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Abstract

This paper addresses the problem of recognizing the speech uttered by patients with dysarthria, 

which is a motor speech disorder impeding the physical production of speech. Patients with 

dysarthria have articulatory limitation, and therefore, they often have trouble in pronouncing 

certain sounds, resulting in undesirable phonetic variation. Modern automatic speech recognition 

systems designed for regular speakers are ineffective for dysarthric sufferers due to the phonetic 

variation. To capture the phonetic variation, Kullback-Leibler divergence based hidden Markov 

model (KL-HMM) is adopted, where the emission probability of state is parametrized by a 

categorical distribution using phoneme posterior probabilities obtained from a deep neural 

network-based acoustic model. To further reflect speaker-specific phonetic variation patterns, a 

speaker adaptation method based on a combination of L2 regularization and confusion-reducing 

regularization which can enhance discriminability between categorical distributions of KL-HMM 

states while preserving speaker-specific information is proposed. Evaluation of the proposed 

speaker adaptation method on a database of several hundred words for 30 speakers consisting of 

12 mildly dysarthric, 8 moderately dysarthric, and 10 non-dysarthric control speakers showed that 

the proposed approach significantly outperformed the conventional deep neural network based 

speaker adapted system on dysarthric as well as non-dysarthric speech.
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I. Introduction

DYSARTHRIA is a motor speech disorder resulting from neurological injury of the motor 

speech system. Patients with dysarthria have trouble controlling the motor subsystems 

including respiration, phonation, resonance, articulation, and prosody [1]. Speech in patients 

with dysarthria is generally characterized by poor articulation of phonemes, breathy voice, 

and monotonic intonation [2]; thus, their speech intelligibility is reduced in proportion to the 

severity of dysarthria.

In general, dysarthria is often accompanied with a physical disability (e.g., cerebral palsy) 

that limits the speaker's capability to communicate through computers and electronic 

devices, making keyboard typing about 300 times slower than for regular users [3]. 

However, dysarthric speech is at most about 15 times slower than regular speech [4]. 

Consequently, spoken commands become an attractive alternative to normal keyboard and 

mouse input. In practice, people with dysarthria tend to prefer spoken expression over other 

physical modes due to its relative naturalness and speed [3], [6]. Although an automatic 

speech recognition (ASR) system is essential for dysarthria sufferers, current ASR systems 

for the general public are not well-suited to dysarthric speech because of acoustic mismatch 

resulting from their articulatory limitation [5]. That is, dysarthric individuals often fail to 

pronounce certain sounds, resulting in undesirable phonetic variation which is the main 

cause of performance degradation. Thus, it is necessary to develop an ASR system 

specialized for dysarthric speech.

Most studies on the recognition of dysarthric speech have been focused on acoustic 

modeling based on hidden Markov model (HMM) to capture the acoustic characteristics of 

disordered speech. Several HMM topologies such as ergodic or left-to-right HMM were 

investigated [7], [8]. They reported that left-to-right HMMs outperform ergodic HMMs for 

triphone acoustic modeling. This implies that state transitions not accounted for in left-to-

right HMMs capture rather poorly the outlier events that differentiate dysarthric speech from 

unimpaired speech at the subword level [8].

An HMM state is generally modeled using a Gaussian mixture model (GMM-HMM) [9], 

which is one of the most widely used generative models. Instead, discriminative acoustic 

models such as support vector machines (SVMs), conditional random field, and artificial 

neural networks (ANNs) were applied to dysarthric speech recognition [10], [11], [12]. The 

works reported that discriminative acoustic models produced better results than GMM-based 

generative acoustic models. Further, an ANN-HMM hybrid approach in which HMM states 

are modeled by ANNs was presented to improve the recognition performance of dysarthric 

speech [13].

Dysarthric speech deviates from regular speech in various ways. Nonetheless, it can be 

characterized by highly consistent articulatory errors for each speaker [14]. Therefore, it 
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would be promising to make the ASR system more suitable for an individual. To this end, 

speaker-adapted (SA) models, which are adjusted to a single user from a speaker-

independent (SI) initial model trained on a large population with regular speech, were 

investigated [15], [16] using conventional adaptation methods such as maximum a posteriori 

(MAP) [17] on GMM-HMM based ASR systems. These studies reported that SA models are 

more appropriate for dysarthric speakers compared to speaker-dependent (SD) models, 

which are trained solely to the individual, and SI models, which are trained on regular 

speech from several regular speakers [18].

In the speaker adaptation method, choosing an appropriate initial model to be adapted 

directly affects the recognition performance. Sharma and Hasegawa-Johnson [19] proposed 

an interpolation-based technique to obtain a better initial acoustic model for adaptation. The 

method computes a speaker-dependent background model to represent the dysarthric talker's 

general speech characteristics, and the background model is interpolated with regular SI 

models. Then, MAP-based speaker adaptation is applied to the interpolated SI model. Kim 

et al. [20] also studied the effect of an initial model employing an SI dysarthria-adapted 

(DA) acoustic model which is adapted from a regular SI model using speech data from 

several dysarthric talkers. Finally, speaker adaptation is applied to the SI DA acoustic model. 

The experimental results showed that the DA initial model is better than the regular initial 

model in terms of word error rates, especially when using a small amount of speaker 

adaptation data.

