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Abstract. For an arbitrary bounded linear operator C, on a Banach space, and a closable
linear operator A, we introduce a C-regularized semigroup for A. We present equivalences
between A having a C-regularized semigroup, the corresponding abstract Cauchy problem,
well-posedness on a continuously embedded subspace, and (for exponentially bounded C-
regularized semigroups) the Laplace transform.

0. Introduction. In dealing with the many physical problems that may be
modeled as an abstract Cauchy problem

d

dt
u(t, x) = A (u(t, x)) (t � 0), u(0, x) = x, (0.1)

where A is a linear operator on a Banach space X, and t 7! u(t, x) 2 C([0,1),X),
well-posedness corresponds to A generating a strongly continuous semigroup. When
(0.1) is not well-posed, at least in its original formulation, a useful concept for deal-
ing with it is a C-regularized semigroup (Definition 2.1). When A generates a C-
regularized semigroup, then (0.1) has a unique mild solution, for all initial data in
the image of C, (0.1) has a unique strong solution for all x in C(D(A)) and (0.1)
is well-posed on a subspace continuously embedded between X and the image of C
(see [9]).

However, in order that (0.1) have all these solutions, and the well-posedness on a
subspace, it is not necessary that A itself generate a C-regularized semigroup, even
if A is closed and C commutes with A. This is in contrast to the strongly continuous
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case, that is, when C = I; when A is closed and (0.1) has a unique mild solution, for
all x in X, it follows automatically that A generates a strongly continuous semigroup.

Here is a simple example.
Counterexample 0.2. This is an example of a closed operator A and a bounded in-
jective operator C such that CA ✓ AC and (0.1) has a unique bounded mild solution
for all x in the image of C, but A does not generate a C-regularized semigroup.

Let G ⌘ d
ds , on X ⌘ L1(R), with maximal domain. Let B equal the restriction

of G to D(G2), the domain of G2, that is,

D(B) ⌘ D(G2), Bx = Gx, 8x 2 D(B).

Let A ⌘ B, the closure of B. Let C ⌘ (1 � G)�2, and define a C-regularized
semigroup {W (t)}t�0 by

(W (t)f) (s) ⌘ (Cf)(t + s) (t � 0, s 2 R).

It is not hard to show that G is the generator of {W (t)}t�0. The domain of A
equals the graph closure of the domain of G2, which may be shown to equal (1 �
G)�1(BUC(R)), which does not equal D(G) = (1�G)�1(L1(R)).

Note that the (proper) extension G, of A, generates {W (t)}t�0.
In this paper, we will write down exactly what conditions on A are equivalent to

(0.1) having a unique mild solution, for all initial data in the image of C, when C
commutes with A. We shall see that this is equivalent to (0.1) being well-posed on a
subspace continuously embedded between X and the image of C, and automatically
implies that (0.1) has a unique strong solution for all x in C(D(A)) (Theorem 3.3).

We introduce a regularized semigroup for A (Definition 2.3). We will also say
that A has a regularized semigroup. When C is injective and A is closed, having
a C-regularized semigroup is equivalent to (0.1) having a unique mild solution, for
all initial data in the image of C. In the language of this paper, the operator A of
Counterexample 0.2 has a regularized semigroup, that it does not generate.

Thus, from the point of view of the abstract Cauchy problem (0.1), there is no
di↵erence between A having a regularized semigroup and A generating a regularized
semigroup. In practice, it is much easier to verify that A has a regularized semigroup,
than it is to show that A itself is the generator.

We also introduce a C-regularized semigroup when C may not be injective (Defi-
nition 2.1). This gives us the same solutions, but the solutions may not be unique.
When C is injective, and A has a C-regularized semigroup, then the solutions of
(0.1) are unique.

When A generates a C-regularized semigroup {W (t)}t�0, then {W (t)}t�0 is a
regularized semigroup for A. However, as in Counterexample 0.2, it is sometimes
su�cient to have an extension of A be the generator. This is desirable, because it is
sometimes di�cult to determine or describe the exact domain of the generator. The
most natural choice of domain may produce an operator A, that has a regularized
semigroup, but is not its generator.
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In Section I we present some preliminary material on C-existence families for an
operator A, and the consequences of their presence. In these definitions, C might
not commute with A.

In Section II we introduce a C-regularized semigroup for A, and the generator of
a C-regularized semigroup; C is bounded and commutes with A, but may not be
injective. We give some basic properties of the generator, Ã, its relationship with A,
and the relationship between the C-regularized semigroup for A and (0.1).

Theorem 3.1 gives a su�cient condition for an operator to have a regularized
semigroup, that is often easy to verify, in practice. Theorem 3.3 contains numerous
equivalences for A having a C-regularized semigroup, when A is closed and C is
injective. In particular, it is equivalent to (0.1) having a unique mild solution, for
all x in the image of C. When the image of C is dense, it is equivalent to C�1AC
generating the C-regularized semigroup.

Theorem 3.7 and Theorem 3.12 characterize, respectively, exponentially bounded
mild existence families for A and exponentially bounded regularized semigroups for
A, in terms of a Laplace transform.

We give some examples, including the backwards heat equation and arbitrary
systems of constant coe�cient partial di↵erential initial-value problems, in Section
IV.

