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High Dimensional Model Representation (HDMR) is under active development as a

set of quantitative model assessment and analysis tools for capturing high-dimensional

input–output system behavior. HDMR is based on a hierarchy of component functions

of increasing dimensions. The Random-Sampling High Dimensional Model Represen-

tation (RS-HDMR) is a practical approach to HDMR utilizing random sampling of

the input variables. To reduce the sampling effort, the RS-HDMR component functions

are approximated in terms of a suitable set of basis functions, for instance, orthonor-

mal polynomials. Oscillation of the outcome from the resultant orthonormal polyno-

mial expansion can occur producing interpolation error, especially on the input domain

boundary, when the sample size is not large. To reduce this error, a regularization

method is introduced. After regularization, the resultant RS-HDMR component func-

tions are smoother and have better prediction accuracy, especially for small sample sizes

(e.g., often few hundred). The ignition time of a homogeneous H2/air combustion sys-

tem within the range of initial temperature, 1000 < T0 < 1500 K, pressure, 0.1 < P <

100 atm and equivalence ratio of H2/O2, 0.2 < R < 10 is used for testing the regulari-

zed RS-HDMR.
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1. Introduction

High Dimensional Model Representation (HDMR) [1–22] is under deve-

lopment as a set of quantitative model assessment and analysis tools for cap-

turing high-dimensional input–output system behavior. The HDMR techniques

have been successfully applied in a variety of applications including semiconduc-

tor formulation [2], amino acid mutations of proteins [6], atmospheric chemistry

[7], atmospheric solar radiation transport [8], molecular dynamics simulations

[17], rate constant determination from concentration observations [18], and opti-

mal control of molecular motion [19]. Recently, the capabilities of the HDMR

technique were extended through the introduction of Random Sampling (RS)-

HDMR, which is a practical procedure based on RS of the input variables.

RS-HDMR is very efficient for treating high dimensional input–output mapping

problems and has been successfully utilized in several modeling applications, e.g.,

atmospheric chemistry [9], environmental metal bioremediation [11], integrated

exposure and dose studies [12], bio-kinetics modeling [21].

As the impact of the multiple input variables on the output can be inde-

pendent and cooperative, HDMR expresses the output f (x) as a finite hie-

rarchical correlated function expansion in terms of the input variables x =

(x1, x2, . . . , xn):

f (x) = f0 +

n
∑

i=1

fi(xi) +
∑

1≤i<j≤n

fij (xi, xj ) + · · ·

+
∑

1≤i1<···<il≤n

fi1i2...il (xi1, xi2, . . . , xil ) + · · ·

+f12...n(x1, x2, . . . , xn). (1)

The HDMR component functions for normalized input variables (0 ≤ xi ≤

1, i = 1, 2, . . . , n) are defined as follows [22]:

f0 =

∫

Kn

w(x)f (x)dx, (2)

fi(xi) =

∫

Kn−1
wxi |xi

(xi)f (x)dxi − f0, (3)

fij (xi, xj ) =

∫

Kn−2
wxij |xi ,xj

(xij )f (x)dxij − fi(xi) − fj (xj ) − f0, (4)

. . . ,

where xi, xij are (x1, x2, . . . , xn) without elements xi ; xi, xj , respectively. w(x) is

the probability density function (pdf) for x in the n-dimensional hypercube Kn

satisfying the conditions
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w(x) ≥ 0, x ∈ Kn,

∫

Kn w(x)dx = 1.

(5)

wxi |xi
(xi), wxij |xi ,xj

(xij ) denote the conditional pdf’s of x for a fixed value of xi

and xi, xj , i.e.,

wxi |xi
(xi) = w(xi, xi)/wi(xi), (6)

wxij |xi ,xj
(xij ) = w(xi, xj , xij )/wij (xi, xj ), (7)

wi(xi) =

∫

Kn−1
w(xi, xi)dxi, (8)

wij (xi, xj ) =

∫

Kn−2
w(xi, xj , xij )dxij . (9)

Different, but formally equivalent HDMR expansions, all of the same form

as equation (1) have been constructed [1–6]. To reduce the sampling effort, the

RS-HDMR component functions may be approximated by optimal weighted

orthonormal polynomials {ϕ} as [22]

fi(xi) ≈

k
∑

r=1

α(0)i
r ϕi

r(xi), (10)

fij (xi, xj ) ≈

k
∑

r=1

[

α
(ij)i
r ϕi

r(xi) + α
(ij)j
r ϕ

j
r (xj )

]

+

l
∑

p=1

l′
∑

q=1

β
(0)ij
pq ϕi

p(xi)ϕ
j
q (xj ), (11)

fijk(xi, xj , xk) ≈

k
∑

r=1

[

α
(ijk)i
r ϕi

r(xi) + α
(ijk)j
r ϕ

j
r (xj ) + α

(ijk)k
r ϕk

r (xk)
]

+

l
∑

p=1

l′
∑

q=1

[

β
(ijk)ij
pq ϕi

p(xi)ϕ
j
q (xj )

+ β
(ijk)ik
pq ϕi

p(xi)ϕ
k
q(xk) + β

(ijk)jk
pq ϕ

j
p(xj )ϕ

k
q(xk)

]

+

m
∑

p=1

m′
∑

q=1

m′′
∑

r=1

γ
(0)ijk
pqr ϕi

p(xi)ϕ
j
q (xj )ϕ

k
r (xk), (12)

