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REGULARIZED TOTAL LEAST SQUARES:
COMPUTATIONAL ASPECTS AND ERROR BOUNDS

SHUAI LU, SERGEI V. PEREVERZEV AND ULRICH TAUTENHAHN

Abstract. For solving linear ill-posed problems regularization methods are
required when the right hand side and the operator are with some noise. In
the present paper regularized approximations are obtained by regularized total
least squares and dual regularized total least squares. We discuss computational
aspects and provide order optimal error bounds that characterize the accuracy
of the regularized approximations. The results extend earlier results where the
operator is exactly given. We also present some numerical experiments, which
shed a light on the relationship between RTLS, dual RTLS and the standard
Tikhonov regularization.

1. Introduction

Ill-posed problems arise in several context and have important applications in
science and engineering (see, e.g., [4, 6, 10, 18]). In this paper we consider ill-posed
problems

A0x = y0 (1.1)

where A0 : X → Y is a bounded linear operator between infinite dimensional
real Hilbert spaces X and Y with non-closed range R(A0). We shall denote the
inner product and the corresponding norm on the Hilbert spaces by (·, ·) and ‖ · ‖
respectively. We assume throughout the paper that the operator A0 is injective
and that y0 belongs to R(A0) so that (1.1) has a unique solution x† ∈ X. We are
interested in problems (1.1) where

(i) instead of the exact right hand side y0 ∈ R(A0) we have noisy data yδ ∈ Y
with

‖y0 − yδ‖ ≤ δ, (1.2)

(ii) instead of the exact operator A0 ∈ L(X, Y ) we have some noisy operator
Ah ∈ L(X, Y ) with

‖A0 − Ah‖ ≤ h. (1.3)

Since R(A0) is assumed to be non-closed, the solution x† of problem (1.1) does
not depend continuously on the data. Hence, the numerical treatment of problem
(1.1), (1.2), (1.3) requires the application of special regularization methods.
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Tikhonov regularization. Tikhonov regularization [4, 6, 10, 18, 20] is known
as one of the most widely applied methods for solving ill-posed problems. In this
method a regularized approximation xδ,h

α is obtained by solving the minimization
problem

min
x∈X

Jα(x), Jα(x) = ‖Ahx− yδ‖2 + α‖Bx‖2 (1.4)

where B : D(B) ⊂ X → X is some unbounded densely defined self-adjoint strictly
positive definite operator and α > 0 is the regularization parameter to be chosen
properly. Hence, in Tikhonov’s method the regularized approximation is given by

xδ,h
α = (A∗

hAh + αB∗B)−1A∗
hyδ. (1.5)

Regularized total least squares. In the classical total least squares problem
(TLS problem) some estimate (x̂, ŷ, Â) for (x†, y0, A0) from given data (yδ, Ah) is
determined by solving the constrained minimization problem

‖A− Ah‖2 + ‖y − yδ‖2 → min subject to Ax = y, (1.6)

see [7]. Due to the ill-posedness of problem (1.1) it may happen that there does
not exist any solution x̂ of the TLS problem (1.6) in the space X. Furthermore,
if there exists a solution x̂ ∈ X of the TLS problem (1.6), this solution may be
far away from the desired solution x†. Therefore, it is quite natural to restrict
the set of admissible solutions by searching for approximations x̂ that belong to
some prescribed set K, which is the philosophy of regularized total least squares.

The simplest case occurs when the set K is a ball K =
{
x ∈ X

∣∣∣ ‖Bx‖ ≤ R
}

with

prescribed radius R. This leads us to the regularized total least squares problem
(RTLS problem) in which some estimate (x̂, ŷ, Â) for (x†, y0, A0) is determined by
solving the constrained minimization problem

‖A− Ah‖2 + ‖y − yδ‖2 → min subject to Ax = y, ‖Bx‖ ≤ R, (1.7)

see [3, 14, 15]. In the special case of exactly given operators Ah = A0, this
philosophy leads us to the method of quasi-solution of Ivanov, see [8], in which x̂
is determined by solving the constrained minimization problem ‖A0x−yδ‖2 → min
subject to x ∈ K. This approximation x̂ is sometimes also called K-constrained
least squares solution.

Dual regularized total least squares. One disadvantage of the RTLS problem
(1.7) is that this method requires a reliable bound R for the norm ‖Bx†‖. In many
practical applications, however, such a bound is unknown. On the other hand, in
different applications reliable bounds for the noise levels δ and h in (1.2) and (1.3)

are known. In this case it makes sense to look for approximations (x̂, ŷ, Â) which
satisfy the side conditions Ax = y, ‖y− yδ‖ ≤ δ and ‖A−Ah‖ ≤ h. The solution
set characterized by these three side conditions is non-empty. Selecting from the
solution set the element which minimizes ‖Bx‖ leads us to a problem in which

some estimate (x̂, ŷ, Â) for (x†, y0, A0) is determined by solving the constrained
minimization problem

‖Bx‖ → min subject to Ax = y, ‖y − yδ‖ ≤ δ, ‖A− Ah‖ ≤ h. (1.8)
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This problem is, in some sense, the dual of problem (1.7). Therefore, we propose
to call this problem as the dual regularized total least squares problem (dual RTLS
problem).

The paper is organized as follows. In Sections 2, 3 and 4 we discuss some
computational aspects of the RTLS problem (1.7) and of the dual RTLS problem
(1.8) in finite dimensional spaces. Main attention is devoted to the problem of
eliminating the unknowns A and y in both problems (1.7) and (1.8). As a re-
sult, both problems lead in the general case B 6= I to special multi-parameter
regularization methods with two regularization parameters where one of the regu-
larization parameters is negative. In Section 5 we discuss characterization results
for generalized problems (1.7) and (1.8) in which the norm ‖A− Ah‖ is replaced
by ‖(A−Ah)G‖. In Sections 6 and 7 we provide error bounds for the regularized
approximations obtained by methods (1.7) and (1.8). In Section 6 we treat the
special case B = I and derive error bounds under the classical source condition
x† = A∗v with v ∈ Y that show that the accuracy of the regularized approxima-
tions is of the order O(

√
δ + h ). In the general case B 6= I in Section 7 some link

condition between A and B and some smoothness condition for x† in terms of
B are exploited for deriving error bounds. In our final Section 8 some numerical
experiments are given, which shed a light on the relationship between RTLS, dual
RTLS and the standard Tikhonov regularization.