All operators are linear, on a Banach space X. We will write D(A) for the domain
of the operator A. We will write [D(A)] for the normed vector space with the graph
norm kxk[D(A)] ⌘ kxk+ kAxk. We will write B(X) for the space of bounded linear
operators from X into itself. Throughout this paper, C 2 B(X). We will denote by
[Im(C)] the Banach space with norm kxk[Im(C)] ⌘ inf{kyk : Cy = x}. Basic material
on C-regularized semigroups and their generators, when C is injective, and existence
families, may be found in [9], along with more extensive references.

I. Preliminaries. Existence families were introduced in [9], and, for the expo-
nentially bounded case, in [7].
Definition 1.1. A strong solution of (0.1) is u(t, x) such that

t 7! u(t, x) 2 C([0,1), [D(A)]) \ C1([0,1),X),

satisfying (0.1).
A mild solution of (0.1) is u(t, x) such that t 7! u(t, x) 2 C([0,1),X), and for all

t � 0,
R t
0 u(s, x) ds 2 D(A), with

A
⇣Z t

0
u(s, x) ds

⌘
= u(t, x)� x (t � 0), u(0, x) = x.

Definition 1.2. A mild C-existence family for A is a strongly continuous family of
operators {W (t)}t�0 ✓ B(X) such that for any x 2 X, t � 0,

R t
0 W (s)xds 2 D(A),

with

A
⇣Z t

0
W (s)xds

⌘
= W (t)x� Cx.
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The mild C-existence family {W (t)}t�0 is a strong C-existence family for A if

{W (t)|[D(A)]}t�0

is contained in B([D(A)]) and is strongly continuous, with

Z t

0
AW (s)xds = W (t)x� Cx,

for all x 2 D(A).

Definition 1.3. If A is a closed operator such that all mild solutions of (0.1) are
unique, then the solution space for A, denoted by Z, is the set of all x for which (0.1)
has a mild solution, topologized by the seminorms

kxka,b ⌘ sup
atb

ku(t, x)k (a, b 2 Q+).

In [9, Chapter 4], we show that Z is a Frechet space, and that A|Z generates a
strongly continuous, locally equicontinuous semigroup.

When A is closed and has no eigenvalues in (!,1), for some real !, then it may be
shown that all exponentially bounded mild solutions of (0.1) are unique (see Lemma
3.11). The Hille-Yosida space for A, denoted by Z0, (see [9]) is then the set of all x
for which (0.1) has a bounded uniformly continuous mild solution, topologized by

kxkZ0 ⌘ sup
t�0

ku(t, x)k.

In [9, Chapter 5], we show that Z0 is a Banach space and A|Z0 generates a strongly
continuous semigroup of contractions.

Here are some consequences of having a C-existence family.

Lemma 1.4 [9, Theorem 2.6].
(1) If there exists a mild C-existence family, {W (t)}t�0, for A, then (0.1) has

a mild solution for any x 2 Im(C), u(t, Cy) ⌘ W (t)y, and the sequence of
solutions u(t, Cxn) converge to zero, uniformly on compact subsets of [0,1),
whenever xn ! 0.

(2) If there exists a strong C-existence family, {W (t)}t�0, for A, then (0.1) has a
strong solution for any x 2 C(D(A)), u(t, Cy) ⌘ W (t)y, and both u(t, Cxn)
and Au(t, Cxn) converge to zero, uniformly on compact subsets of [0,1),
whenever xn and Axn both converge to zero.

The following is very useful for dealing with exponentially bounded solutions of
(0.1).
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Lemma 1.5 [1, Theorem 1.1]. Suppose f : (0,1) ! X and M � 0. Then the
following are equivalent.

(a) There exists F : [0,1) ! X such that kF (s) � F (t)k  M |t � s|, for all
s, t � 0, F (0) = 0 and

f(s) = s

Z 1

0
e�stF (t) dt 8s > 0.

(b) f is infinitely di↵erentiable, with

kf (k)(s)k  M
k!

sk+1
, 8k 2 N, s > 0.

Lemma 1.6 [9, Lemma 2.10]. Suppose A is closed and u is a O(e!t) mild solution
of (0.1). Then, for Re(z) > !,

R1
0 e�ztu(t, x) dt 2 D(A), with

(z �A)
Z 1

0
e�ztu(t, x) dt = x.

II. Definitions and basic properties. When C commutes with an existence
family, a more algebraic definition is possible (informally, think of W (t) = etAC =
CetA). When C is injective, the following was introduced in [4], and, independently,
for the exponentially bounded case, in [5]; see [9].
Definition 2.1. The strongly continuous family of operators {W (t)}t�0 ✓ B(X) is
a C-regularized semigroup if

(1) W (0) = C;
(2) W (t)W (s) = CW (t + s), for all s, t � 0;

{W (t)}t�0 is nondegenerate if W (t)x ⌘ 0, for all t � 0, only when x = 0.
It is clear that {W (t)}t�0 is nondegenerate if C is injective. The converse is also

true.

Proposition 2.2. The C-regularized semigroup {W (t)}t�0 is nondegenerate if and
only if C is injective.