Another research direction is to handle the phonetic variation of dysarthric speech in an 

explicit or implicit way. Explicit modeling generally creates multiple pronunciations for 

each word in the lexicon [46]. Mengistu and Rudzicz [16] manually made a pronunciation 

lexicon for each individual with dysarthria through expert assessment of the individual's 

pronunciation. A speaker-specific pronunciation dictionary was automatically generated 

using phoneme posterior probabilities of a deep neural network (DNN) trained on regular 

speech [21] or the state-specific vector of phone-cluster adaptive training-based acoustic 

models [49]. Weighted finite state transducers (WFSTs) using phonetic confusion matrices 

resulting from a regular ASR system were built to allow phonetic confusions during 

decoding process [22], [23], [32].

Implicit modeling, on the other hand, depends on the underlying acoustic models to deal 

with phonetic variation. Most studies have been focused on model parameter tying in which 

the acoustic model parameters of a target phoneme are shared with those of its alternative 

phonemes [46], [47]. Chandrakala and Rajeswari [50] used the log-likelihood scores of 

generative acoustic models as input to an SVM-based speech recognizer. Therefore, it can 

remove the necessity to explicitly determine and represent phonetic variation in the lexicon. 

Although implicit modeling is promising, it has rarely been investigated in the field of 

dysarthric speech recognition.

This paper addresses the problem of automatic recognition of dysarthric speech, focusing on 

implicit phonetic variation modeling. The contributions of the paper include the following:

• An effective application of Kullback-Leibler divergence-based HMM (KL-

HMM) [24], [25] to dysarthric speech recognition for dealing with phonetic 
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variation. KL-HMM is an emerging method as it offers a powerful and flexible 

framework for achieving implicit phonetic variation modeling. KL-HMM is a 

particular form of HMM in which the emission probability of state is 

parameterized by a categorical distribution of phoneme classes referred to as 

acoustic units. The categorical distribution is usually trained using phoneme 

posterior probabilities. In other words, a KL-HMM framework can be regarded 

as a combination of an acoustic model to obtain phoneme posterior probabilities 

from acoustic feature observations and a categorical distribution-based lexical 

model [33]. Since HMM states are generally represented as subword lexical units 

in the lexicon, KL-HMM can model the phonetic variation against target 

phonemes. KL-HMM has been successfully utilized in various speech 

recognition applications such as non-native speech recognition [26] and 

multilingual speech recognition [27]. Therefore, the KL-HMM is expected to 

effectively capture the phonetic variation of dysarthric speech.

• Regularized speaker adaptation of KL-HMM to make the system more speaker-

specific, since dysarthric individuals generally have their own phonetic variation 

pattern. To this end, we reformulate the Bayesian adaptation of a categorical 

distribution as an L2 regularized optimization problem. The L2 regularized 

adaptation can reflect the speaker-specific phonetic pattern, but confusions 

between KL-HMM lexical models may arise because dysarthric individuals have 

a limited phonetic repertoire resulting from the limitation of their articulatory 

movement [23]. To overcome this problem, we propose lexical confusion-

reducing (LCR) regularization which can enhance discriminability between 

lexical models in addition to the L2 regularization. It can be expected that 

discriminative power between lexical models increases while keeping the 

discerning power of phonetic variation within a lexical model. This adaptation 

method can also be applied to train a DA initial model to make the system better 

fitted to general dysarthric speech. Therefore, we believe that the proposed 

adaptation method can effectively represent speaker-specific phonetic variation 

patterns, which can help in improving recognition performance.

This paper is an extension of [48], including regularized adaptation framework, extensive 

experiments and analysis. The paper is organized as follows: The background including a 

database and the motivation for our work is described in Section II. In Section III, we 

present the proposed KL-HMM based ASR system in detail. Section IV shows experimental 

results demonstrating the effectiveness of the proposed method. Finally, our conclusions are 

summarized in Section V.

II. Background

A. Participants & Speech Tasks

Speech data were collected from 78 native Korean speakers of which 68 (40 males and 28 

females) were dysarthric and 10 (5 males and 5 females) were regular control speakers. All 

dysarthric speakers had been diagnosed with cerebral palsy, which is one of the most 

prevalent causes of dysarthria [28], and were recruited from Seoul National Cerebral Palsy 
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Public Welfare. The mean ages of the dysarthric and regular participants were 36.6 ± 9.7 

years and 33.1 ± 3.9 years, respectively.

All speakers uttered an average of 760 isolated words, including repetitions of 37 

Assessment of Phonology and Articulation for Children (APAC) words, 100 command 

words, 36 Korean phonetic codes which are used for identifying the Korean alphabet letters 

in voice communication, a subset from 452 Korean Phonetically Balanced Words (PBW), 

and a subset from 500 additional command words. Recordings were made in a quiet office 

with a Shure SM12A head-worn microphone at 16 kHz sampling rate in a mono-channel.

All participants were assessed by a speech-language pathologist, who has a top level license 

for speech therapy and has worked in the field over 5 years. The assessment was according 

to the percentage of consonants correct (PCC) [29], which is defined as the ratio of the 

number of correctly uttered consonants to the number of total consonants, using the APAC 

words 1 [30]. Based on this assessment 2, among the 68 dysarthric subjects, 37 subjects were 

graded as mildly dysarthric (PCC 85-100%) and 31 subjects were graded as moderately 

dysarthric (PCC 50-84.9%)3. All control subjects were graded as PCC 100%.