2. Computational aspects for RTLS

Computational aspects are studied in the literature for discrete problems (1.1)
in finite-dimensional spaces. Therefore we restrict our studies to the case when
X = Rn and Y = Rm, equipped with the Euclidian norm ‖·‖2 and use as a matrix
norm the Frobenius norm ‖ · ‖F .

2.1. Overview. The TLS method which is problem (1.7) without the constraint
‖Bx‖2 ≤ R is a successful method for noise reduction in linear least squares
problems in a number of applications. For an overview on computational aspects
and analysis of TLS see the monograph [7]. The TLS method is suited for finite
dimensional problems where both the coefficient matrix and the right-hand side
are not precisely known and where the coefficient matrix is not very ill-conditioned.
For discrete ill-posed problems where the coefficient matrix is very ill-conditioned
and also for infinite dimensional ill-posed problems, some additional stabilization
is necessary leading to the RTLS problem (1.7). The aim of our work in this
section is to review properties of the RTLS problem (1.7) which serve as a basis
for the development of practical computational algorithms.

Previous results about properties and computational aspects of RTLS problems
may be found in [1, 3, 14, 15]. Let us summarize different alternative characteriza-
tions of the RTLS-solution that serve as a starting point for developing algorithms
solving the RTLS problem (1.7) effectively. From [3] we have

Theorem 2.1. If the constraint ‖Bx‖2 ≤ R of the RTLS problem (1.7) is active,
then the RTLS solution x = x̂ satisfies the equations

(AT
h Ah + αBT B + βI)x = AT

h yδ and ‖Bx‖2 = R. (2.1)
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The parameters α and β satisfy

α = µ(1 + ‖x‖2
2) and β = −‖Ahx− yδ‖2

2

1 + ‖x‖2
2

(2.2)

and µ > 0 is the Lagrange multiplier. Moreover,

β = αR2 − yT
δ (yδ − Ahx) = −‖A− Ah‖2

F − ‖y − yδ‖2
2. (2.3)

The results of Theorem 2.1 allow a second characterization of the RTLS solution
of the problem (1.7). The equations (2.1) and (2.3) show that the RTLS problem
(1.7) can be reformulated as a special eigenvalue-eigenvector problem for a special
augmented system, see [14, 15].

Theorem 2.2. If the constraint ‖Bx‖2 ≤ R of the RTLS problem (1.7) is active,
then the RTLS solution x = x̂ satisfies the eigenvalue-eigenvector problem(

AT
h Ah + αBT B AT

h yδ

yT
δ Ah −αR2 + yT

δ yδ

)(
x

−1

)
= −β

(
x

−1

)
(2.4)

with α and β given by (2.2), (2.3).

The results of Theorem 2.1 allow a third characterization of the RTLS solution
of problem (1.7). This characterization shows that the RTLS problem can be
reformulated as a problem of minimizing the ratio of two quadratic functions
subject to a norm constraint, see [1].

Theorem 2.3. The RTLS solution x = x̂ of the problem (1.7) is the solution of
the constrained minimization problem

‖Ahx− yδ‖2
2

1 + ‖x‖2
2

→ min subject to ‖Bx‖2 ≤ R. (2.5)

2.2. The standard form case B = I. Let us discuss the standard form case
B = I in some detail. In this case the Theorem 2.1 is simplified as follows:

Corollary 2.4. If the constraint ‖x‖2 ≤ R of the RTLS problem (1.7) with B = I
is active, then the RTLS solution x = x̂ is the solution of the equation

(AT
h Ah + αI)x = AT

h yδ (2.6)

and α is the solution of the nonlinear equation ‖x‖2 = R.

The numerical computation of the RTLS solution x = x̂ of problem (1.7) in the
case B = I can therefore effectively be done by following two steps:

(i) Compute the parameter α∗ > 0 by solving the nonlinear equation

f(α) = ‖xδ,h
α ‖2

2 −R2 = 0 (2.7)

where xδ,h
α is the solution of the equation (2.6).

(ii) Solve the equation (2.6) with α = α∗ from step (i).

From our next proposition we conclude that f is monotonically decreasing and
that equation (2.7) possesses a unique positive solution α∗ > 0 provided

R < ‖x†δ,h‖2. (2.8)
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Here x†δ,h is the Moore-Penrose solution of the perturbed linear system Ahx = yδ

which is the least squares solution with the minimal norm.

Proposition 2.5. The function f : R+ → R defined by (2.7) is continuous and
possesses the properties

lim
α→0

f(α) = ‖x†δ,h‖2
2 −R2 and lim

α→∞
f(α) = −R2. (2.9)

In addition, f : R+ → R is monotonically decreasing and convex. Let vδ,h
α be the

solution of the equation (AT
h Ah + αI)vδ,h

α = xδ,h
α , then

f ′(α) = −2(vδ,h
α , xδ

α) < 0 and f ′′(α) = 6‖vδ,h
α ‖2

2 > 0. (2.10)

Proof. For α → 0 we have xδ,h
α → x†δ,h. Hence, the first limit relation of (2.9)

follows. For α → ∞ we have xδ,h
α → 0. Hence, the second limit relation of (2.9)

follows. By the product rule we have

f ′(α) = 2

(
d

dα
xδ,h

α , xδ,h
α

)
. (2.11)

In addition, differentiating both sides of equation (2.6) by α provides the equa-

tion xδ,h
α + (AT

h Ah + αI)
d

dα
xδ,h

α = 0, that is,
d

dα
xδ,h

α = −vδ,h
α . We substitute this

expression into (2.11) and obtain the first identity of (2.10). The proof of the
second identity of (2.10) is similar. �

Due to properties (2.10) we conclude that Newton’s method for f(α) = 0 con-
verges monotonically for arbitrary starting value α ∈ (0, α∗).