Proof. The su�ciency of being injective is clear. Conversely, suppose {W (t)}t�0 is
nondegenerate and suppose Cx = 0. Then by (2) of Definition 2.1,

W (t) (W (s)x) = 0, 8s, t � 0,

thus since {W (t)}t�0 is nondegenerate, W (s)x = 0, for all s � 0. Now nondegeneracy
again implies that x = 0. Thus C is injective, as desired. ⇤
Definition 2.3. Suppose A is closable. We will say that the C-regularized semigroup
{W (t)}t�0 is a C-regularized semigroup for A if

(1) W (t)A ✓ AW (t), for all t � 0; and
(2) {W (t)}t�0 is a mild C-existence family for A.
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We will also say that A has a C-regularized semigroup or has the C-regularized
semigroup {W (t)}t�0

We shall see that a strongly continuous family of bounded operators {W (t)}t�0

satisfying (1) and (2) of Definition 2.3 is automatically a C-regularized semigroup
(see Theorem 3.3).

Proposition 2.4. If A is closed and {W (t)}t�0 is a C-regularized semigroup for A,
then {W (t)}t�0 is a strong C-existence family for A, such that

W (t)x� Cx =
Z t

0
W (s)Axds, 8x 2 D(A).

Proof. Suppose x 2 D(A). For any t � 0, W (t)x 2 D(A), with AW (t)x = W (t)Ax,
thus

kW (t)xk[D(A)] ⌘ kW (t)Axk+ kW (t)xk  kW (t)k(kAxk+ kxk) ⌘ kW (t)kkxk[D(A)],

so that W (t)|[D(A)] 2 B([D(A)]).
Strong continuity of {W (t)|[D(A)]}t�0 follows similarly.
By the definition of C-regularized semigroup for A, and the fact that A is closed,

for x 2 D(A),

W (t)x� Cx = A
⇣Z t

0
W (s)xds

⌘
=

Z t

0
AW (s)xds =

Z t

0
W (s)Axds,

concluding the proof.
Definition 2.5. Suppose {W (t)}t�0 is a nondegenerate C-regularized semigroup.
Let D(Ã) be the set of all x 2 X such that there exists y 2 X such that

W (t)x� Cx =
Z t

0
W (s)y ds, 8t � 0.

Then Ãx ⌘ y.
The operator Ã is the generator of {W (t)}t�0.
An analogous definition of the generator of an integrated semigroup appears in [1]

and [15].

Proposition 2.6. Suppose {W (t)}t�0 is a nondegenerate C-regularized semigroup
generated by Ã. Then we have the following.

(1) Ã is closed.
(2) {W (t)}t�0 is a C-regularized semigroup for Ã.
(3) If {W (t)}t�0 is a C-regularized semigroup for A, and A is closable, then

C(D(Ã)) ✓ D(A), and A ✓ Ã.

(4) If {W (t)}t�0 is a C-regularized semigroup for A, then Im(C) ✓ D(A).
(5)

Ãx = C�1
�
lim
t!0

1
t
(W (t)x� Cx)

�
,
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with maximal domain.

Note that (5) is asserting that Definition 2.5 is consistent with the usual definition
of generator (see [9, Chapter 3]).
Proof. (1). Suppose {xn}1n=1 ✓ D(Ã), xn ! x and Ãxn ! y, as n !1. Then, for
all n 2 N,

W (t)xn � Cxn =
Z t

0
W (s)Ãxn ds, 8t � 0,

thus, since kW (s)k is uniformly bounded, for s 2 [0, t], we may conclude, by taking
limits, that

W (t)x� Cx =
Z t

0
W (s)y ds, 8t � 0,

so that x 2 D(Ã) and Ãx = y, as desired.
(2). For any x 2 X, r � 0, by the definition of a C-regularized semigroup (Definition
2.1)

(W (t)� C)
⇣Z r

0
W (s)xds

⌘
=

⇣Z r+t

t
�

Z r

0

⌘
(W (s)Cxds)

=
⇣Z r+t

r
�

Z t

0

⌘
(W (s)Cxds) =

Z t

0
W (s)(W (r)x� Cx) ds,

thus
R r
0 W (s)xds 2 D(Ã), with

Ã
⇣Z r

0
W (s)xds

⌘
= W (r)x� Cx,

so that (2) of Definition 2.3 is satisfied.
If x 2 D(Ã), and r � 0, then by applying W (r) to both sides of the generator, we

have

W (t)(W (r)x)� C(W (r)x) =
Z t

0
W (s)(W (r)Ãx) ds, 8t � 0,

so that W (r)x 2 D(Ã), with

ÃW (r)x = W (r)Ãx,

so that (1) of Definition 2.3 is satisfied.
(3) For x 2 D(Ã), since

n
⇣Z 1

n

0
W (s)xds

⌘
! Cx,

and

A
⇣
n
⇣Z 1

n

0
W (s)xds

⌘⌘
= n(W (

1
n

)x� Cx) ! CÃx = ÃCx,
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as n ! 1, and A is closable, it follows that Cx 2 D(A), with ACx = ÃCx. Thus
C(D(Ã)) ✓ D(A). For x 2 D(A), Definition 2.3 and the fact that A is closable imply
that

W (t)x� Cx = A
⇣Z t

0
W (s)xds

⌘
=

Z t

0
W (s)Axds,

thus x 2 D(Ã) and Ax = Ãx, that is, A ✓ Ã. Since Ã is closed, A ✓ Ã.
(4). For any x 2 X,n 2 N, define

xn ⌘ n

Z 1
n

0
W (s)xds.

Then xn 2 D(A), for all n 2 N, and xn ! Cx, as n !1, thus Cx 2 D(A).
(5). Define

Bx ⌘ C�1
�
lim
t!0

1
t
(W (t)x� Cx)

�
,

with maximal domain.
Di↵erentiating at t = 0, in the definition of the generator, implies that Ã ✓ B.