B. Phonetic Variation

Dysarthric individuals have articulatory limitation, so they often have trouble in pronouncing 

certain sounds, resulting in phonetic variation which is the main cause of ASR performance 

degradation. To show the phonetic variation of dysarthric speech, phoneme confusion 

matrices4 resulting from phoneme posterior probabilities from a conventional DNN-based 

ASR system trained on regular speech for a moderately dysarthric speaker and a control 

speaker are made in Fig. 1. The speakers and speech data are chosen from our database 

described in Section II-A. As can be seen, there are various phonetic confusions against 

target phonemes for dysarthric speech including unnatural phonetic substitutions that would 

not actually be made by humans, e.g., the vowel /e/ sound to the consonant /g/ sound. Also, 

there is a set of confusable phonemes, which are commonly shared for most target 

phonemes. Our observations are largely in line with the findings in [22]. For control speech, 

on the other hand, the confusion matrix shows a clearer pattern of correct recognition and a 

few confusions.

Conventional ASR systems can model the phonetic variation if the training data contain a 

variety of phonetic pronunciations or if the system uses clustered triphones via a decision 

tree. However, the amount of dysarthric training data is not generally enough to train the 

1The APAC words comprised familiar vocabulary words composed of one to four syllables and were phonetically balanced to partially 
assess the articulation ability on a phonetic basis. This word set is commonly used for assessing articulation disorders in Korea [31], 
[32].
2The intra-rater and inter-rater reliability levels, based on Pearson's correlation,were measured by rechecking the speech data of 24 
speakers. It was found that the intra-rater correlation was 0.96 and the inter-rater correlation was 0.90, both of which are highly 
reliable measures for the use of ground-truth in analyzing the results of speech recognition in terms of dysarthria severity.
3In this work, we focus on mildly and moderately dysarthric speakers. It was hard to recruit severely dysarthric speakers and collect 
speech data from them (We have a few speech data from three patients with severe dysarthria at this time). We think the amount of 
data is not enough to reliably evaluate the method and analyze the results. Therefore, we excluded severe dysarthria from the current 
research.
4Phonemes are represented based on Korean phonetic symbols. The corresponding International Phonetic Alphabet (IPA) symbols can 
be found in [44].
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acoustic model and the regular training data rarely contain the phonetic variation that 

dysarthric individuals produce. In the KL-HMM framework, on the other hand, the acoustic 

model and the lexical model can be trained on an independent set of resources [33]. 

Specifically, the acoustic model can be trained on data from resource-rich domains such as 

regular speech whereas the lexical model can be trained on a relatively small amount of 

resources from a target domain such as dysarthric-specific or speaker-specific domain [48]. 

Therefore, KL-HMM is expected to effectively deal with the phonetic variation of dysarthric 

speech.

C. Probabilistic Lexical Modeling Framework

KL-HMM is based on a probabilistic lexical modeling framework and therefore we briefly 

review the probabilistic lexical modeling framework in this section. In the framework of 

probabilistic lexical modeling [33], the relationship between the acoustic feature observation 

xt and the HMM state qt that represents lexical unit li , i.e., qt ∈  ={l1,…, li,…, lL} where L 

denotes the number of lexical units, is factored using a latent variable ad which is referred as 

acoustic unit given by

(1)

where p(xt|a
d) represents the acoustic unit likelihood at frame t, P(ad|qt=li) represents the 

probability of the acoustic unit given the lexical unit, and D is the number of acoustic units. 

In other words, p(xt|a
d) is obtained by the acoustic model which builds the relationship 

between the acoustic feature observation xt and the acoustic unit ad. Also, P(ad|qt=li) is 

obtained by the lexical model which models the relationship between all acoustic units and 

the lexical unit li. In this work, both the acoustic units and lexical units are chosen by 

clustered context-dependent phonemes (i.e., senones or clustered triphone states) to better 

represent phonetic patterns. The lexical model can be either deterministic or probabilistic. In 

the deterministic lexical model, each lexical unit li is deterministically mapped to an acoustic 

unit aj as follows: P(ad | qt=li) = 1 if d = j, otherwise 0. In standard HMM-based ASR 

systems such as GMM-HMM and ANN-HMM, the deterministic lexical model is generally 

adopted. In this probabilistic lexical model, on the other hand, each lexical unit is 

probabilistically related to all acoustic units so that 0≤P(ad|qt=li)≤1 and . 

Therefore, the probabilistic lexical model can effectively capture the pronunciation variation 

of dysarthric speech. To this end, probabilistic classification of HMM states [34], tied 

posteriors [35], and KL-HMM approaches were proposed. Recently, KL-HMM has been 

successfully applied in achieving probabilistic lexical modeling [36]. Therefore, we adopt 

KL-HMM based probabilistic lexical modeling in this work.
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III. Proposed Method

In this section, we explain the proposed KL-HMM approach including the DNN acoustic 

model, the categorical distribution-based lexical model, and speaker adaptation with 

regularization. The schematic diagram of the KL-HMM framework is depicted in Fig. 2.