· · · ,

where k, l, l′, m, m′, m′′ are integers. In many cases the number of basis func-

tions is no larger than three. {ϕ} are referred to as optimal weighted orthonormal
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polynomials tailored to a particular set of samples, and they are defined as fol-

lows:

ϕi
1(xi) = a1xi + a0, (13)

ϕi
2(xi) = b2x

2
i + b1xi + b0, (14)

ϕi
3(xi) = c3x

3
i + c2x

2
i + c1xi + c0, (15)

· · · ,

where the constant coefficients a0, a1, b0, . . . , c3 are chosen in such a way that for

a given set of random samples the orthonormality of {ϕ} is forced to be satisfied:

∫ 1

0

wi(xi)ϕ
i
r(xi)dxi ≈

1

N

N
∑

s=1

ϕi
r(x

(s)
i ) = 0, r = 1, 2, . . . , (16)

∫ 1

0

wi(xi)[ϕ
i
r(xi)]

2dxi ≈
1

N

N
∑

s=1

[ϕi
r(x

(s)
i )]2 = 1, r = 1, 2, . . . , (17)

∫ 1

0

wi(xi)ϕ
i
p(xi)ϕ

i
q(xi)dxi ≈

1

N

N
∑

s=1

ϕi
p(x

(s)
i )ϕi

q(x
(s)
i ) = 0, p �= q, (18)

where x
(s)
i is the value of xi of the sth sample, and N is the total number of

samples.

Using the formulas in equations (10)–(12), the third-order RS-HDMR expan-

sion of an n-variate function f (x) can be expressed as

f (x) ≈ f0 +

n
∑

i=1

k
∑

r=1

⎡

⎢

⎢

⎣

α(0)i
r +

n
∑

j=1
j �=i

α
(ij)i
r +

n
∑

j<k=1
j,k �=i

α
(ijk)i
r

⎤

⎥

⎥

⎦

ϕi
r(xi)

+
∑

1≤i<j≤n

l
∑

p=1

l′
∑

q=1

⎡

⎢

⎢

⎣

β
(0)ij
pq +

n
∑

k=1
k �=i,j

β
(ijk)ij
pq

⎤

⎥

⎥

⎦

ϕi
p(xi)ϕ

j
q (xj )

+
∑

1≤i<j<k≤n

m
∑

p=1

m′
∑

q=1

m′′
∑

r=1

γ
(0)ijk
pqr ϕi

p(xi)ϕ
j
q (xj )ϕ

k
r (xk). (19)
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The expansion coefficients {α, β, γ } may be determined by stepwise least squares

regression from zeroth-order to higher orders [22]. First, we set

f0 =

∫

Kn

w(x)f (x)dx ≈
1

N

N
∑

s=1

f (x(s)), (20)

y1(x) = f (x) − f0, (21)

y2(x) = y1(x) −

n
∑

i=1

k
∑

r=1

α(0)i
r ϕi

r(xi), (22)

y3(x) = y2(x) −
∑

1≤i<j≤n

⎧

⎨

⎩

k
∑

r=1

[α
(ij)i
r ϕi

r(xi) + α
(ij)j
r ϕ

j
r (xj )]

+

l
∑

p=1

l′
∑

q=1

β
(0)ij
pq ϕi

p(xi)ϕ
j
q (xj )

⎫

⎬

⎭

, (23)

. . .

and solve the following equations by stepwise least squares regression

y1(x
(s)) =

n
∑

i=1

k
∑

r=1

α(0)i
r ϕi

r(x
(s)
i ) + εs, s = 1, 2, . . . , N, (24)

y2(x
(s)) =

∑

1≤i<j≤n

⎧

⎨

⎩

k
∑

r=1

[α
(ij)i
r ϕi

r(x
(s)
i ) + α

(ij)j
r ϕ

j
r (x

(s)
j )]

+

l
∑

p=1

l′
∑

q=1

β
(0)ij
pq ϕi

p(x
(s)
i )ϕ

j
q (x

(s)
j )

⎫

⎬

⎭

+ εs, s = 1, 2, . . . , N, (25)

y3(x
(s)) =

∑

1≤i<j<k≤n

⎧

⎨

⎩

k
∑

r=1

[α
(ijk)i
r ϕi

r(x
(s)
i ) + α

(ijk)j
r ϕ

j
r (x

(s)
j ) + α

(ijk)k
r ϕk

r (xk)
(s)]

+

l
∑

p=1

l′
∑

q=1

[β
(ijk)ij
pq ϕi

p(x
(s)
i )ϕ

j
q (x

(s)
j )

+β
(ijk)ik
pq ϕi

p(x
(s)
i )ϕk

q(x
(s)
k ) + β

(ijk)jk
pq ϕ

j
p(x

(s)
j )ϕk

q(x
(s)
k )]

+

m
∑

p=1

m′
∑

q=1

m′′
∑

r=1

γ
(0)ijk
pqr ϕi

p(x
(s)
i )ϕ

j
q (x

(s)
j )ϕk

r (x
(s)
k )

⎫

⎬

⎭

+εs, s = 1, 2, . . . , N (26)

· · · ,
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where ε = (ε1, ε2, . . . , εN )T ∼ N (0, σ 2I) is a Gaussian white noise vector, and

σ 2 is unknown.