Conversely, suppose x 2 D(B). Then d
dtW (t)x = W (t)Bx, for all t � 0 (see [9,

Theorem 3.4]), thus

W (t)x� Cx =
Z t

0
W (s)Bxds,

for all t � 0, which implies that B ✓ Ã. ⇤

Example 2.7. Suppose B generates a strongly continuous semigroup {etB}t�0, and
D(A) ⌘ D(B2), with Ax = Bx, for x 2 D(A). Fix � 2 ⇢(B) and define

W (t) ⌘ (��B)�1etB (t � 0).

Then it is not hard to show that {W (t)}t�0 is a (��B)�1-regularized semigroup for
A. But A does not generate {W (t)}t�0; the generator is B.

In this example, A is not closed. An example of a closed operator A, that has a
C-regularized semigroup it does not generate, is in Counterexample 0.2.
Definition 2.8. When {W (t)}t�0 is a C-regularized semigroup and C is injective,
the infinitesimal generator, G, of {W (t)}t�0, is defined by

Gx ⌘ lim
t!0

1
t
(C�1W (t)x� x),

with D(G) defined to be the set of all x 2 Im(C) such that the limit exists.
For Im(C) dense, and {W (t)}t�0 exponentially bounded, this was introduced in

[14].
Note that Ã|C(D(Ã)), where Ã is the generator of {W (t)}t�0, is obviously contained

in G; in fact, C(D(Ã)) is the set of x 2 D(G) such that Gx 2 Im(C).
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Proposition 2.9. Suppose A is closed, C is injective, and {W (t)}t�0 is a C-
regularized semigroup for A. Then

(1) {W (t)}t�0 is unique;
(2) C�1AC is the generator of {W (t)}t�0; and
(3) G ✓ A.

Proof. (1). Suppose, for i = 1, 2, that {Wi(t)}t�0 is a C-regularized semigroup for
A. For any x 2 X, s, t � 0,

d

ds

h
W1(t� s)

Z s

0
W2(r)xdr

i
= W1(t� s)W2(s)x�W1(t� s)A

Z s

0
W2(r)xdr

= W1(t� s)Cx = CW1(t� s)x,

and thus, by integrating in s from 0 to t, we obtain

C

Z t

0
W2(r)xdr = C

Z t

0
W1(r)xdr;

since C is injective, we may di↵erentiate and conclude that W1(t) = W2(t), for all
t � 0, as desired.
(2) follows from Proposition 2.6(3) and [9, Proposition 3.11].
(3). Suppose x 2 D(G). Then x = Cy, for some y 2 X, so that for any t > 0,

1
t
(C�1W (t)x� x) =

1
t
(W (t)y � Cy) = A

h1
t

Z t

0
W (s)y ds

i
,

so that, by taking the limit as t ! 0 and using the fact that A is closed, we conclude
that x 2 D(A), with Ax = Gx. ⇤

Corollary 2.10. If A is closed and there exists a strongly continuous semigroup for
A, then A is the generator.

Example 2.11. If {W (t)}t�0 is a C-regularized semigroup for A, then it is not hard
to show that {W (t)}t�0 is a C-regularized semigroup for A. Here we give an example
of a closable operator B such that B has a C-regularized semigroup but B does not.

Let X,G and A be as in Counterexample 0.2 and let C ⌘ (1 � G)�1. Define a
C-regularized semigroup {W (t)}t�0 by

(W (t)f)(s) ⌘ (Cf)(t + s) (t � 0, s 2 R).

Let B equal the restriction of G to (1�G)�1(BC1(R)), where BC1(R) is the set of
all bounded f such that f has a bounded continuous derivative, that is,

D(B) ⌘ (1�G)�1BC1(R), Bf ⌘ f 0, 8f 2 D(B).

Then the following argument shows that A = B.
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Suppose x 2 D(A). Then x = (1�G)�1y, for some y 2 BUC(R). Let {yn}n be
a sequence in BC1(R) converging to y in X. Then xn ⌘ (1�G)�1yn converges to x
in X and

Bxn = B(1�G)�1yn = G(1�G)�1yn ! G(1�G)�1y = A(1�G)�1y = Ax,

as n !1.
It is clear that {W (t)}t�0 is a C-regularized semigroup for A, but not for B, since

the integral of a function in L1(R) may not be in BC1(R). This implies that B has
no C-regularized semigroup, for if it did, this C-regularized semigroup would also be
a C-regularized semigroup for A; by Proposition 2.9(1), this would then imply that
this C-regularized semigroup would be {W (t)}t�0.

III. Main results. We will begin with a simple su�cient condition for having a
regularized semigroup, that is often satisfied in practice (see Section IV).

Theorem 3.1. Suppose {W (t)}t�0 is a C-regularized semigroup generated by an
extension of A, A is closed and densely defined and W (t) leaves D(A) invariant, for
all t � 0. Then {W (t)}t�0 is a C-regularized semigroup for A.

Proof. Let Ã be the generator of {W (t)}t�0. By Proposition 2.6(2) and the fact
that W (t) leaves D(A) invariant, for x 2 D(A), t � 0,

W (t)Ax = W (t)Ãx = ÃW (t)x = AW (t)x.