A. DNN Acoustic Model

A deep neural network (DNN) is an ANN with multiple hidden layers of units between the 

input and output layers [37]. Recently, a DNN has been received great attention since the 

complex structure of speech sounds can be modeled through multiple layers using powerful 

optimization techniques, and therefore it has been successfully applied in speech recognition 

as an acoustic model [37]. It is expected that the DNN acoustic model also captures the 

complex acoustic structures of dysarthric speech as well. Therefore, the DNN-based acoustic 

model was adopted in this work. We used 40 log mel-filterbank energies with 11 context 

window xt={xt-5,…,xt,…,xt+5} as acoustic feature observations and senones as output units 

or acoustic units. Given the DNN acoustic model, the probabilities of acoustic units, i.e., D-

dimensional acoustic unit posterior probability vectors can be obtained as

(2)

Then, the probabilistic lexical model is trained using the acoustic unit probability vectors. In 

other words, the acoustic posterior probabilities are used as feature observations to train KL-

HMM whose states correspond to the lexical units.

B. KL-HMM Probabilistic Lexical Model

KL-HMM is a type of HMM where the emission probability of lexical state li is 

parametrized by a categorical distribution , where . A 

categorical distribution is a multinomial distribution from which only one sample is drawn. 

Therefore, each state captures a probabilistic relationship between a lexical unit li and D 

acoustic units.

In the KL-HMM framework, the acoustic unit likelihood in (1) is replaced with the acoustic 

unit posterior probability in (2). Therefore, the local score at each HMM state can be 

computed using the KL divergence between the acoustic unit posterior feature zt and the 

categorical variable yi as

(3)
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Recent studies reported that asymmetric KL divergence as in (3) is more robust than other 

symmetric variants of the KL divergence [27]. Therefore, we used the asymmetric KL 

divergence as the local score in this work.

Given the acoustic unit probability vectors Z=[z1,…, zt,…, zT] where T denotes the number 

of frames, the categorical variables Y=[y1,…,yi,…,yL] can be trained by minimizing the cost 

function summing the local scores over time t and state li as

(4)

where  if xt is associated with state li, otherwise 0. Here, the state association of each xt 

is determined using Viterbi forced alignment. To minimize the cost function in (4), we take 

the partial derivative with respect to each variable yi and set it to zero. Finally, the optimal 

state distribution is the arithmetic mean of the acoustic unit probability vectors assigned to 

the state given by , where Ti stands for the number of frames associated 

with state li.

C. KL-HMM Adaptation

In general, dysarthric individuals have their own phonetic variation patterns. Although the 

KL-HMM is an appropriate framework in modeling such phonetic variations, it still has 

limitations for each speaker. Therefore, speaker adaptation that modifies speaker-

independent (SI) model parameters for a single speaker to make it more speaker-specific is 

promising to improve ASR performance. One of the widely used speaker adaptation 

techniques is using the Bayesian estimation since it can properly cope with the overfitting 

problem resulting from a small amount of speaker-specific adaptation data by using the 

Bayesian priors. With the Bayesian priors, the categorical distribution can be modeled by the 

Dirichlet-categorical conjugate distributions [38], [39]. The resulting speaker-adapted (SA) 

categorical distribution of KL-HMM through the Bayesian estimation [42] is given by

(5)

where  and  stand for the categorical state distributions estimated given a small 

amount of speaker-dependent (SD) adaptation data and a large amount of speaker-

independent (SI) training data, respectively. Also, ηi is the adaptation coefficient in the range 

of [0, 1] and it is used to determine the balance between the SD and SI model parameters.

1) Adaptation with L2 regularization—As can be seen in (5), it is noticeable that the 

adapted model parameter is computed by the form of interpolation and the interpolation can 

be treated as the following L2 regularized optimization problem [41]:
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(6)

where φi denotes a vector moving from an initial SI model and ‖·‖2 is the L2-norm. Also, λi 

≥ 0 is a regularization parameter. The solution can be obtained by taking partial derivative 

with respect to φi and set it to zero as follows:

(7)

Finally, the SA model parameter is given by

(8)

Here, when λi is set to (1 - ηi) / ηi, the solution of the equation (8) equals the solution of the 

equation (5).

2) Lexical confusion-reducing regularization—Adaptation with L2 regularization 

can properly represent the phonetic variations of each speaker. However, dysarthric 

individuals generally have a limited repertoire of pronunciation resulting from their 

articulatory limitation. That is, there may be commonly shared phonetic variations across 

target phonemes shown in Section II-B, and therefore, confusions between the categorical 

distributions of KL-HMM lexical models may also be induced. To reduce the lexical 

confusions, the lexical confusion-reducing (LCR) regularization is additionally taken into 

account as second regularization as

(9)

where  means the common phonetic variations across all lexical 

models. Here, we consider the SI lexical models as well as the SD lexical models in order to 

reflect underlying pronunciation patterns induced from a large population for generality. 

Looking at the LCR regularization, the common phonetic variations are removed from the 

SD parameters on each lexical state. That is, lexical state-specific characteristics can be 

captured through the LCR regularization. The solution can also be obtained by taking partial 

derivative with respect to φi and set it to zero given by
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(10)

where λi,1 ≥ 0 and λi,2 ≥ 0 are regularization parameters for the L2 and LCR regularization 

terms, respectively. Finally, the SA model parameter can be obtained as

(11)

As can be seen in (11), the adapted parameter is represented in the interpolated form of the 

SD, SI, and lexical confusion-reduced parameters. The λi,1 and λi,2 are used to control the 

strength of the SI parameter and the confusion-reduced parameter, respectively. 

Consequently, it is expected that the LCR regularization may result in enhanced 

discriminability between categorical distributions of KL-HMM states while preserving 

speaker-specific information. Therefore, we believe that the ASR performance can be 

improved by considering the LCR regularization.