Remark 2.6. Due to stability reasons it is desirable to iterate with regularization
parameters α ≥ α∗. This can be reached, e.g., by applying Newton’s method to
the equivalent equation

h(r) := f(r−1/2) = 0. (2.12)

The function h defined by (2.12) is monotonically increasing and concave on R+

and for the first and second derivative of h we have

h′(r) = r−3/2(vδ,h
r , xδ,h

r ) > 0 and h′′(r) = −(3/2)r−5/2‖Avδ,h
r ‖2

2 < 0, (2.13)

where xδ,h
r is the solution of the equation (AT

h Ah + r−1/2I)xδ,h
r = AT

h yδ and vδ,h
r is

the solution of the equation (AT
h Ah + r−1/2I)vδ,h

r = xδ,h
r . For the Newton iterates

rk+1 = rk − h(rk)/h
′(rk) the error representation

rk+1 − r∗ =
h′′(ξk)

2h′(rk)
(rk − r∗)2 with ξk ∈ (rk, r

∗) (2.14)

is valid. From (2.13) and (2.14) we conclude that Newton’s method applied to
the equation h(r) = 0 converges monotonically from below for arbitrary starting
values r ∈ (0, r∗). Rewriting Newton’s method in terms of α leads to the iteration

αk+1 = ϕ(αk) with ϕ(α) =

(
α3(vδ,h

α , xδ,h
α )

α(vδ,h
α , xδ,h

α ) + R2 − ‖xδ,h
α ‖2

2

)1/2

(2.15)

that converges monotonically from above for arbitrary starting values α ∈ (α∗,∞).
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Due to noise amplification, the Moore-Penrose solution x†δ,h of the discretized
ill-posed problem Ahx = yδ with noisy data (yδ, Ah) is generally highly oscillating

with large norm ‖x†δ,h‖2. Therefore it makes no sense to choose the constant R of

the RTLS problem (1.7) larger than ‖x†δ,h‖2 since the unknown solution x† of the

unperturbed system A0x = y0 is expected to satisfy ‖x†‖2 < ‖x†δ,h‖2. Hence, one
will choose R sufficiently small such that (2.8) holds. In this case the constraint
‖x‖2 ≤ R of the RTLS problem (1.7) is active and Corollary 2.4 applies. This
corollary tells us that the RTLS solution is equivalent to the Tikhonov solution
xδ,h

α = (AT
h Ah+αI)−1AT

h yδ with α chosen from the nonlinear equation ‖xδ,h
α ‖2 = R.

This solution x = xδ,h
α can be obtained by following algorithm.

Algorithm 1 Solving the RTLS problem (1.7) in the standard form case

Input: ε > 0, yδ, Ah and R satisfying (2.8).

1: Choose some starting value α ≥ α∗.
2: Solve (AT

h Ah + αI)x = AT
h yδ.

3: Solve (AT
h Ah + αI)v = x.

4: Update αnew :=

(
α3(v, x)

α(v, x) + R2 − ‖x‖2
2

)1/2

.

5: if |αnew − α| ≥ ε|α| then α := αnew and goto 2
6: else solve (AT

h Ah + αnewI)x = AT
h yδ.

3. Computational aspects for dual RTLS

In our knowledge, the dual RTLS problem (1.8) has not been studied in the
literature so far except in the special case h = 0. In this special case method (1.8)
reduces to Tikhonov regularization with α chosen by the discrepancy principle,
see [12, 4]. In the case h 6= 0 the situation is more complicated. Let us start by
collecting some properties which can be shown by straight forward computations.

Proposition 3.1. Let x ∈ Rn, y ∈ Rm, A, Ah ∈ L(Rn, Rm) and G ∈ L(Rk, Rn).
Then,

(i) ‖yT x‖F = ‖y‖2‖x‖2 , (ii) ∂
∂x
‖Ax− y‖2

2 = 2AT (Ax− y),

(iii) ∂
∂A

(y, Ax) = yxT , (iv) ∂
∂A
‖(A− Ah)G‖2

F = 2(A− Ah)GGT .

In the following theorem we provide a different characterization of the dual
RTLS solution that serves for effective solving the dual RTLS problem (1.8).

Theorem 3.2. If the two constraints ‖y−yδ‖2 ≤ δ and ‖A−Ah‖F ≤ h of the dual
RTLS problem (1.8) are active, then the dual RTLS solution x = x̂ of problem
(1.8) is a solution of the equation

(AT
h Ah + αBT B + βI)x = AT

h yδ. (3.1)

The parameters α and β satisfy

α =
ν + µ‖x‖2

2

νµ
and β = −µ‖Ahx− yδ‖2

2

ν + µ‖x‖2
2

(3.2)
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where µ > 0, ν > 0 are the Lagrange multipliers. Moreover,

‖Ahx− yδ‖2 = δ + h‖x‖2 and β = −h(δ + h‖x‖2)

‖x‖2

. (3.3)

Proof. We eliminate y in problem (1.8) and use the classical Lagrange multiplier
formulation with the Lagrange function

L(x, A, µ, ν) = ‖Bx‖2
2 + µ

(
‖Ax− yδ‖2

2 − δ2
)

+ ν
(
‖A− Ah‖2

F − h2
)

(3.4)

where µ and ν are the Lagrange multipliers which are non-zero since the con-
straints are assumed to be active. We characterize the solution to the dual RTLS
problem (1.8) by setting the partial derivatives of the Lagrange function (3.4)
equal to zero. Applying Proposition 3.1 we obtain

Lx = 2BT Bx + 2µAT (Ax− yδ) = 0, (3.5)

LA = 2µ(Ax− yδ)x
T + 2ν(A− Ah) = 0, (3.6)

Lµ = ‖Ax− yδ‖2
2 − δ2 = 0, (3.7)

Lν = ‖A− Ah‖2
F − h2 = 0. (3.8)

From (3.6) we have A(µxxT + νI) = νAh + µyδx
T , or equivalently,

A =
(
νAh + µyδx

T
) (

µxxT + νI
)−1

=
(
νAh + µyδx

T
)(1

ν
I − µ

ν(ν + µ‖x‖2
2)

xxT

)

= Ah −
µ

ν + µ‖x‖2
2

(Ahx− yδ) xT . (3.9)

We substitute (3.9) into (3.5), rearrange terms and obtain the equation

BT Bx +
µν

ν + µ‖x‖2
2

(
AT

h −
µ

ν + µ‖x‖2
2

x(Ahx− yδ)
T

)
(Ahx− yδ) = 0.