Since the RS-HDMR component functions are approximated by an ortho-

normal polynomial expansion with the expansion coefficients determined by least

squares regression, insufficient data and significant errors in the data prevent a

unique solution for the expansion coefficients. Moreover, high order polynomial

fitting can produce oscillations in the evaluation of the expansion, especially on

the input domain boundary when the sample size N is not large. Regulariza-

tion of the RS-HDMR component functions can reduce the resultant predic-

tion error. In regularization, both the total squared residuals (the difference bet-

ween the model value and the prediction of RS-HDMR) and the total squared

second-order derivatives of the RS-HDMR expansions for all the data are mini-

mized in least squares regression. A regularization parameter is used to trade off

fidelity to the data (i.e., a small sum of the squared residuals) against smooth-

ness (i.e., low values of the total squared second-order derivatives). Different

methods have been proposed for choosing the regularization parameter. Among

these methods, generalized cross-validation (GCV) is commonly used [23, 24].

However, the GCV method needs to treat a matrix with dimension of N . For

large N , the computational effort is significant. In the calculation of chemical

kinetics models with RS-HDMR, it is common that N ∼ 103 or more, and it

is difficult to use the GCV method.

In this paper, an efficient method to choose the regularization parameter

for the RS-HDMR component functions is presented. The optimal value of the

regularization parameter divides the basis functions {ϕ} of RS-HDMR into two

groups, and the regularization parameter may be estimated from this division

without significant computational effort.

The paper is organized as follows. Section 2 presents the methodology of

regularized RS-HDMR and the determination of the regularization parameter.

Section 3 presents illustrations of the regularized RS-HDMR method for the

estimation of the ignition time of a homogeneous H2/air combustion system.

Finally, section 4 contains conclusions.

2. Regularized RS-HDMR

Consider the determination of the first-order RS-HDMR component func-

tions. Suppose x(1), x(2), . . . , x(N) are N points in the input domain in which the

output observations y(x(s)) = f (x(s)) (s = 1, 2, . . . , N) are taken, and the first-

order approximation for y1(x
(s)) = f (x(s)) − f0 satisfies

y1(x
(s)) =

n
∑

i=1

k
∑

r=1

α(0)i
r ϕi

r(x
(s)
i ) + εs . (27)
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Least squares regression with regularization is performed by minimizing the

functional F

F =
1

N

N
∑

s=1

[

y1(x
(s)) −

n
∑

i=1

k
∑

r=1

α(0)i
r ϕi

r(x
(s)
i )

]2

+λ

n
∑

i=1

k
∑

r=1

λi
r

1

N

N
∑

s=1

[

α(0)i
r

d2ϕi
r(x

(s)
i )

dx2
i

]2

,

(28)

where λ > 0 is the regularization parameter used to trade off fidelity to the data

(i.e., the first term in equation (28) being the sum of squared residuals) against

smoothness (i.e., the second term in equation (28) being of the squared second-

order derivatives), and λi
r > 0 is the relative weight for regularization of ϕi

r(xi)

defined as

λi
r =

N
∑

s=1

[

d2ϕi
r(x

(s)
i )

dx2
i

]2

n
∑

j=1

k
∑

t=1

N
∑

s=1

⎡

⎣

d2ϕ
j
t (x

(s)
j )

dx2
j

⎤

⎦

2
. (29)

Thus, only one free parameter λ is used to determine the amount by which the

data are smoothed to produce regularized RS-HDMR functions.

Cross-validation may be used to choose λ. The basic principle of cross-

validation is to leave the data points out one at a time and to choose the value

of λ for which the missing data points are best predicted by the remainder of the

data. The GCV method needs to treat a matrix of dimension N , and for large N ,

the computational effort is significant even though some modifications of cross-

validation have been proposed [23, 24].

Here we present an easy approach to determine λ in regularized RS-HDMR.

In order to develop the procedure, first suppose that λ is already chosen. The

least squares regression equations are obtained by differentiating F with respect

to α
(0)j
t (j = 1, 2, . . . , n; t = 1, 2, . . . , k) and setting the derivatives to zero to

produce

1

N

N
∑

s=1

y
(s)

1 ϕ
j
t (x

(s)
j ) =

n
∑

i=1

k
∑

r=1

α(0)i
r

1

N

N
∑

s=1

ϕi
r(x

(s)
i )ϕ

j
t (x

(s)
j )

−λλ
j
t α

(0)j
t

1

N

N
∑

s=1

⎡

⎣

d2ϕ
j
t (x

(s)
j )

dx2
j

⎤

⎦

2

. (30)
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Using the condition given in equation (16), the above equation becomes

1

N

N
∑

s=1

f (x(s))ϕ
j
t (x

(s)
j ) =

n
∑

i=1

k
∑

r=1

α(0)i
r

1

N

N
∑

s=1

ϕi
r(x

(s)
j )ϕ

j
t (x

(s)
i )

−λλ
j
t α

(0)j
t

1

N

N
∑

s=1

⎡

⎣

d2ϕ
j
t (x

(s)
j )

dx2
j

⎤

⎦

2

. (31)

Equation (31) can be represented in matrix form

[A − λB]α = b, (32)

where A and B are nk-dimensional symmetric and diagonal matrices, respecti-

vely, with elements

A(ir)(j t) =
1

N

N
∑

s=1

ϕi
r(x

(s)
i )ϕ

j
t (x

(s)
j ), (33)

B(j t)(j t) = λ
j
t

1

N

N
∑

s=1

⎡

⎣

d2ϕ
j
t (x

(s)
j )

dx2
j

⎤

⎦

2

(34)

and α and b are nk-dimensional vectors with

α(j t) = α
(0)j
t , (35)

b(j t) =
1

N

N
∑

s=1

f (x(s))ϕ
j
t (x

(s)
j ). (36)

The solution α of equation (32) depends on the value of the regularization para-

meter λ. The basic concept behind the proposed method is that there is no signi-

ficant difference between the results of least squares regression for the N and N −1

data points when N is sufficiently large. Therefore, equation (32) can be used as an

approximation of the corresponding equation obtained from N − 1 data points.