In practice, the adaptation performance is affected by an SI initial model. To obtain a better 

SI initial model, we applied the adaptation technique in constructing an SI dysarthria-

adapted (DA) model on speech data from several dysarthric talkers (dysarthric domain 

adaptation). Through this process, it is expected that the general pronunciation variability of 

dysarthric speech can be captured and it may be more effective than an SI initial model 

trained on only regular speech. Finally, decoding is performed using the standard Viterbi 

decoder where the log-likelihood based score is replaced with the KL divergence-based local 

score in (3).

IV. Experimental Results

A. Experimental Setup

Our data distribution is summarized in Table I. The SI non-dysarthric regular training set 

includes 300k utterances of 8k Korean isolated words from several databases (DBs) uttered 

by regular speakers, consisting of the Korean Phonetically Optimized Words (KPOW) DB, 

Korean Phonetically Balanced Words (KPBW) DB, and Korean Phonetically Rich Words 

(KPRW) DB, which are widely used for acoustic modeling in Korea. The SI dysarthria 

adaptation (dysarthric domain adaptation) set was used to construct an SI DA initial model 

which is better fitted to general dysarthric speech. It includes 20k utterances from 48 

dysarthric speakers including 25 mild and 23 moderate subjects described in Section II-A. 

Also, the evaluation set consists of 23k utterances spoken by 20 dysarthric speakers 

including 12 mild and 8 moderate subjects, and 10 non-dysarthric control speakers. 

Specifically, each dysarthric speaker uttered 5 repetitions of 100 command words and 36 

Korean phonetic codes, and 213 additional command words, i.e., a total of 893 utterances. 
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Each control speaker uttered 2 repetitions of 100 command words and 36 Korean phonetic 

codes, and 213 additional command words, i.e., a total of 485 utterances. The repeated data 

were obtained in multiple sessions. For speaker adaptation, the command words and 

additional command words collected from another session from test speakers were used. 

100, 200, 500, and 926 adaptation utterances5 were used for dysarthric speakers whereas 

100 and 313 adaptation utterances were used for control speakers. The speakers in the 

evaluation set were totally separated from the SI dysarthria adaptation set.

We compared several ASR systems to evaluate the proposed method as follows: GMM-

HMM, DNN-HMM, and KL-HMM.

GMM-HMM system—We first trained a regular GMM-HMM system (referred to as 

GMMreg-HMM) using 39 dimensional mel-frequency cepstral coefficients (MFCCs), 

consisting of 12 cepstral coefficients, 1 energy term, and their first and second derivatives 

with frame size of 25 milliseconds and shift size of 10 milliseconds. The GMMreg-HMM 

consists of 1480 tied-state (senone) left-to-right triphone HMMs, where each HMM has 3 

states and each state is modeled with 7 Gaussian components on average and is trained on 

the SI regular training set. The dysarthric GMM can be obtained by adapting the GMMreg to 

dysarthric domain using MAP adaptation on the SI dysarthria adaptation set (referred to as 

GMMreg-MAPdys-HMM).

DNN-HMM system—A regular SI DNN was trained using 40 dimensional log mel-

filterbank energy features with a context window of 11 frames and frame alignment 

information resulting from the standard GMMreg-HMM system. The DNN has 5 hidden 

layers with 1024 hidden units at each layer and the 1480 dimensional softmax output layer, 

corresponding to the number of senones of the GMMreg-HMM system. The parameter was 

initialized using layer-by-layer generative pre-training and the network was discriminatively 

trained using backpropagation on the regular training set [42] (referred to as DNNreg-

HMM). To further construct SI DA DNN, two kinds of DNN adaptation methods were 

considered using the SI dysarthria adaptation set: one is L2 regularization [45] (referred to as 

DNNreg-L2dys-HMM), which adds the L2-norm of all the model parameter difference 

between the initial model and adapted model to the frame-cross entropy criterion, and the 

other is linear output network (LON) adaptation [43] (referred to as DNNreg-LONdys-

HMM), which adds one extra layer on top of the DNNreg (i.e., 1480 × 1480 hidden units) 

and perform backpropagation training on this extra layer using the SI dysarthria adaptation 

set for fair comparison with KL-HMM. In addition, DNN with multicondition training 

(DNNmulti-HMM), which is trained on both SI regular training and SI dysarthria adaptation 

sets, was compared. For speaker adaptation, the LON adaptation was exploited on the 

speaker adaptation set (LONspk).

KL-HMM system—A baseline SI KL-HMM was trained using DNNreg posterior 

probability vectors obtained from the SI regular training set (DNNreg-KLreg-HMM) or the SI 

5The small number of speaker adaptation data is reasonable for patients with dysarthria (under 200 utterances) for the practical use. 
However, the evaluation on the large number of adaptation data may be needed for algorithm testing in case of long-term data 
acquisition situation. Therefore, we evaluated our proposed method on a variety number of speaker adaptation data.
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dysarthria adaptation set (DNNreg-KLdys-HMM). The SI DA KL-HMM was adapted using 

the L2 regularization in Section III-C1 (DNNreg-KLreg-L2dys-HMM) or the LCR 

regularization in Section III-C2 (DNNreg-KLreg-LCRdys-HMM) on the SI dysarthria 

adaptation set to model the general pronunciation variability of dysarthric speech. Note that 

the LCR regularization was used together with the L2 regularization as in (9). In addition, 

we considered SI DA acoustic models such as DNNreg-L2dys and DNNreg-LONdys in 

obtaining posterior probability vectors. Also, speaker adaptation was performed using the L2 

regularization or the LCR regularization given the trained SI KL-HMM (referred to as L2spk 

or LCRspk, respectively). The regularization parameters λi,1 and λi,2 were set to fixed 

constant values for all lexical states and were chosen empirically from the experiments, 

which mostly ranges between 0.05 and 0.5 for λ1 and ranges between 0.005 and 0.05 for λ2. 