Thus all that remains is to show that {W (t)}t�0 is a mild C-existence family for A.
For x 2 D(A), since A is closed,

R t
0 W (s)xds 2 D(A), with

A
⇣Z t

0
W (s)xds

⌘
=

Z t

0
W (s)Axds =

Z t

0
W (s)Ãx ds = W (t)x� Cx.

Since D(A) is dense, and A is closed, the same is true for all x 2 X. ⇤
We shall see that, when C is injective and A has a C-regularized semigroup, then

the solutions of (0.1) are unique. We will show this by showing that the C-existence
family for A is also what we will call a C-uniqueness family. When {W (t)}t�0 is
exponentially bounded, an equivalent version of the following definition appeared in
[7].
Definition 3.2. If C is an injective, bounded operator, then a C-uniqueness family
for A is a strongly continuous family of operators {W (t)}t�0 ✓ B(X) such that

W (t)x� Cx =
Z t

0
W (s)Axds 8x 2 D(A).

Now we present numerous relationships between having a regularized semigroup,
having an existence family, and having unique solutions of (0.1), when C is injective
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and A is closed. It is interesting that, when C commutes with A, a mild existence
family for A automatically commutes with A and is also a C-uniqueness family. When
Im(C) is dense, and {W (t)}t�0 is a C-regularized semigroup generated by Ã, then
{W (t)}t�0 is a C-regularized semigroup for A if and only if C

⇣
D(Ã)

⌘
✓ D(A)), if

and only if W (t) leaves D(A) invariant, for all t � 0. In fact, Ã then equals C�1AC.
In the following, note that, by Proposition 2.4, “mild C-existence family” could

be replaced by “strong C-existence family”.

Theorem 3.3. Suppose A is closed, C is injective and CA ✓ AC. Then the follow-
ing are equivalent.

(a) (0.1) has a unique mild solution for all x 2 Im(C).
(b) All solutions of (0.1) are unique and [Im(C)] ,! Z.
(c) All solutions of (0.1) are unique and there exists a mild C-existence family

for A.
(d) There exists a mild C-existence family for A such that W (t)A ✓ AW (t), for

all t � 0.
(e) There exists a mild C-existence family {W (t)}t�0 that is also a C-uniqueness

family for A.
(f) There exists a C-regularized semigroup for A.

In addition, if Im(C) is dense, then (a)–(f) are equivalent to the following.
(g) C�1AC generates a C-regularized semigroup.
(h) An extension of A, Ã, generates a C-regularized semigroup and C(D(Ã)) ✓

D(A).
(i) An extension of A generates a C-regularized semigroup that leaves D(A) in-

variant.

Proof. The equivalence of (a) through (c) is in [9, Chapter 4].
(c) ! (f). Let {W (t)}t�0 be the mild C-existence family for A. For s, t � 0, x 2 X,

W (t)W (s)x = A
⇣Z t

0
W (r)W (s)xdr

⌘
+ CW (s)x,

and, since CA ✓ AC,

CW (t + s)x = A
⇣Z t+s

0
CW (r)xdr

⌘
+ C2x

= A
⇣Z t

0
CW (s + r)xdr

⌘
+ A

⇣Z s

0
CW (r)xdr

⌘
+ C2x

= A
⇣Z t

0
CW (s + r)xdr

⌘
+ CW (s)x.

By the uniqueness of solutions of (0.1),

W (t)W (s)x = CW (t + s)x, 8x 2 X,
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that is, {W (t)}t�0 is a C-regularized semigroup.
All that remains is to show that W (t)A ✓ AW (t), for all t � 0. Fix x 2 D(A).

We will show that

W (t)x =
Z t

0
W (s)Axds + Cx. (3.4)

To show (3.4), define

W̃ (t)x ⌘
Z t

0
W (s)Axds + Cx;

since A is closed, CA ✓ AC and {W (t)}t�0 is a mild existence family, it follows thatR t
0 W̃ (s)xds,

�R s
0 W (r)Axdr

�
and Cx are in the domain of A, with

A

Z t

0
W̃ (s)xds =

Z t

0
A

⇣Z s

0
W (r)Axdr

⌘
ds + tCAx

=
Z t

0
W (s)Axds = W̃ (t)x� Cx.

Again by the uniqueness of solutions of (0.1), it follows that W̃ (t)x = W (t)x, proving
(3.4).

Assertion (3.4) and the fact that {W (t)}t�0 is a mild C-existence family now
imply that

A

Z t

0
W (s)xds =

Z t

0
W (s)Axds. (3.5)

Since A is closed, we may di↵erentiate both sides of (3.5) to conclude that W (t)x 2
D(A), with AW (t)x = W (t)Ax, as desired.
(f) ! (d) is obvious.
(d) ! (e). This proof is the same as the proof of Proposition 2.4.
(e) ! (c). It is su�cient to show that, if d

dtv(t) = A(v(t)) and is continuous, for
t � 0, with v(0) = 0, then v(t) ⌘ 0.

Since {W (t)}t�0 is a C-uniqueness family for A, for s, t � 0,

d

ds
W (t� s)v(s) = 0.

