAUST data, the discrepancy with our method increases
to 20%, while it rises to 40% with KIDS shapes.

We additionally studied the change in performance of
each method when fed with noisy functional maps as in-
put (Figure 11, see caption for details). As we can see
from the plots, the relative performance of each method is
not strongly affected by the quality of the input. Finally,
in Fig. 12 we plot the results obtained by each method on
the FAUST dataset, when the initial functional map comes
from an actual matching pipeline (namely the random for-
est method of [RBW∗14]). We see that the accuracy im-
provements reflect the ones observed in the simulated set-
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Figure 12: Comparisons on the FAUST dataset, where each

problem is initialized with a functional map obtained with

the random forest method of [RBW∗14].

ting, with even a bigger improvement over ICP (>30%) in
the inter-class experiments. Additional qualitative compar-
isons are shown in Fig. 13.

Rank. In a second set of experiments, we evaluate the capa-
bility of each method to recover point-wise maps from func-
tional maps of increasing rank. In this setting, we assume
the input functional map to be as accurate as possible, and
for this purpose we construct it explicitly as C = Ψ⊤PΦ,
where P is the ground-truth permutation among the vertices
of the two shapes. We do so for a pair of approximately iso-
metric shapes, so that the respective eigenbases Φ and Ψ are
as compatible as possible, and further orthogonal refinement
is not needed (indeed, applying ICP in this setting actually
yielded worse results in our tests).

The results are shown in Fig. 14. As the number k of
basis functions used on the two shapes (i.e., the rank of
C) increases, so does the amount of exact correspondences
recovered by each method. This is also true for the sim-
ple approach mapping indicator functions (Max), since the
smoothing effect due to basis truncation is reduced at in-
creasing values of k.

Our method allows to recover up to 20% more exact

matches than the nearest-neighbors approach. In particular,
with k = 100 (a commonly used value in most shape match-
ing pipelines) we are able to perfectly reconstruct 75% of the
rows/columns of P (a 6890×6890 matrix in this example).

Partial matching. In Fig. 15 we show comparisons with
the ICP-like approach of Rodolà et al. [RCB∗16]. The com-
parisons are performed on the cat and dog classes of the
TOSCA “cuts” dataset, consisting of 95 matching problems
among near-isometric shapes with missing parts. Note that,
due to the nearly isometric transformations, ICP already gets
accurate results which we further improve upon by 10% on
average. This is consistent with what we observe in the near-
isometric case among full shapes (see Fig. 9).
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Figure 13: Refinement examples in different matching sce-

narios. In each row we show the source shape (left), followed

by the map errors produced by ICP (middle) and our method

(right); the error is visualized as a heat map encoding dis-

tance to the ground truth, growing from white to black. The

two methods perform comparably well in the near-isometric

case, but the orthogonal refinement of ICP yields large er-

rors with more general deformations and missing parts.

Complexity issues. The time performance of our method
depends on two factors: the number of shape points n, and
the size of the functional map k. As we also show in Fig. 4,
typically a few iterations of the EM algorithm are sufficient
to reach accurate solutions, and in practice we used 5 iter-
ations in all our experiments. In the common case where
n = 10,000 and k = 30, the cpu implementation of our

n cpu gpu (double) gpu (single)

7K 30.81 10.70 6.38

10K 92.02 21.80 12.85

Table 1: Average running times (in seconds) for 5 iterations

of our algorithm, on shapes from the FAUST (first row) and

TOSCA (second row) datasets.
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Figure 14: Percentage of exact correspondences (solid

curves) recovered from ground-truth functional maps of in-

creasing rank among the two shapes shown on the right. We

also report the percent of correspondences with geodesic er-

ror smaller than 0.02 (dashed curves).

method takes on average 1 min. 30 sec. to converge, while
ICP using exact search structures adds up to ∼15 sec.

In order to improve its efficiency, we also implemented
our algorithm in gpu using cuBLAS [cub15], CULA [cul14],
and matrix slicing to circumvent memory limitations. Run-
time comparisons with the cpu implementation on two
datasets of different sizes are reported in Tab. 1. In the table
we include the runtimes obtained with double- and single-
precision arithmetics, where the latter is observed to improve
runtime performance at a negligible decrease in accuracy.

6. Discussion and conclusions

In this paper we formulated a general variational recov-
ery approach for the inverse problem of computing point-
to-point correspondences from a given functional map. We
introduced a probabilistic model for point-wise map recov-
ery and considered a refinement of the functional map that
does not rely on the assumption of isometric shapes. In this
context, the refinement procedure can be seen as a non-
rigid alignment between the spectral embeddings of the two
shapes. We further showed how this method can be naturally
adapted to a setting in which one of the two shapes has miss-
ing parts. The experimental results showed that the proposed
approach yields up to 10% accuracy improvements under
partiality transformations, up to 40% with non-isometric de-
formations, and reaching up to 75% exact point-to-point
matches under good initializations.

The main limitation of our recovery method lies in the fact
that – similarly to previous approaches – the optimization
procedure is biased towards one of the two shapes, as one
can for instance see from the interpretation of minimizing
the (non-symmetric) Kullback-Leibler divergence. Incorpo-
rating a symmetric term in the probabilistic model to remove
this bias (i.e., solving for the map and its inverse simultane-
ously) represents a possibility. Second, the partial similarity
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Figure 15: Comparisons with partial shapes on a subset of

the TOSCA “cuts” dataset. pICP denotes the ICP-like re-

covery technique of [RCB∗16] for part-to-whole matching.

In the bottom row, corresponding points have the same color.

setting considered in this paper allows only one of the two
shapes to have missing parts. Deformable matching of par-
tial shapes in presence of occlusions and clutter remains a
challenging problem, and an interesting direction of further
research.
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Appendix

We prove that the following problem:

min
P∈{0,1}n×n

‖CΦ⊤−Ψ⊤
P‖2

F (17)

s.t. P
⊤

1 = 1 , P1 = 1 (18)

can be rewritten equivalently as a linear assignment problem
in standard form. First, note that the constraints on P require
this matrix to be a permutation. Next, observe that

‖CΦ⊤−Ψ⊤
P‖2

F = ‖CΦ⊤‖2
F +‖Ψ⊤

P‖2
F −2〈CΦ⊤,Ψ⊤

P〉

= ‖CΦ⊤‖2
F +‖Ψ⊤‖2

F −2〈ΨCΦ⊤,P〉

holds for permutation matrices P. Since we are interested
only in the argument that minimizes (17) subject to (18), we
can discard the first two summands and thus arrive at the
linear assignment problem:

min
P∈{0,1}n×n

−〈ΨCΦ⊤,P〉 (19)

s.t. P
⊤

1 = 1 , P1 = 1 . (20)
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