We multiply this equation by (ν + µ‖x‖2
2)/(µν), rearrange terms and obtain the

equivalent equation (3.1) with α and β given by (3.2). It remains to prove (3.3).
We substitute (3.9) into (3.7), rearrange terms and obtain the equation

‖Ahx− yδ‖2 =
δ

ν

(
ν + µ‖x‖2

2

)
. (3.10)

We substitute (3.9) into (3.8) and obtain ‖(Ahx− yδ)x
T‖F = h

µ
(ν + µ‖x‖2

2). Due

to property (i) of the Proposition 3.1, this equation is equivalent to

‖Ahx− yδ‖2 =
h

µ‖x‖2

(
ν + µ‖x‖2

2

)
. (3.11)

From (3.10) and (3.11) we obtain the two equations

δ

ν
=

h

µ‖x‖2

and ‖Ahx− yδ‖2 = δ + h‖x‖2. (3.12)
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From (3.11) we have µ‖Ahx−yδ‖2/(ν +µ‖x‖2
2) = h/‖x‖2. Hence, from the second

equation of (3.2) we have β = −h‖Ahx− yδ‖2/‖x‖2. From this equation and the
second equation of (3.12) we obtain β = −h(δ + h‖x‖2)/‖x‖2. �

Remark 3.3. We note that due to (3.9) and (3.11) the coefficient matrix A in the
dual RTLS problem (1.8) is given by

A = Ah −
h

‖(Ahx− yδ)xT‖F

(Ahx− yδ) xT ,

and that due to this equation and the second equation of (3.12) the vector y in
the dual RTLS-problem (1.8) is given by

y = yδ +
δ

‖Ahx− yδ‖2

(Ahx− yδ) ,

where x = x̂.

Remark 3.4. If the two constraints ‖y− yδ‖2 ≤ δ and ‖A−Ah‖F ≤ h of the dual
RTLS problem (1.8) are active, then we obtain from the results of Theorem 3.2
that the solution x = x̂ of the dual RTLS problem can also be characterized either
by the constrained minimization problem

‖Bx‖2 → min subject to ‖Ahx− yδ‖2 = δ + h‖x‖2

or by the minimization problem

‖Ahx− yδ‖2
2 + α‖Bx‖2

2 − (δ + h‖x‖2)
2 → min

with α chosen by the nonlinear equation ‖Ahx− yδ‖2 = δ + h‖x‖2.

4. Special cases for dual RTLS

4.1. The case h = 0. In our first special case we assume that in the dual RTLS
problem (1.8) we have h = 0, that is, the coefficient matrix Ah = A0 is exactly
given. In this special case the dual RTLS problem (1.8) reduces to

‖Bx‖2 → min subject to A0x = y, ‖y − yδ‖2 ≤ δ (4.1)

and the Lagrange function attains the form

L(x, µ) = ‖Bx‖2
2 + µ(‖A0x− yδ‖2

2 − δ2).

Corollary 4.1. If the constraint ‖y − yδ‖2 ≤ δ of the dual RTLS problem (4.1)
is active, then the solution x = x̂ of problem (4.1) satisfies

(AT
0 A0 + αBT B)x = AT

0 yδ and ‖A0x− yδ‖2 = δ. (4.2)

The parameter α and the Lagrange multiplier µ > 0 are related by α = 1/µ.

Proof. Setting the partial derivatives of the Lagrange function equal to zero we
obtain

Lx = 2BT Bx + 2µAT
0 (A0x− yδ) = 0,

Lµ = ‖A0x− yδ‖2
2 − δ2 = 0.

These equations give (4.2). �
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The numerical computation of the dual RTLS solution x = x̂ of problem (4.1)
can effectively be done in the following two steps:

(i) Compute the parameter α∗ > 0 by solving the nonlinear equation

f(α) = ‖A0x
δ
α − yδ‖2

2 − δ2 = 0 (4.3)

where xδ
α is the solution of the first equation of (4.2).

(ii) Solve the first equation of (4.2) with α = α∗ from step (i).

From our next proposition we conclude that f is monotonically increasing and
that equation (4.3) possesses a unique positive solution α∗ > 0 provided

‖Pyδ‖2 < δ < ‖yδ‖2.

Here P denotes the orthogonal projector onto R(A0)
⊥.

Proposition 4.2. The function f : R+ → R defined by (4.3) is continuous and
possesses the properties

lim
α→0

f(α) = ‖Pyδ‖2
2 − δ2 and lim

α→∞
f(α) = ‖yδ‖2

2 − δ2. (4.4)

In addition, f : R+ → R is monotonically increasing. Let vδ
α be the solution of

the equation (AT
0 A0 + αBT B)vδ

α = BT Bxδ
α, then

f ′(α) = 2α(vδ
α, BT Bxδ

α) > 0 and f ′′(α) = 2(vδ
α, BT Bxδ

α)− 6α‖Bvδ
α‖2

2. (4.5)

Proof. For α → 0 we have yδ − A0x
δ
α → Pyδ. Hence, the first limit relation of

(4.4) follows. For α → ∞ we have xδ
α → 0. Hence, the second limit relation of

(4.4) follows. By the product rule and the first equation of (4.2) we have

f ′(α) = 2

(
d

dα
xδ

α, AT
0 (A0x

δ
α − yδ)

)
= −2α

(
d

dα
xδ

α, BT Bxδ
α

)
. (4.6)

In addition, differentiating both sides of the first equation of (4.2) by α provides

the equation BT Bxδ
α + (AT

0 A0 + αBT B)
d

dα
xδ

α = 0, that is,
d

dα
xδ

α = −vδ
α. We sub-

stitute this expression into (4.6) and obtain the first identity of (4.5). The proof
of the second identity of (4.5) is similar. �

From the second identity of (4.5) it follows that the function f defined by (4.3)
is convex for small α-values, but concave for large α-values. Hence, global and
monotone convergence of Newton’s method for solving equation (4.3) cannot be
guaranteed. Therefore we propose to determine the solution r∗ of the equivalent
equation

h(r) := f(1/r) = 0 (4.7)

by Newton’s method. This function possesses the following properties:

(1) For r > 0 the function h is monotonically decreasing and we have

h′(r) = −2r−3(vδ
r , B

T Bxδ
r) < 0

where xδ
r is the solution of the equation (AT

0 A0 + r−1BT B)xδ
r = AT

0 yδ and
vδ

r is the solution of the equation (AT
0 A0 + r−1BT B)vδ

r = BT Bxδ
r.