Thus W (t� s)v(s) is a constant function of s; letting s equal t, then 0, gives us

Cv(t) = W (t)v(0) = 0,

so that, since C is injective, v(t) ⌘ 0.
We have shown the equivalence of (a)-(f). Now suppose Im(C) is dense.
The equivalence of (g) and (h) is [9, Proposition 3.11] (this holds whether or not

Im(C) is dense).
(f) ! (i) is obvious, and (i) ! (f) is Theorem 3.1, since, by Proposition 2.6(4), D(A)
is dense.
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(f) ! (g) is Proposition 2.9 (again, the denseness of Im(C) is not required here).
(g) ! (f). Let {W (t)}t�0 be the C-regularized semigroup generated by C�1AC.
Then, for any x 2 X, t � 0,

W (t)x� Cx = C�1AC

Z t

0
W (s)xds,

thus

W (t)Cx� C2x = A

Z t

0
W (s)Cxds.

Since Im(C) is dense and A is closed, this implies (2) of Definition 2.3.
If x 2 D(A), it then follows that

A

Z t

0
W (s)xds = W (t)x� Cx =

Z t

0
W (s)C�1ACxds =

Z t

0
W (s)Axds, 8t � 0;

since A is closed, we may di↵erentiate, to conclude that W (t)x 2 D(A), with
AW (t)x = d

dtW (t)x = W (t)Ax, so that (1) of Definition 2.3 is satisfied. ⇤
Definition 3.6. The complex number � is in ⇢C(A), the C-resolvent of A, if (��A)
is injective and Im(C) ✓ Im(��A).

A Laplace transform definition of an exponentially bounded existence family for A
appears in [7]. However, part of the definition given there asserted that

R t
0 W (s)xds 2

D(A), for all x 2 X. This hypothesis is actually unnecessary, that is, it follows
automatically from the existence of the desired Laplace transform. Thus we are led
to the following simpler characterization of an exponentially bounded mild existence
family, in terms of a Laplace transform.

Theorem 3.7. Suppose A is closed, ! 2 R, {W (t)}t�0 is a strongly continuous
O(e!t) family of bounded operators and (s � A) is injective for all s > !. Then
{W (t)}t�0 is a mild C-existence family for A if and only if

(1) (!,1) ✓ ⇢C(A), and
(2)

(s�A)�1Cx =
Z 1

0
e�stW (t)xdt, 8x 2 X, s > !.

Proof. Suppose {W (t)}t�0 is a mild C-existence family for A. Then (1) and (2)
follow immediately from Lemma 1.6.

Conversely, suppose (1) and (2) hold. Without loss of generality (by translating
A if necessary), suppose ! < 0. Define, for any t � 0,

W̃ (t)x ⌘
Z t

0
W (s)xds (x 2 X).

By (2),

(s�A)�1Cx = s

Z 1

0
e�stW̃ (t)xdt, 8x 2 X, s > 0. (3.8)
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Since ! < 0, (3.8) implies that

��(
d

ds
)k

�1
s
(s�A)�1Cx

���  Mk!s�(k+1)kxk (s > 0, k 2 N), (3.9)

while (2) implies that

k( d

ds
)k

�
(s�A)�1Cx

�
k  Mk!s�(k+1)kxk (s > 0, k 2 N), (3.10)

for some constant M . Assertions (3.9) and (3.10), along with the identity

A
�1
s
(s�A)�1Cx

�
= (s�A)�1Cx� 1

s
Cx

imply that

��(
d

ds
)k

�1
s
(s�A)�1Cx

���
[D(A)]

 M1k!s�(k+1)kxk (s > 0, k 2 N),

for some constant M1. By Lemma 1.5, there exists Wx : [0,1) ! [D(A)] such that
Wx(0) = 0 and

1
s
(s�A)�1Cx = s

Z 1

0
e�stWx(t) dt.

Comparing this with (3.8) tells us that
R t
0 W̃ (s)xds = Wx(t) 2 D(A), for any x 2 X.

Assertion (3.8) now implies that

tCx = W̃ (t)x�A

Z t

0
W̃ (s)xds.

Since A is closed, we may di↵erentiate this, to conclude that
R t
0 W (s)xds = W̃ (t)x 2

D(A), with

W (t)Cx� Cx = A

Z t

0
W (s)xds,

so that {W (t)}t�0 is a mild C-existence family for A. ⇤

Since, when Ã generates an exponentially bounded C-regularized semigroup, and
C is injective, (s � Ã) is automatically injective, for s su�ciently large, we will
obtain, as a corollary, a characterization of A having an exponentially bounded reg-
ularized semigroup, in terms of the C-resolvent being a Laplace transform (of the
C-regularized semigroup). First, we need a lemma that guarantees uniqueness of
exponentially bounded solutions of (0.1). The following is an immediate corollary of
Lemma 1.6.

Lemma 3.11 ([Proposition 2.9, 7]). Suppose A is closed and there exists ! 2 R
such that A has no eigenvalues in (!,1). Then all exponentially bounded solutions
and mild solutions of (0.1) are unique.
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Theorem 3.12. Suppose A is closed, {W (t)}t�0 is a strongly continuous O(e!t)
family of bounded operators and C is injective. Then the following are equivalent.

(a) {W (t)}t�0 is a C-regularized semigroup for A.
(b) Im(C) ✓ Im(s � A) for all s > !, CA ✓ AC and C�1AC generates the

regularized semigroup {W (t)}t�0.
(c) Im(C) ✓ Im(s�A) for all s > !, CA ✓ AC and an extension of A generates

the regularized semigroup {W (t)}t�0.
(d) (!,1) ✓ ⇢C(A), CA ✓ AC and

(s�A)�1Cx =
Z 1

0
e�stW (t)xdt, 8x 2 X, s > !.