The second-order regularized RS-HDMR component functions can be trea-

ted similarly. For

y2(x
(s)) =

∑

1≤i<j≤n

⎧

⎨

⎩

k
∑

r=1

[α
(ij)i
r ϕi

r(x
(s)
i ) + α

(ij)j
r ϕ

j
r (x

(s)
j )]

+

l
∑

p=1

l′
∑

q=1

β
(0)ij
pq ϕi

p(x
(s)
i )ϕ

j
q (x

(s)
j )

⎫

⎬

⎭

+ εs (37)
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the functional subjected to minimization for determining α
(ij)i
r , α

(ij)j
r , β

(0)ij
pq with

regularization is

F =
1

N

N
∑

s=1

⎧

⎨

⎩

y2(x
(s)) −

∑

1≤i<j≤n

[

k
∑

r=1

(α
(ij)i
r ϕi

r(xi) + α
(ij)j
r ϕ

j
r (xj ))

+

l
∑

p=1

l′
∑

q=1

β
(0)ij
pq ϕi

p(xi)ϕ
j
q (xj )

⎤

⎦

⎫

⎬

⎭

2

+
∑

1≤i<j≤n

1

N

N
∑

s=1

⎧

⎨

⎩

k
∑

r=1

⎡

⎣λ
(ij)i
r

(

α
(ij)i
r

d2ϕi
r(x

(s)
i )

dx2
i

)2

+ λ
(ij)j
r

⎛

⎝α
(ij)j
r

d2ϕ
j
r (x

(s)
j )

dx2
j

⎞

⎠

2
⎤

⎥

⎦
+

k
∑

p=1

k
∑

q=1

λ
ij
pq

⎡

⎢

⎣

⎛

⎝β
(0)ij
pq

∂2ϕi
p(x

(s)
i )ϕ

j
q (x

(s)
j )

∂x2
i

⎞

⎠

2

+

⎛

⎝β
(0)ij
pq

∂2ϕi
p(x

(s)
i )ϕ

j
q (x

(s)
j )

∂xi∂xj

⎞

⎠

2

+

⎛

⎝β
(0)ij
pq

∂2ϕi
p(x

(s)
i )ϕ

j
q (x

(s)
j )

∂x2
j

⎞

⎠

2
⎤

⎥

⎦

⎫

⎪

⎬

⎪

⎭

, (38)

where

λ
(ij)i
r = Λ

(ij)i
r /Λ, (39)

λ
(ij)j
r = Λ

(ij)j
r /Λ, (40)

λ
ij
pq = Λ

ij
pq/Λ, (41)

Λ
(ij)i
r =

1

N

N
∑

s=1

(

d2ϕi
r(x

(s)
i )

dx2
i

)2

, (42)

Λ
(ij)j
r =

1

N

N
∑

s=1

⎛

⎝

d2ϕ
j
r (x

(s)
j )

dx2
j

⎞

⎠

2

, (43)

Λ
ij
pq =

1

N

N
∑

s=1

⎡

⎢

⎣

⎛

⎝

∂2ϕi
p(x

(s)
i )ϕ

j
q (x

(s)
j )

∂x2
i

⎞

⎠

2

+

⎛

⎝

∂2ϕi
p(x

(s)
i )ϕ

j
q (x

(s)
j )

∂xi∂xj

⎞

⎠

2

+

⎛

⎝

∂2ϕi
p(x

(s)
i )ϕ

j
q (x

(s)
j )

∂x2
j

⎞

⎠

2
⎤

⎥

⎦
, (44)

Λ =
∑

1≤i<j≤n

⎡

⎣

k
∑

r=1

(Λ
(ij)i
r + Λ

(ij)j
r ) +

k
∑

p=1

k
∑

q=1

Λ
ij
pq

⎤

⎦ . (45)
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The equations obtained from differentiating F in equation (38) with respect to

its parameters {α, β} and setting the derivatives to zero also can be represented

in matrix form as in equation (32) when {α, β} are properly arranged.

The regularization parameters λ for the first- and second-order RS-HDMR

component functions are chosen in such a way that the errors of cross-validation

er1 =
1

N

N
∑

s=1

e2
s =

1

N

N
∑

s=1

[

y1(x
(s)) −

n
∑

i=1

k
∑

r=1

α(0)i
r (s)ϕi

r(x
(s)
i )

]2

, (46)

er2 =
1

N

N
∑

s=1

e2
s =

1

N

N
∑

s=1

⎧

⎨

⎩

y2(x
(s)) −

∑

1≤i<j≤n

[

k
∑

r=1

(α
(ij)i
r (s)ϕi

r(x
(s)
i )

+ α
(ij)j
r (s)ϕ

j
r (x

(s)
j )) +

l
∑

p=1

l′
∑

q=1

β
(0)ij
pq (s)ϕi

p(x
(s)
i )ϕ

j
q (x

(s)
j )

⎤

⎦

⎫

⎬

⎭

2

, (47)

are minimized. Here the parameters α(s), β(s) should be different for distinct

values of s and determined from the remaining N − 1 data points, but they are

approximated by α, β obtained from the total set of N data points.