Hereafter, we omit state index i for concise description.

B. Effectiveness of the Proposed SI KL-HMM

We first performed speech recognition experiments on speaker-independent (SI) systems. 

Table II shows the performances of SI GMM-HMM, DNN-HMM, and KL-HMM systems 

for both dysarthric and control speakers in terms of the word error rate (WER). Also, we 

measured unweighted average WERs across dysarthric and control speakers to evaluate the 

compatibility of each ASR system for universal access. For the comparison of the GMMreg-

HMM and DNNreg-HMM systems, the performance of the DNNreg-HMM was better than 

with the GMMreg-HMM for both dysarthric and control speakers. It was also observed that 

the SI DA systems adapted on SI dysarthria adaptation data such as DNNreg-LONdys-HMM 

produce better results than with systems trained on only regular data (DNNreg-HMM) and 

multicondition data (DNNmulti-HMM) in terms of the unweighted average WER. 

Specifically, the SI DA system much improved the recognition performance for dysarthric 

speakers whereas the performance was somewhat degraded for control speakers when 

compared with the regular system and multicondition system. Since there is a trade-off 

between dysarthric and control speakers, reducing the gap is important in developing a 

universally accessible ASR system.

For the KL-HMM approach, DNNreg-KLdys-HMM outperformed DNNreg-L2dys-HMM and 

DNNreg-LONdys-HMM for both dysarthric and control speakers. The regularized KL-HMM 

produced a lower WER than with DNNreg-KLdys-HMM. Specifically, when using LCR 

regularization (DNNreg-KLreg-LCRdys-HMM), the performance can be improved by 

obtaining a WER of 31.9% for dysarthric speakers and 0.6% for control speakers which is 

comparable to DNNreg-HMM.

When DNNreg-L2dys was used as an acoustic model in the KL-HMM systems, the WERs of 

dysarthric individuals were further reduced compared with the DNNreg based KL-HMM 

systems. When we further applied LCRdys regularization (DNNreg-L2dys-KLreg-LCRdys-

HMM), we were able to achieve the best performance for dysarthric speakers, providing 

relative improvements of 23.9% over DNNreg-L2dys-HMM, 12.2% over DNNreg-KLreg-

LCRdys-HMM, and 3.1% over DNNreg-L2dys-KLreg-L2dys-HMM. In addition, DNNreg-

L2dys-KLreg-LCRdys-HMM attained better performance than the DNNreg-L2dys-KLreg-

L2dys-HMM for control speakers as well, obtaining a WER of 1.0% which is somewhat 
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comparable to the performances of other regular systems. DNNreg-LONdys-KLreg-LCRdys-

HMM was slightly worse than with DNNreg-L2dys based KL-HMM systems. Therefore, we 

chose DNNreg-L2dys based KL-HMM systems as a baseline SI model in the following 

speaker adaptation experiments. Through these experiments, we found that the KL-HMM 

framework is effective for dysarthric speakers while keeping comparable performance for 

control speakers. Also, a good acoustic model which is better fitted to general dysarthric 

speech (DNNreg-L2dys) is more appropriate in modeling KL-HMM for dysarthric speech. 

Finally, dysarthric domain adaptation with LCR regularization (LCRdys) helped in 

improving the recognition performance.

C. Effectiveness of Speaker Adaptation

Table III compares the WERs of speaker adaptation to the DNN-HMM and KL-HMM by 

varying the number of adaptation utterances for dysarthric individuals. For baseline DNN-

HMM, LON speaker adaptation (LONspk) was used on top of DNNreg-L2dys-HMM for fair 

comparison with the KL-HMM approach. Note that the resulting system is adapted to a 

particular speaker on the number of adaptation utterances using the SA method given the SI 

ASR system. The performances of the proposed KL-HMM systems were better than with 

the DNN-HMM system regardless of the amount of adaptation utterances. In DNNreg-L2dys-

KLreg-L2dys-HMM, speaker adaptation with LCR regularization (LCRspk) produced a better 

performance than with L2 regularization (L2spk). When we replaced the initial SI model by 

DNNreg-L2dys-KLreg-LCRdys-HMM, the recognition performance of LCRspk was further 

improved. This indicates that choosing a proper initial model is important in representing 

better speaker-specific phonetic characteristics. In addition, LCR regularized speaker 

adaptation is helpful in attaining better performances as in SI DA experiments shown in 

previous section. Finally, when the DNN acoustic model and the KL-HMM lexical model 

were simultaneously adapted for each speaker (LONspk+LCRspk), we were able to obtain the 

lowest WER for all adaptation conditions, achieving 28.9%, 31.8%, 38.0%, and 

43.6%relative improvements compared with DNNreg-L2dys-LONspk,and 11.3%, 14.8%, 

20.0%, and 23.5% relative improvements compared with DNNreg-L2dys-KLreg-LCRdys-

LCRspk in the WER reduction when using 100, 200, 500, and 926 adaptation utterances, 

respectively. This result suggests that speaker-specific acoustic and phonetic variation 

characteristics can be successfully modeled in the KL-HMM framework.