Proof. (a) ! (b). By Definition 2.3, CA ✓ AC and by Lemma 1.6,

Cx = (s�A)
Z 1

0
e�stW (t)xdt, 8x 2 X, s > !,

Thus Im(C) ✓ Im(s � A), for s > !. By Proposition 2.9, C�1AC generates
{W (t)}t�0.
(b) ! (c) is obvious.
(c) ! (d). Let Ã be the extension of A that generates {W (t)}t�0. By [9, Chapter
17], (!,1) ✓ ⇢C(Ã), with

(s� Ã)�1Cx =
Z 1

0
e�stW (t)xdt, 8x 2 X, s > !.

Since Im(C) ✓ Im((s�A)), for all s > !, the same is true for A, that is, (!,1) ✓
⇢C(A) and

(s�A)�1Cx =
Z 1

0
e�stW (t)xdt, 8x 2 X, s > !.

(d) ! (a). By Theorem 3.7, {W (t)}t�0 is a mild C-existence family for A, and by
Lemma 3.11, all exponentially bounded mild solutions of (0.1) are unique. Thus, by
the same proof as Theorem 3.3(c) ! (f), {W (t)}t�0 is a C-regularized semigroup for
A. ⇤

Remark 3.13. Laplace transform characterizations of exponentially bounded reg-
ularized semigroups, similar to Theorem 3.12(d), appear in [12, Definition 2.4] and
[6, Proposition 3.4]. There is a misnomer in [12, Definition 2.4]; they define the
closed operator A, satisfying (d) of Theorem 3.12, as the generator of {W (t)}t�0.
As is demonstrated by Counterexample 0.2, this is ambiguous; that is, there can be
more than one closed operator that has {W (t)}t�0 as a regularized semigroup, hence
satisfies (d) of Theorem 3.12.
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Corollary 3.14. Suppose CA ✓ AC, and A is closed and has no eigenvalues in
(0,1). Then the following are equivalent.

(a) (0.1) has a bounded uniformly continuous mild solution, for all x 2 Im(C).
(b) [Im(C)] ,! Z0.
(c) There exists a bounded strongly uniformly continuous mild C-existence family

for A.
(d) There exists a bounded strongly uniformly continuous C-regularized semigroup

for A.
In addition, if C is injective, then (a)-(d) are equivalent to

(e) C�1AC generates a bounded strongly uniformly continuous C-regularized
semigroup and Im(C) ✓ Im(s�A), for all s > 0.

(f) An extension of A generates a bounded strongly uniformly continuous C-
regularized semigroup and Im(C) ✓ Im(s�A), for all s > 0.

Proof. By Lemma 3.11, all exponentially bounded solutions of (0.1) are unique.
Thus the equivalence of (a)-(c) is in [9, Chapter 5], and the equivalence of (d) and
(c) follows as did the equivalence of (c) and (f) in Theorem 3.3. The equivalence of
(d), (e), and (f) is Theorem 3.12.

IV. Examples. In all these examples, the fact that the C-regularized semigroup
is a C-regularized semigroup for A follows from Theorem 3.1.

Many examples of applications of regularized semigroups to di↵erential equations
may be found in [9]. Here we will focus on examples where either C is not injective,
or A is not the generator of the C-regularized semigroup, so that the generality of
this paper is required.

Example 4.1. Let C be a spectral projection for A, corresponding to a compact
subset of the complex plane, ⌦; by this we mean that CA ✓ AC, the restriction of
A to [Im(C)] is in B([Im(C)]), and the spectrum of the restriction of A to [Im(C)]
is contained in ⌦.

For example, when A is a self-adjoint operator on a Hilbert space, such spectral
projections are defined, for any compact set ⌦.

Then for any complex-valued polynomial p,

W (t) ⌘
1X

k=0

tk

k!
(p(A)C)k =

1X
k=0

tk

k!
(p(A))k C

is a C-regularized semigroup for p(A).
Note that, in this example, C is not injective.

Example 4.2. A model for linear elasticity is

(
d

dt
)2u(t, x) = �B(u(t, x)) (t � 0), u(0, x) = x, (4.3)

where B is a self-adjoint operator on a Hilbert space H and x 2 H (see [3] and [13]).
This can be shown to be well-posed if and only if B is positive (see [16]).



REGULARIZED SEMIGROUPS 1493

When there are structural instabilities (for example, during an earthquake), then
we do not expect (4.3) to be well-posed.

If we make the usual reduction to a first order problem,

A ⌘


0 1
�B 0

�
, D(A) ⌘ D(B)⇥H,

then (4.3) becomes (0.1), on H ⇥H.
It is clear that, if C is a spectral projection for B corresponding to a compact set,

then CI2 is a spectral projection for A corresponding to a (di↵erent) compact set.
Thus we may apply Example 4.1 to (4.3).

See [10] for another approach.

Example 4.4. Suppose O is an open set in the complex plane, such that the
boundary, @O, is a finite union of piecewise smooth, orientable (possibly unbounded)
mutually nonintersecting arcs and the complement of O contains a half-line, the
spectrum of A is contained in O, g is holomorphic in O, and for all t � 0, |etzg(z)|
is O(|z|�2), for z 2 O, and

Z
@O

|etzg(z)|k(z �A)�1k d|z| < 1.

Then
W (t) ⌘ 1

2⇡i

Z
@O

etzg(z)(z �A)�1 dz

may be shown to define a W (0)-regularized semigroup for A (see [9, chapter XXII]
for the details when g(z) = (�� z)�m).