A further approximation is needed to determine er1 and er2. Since {ϕ}

are optimal orthonormal polynomials, the orthonormality given by equations

(16)–(18) is forced to be satisfied. For ϕi
p(xi)ϕ

j
q (xj ) with different variables the

orthonormality may not be strictly satisfied, but the diagonal elements of A are

very close to unity, and off-diagonal elements of A are small numbers close to

zero, i.e.,

A ≈ I. (48)

Then an approximate solution for λ in equation (32) can be obtained by setting

A = I which gives

α = (I − λB)−1b. (49)

As B is diagonal, the inverse (I − λB)−1 can be readily obtained. The error er1

can then be represented as

er1 =
1

N

N
∑

s=1

e2
s =

1

N

N
∑

s=1

[

y1(x
(s)) −

n
∑

i=1

k
∑

r=1

α(0)i
r ϕi

r(x
(s)
i )

]2

= σ 2 − 2bT α + αT Aα

≈ σ 2 − 2bT (I − λB)−1b + bT [(I − λB)−1]2b
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= σ 2 − 2bT

⎡

⎢

⎢

⎣

1
1−λB11

. . .
1

1−λB(nk)(nk)

⎤

⎥

⎥

⎦

b

+bT

⎡

⎢

⎢

⎢

⎣

(

1
1−λB11

)2

. . .
(

1
1−λB(nk)(nk)

)2

⎤

⎥

⎥

⎥

⎦

b

= σ 2 − 2

nk
∑

i=1

b2
i

1 − λBii

+

nk
∑

i=1

b2
i

(1 − λBii)2
, (50)

where σ 2 is the output total variance, i.e.,

σ 2 ≈
1

N

N
∑

s=1

[y1(x
(s))]2 =

1

N

N
∑

s=1

[f (x(s)) − f0]
2. (51)

The value of λ is obtained by setting the derivative of er1 with respect to λ to

zero, which gives

nk
∑

i=1

b2
i Bii

(1 − λBii)2
−

nk
∑

i=1

b2
i Bii

(1 − λBii)3
= 0, (52)

where Bii is the nonzero ith diagonal element of B. Simplification of equa-

tion (52) yields

λ

nk
∑

i=1

b2
i B

2
ii

(1 − λBii)3
= 0. (53)

The first estimate for λ in equation (53) is

λ = 0, (54)

which corresponds to no regularization. Other estimates are obtained by solving

the algebraic equation

nk
∑

i=1

b2
i B

2
ii

(1 − λBii)3
= 0. (55)

Since the numerators are all positive, and the denominators are cubic functions,

the solutions for λ should be located between the roots of the denominators, i.e.,

1/Bii , and can be readily determined. The cross-validation may have only one

minimum. The extra multiple solutions given in equation (55) are produced by
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the approximations above. However, if the minimum of cross-validation is loca-

ted between the roots of equation (55), only a few values of λ need to be tes-

ted, and the direct calculation of cross-validation for these points is then not

expensive. As shown in the example below, the regularization parameter λ can

be easily estimated from 1/Bii . For er2 the treatment is the same.

3. Application to ignition time of an H2/air model

The regularized RS-HDMR technique is applied here for estimation of the

ignition time of an H2/air combustion model with eight species (H2, O2, H2O,

H, O, OH, HO2, and H2O2) and 19 reactions. The detail of the H2/air combus-

tion model can be found in [25]. The initial temperature, 1000 < T0 < 1500 K,

pressure, 0.1 < P < 100 atm, and H2/O2 equivalence ratio, 0.2 < R < 10.0, are

chosen as three inputs, and the homogeneous ignition time tign (defined as the

time lapse needed to get an increase of 400 K from the initial temperature) is

the output. 4699 random data points over the three inputs were sampled with a

uniform distribution within the above domain, and their corresponding output

values were obtained from the model.

The relationship of ignition time tign to T0, P and R is given in figure 1. The

figure shows that at low pressure the ignition time is not a monodrome function.

Therefore, the data set was separated into three subsets according to P < 1 atm

(1579 points), 1 ≤ P < 10 atm (1538 points) and P ≥ 10 atm (1582 points). The

second-order RS-HDMR expansions were constructed for the entire data set as

well as the three subsets.

3.1. Accuracy of the second-order RS-HDMR

RS-HDMR can be used as a Fully Equivalent Operational Model (FEOM)

[4, 7, 8] to replace the original time-consuming H2/air model for approximate

estimation of ignition time. For the entire data set and its three subsets, dif-

ferent sample sizes (N = 100, 300, 500, 1000, ... referred to as “used data”) were

employed to construct the second-order RS-HDMR expansion whose com-

ponent functions are approximated by third-order optimal orthonormal polyno-

mials. The remaining M −N data points (referred to as “test data”), where M is

the total number of samples, were used to test the interpolation accuracy of the

RS-HDMR. The results are given in tables 1–4. The accuracy of different order

RS-HDMR expansions is represented by the data portion whose relative errors

are not larger than a given value (5, 10, and 20%).