To examine the effectiveness of the proposed method for the test speaker's severity levels, 

WERs of the SA DNN-HMM and KL-HMM systems with various number of adaptation 

data depending on their severity levels are indicated in Fig. 3. Note that L2 regularized 

speaker adaptation (L2spk) is based on DNNreg-L2dys-KLreg-L2dys-HMM while LCR 

regularized speaker adaptation (LCRspk) is based on DNNreg-L2dys-KLreg-LCRdys-HMM. 

As can be seen, we observed similar trends for both mildly and moderately dysarthric 

individuals. For mild speakers in Fig. 3(a), LCRspk produced 24.8% and 6.5% relative WER 

reductions compared with LONspk and L2spk on average across four adaptation conditions, 

respectively. When we used both LONspk and LCRspk, a 29.4% relative improvement was 

obtained on average when compared with LCRspk. For moderate speakers in Fig. 3(b), when 

LCRspk was applied, we obtained 21.2% and 3.5% relative improvements on average in 

WER reduction across all adaptation conditions compared to LONspk and L2spk as well, 
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respectively. Also, applying both LONspk and LCRspk provided a 13.4% relative WER 

reduction on average compared to LCRspk.

Fig. 4 represents how the recognition performances were affected by the regularization 

parameters of the LCR regularized SA KL-HMM, the WERs with varying λ1 and λ2 using 

926 adaptation utterances. In this experiment, we used DNNreg-L2dys-KLreg-L2dys as an SI 

initial model to check the effectiveness of the LCR regularization during speaker adaptation 

process. Note that λ2=0 corresponds to the L2 regularized SA KL-HMM. As can be seen, 

when λ1 was small, it produced lower WERs. In practice, the optimal λ1 was inversely 

proportionally related to the amount of adaptation data. That is, as the amount of adaptation 

data was small, a large value of λ1 was optimal. It was also observed that considering the 

LCR regularization parameter λ2 yields better recognition performances for most cases. 

However, when λ2 was relatively larger than λ1, the performance was worsened. This trend 

was also observed in other adaptation conditions. Therefore, it is important that λ1 and λ2 

are set to suitable values. From these observations, we can suggest that λ2 should be set to a 

smaller value or a comparable value over λ1.

We also performed the same experiments for control speakers to examine the universality of 

the proposed method and the results are summarized in Table IV. As can be seen, the 

proposed LCR regularization on the KL-HMM outperformed the SA DNN and L2 

regularized KL-HMM as in the case of dysarthric speakers. From these results, it ensures 

that our proposed ASR method is a good framework for dysarthric as well as non-dysarthric 

speakers.

D. Analysis of the Proposed KL-HMM System

Next, we analyzed the KL-HMM parameters to find out the main cause of the performance 

improvement. We first checked how the phonetic variations are modeled in the KL-HMM 

framework. Fig. 5 shows the average percentage of the counted number of categorical 

variables whose values are above the threshold in KL-HMM states for control, mildly 

dysarthric, and moderately dysarthric speaker groups. Note that the total number of 

categorical variables in each state is 1480. That is, it can be interpreted that the dominant 

phonetic variations increase as the number of counted parameters increases. Here, L2spk, 

LCRspk, and LONspk+LCRspk regularized KL-HMM systems in Section IV-C were 

compared for the analysis. For dysarthric speakers, 926 adaptation data were used while 313 

adaptation utterances were used for control speakers. As can be seen, the phonetic variation 

is properly represented in the categorical distribution of KL-HMM in a probabilistic way 

which is rarely handled in the DNN-HMM system. In Fig. 5(a), as the threshold goes down, 

the counted number increased. Also, as the dysarthria severity of speakers gets worse, more 

confusions were observed. For speaker adaptation with LCR regularization in Fig. 5(b), the 

counted number was reduced across all speaker groups compared with the L2 regularization. 

This means that dominant phonetic confusions in each lexical state are reduced by using 

LCR regularization. That is, phonetic confusions are concentrated on a much smaller 

number of senones. Moreover, when we considered both LONspk and LCRspk in Fig. 5(c), 

phonetic confusions were further reduced. It was observed that the percentage of phonetic 

variations for mild speakers is similar to that for control speakers but still moderate speakers 
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have many phonetic variations. Reducing the number of dominant KL-HMM parameters is 

very important in making the KL-HMM system more stable.

Table V shows the symmetric KL divergence between the categorical distributions of SA 

KL-HMM states on the same systems in Fig. 5. The KL divergence was computed over all 

pairs of categorical state distributions and then averaged to measure the average 

confusability between lexical models. That is, as the KL divergence value is larger, the 

discriminative power between lexical models is increased. As shown in Table V, the LCR 

regularized speaker adaptation produced larger KL divergence values than L2 regularized 

speaker adaptation for all speaker groups consisting of control, mildly dysarthric, and 

moderately dysarthric speakers. When we adapted DNN and KL-HMM simultaneously for 

each speaker (LONspk+LCRspk), we obtained the largest KL divergence for all speaker 

groups. Also, it was observed that as dysarthria becomes severe, smaller KL divergence 

values are obtained. This result indicates that the performance gain comes from the 

reduction of confusability between lexical models. Interestingly, mildly dysarthric speakers 

on LONspk+LCRspk gave a larger KL divergence than control speakers on LCRspk although 

the actual recognition rate of dysarthric speakers was lower than with control speakers. 