(2) For r > 0 the function h is convex and we have

h′′(r) = 6r−4‖A0v
δ
r‖2

2 > 0.
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From (2.14) and the two properties (1) and (2) we conclude that Newton’s method
applied to the equation h(r) = 0 converges monotonically for arbitrary starting
values r ∈ (0, r∗). Rewriting Newton’s method rk+1 = rk − h(rk)/h

′(rk) in terms
of αk := 1/rk leads us to the iteration method

αk+1 = ϕ(αk) with ϕ(α) =
2α3(vδ

α, BT Bxδ
α)

2α2(vδ
α, BT Bxδ

α) + ‖A0xδ
α − yδ‖2

2 − δ2

where vδ
α is the solution of (AT

0 A0 + αBT B)vδ
α = BT Bxδ

α. This iteration method
converges monotonically from above for arbitrary starting values α ∈ (α∗,∞).
Summarizing, in the special case h = 0 the dual RTLS solution x = xδ

α can be
obtained by following algorithm.

Algorithm 2 Solving the dual RTLS problem (1.8) in the case h = 0

Input: ε > 0, yδ, A0, B and δ satisfying ‖Pyδ‖2 < δ < ‖yδ‖2.

1: Choose some starting value α ≥ α∗.
2: Solve (AT

0 A0 + αBT B)x = AT
0 yδ.

3: Solve (AT
0 A0 + αBT B)v = BT Bx.

4: Update αnew :=
2α3(v, BT Bx)

2α2(v, BT Bx) + ‖A0x− yδ‖2
2 − δ2

.

5: if |αnew − α| ≥ ε|α| then α := αnew and goto 2
6: else solve (AT

0 A0 + αnewI)x = AT
0 yδ.

4.2. The case δ = 0. In our second special case we assume that in the dual
RTLS problem (1.8) we have δ = 0, that is, the vector yδ = y0 is exactly given.
In this case the dual RTLS problem (1.8) reduces to

‖Bx‖2 → min subject to Ax = y0, ‖A− Ah‖F ≤ h (4.8)

and the Lagrange function has the form

L(x, A, λ, ν) = ‖Bx‖2
2 + (λ, Ax− y0) + ν(‖A− Ah‖2

F − h2).

Corollary 4.3. If the constraint ‖A−Ah‖F ≤ h of the dual RTLS problem (4.8)
is active, then the dual RTLS solution x = x̂ of problem (4.8) is a solution of the
equation

(AT
h Ah + αBT B + βI)x = AT

h y0. (4.9)

The parameters α and β satisfy

α =
‖x‖2

2

ν
and β = −‖Ahx− y0‖2

2

‖x‖2
2

(4.10)

where ν > 0 is the Lagrange multiplier. Moreover,

‖Ahx− y0‖2 = h‖x‖2 and β = −h2. (4.11)
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Proof. Setting the partial derivatives of the Lagrange function equal to zero gives

Lx = 2BT Bx + AT λ = 0, (4.12)

LA = λxT + 2ν(A− Ah) = 0, (4.13)

Lλ = Ax− y0 = 0, (4.14)

Lν = ‖A− Ah‖2
F − h2 = 0. (4.15)

From (4.13) we have A = Ah − 1
2ν

λxT . We substitute it into (4.14) and obtain

Ahx− ‖x‖22
2ν

λ = y0, that is,

λ =
2ν

‖x‖2
2

(Ahx− y0). (4.16)

From (4.16) and (4.13) we obtain that A has the representation

A = Ah −
1

‖x‖2
2

(Ahx− y0)x
T . (4.17)

We substitute (4.16) and (4.17) into (4.12) and obtain

BT Bx +
ν

‖x‖2
2

(
AT

h −
1

‖x‖2
2

x(Ahx− y0)
T

)
(Ahx− y0) = 0.

We multiply this equation by ‖x‖2
2/ν, rearrange terms and obtain the equivalent

equation (4.9) with α and β given by (4.10). It remains to prove (4.11). We sub-
stitute (4.17) into (4.15) and obtain ‖(Ahx−y0)x

T‖F = h‖x‖2
2 which is equivalent

to the first equation of (4.11). Finally, the second equation of (4.11) follows from
the first equation of (4.11) and the second equation of (4.10). �

4.3. The case B = I. In the standard form case B = I from the Theorem 3.2
one can obtain the following characterization of the solution of (1.8).

Corollary 4.4. If the two constraints ‖y − yδ‖2 ≤ δ and ‖A − Ah‖F ≤ h of
the dual RTLS problem (1.8) are active, then the dual RTLS solution x = x̂ of
problem (1.8) with B = I is the solution of the equation

(AT
h Ah + αI)x = AT

h yδ, (4.18)

and α is the solution of the nonlinear equation ‖Ahx− yδ‖2 = δ + h‖x‖2.

The numerical computation of the dual RTLS solution of the problem (1.8) in
the standard form case B = I can therefore effectively be done in two steps:

(i) Compute the parameter α∗ > 0 by solving the nonlinear equation

f(α) = ‖Ahx
δ,h
α − yδ‖2

2 − (δ + h‖xδ,h
α ‖2)

2 = 0, (4.19)

where xδ,h
α is the solution of the equation (4.18).

(ii) Solve equation (4.18) with α = α∗ from step (i).

From our next proposition we conclude that f is monotonically increasing and
that equation (4.19) possesses a unique positive solution α∗ > 0 provided

‖Pyδ‖2 − h‖x†δ,h‖2 < δ < ‖yδ‖2,
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where x†δ,h = A†
hyδ is the Moore-Penrose solution of the perturbed linear system

Ahx = yδ (which is the least squares solution of the minimal norm) and P is the
orthogonal projector onto R(Ah)

⊥.