The results in tables 1–4 show that the accuracy is much improved when the

data are separated into three subsets. The used data and test data have almost

the same accuracy for all sample sizes. Most data (>90%) have relative errors

less than 5%. This implies that a few hundred samples are sufficient to construct
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Figure 1. The dependence of ignition time on the inputs: initial temperature T0, pressure P , and

H2/O2 equivalence ratio R. Their designations in terms of x1, x2, and x3 are indicated.

the second-order RS-HDMR expansion which can satisfactorily interpolate all

points over the input domains.

Figure 2 compares the model values with those estimated by the second-

order RS-HDMR approximation of the output obtained from the entire data set

and its three subsets.

3.2. Second-order regularized RS-HDMR

When the sample size is small, the accuracy of the second-order standard

RS-HDMR is not fully satisfactory, and regularization can improve the accuracy.

The last subset of data (P � 10 atm) was employed as a test example. The first

100 samples were used to construct the second-order regularized RS-HDMR

expansion. For the first-order RS-HDMR component functions, the matrix B in

equation (32) is
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Table 1

The relative errors of different order RS-HDMR expansions obtained from the entire data set.

Data portion

Used data Test data

Sample size Relative

N (M − N ) error (%) 1st order 2nd order 1st order 2nd order

100 5 0.300 0.880 0.349 0.767

(4599) 10 0.600 0.980 0.652 0.931

20 0.870 1.000 0.898 0.993

300 5 0.367 0.897 0.386 0.879

(4399) 10 0.653 0.973 0.673 0.980

20 0.893 0.997 0.889 0.999

500 5 0.400 0.884 0.390 0.876

(4199) 10 0.694 0.980 0.679 0.984

20 0.898 0.998 0.891 0.999

1000 5 0.397 0.888 0.389 0.877

(3699) 10 0.695 0.985 0.677 0.984

20 0.900 0.999 0.890 0.999

2000 5 0.398 0.897 0.381 0.888

(2699) 10 0.681 0.985 0.671 0.986

20 0.892 0.999 0.893 1.000

3000 5 0.397 0.893 0.383 0.897

(1699) 10 0.675 0.986 0.680 0.991

20 0.892 0.999 0.890 0.999

4000 5 0.388 0.896 0.402 0.906

(699) 10 0.672 0.987 0.682 0.990

20 0.888 0.999 0.908 1.000

B =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0

19.5

3555

0

16.6

2443

0

30.8

2427

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (56)

The algebraic equation in equation (55) for the determination of λ is

f (x) =
5.08

(1 − 19.5x)3
+

998

(1 − 3555x)3
+

0.011

(1 − 16.6x)3
+

1609

(1 − 2443x)3

+
9.13

(1 − 30.8x)3
+

31351

(1 − 2427x)3
= 0. (57)
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Table 2

The relative errors of different order RS-HDMR expansions obtained from the data subset

(0.1 � P < 1 atm).

Data portion

Used data Test data

Sample size Relative

N (M − N ) error (%) 1st order 2nd order 1st order 2nd order

100 5 0.880 1.000 0.853 0.968

(1479) 10 0.990 1.000 0.983 0.995

20 1.000 1.000 0.999 0.999

300 5 0.857 0.993 0.873 0.979

(1279) 10 0.993 1.000 0.986 1.000

20 0.997 1.000 1.000 1.000

500 5 0.862 0.996 0.874 0.986

(1079) 10 0.986 0.998 0.984 1.000

20 0.996 1.000 1.000 1.000

1000 5 0.873 0.992 0.871 0.986

(579) 10 0.983 0.999 0.988 1.000

20 0.998 1.000 1.000 1.000

Table 3

The relative errors of different order RS-HDMR expansions obtained from the data subset

(1 ≤ P < 10 atm).

Data portion

Used data Test data

Sample size Relative

N (M − N ) error (%) 1st order 2nd order 1st order 2nd order

100 5 0.750 0.960 0.736 0.919

(1438) 10 0.880 1.000 0.873 0.978

20 0.990 1.000 0.951 0.998

300 5 0.737 0.970 0.738 0.943

(1238) 10 0.910 1.000 0.866 0.986

20 0.983 1.000 0.946 0.998

500 5 0.722 0.970 0.724 0.928

(1038) 10 0.896 0.994 0.876 0.989

20 0.976 1.000 0.950 1.000

1000 5 0.709 0.949 0.695 0.946

(538) 10 0.884 0.987 0.877 0.994

20 0.969 1.000 0.952 1.000
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Table 4

The relative errors of different order RS-HDMR expansions obtained from the data subset

(10 ≤ P < 100 atm).