In general, it is not clear when W (0) is injective.

Example 4.5. The backward heat equation on a bounded domain ⌦ ✓ Rn, with
Dirichlet boundary conditions, is

@

@t
u(s, t) +4u(s, t) = 0 (s 2 ⌦, t � 0)

u(s, t) = 0 (s 2 @⌦, t � 0)
u(s, 0) = f(s) (s 2 ⌦),

where 4 is the Laplacian. For simplicity, we will assume that @⌦, the boundary of
⌦, is smooth.

This is the abstract Cauchy problem (0.1), when �A generates a strongly con-
tinuous holomorphic semigroup of angle ⇡

2 . We may apply Example 4.4, with
O ⌘ {rei� : r > 0, |�| < ✓}, for 0 < ✓ < ⇡

4 , g(z) ⌘ e�z2
.

In general, this is giving us reversibility of parabolic problems, for initial data in
a dense set. See [9] or [8] for other approaches.

Example 4.6. We will now consider arbitrary systems of constant coe�cient partial
di↵erential initial-value problems. We need some standard multivariable terminology.
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Terminology 4.7. We will write s = (s1, . . . sn), for vectors in Rn, ↵ = (↵1, . . .↵n)
for vectors in (N [ {0})n. We will write s↵ ⌘ s↵1

1 · · · s↵n
n , |s|2 ⌘

Pn
k=1 |sk|2, |↵| ⌘Pn

k=1 ↵k.
For 1  k  n, let Dk be i @

@sk
, on a Banach space of complex-valued functions on

Rn, X ⌘ Lp(Rn) (1  p < 1), BUC(Rn), C0(Rn), or any space where translation is
strongly continuous and uniformly bounded. We will write D for (D1, . . . ,Dn),D↵

for (D1)↵1 · · · (Dn)↵n .
The Laplacian,4, is defined as the generator of the strongly continuous semigroup

(et4f)(s) ⌘ (4⇡t)�
n
2

Z
Rn

e�
|y|2
4t f(s� y) dy.

Note that

4 = |D|2 ⌘
nX

k=1

(
@

@sk
)2.

More generally, if p is a polynomial

p(s) ⌘
X

|↵|N

a↵s↵,

then the constant coe�cient di↵erential operator p(D) is defined by

p(D) ⌘
X

|↵|N

a↵D↵,

with D(p(D)) ⌘ {f 2 X : p(D)f 2 X}, where p(D) is taken in the sense of distribu-
tions.

We show in [9, Theorem 12.12] that D(4`) ✓ D(p(D)), whenever 2` > N + n
2 .

Let M ⌘ (pi,j)m
i,j=1 be an m⇥m matrix of polynomials. Let

N ⌘ max
i,j

{degree of pi,j}.

Define the operator M(D), on Xm, by

M(D) ⌘ (pi,j(D)), D(M(D)) ⌘ D(4`)m, ` ⌘ 1 + [
1
2
(N +

n

2
)].

Note that any system of constant coe�cient partial di↵erential initial-value problems
may be written as (0.1), with A ⌘M(D), for some matrix of polynomials M, that
is,

d

dt
~u(t, ~f) = M(D)~u(t, ~f) (t � 0), ~u(0, ~f) = ~f, (4.8)

where ~u(t, ~f) 2 Xm, for all t � 0.
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The matrix of polynomials M is said to be Petrowsky correct if there exists ! 2 R
such that for all s 2 Rn,

�(M(s)) ✓ {z 2 C : Re(z)  !}.

Definition 4.9. We have shown (see [9, Theorems 13.9 and 14.1]) that an extension
of M(D) generates a C-regularized semigroup, for appropriate C, that leaves the
domain of M(D) invariant (see also [12] for the Petrowsky correct case). Thus
M(D) is closable; let

A ⌘M(D).

Then Theorem 3.1 and [9, Theorems 13.9 and 14.1] give us the following.

Theorem 4.10.
(a) There exists injective C, with dense range, such that A has a C-regularized

semigroup.
(b) If M is Petrowsky correct, then there exists r � 0 such that A has an expo-

nentially bounded (1 +4)�r-regularized semigroup.

This produces strong solutions of (4.8), for all ~f in a dense set. When M is
Petrowsky correct, this produces mild solutions of (4.8), for all ~f in D(4r).

We remark that, in this example, it may be di�cult to write down the domain of
the generator of the C-regularized semigroup.

Example 4.6 is clearly a wide class of examples, that includes higher order constant
coe�cient initial-value problems. We give here two simple specific special cases, and
refer the reader to [11] for others.

Example 4.11. The wave equation on Rn is

(
@

@t
)2u(t, s) = 4u(t, s), u(0, s) = f1(s),

@

@t
u(0, s) = f2(s) (t � 0, s 2 Rn).

This is clearly (4.8), with

M(s) ⌘


0 1
�|s|2 0

�
.

A simple calculation shows that this is Petrowsky correct.

Example 4.12. The equation describing sound propagation in a viscous gas is

(
@

@t
)2u(t, s) = 2

@2

@t@s2
u(t, s) +

@2

@s2
u(t, s), u(0, s) = f1(s),

@

@t
u(0, s) = f2(s)

(t � 0, s 2 R).

This is (4.8) with

M(s) ⌘


0 1
�s2 �2s2

�
.
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Again, this may be shown to be Petrowsky correct.
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