Proposition 4.5. The function f : R+ → R defined by (4.19) is continuous and
possesses the properties

lim
α→0

f(α) = ‖Pyδ‖2
2 − (δ + h‖x†δ,h‖2)

2 and lim
α→∞

f(α) = ‖yδ‖2
2 − δ2. (4.20)

Let vδ,h
α = (AT

h Ah + αI)−1xδ,h
α , then

f ′(α) = 2
(
α + h2 + hδ/‖xδ,h

α ‖2

)
(vδ,h

α , xδ,h
α ) > 0. (4.21)

Proof. For α → 0 we have xδ,h
α → x†δ,h. In addition, yδ − Ahx

†
δ,h = yδ − AhA

†
hyδ =

Pyδ. Hence, the first limit relation of (4.20) follows. For α → ∞ we have that
xδ,h

α → 0. Hence, the second limit relation of (4.20) follows. We use that f is
given by f(α) = ‖Ahx

δ,h
α − yδ‖2

2−h2‖xδ,h
α ‖2

2− 2δh‖xδ,h
α ‖2− δ2, apply the chain rule

and the product rule, exploit equation (4.18) and obtain

f ′(α) = −2

(
α + h2 +

hδ

‖xδ,h
α ‖2

)(
d

dα
xδ,h

α , xδ,h
α

)
. (4.22)

In addition, differentiating both sides of the equation (4.18) by α provides the

equation xδ,h
α + (AT

h Ah + αI)
d

dα
xδ,h

α = 0, that is,
d

dα
xδ,h

α = −vδ,h
α . From this iden-

tity and (4.22) we obtain (4.21). �

The function f defined by (4.19) is convex for small α-values, but concave for
large α-values. Hence, global and monotone convergence of Newton’s method for
solving equation (4.19) cannot be guaranteed. Therefore we propose to determine
the solution r∗ of the equivalent equation

h(r) := f(r−1/2) = 0 (4.23)

by Newton’s method. This function possesses the following properties.

Proposition 4.6. Let h be defined by (4.23) with f given by (4.19), let xδ,h
r be

the solution of the equation (AT
h Ah + r−1/2I)xδ,h

r = AT
h yδ and vδ,h

r be the solution
of the equation (AT

h Ah + r−1/2I)vδ,h
r = xδ,h

r .

(i) h : R+ → R is monotonically decreasing and

h′(r) = −r−3/2
(
r−1/2 + h2 + δh/‖xδ,h

r ‖2

)
(vδ,h

r , xδ,h
r ) < 0. (4.24)

(ii) h : R+ → R is convex and

h′′(r) =
(vδ,h

r , xδ,h
r ) + 3‖Avδ,h

r ‖2
2

2r3
+ h2 3‖Avδ,h

r ‖2
2

2r5/2

+ 2δh
3r1/2‖xδ,h

r ‖2
2 + |(vδ,h

r , xδ,h
r )|2

4r3‖xδ,h
r ‖2

2

> 0. (4.25)

Proof. Using the relation h′(r) = −1
2
r−3/2f ′(r−1/2) together with (4.21) we obtain

(4.24). The proof of (4.25) is similar. �
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From (2.14) and Proposition 4.6 we conclude that Newton’s method applied to
the equation h(r) = 0 converges monotonically from below for arbitrary starting
values r ∈ (0, r∗). Rewriting Newton’s method rk+1 = rk − h(rk)/h

′(rk) in terms

of αk := r
−1/2
k leads us to the iteration method

αk+1 = ϕ(αk) with ϕ(α) =

(
α3f ′(α)

αf ′(α) + 2f(α)

)1/2

where f and f ′ are given by (4.19) and (4.21), respectively. This iteration method
converges monotonically from above for arbitrary starting values α ∈ (α∗,∞).
Summarizing, in the special case B = I the dual RTLS solution x = xδ,h

α can be
obtained by following algorithm.

Algorithm 3 Solving the dual RTLS problem (1.8) in the standard form case

Input: ε > 0, yδ, Ah, δ and h satisfying ‖Pyδ‖2 − h‖x†δ,h‖2 < δ < ‖yδ‖2.

1: Choose some starting value α ≥ α∗.
2: Solve (AT

h Ah + αI)x = AT
h yδ.

3: Solve (AT
h Ah + αI)v = x.

4: Update αnew :=

(
α3f ′(α)

αf ′(α) + 2f(α)

)1/2

with f from (4.19).

5: if |αnew − α| ≥ ε|α| then α := αnew and goto 2
6: else solve (AT

h Ah + αnewI)x = AT
h yδ.

5. Revisiting RTLS and dual RTLS

In this section we generalize the regularized total least squares problem (1.7)
by solving the constrained minimization problem

‖(A− Ah)G‖2
F + ‖y − yδ‖2

2 → min subject to Ax = y, ‖Bx‖2 ≤ R, (5.1)

and generalize the dual regularized total least squares problem (1.8) by solving
the constrained minimization problem

‖Bx‖2 → min subject to Ax = y, ‖y − yδ‖2 ≤ δ, ‖(A− Ah)G‖F ≤ h. (5.2)

In (5.1) and (5.2), respectively, G is a given (n, k)-matrix. The introduction of the
additional matrix G can be motivated by an additional scaling in the constrained
minimization problems (5.1) and (5.2), respectively. Considering the estimate

‖Ax‖2 ≤ ‖A(BT B)−1/2‖F‖Bx‖2,

which corresponds to the estimate ‖Ax‖Y ≤ ‖A(BT B)−1/2‖X→Y ‖Bx‖X in the
infinite dimensional case, we conclude that

G = (BT B)−1/2 (5.3)

is one appropriate choice of treating the two problems (5.1) and (5.2). Using
the proof ideas from [3, Theorem 2.1] we obtain that for arbitrary G the RTLS
solution of the problem (5.1) can be characterized as follows.
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Theorem 5.1. Let G be an arbitrary (n, k)-matrix with rank r(G) = n. If the
constraint ‖Bx‖2 ≤ R of the RTLS problem (5.1) is active, then the RTLS solution
x = x̂ satisfies the equations

(AT
h Ah + αBT B + β(GGT )−1)x = AT

h yδ and ‖Bx‖2 = R. (5.4)

The parameters α and β satisfy

α = µ(1 + ‖(GGT )−1/2x‖2
2) and β = − ‖Ahx− yδ‖2

2

1 + ‖(GGT )−1/2x‖2
2

, (5.5)

and µ > 0 is the Lagrange multiplier. Moreover,

β = αR2 − yT
δ (yδ − Ahx) = −‖(A− Ah)G‖2

F − ‖y − yδ‖2
2. (5.6)

For the special choice G = (BT B)−1/2 we obtain from Theorem 5.1 that the
RTLS solution of the problem (5.1) can be characterized as follows.