Data portion

Used data Test data

Sample size Relative

N (M − N ) error (%) 1st order 2nd order 1st order 2nd order

100 5 0.880 0.980 0.841 0.907

(1482) 10 0.980 1.000 0.982 0.970

20 0.990 1.000 1.000 0.996

300 5 0.897 0.997 0.862 0.967

(1282) 10 0.983 0.997 0.982 0.994

20 0.997 1.000 1.000 1.000

500 5 0.868 0.988 0.879 0.977

(1082) 10 0.978 0.996 0.986 0.997

20 0.998 0.998 1.000 1.000

1000 5 0.887 0.992 0.881 0.990

(582) 10 0.976 0.996 0.985 0.996

20 0.999 0.999 1.000 1.000

The roots of the denominators, 1/Bii , in equation (57) are given below in increa-

sing order:

0.000281 0.000409 0.000412 0.0325 0.0513 0.0602

The roots of equation (57) are located between the adjacent roots of the denomi-

nators, which correspond to the approximate values of the regularization para-

meter λ giving local minima of the first-order regularized RS-HDMR approxi-

mation. Figure 3 gives the profile of f (x)(×106) from equation (57), where some

of the roots can be observed. As the mesh of x used to plot f (x) is of fixed size,

some rapid jumps across the x axis cannot be observed in the figure.

To demonstrate that the best value of λ, which gives the minimum

cross-validation error, is located between the roots of equation (57), the cross-

validation for different values of the regularization parameter λ was performed

for a set of 100 data points. The result for the first-order regularized RS-HDMR

is given in figure 4. The minimum is located at λ ∼ 0.0006, i.e., between the roots

0.000412 and 0.0325 of the denominators in equation (57) where a sharp varia-

tion occurs. Importantly, there is a stable domain around 0.0006 where the error

does not change much; if the choice 0.000412 (1/B99) instead of 0.0006 is made

for λ, the error is still acceptable.

The value of λ ∼ 0.0006 means that the polynomials, whose 1/Bii values are

smaller than λ, may produce oscillations and will be smoothed out. In contrast,

other polynomials, whose 1/Bii values are larger than λ, do not need heavy
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Figure 2. The comparison of the output model values and their second-order RS-HDMR

approximation whose component functions are approximated by third-order optimal orthonormal

polynomials.

regularization. It was found that these two categories of behavior were associa-

ted with third-order and second-order polynomials, respectively (linear functions

naturally need no regularization). This behavior is reasonable because high order

polynomials will more likely cause oscillation.

Let us consider this separation generally, and suppose that xα = (x
α1

1 , x
α2

2 ,

. . . , x
αn
n ) represents a monomial in x1, x2, . . . , xn where all of the exponents

α = (α1, α2, . . . , αn) are non-negative integers. The total degree of the monomial

is defined as the sum |α| = α1 + · · · + αn. A polynomial f (x) in x1, x2, . . . , xn

with coefficients aα is

f (x) =
∑

α

aαxα.

The total degree of f denoted as deg(f ) is the maximum |α| with nonzero coeffi-

cient aα. The above result implies that if the nonlinear polynomials are arranged

in decreasing order of their deg(f ) and within each group with the same deg(f )

the polynomials are arranged in decreasing order of their Bii values or in increa-

sing order of their 1/Bii values, then one often can readily find the best value

of λ by properly dividing the nonlinear polynomials into two groups. For the
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Figure 3. The behavior of the algebraic equation, equation (57), for the regularization parameter x

associated with the first-order approximation of RS-HDMR.

first-order approximation of RS-HDMR which is approximated by third-order

orthonormal polynomials, there are at most three possible divisions: (a) group 1:

the third- and second-order polynomials, group 2: empty, i.e., all the third- and

second-order polynomials need to be regularized; (b) group 1: the third-order

polynomials, group 2: the second-order polynomials, and only the third-order

polynomials need to be regularized; (c) group 1: empty, group 2: all the third- and

second-order polynomials, i.e., none needs to be regularized. The corresponding

λ value in each case is: (a) a value smaller than the reciprocal of the largest Bii

for the third-order polynomials; (b) a value between the reciprocals of the smal-

lest Bii for the third-order polynomials and the largest Bii for the second-order

polynomials; and (c) a value larger than the reciprocal of the smallest Bii for the

second-order polynomials. We may simply pick λ as the reciprocal of the largest

Bii for the third-order polynomials for case (a), the reciprocal of the smallest Bii
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Figure 4. Direct estimation of regularization parameter by cross-validation for the first-order

RS-HDMR component functions approximated by third-order orthonormal polynomials.

for the third-order polynomials for case (b), and the reciprocal of the smallest Bii

for the second-order polynomials for case (c) without significantly reducing the

accuracy of the regularized RS-HDMR. In the H2/air model, λ is chosen from

case (b).

We used the remaining 1482 data points to test the interpolation error of

the first-order regularized RS-HDMR approximation with respect to different

values of λ. The results given in figure 5 are consistent with the cross-validation

from the 100 points. Only the minimum moves slightly toward 0.0004. This beha-

vior again suggests that one can simply choose λ = 1/B99 without any direct per-

formance of cross-validation.

Similarly, the algebraic equation to determine λ for the second-order regu-

larized RS-HDMR component functions was constructed. The roots of its

denominators are given below in increasing order:
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Figure 5. The relationship between the error
∑

e2
i
/N for 1482 test data and the regularization para-

meter for the first-order regularized RS-HDMR component functions approximated by third-order

orthonormal polynomials.