Through acoustic model adaptation, the confusions between lexical models can be much 

reduced, but some limitations still remain. One of the factors which give rise to performance 

degradation is the consistency of speech [5], [20]. There are diverse intra-speaker variations, 

so it limits the performance improvement although the acoustic and lexical models are well 

trained through speaker adaptation. We found that the causes which lead to the wide intra-

speaker variation are articulatory errors as well as involuntary breathing, stuttering, and 

accidental pauses between syllables. Therefore, future works include the investigation to 

deal with the problems.

V. Conclusion

In this paper, a novel and effective method to automatically recognize dysarthric speech was 

proposed. The method relies on two important parts: 1) To address the phonetic variation 

resulting from the limitation of articulatory movement, the KL-HMM framework composed 

of DNN acoustic modeling and categorical distribution-based probabilistic lexical modeling 

was exploited. 2) To make the system more speaker-specific, the LCR regularized KL-HMM 

speaker adaptation method was proposed. A series of experiments were performed 

(measured in WER) on both 20 dysarthric and 10 control speakers to evaluate the 

effectiveness of the proposed method. The experimental results show the effectiveness in the 

aspects of 1) the performance through comparison with other ASR systems, achieving 

significant improvements regardless of the amount of adaptation data for dysarthric 

speakers, 2) the stability of the KL-HMM system, reducing the number of dominant KL-

HMM parameters, 3) the universality of the proposed approach, showing better ASR results 

for regular speakers as well. Thus, our framework presents a possibility in helping people 

who suffer from dysarthria to communicate with spoken expression.
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Fig. 1. 

Phoneme confusion matrices (a) from a moderately dysarthric speaker and (b) from a control 

speaker.

Kim et al. Page 19

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2017 September 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 

KL-HMM framework used in this work. Here, r denotes the state transition probability.
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Fig. 3. 

Performance comparison of the speaker-adapted DNN-HMM and proposed KL-HMM 

according to the number of adaptation data for (a) mildly and (b) moderately dysarthric 

speakers.
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Fig. 4. 

WERs with varying the regularization parameters λ1 and λ2 for the LCR regularized SA 

KL-HMM on dysarthric speech.
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Fig. 5. 

Average percentage of the number of KL-HMM parameters whose values are above the 

threshold for (a) L2spk, (b) LCRspk, and (c) LONspk+LCRspk.
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Table I

Data Distribution

Role DB # of speakers Data

SI regular training
KPOW DB
KPRW DB
KPBW DB

580 non-dysarthric 300k utterances (about 54 hours)

SI dysarthria adaptation Section II-A 48 dysarthric (25 mild & 23 moderate) 20k utterances (about 4 hours)

Speaker adaptation Section II-A
20 dysarthric (12 mild & 8 moderate) 100, 200, 500, and 926 utterances per each speaker

10 non-dysarthric 100 and 313 utterances per each speaker

Evaluation Section II-A
20 dysarhtic (12 mild & 8 moderate) 18k utterances (893 utterances per each speaker)

10 non-dysarthric 5k utterances (485 utterances per each speaker)
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Table II

Performances (WERs) of the Proposed KL-HMM, DNN-HMM, and GMM-HMM based 

ASR Systems

SI ASR system
WER (%)

Dys. Con. Avg.

GMMreg-HMM 51.1 0.7 25.9

GMMreg-MAPdys-HMM 42.3 1.5 21.9

DNNreg-HMM 45.0 0.6 22.8

DNNreg-L2dys-HMM 36.8 1.4 19.1

DNNreg-LONdys-HMM 35.8 2.2 19.0

DNNmulti-HMM 37.8 0.8 19.3

DNNreg-KLreg-HMM 45.0 0.5 22.8

DNNreg-KLdys-HMM 33.8 0.9 17.4

DNNreg-KLreg-L2dys-HMM 33.6 0.7 17.2

DNNreg-KLreg-LCRdys-HMM 31.9 0.6 16.3

DNNreg-L2dys-KLreg-L2dys-HMM 28.9 1.5 15.2

DNNreg-L2dys-KLreg-LCRdys-HMM 28.0 1.0 14.5

DNNreg-LONdys-KLreg-LCRdys-HMM 30.1 1.3 15.7
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Table IV

WERs (%) of the Speaker-Adapted (SA) KL-HMM and DNN-HMM for the Various 

Number of Adaptation Utterances For Control Speakers

SI ASR system SA method
Number of adaptation utterances

0 100 313

DNNreg-L2dys LONspk 1.4 0.7 0.5

DNNreg-L2dys-KLreg-L2dys

L2spk 1.5 0.7 0.4

LCRspk 1.5 0.6 0.4

DNNreg-L2dys-KLreg-LCRdys

LCRspk 1.0 0.5 0.3

LONspk+LCRspk 1.0 0.4 0.3
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Table V

Symmetric KL Divergence Between Speaker-Adapted KL-HMM Parameters

SA method Control Mild Moderate

L2spk 6.87 5.26 4.66

LCRspk 6.91 5.37 4.80

LONspk+LCRspk 7.88 7.30 6.08
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