Corollary 5.2. Let G be chosen by (5.3). If the constraint ‖Bx‖2 ≤ R of the
RTLS problem (5.1) is active, then the RTLS solution satisfies the equations

(AT
h Ah + αBT B)x = AT

h yδ and ‖Bx‖2 = R. (5.7)

Now let us consider the dual RTLS problem (5.2). Extending the proof of
Theorem 3.2 to the more general dual RTLS problem (5.2) with arbitrary G leads
to following result.

Theorem 5.3. Let G be an arbitrary (n, k)-matrix with rank r(G) = n. If the
two constraints ‖y − yδ‖2 ≤ δ and ‖(A− Ah)G‖F ≤ h of the dual RTLS problem
(5.2) are active, then the dual RTLS solution is a solution of the equation

(AT
h Ah + αBT B + β(GGT )−1)x = AT

h yδ. (5.8)

The parameters α and β satisfy

α =
ν + µ‖(GGT )−1/2x‖2

2

νµ
and β = − µ‖Ahx− yδ‖2

2

ν + µ‖(GGT )−1/2x‖2
2

, (5.9)

where µ > 0, ν > 0 are the Lagrange multipliers. Moreover,

‖Ahx− yδ‖2 = δ + h‖(GGT )−1/2x‖2 and β = −h(δ + h‖(GGT )−1/2x‖2)

‖(GGT )−1/2x‖2

.

If G is chosen by (5.3), then we obtain from Theorem 5.3 that the dual RTLS
solution of the problem (5.2) can be characterized as follows.

Corollary 5.4. Let G be chosen by (5.3). If the two constraints ‖y − yδ‖2 ≤ δ
and ‖(A−Ah)G‖F ≤ h of the dual RTLS problem (5.2) are active, then the dual
RTLS solution satisfies the equations

(AT
h Ah + αBT B)x = AT

h yδ and ‖Ahx− yδ‖2 = δ + h‖Bx‖2. (5.10)
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6. Error bounds in the standard form case B = I

To the best of our knowledge, so far in the literature there are no error bounds
characterizing the accuracy of the approximations x̂ of the both problems (1.7)
and (1.8). Our aim in this section is to prove order optimal error bounds in the
special case B = I under the classical source condition

x† = A∗
0v with v ∈ Y. (6.1)

6.1. Error bounds for RTLS.

Theorem 6.1. Assume that the exact solution x† of the problem (1.1) satisfies
the source condition (6.1) and the side condition ‖x†‖ = R. Let in addition x̂ be
the RTLS solution of the problem (1.7), then

‖x̂− x†‖ ≤ (2 + 2
√

2)1/2‖v‖1/2 max{1, R1/2}
√

δ + h . (6.2)

Proof. Since both (x†, y0, A0) and (x̂, ŷ, Â) satisfy the two side conditions Ax = y
and ‖x‖ ≤ R of the RTLS problem (1.7), we obtain from (1.7) and (1.2), (1.3)
that

‖Â− Ah‖2 + ‖ŷ − yδ‖2 ≤ ‖A0 − Ah‖2 + ‖y0 − yδ‖2 ≤ h2 + δ2. (6.3)

Next, since ‖x̂‖ ≤ R and ‖x†‖ = R we have ‖x̂‖2 ≤ ‖x†‖2, or equivalently,

‖x̂− x†‖2 ≤ 2(x†, x† − x̂).

Due to (6.1) and the Cauchy-Schwarz inequality we obtain

‖x̂− x†‖2 ≤ 2(A∗
0v, x† − x̂) ≤ 2‖v‖ ‖A0x

† − A0x̂‖. (6.4)

By triangle inequality we have

‖A0x
† − A0x̂‖ ≤ ‖A0x

† − ŷ‖+ ‖ŷ − A0x̂‖
≤ ‖A0x

† − yδ‖+ ‖ŷ − yδ‖+ ‖ŷ − Ahx̂‖+ ‖A0x̂− Ahx̂‖. (6.5)

For estimating the sum of the first and fourth summand in the bracket of (6.5)
we use the identity A0x

† = y0, apply (1.2), (1.3) and obtain

‖A0x
† − yδ‖+ ‖A0x̂− Ahx̂‖ ≤ δ + h‖x̂‖ ≤ max{1, ‖x̂‖}(δ + h). (6.6)

For estimating the sum of the second and third summand in the bracket of (6.5)

we use the identity ŷ = Âx̂, apply the inequality a+b ≤
√

2
√

a2 + b2, the estimate
(6.3) and the inequality

√
a2 + b2 ≤ a + b to obtain

‖ŷ − yδ‖+ ‖ŷ − Ahx̂‖ ≤ ‖ŷ − yδ‖+ ‖Â− Ah‖ ‖x̂‖

≤ max{1, ‖x̂‖}
(
‖ŷ − yδ‖+ ‖Â− Ah‖

)
≤ max{1, ‖x̂‖}

√
2
√
‖ŷ − yδ‖2 + ‖Â− Ah‖2

≤ max{1, ‖x̂‖}
√

2
√

δ2 + h2

≤ max{1, ‖x̂‖}
√

2 (δ + h) . (6.7)

Combining (6.5), (6.6), (6.7) we have

‖A0x̂− A0x
†‖ ≤ max{1, ‖x̂‖}(1 +

√
2)(δ + h). (6.8)
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Since ‖x̂‖ ≤ ‖x†‖ = R, this estimate and (6.4) provide (6.2). �

6.2. Error bounds for dual RTLS.

Theorem 6.2. Assume that the exact solution x† of the problem (1.1) satisfies
the source condition (6.1) and let x̂ be the dual RTLS solution of the problem
(1.8). Then,

‖x̂− x†‖ ≤ 2‖v‖1/2
√

δ + h‖x†‖. (6.9)

Proof. Since both (x†, y0, A0) and (x̂, ŷ, Â) satisfy the three side conditions Ax =
y, ‖y − yδ‖ ≤ δ and ‖A − Ah‖ ≤ h of the dual RTLS problem (1.8), and since x̂
is the solution of (1.8) we have