0.0001 0.0003 0.0005 0.0005 0.0007 0.0009

0.0010 0.0013 0.0014 0.0016 0.0017 0.0019

0.0022 0.0033 0.0048 0.0048 0.0104 0.0111

0.0119 0.0133 0.0215 0.0670 0.1072 0.1094

0.1134 0.2304 0.3473 0.3775 0.5962 0.7012

11.2570 14.3229 15.3172

Figure 6 shows the profile of f (x), and some of the roots can be obser-

ved. Direct determination of the regularization parameter λ for the second-

order regularized RS-HDMR component functions by cross-validation was also

performed with the 100 data points, and the result is given in figure 7. The mini-

mum is located at λ ∼ 0.02. Similarly, this value of λ divides the basis func-

tions in equation (11) into two groups. One group consists of the orthonormal
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Figure 6. The behavior of the algebraic equation for the regularization parameter x associated with

the second order RS-HDMR component functions.
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Table 5

The relative errors of different order RS-HDMR expansions obtained from the 1482 test data

(10 ≤ P < 100 atm), with and without regularization.

Relative Data portion

error (%)

Used data Test data

1st order 2nd order 1st order 2nd order

5 0.880 0.980 0.841 0.907

Non-regularization 10 0.980 1.000 0.982 0.970

20 0.990 1.000 1.000 0.996

5 0.880 0.980 0.850 0.958

Regularization 10 0.990 0.990 0.985 0.993

20 0.990 0.990 1.000 1.000

polynomials ϕi
3(xi) and ϕi

r(xi)ϕ
j
t (xj ) with r + t ≥ 4. The other group consists

of ϕi
2(xi) and ϕi

r(xi)ϕ
j
t (xj ) with r + t ≤ 3. The boundary of the first group is

ϕ2
1(x2)ϕ

3
3(x3), whose 1/Bii value is 0.0215. This is also reasonable, i.e., the first

group have large oscillations and need to be regularized; in contrast, the second

group have small oscillations and need to be only slightly regularized.

The remaining 1482 data were used to test the interpolation error of the

second-order regularized RS-HDMR approximation with respect to different

values of λ. The results are given in figure 8, which are also consistent with

cross-validation from the 100 points. The only difference is that the regulariza-

tion parameter λ with the smallest error for the second-order RS-HDMR is lar-

ger than 0.0215, and there is no difference when λ > 0.1. These results suggest

that one can choose either one of the two boundary 1/Bii values as λ (i.e., the
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Figure 9. The comparison between fi(xi) where x1 = T0, x2 = logP , x3 = R obtained from 100

data points with (right panels) and without (left panels) regularization for the P � 10 atm data.

largest 1/Bii of group 1 or the smallest 1/Bii of group 2. In our case, they are

0.0215 and 0.0670). If necessary, the cross-validation may be calculated only for

the two values, and the computational cost is small.

The regularization parameters λ for the first- and second-order regulari-

zed RS-HDMR component functions were set to 0.000412 and 0.0215, respec-

tively, simply based on separation of the orthonormal polynomials without any

cross validation calculations. Since the accuracy of the second-order regularized
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Figure 10. The comparison between fij (xi , xj ) where x1 = T0, x2 = logP , x3 = R obtained from

100 data points with (right panels) and without (left panels) regularization for the P � 10 atm data.

RS-HDMR does not change much around the above chosen values of λ, the

method of dividing the basis function {ϕ} into two groups and determining the

values of λ from the corresponding values of 1/Bii is very efficient.

The component functions fi(xi), fij (xi, xj ) obtained from the 100 data

points, with and without regularization, are given in figures 9 and 10. Using

regularization, the accuracy for the used data was reduced because of the trade

off between fidelity against regularization, but the accuracy for the test data

was improved. The resultant second-order regularized RS-HDMR expansion was

used to test the remaining 1482 test data. Comparison between the accuracy of

the regularized and nonregularized RS-HDMR’s for the used and test data is
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given in table 5. The data portion with relative error not larger than 5% increases

from 90.7 to 95.8%.

4. Conclusion

RS-HDMR is a practical approach for interpolating multi-dimensional

functions based on randomly sampling the input variables. To reduce the

sampling effort, the RS-HDMR component functions are approximated by

expansions in terms of a suitable set of basis functions, for instance, ortho-

normal polynomials. Since the expansion coefficients are determined using

either Monte Carlo integration or stepwise least squares regression, there

can be oscillation of the resultant orthonormal polynomial expansion, espe-

cially on the input domain boundary when the sample size is not large. To

reduce this error due to overfitting, regularization of the RS-HDMR com-

ponent functions can be helpful. Cross-validation may be used to choose the

regularization parameter, but it is computationally demanding. In this paper,

an efficient approach to choose the regularization parameter for the RS-

HDMR component functions is presented. The polynomial basis functions {ϕ}

of RS-HDMR are first divided into two groups according to their polyno-

mial orders and total degrees, then a trial value of the regularization parame-

ter λ is located between the values of 1/Bii for the adjacent basis functions

of the two groups. In RS-HDMR approximated by third-order orthonor-

mal polynomials, the separation between the second- and third-order poly-

nomials is often the right choice for the first-order RS-HDMR, and the

separation of ϕi
r(xi)ϕ

j
t (xj ) with r + t ≥ 4 is also proper for the second-

order RS-HDMR. The 1/Bii of the dividing boundary polynomials can be

used as the regularization parameter. This method is not computationally

demanding and is easy to perform. If B is not diagonal, then Bii may

be replaced by the eigenvalues of B, and a similar method can be establi-

shed for choosing λ. The ignition time of a homogeneous H2/air combustion

model was used for successful illustration of this method. The same technique

could be applied to a wide variety of other multi-dimensional interpolation

problems.
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