‖x̂‖2 ≤ ‖x†‖2, (6.10)

or equivalently, ‖x̂ − x†‖2 ≤ 2(x†, x† − x̂). Using (6.1) and the Cauchy-Schwarz
inequality we obtain

‖x̂− x†‖2 ≤ 2(A∗
0v, x† − x̂) ≤ 2‖v‖ ‖A0x

† − A0x̂‖. (6.11)

From (1.2) we have ‖y0 − yδ‖ ≤ δ, and from (1.8) we have ‖ŷ − yδ‖ ≤ δ. Conse-
quently, by triangle inequality and the identity A0x

† = y0 we have

‖A0x
† − ŷ‖ ≤ ‖y0 − yδ‖+ ‖ŷ − yδ‖ ≤ 2δ. (6.12)

From (1.3) we have ‖A0−Ah‖ ≤ h and from (1.8) we have ‖Â−Ah‖ ≤ h. Hence,

by triangle inequality, the identity ŷ = Âx̂ and estimate (6.10) we have

‖ŷ − A0x̂‖ ≤
(
‖Â− Ah‖+ ‖A0 − Ah‖

)
‖x̂‖ ≤ 2h‖x̂‖ ≤ 2h‖x†‖. (6.13)

We apply again the triangle inequality together with (6.12), (6.13) and obtain

‖A0x
† − A0x̂‖ ≤ ‖A0x

† − ŷ‖+ ‖ŷ − A0x̂‖ ≤ 2δ + 2h‖x†‖. (6.14)

From this estimate and (6.11) we obtain (6.9). �

7. Error bounds for B 6= I

In this section our aim is to provide order optimal error bounds in the general
case B 6= I. These error bounds are not restricted to finite dimensional spaces X
and Y but are also valid for infinite dimensional Hilbert spaces. For error bounds
in the special case h = 0 see [2, 4, 13, 16, 17].

7.1. Smoothness assumptions. We formulate our smoothness assumptions in
terms of some densely defined unbounded selfadjoint strictly positive operator
B : X → X. We introduce a Hilbert scale (Xr)r∈R induced by the operator B,
which is the completion of ∩∞k=0D(Bk) with respect to the Hilbert space norm
‖x‖r = ‖Brx‖, r ∈ R.

Assumption A1. There exist positive constants m and a such that

m‖B−a x‖ ≤ ‖A0x‖ for all x ∈ X.
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Assumption A2. For some positive constants E and p we assume the solution
smoothness x† = B−pv with v ∈ X and ‖v‖ ≤ E. That is,

x† ∈ Mp,E =
{
x ∈ X

∣∣∣ ‖x‖p ≤ E
}

.

Assumption A1, which we will call link condition characterizes the smoothing
properties of the operator A0 relative to the operator B−1. Assumption A2 char-
acterizes the smoothness of the unknown solution x† in the scale (Xr)r∈R. By
using A2 we can study different smoothness situations for x†.

7.2. RTLS. For deriving error bounds under the assumptions A1 and A2 we will
use the argument from the Section 6 combined with the interpolation inequality

‖x‖r ≤ ‖x‖(s−r)/(s+a)
−a ‖x‖(a+r)/(s+a)

s , (7.1)

that holds true for any r ∈ [−a, s], a + s 6= 0, see [9].

Theorem 7.1. Assume the link condition A1, the smoothness condition A2 with
1 ≤ p ≤ 2 + a, and that the exact solution x† of the problem (1.1) satisfies the
side condition ‖Bx†‖ = R. Let in addition x̂ be the RTLS solution of the problem
(1.7), then

‖x̂− x†‖ ≤ (2E)
a

p+a

(
max{1, ‖x̂‖}(1 +

√
2)

m
(δ + h)

) p
p+a

= O
(
(δ + h)

p
p+a

)
. (7.2)

Proof. Since ‖Bx̂‖ ≤ R and ‖Bx†‖ = R we have ‖Bx̂‖2 ≤ ‖Bx†‖2. Consequently,
due to Assumption A2,

‖x̂− x†‖2
1 = (Bx̂, Bx̂)− 2(Bx̂, Bx†) + (Bx†, Bx†)

≤ 2(Bx†, Bx†)− 2(Bx̂, Bx†)

= 2(B2−p(x† − x̂), Bpx†)

≤ 2E‖x̂− x†‖2−p. (7.3)

For estimating ‖x̂−x†‖2−p we use the interpolation inequality (7.1) with r = 2−p,
s = 1, and obtain from (7.3) the estimate

‖x̂− x†‖2
1 ≤ 2E‖x̂− x†‖(p−1)/(a+1)

−a ‖x̂− x†‖(a+2−p)/(a+1)
1 . (7.4)

Rearranging terms in (7.4) gives

‖x̂− x†‖1 ≤ (2E)(a+1)/(a+p)‖x̂− x†‖(p−1)/(a+p)
−a . (7.5)

From Assumption A1 and estimate (6.8) of the Theorem 6.1 we obtain

‖x̂− x†‖−a ≤
‖A0x̂− A0x

†‖
m

≤ max{1, ‖x̂‖}(1 +
√

2)(δ + h)

m
. (7.6)

This estimate and (7.5) provide

‖x̂− x†‖1 ≤ (2E)(a+1)/(a+p)

(
max{1, ‖x̂‖}(1 +

√
2)(δ + h)

m

)(p−1)/(a+p)

. (7.7)
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Now the desired estimate (7.2) follows from (7.6), (7.7) and the interpolation
inequality (7.1) with r = 0 and s = 1. �

7.3. Dual RTLS. For deriving error bounds under the smoothness assumptions
A1 and A2 we will proceed as in the Subsection 7.2.

Theorem 7.2. Assume the link condition A1 and the smoothness condition A2
with 1 ≤ p ≤ 2 + a, and let x̂ be the dual RTLS solution of problem (1.8). Then,

‖x̂− x†‖ ≤ 2E
a

p+a

(
δ + h‖x†‖

m

) p
p+a

= O
(
(δ + h)

p
p+a

)
. (7.8)

Proof. Since both (x†, y0, A0) and (x̂, ŷ, Â) satisfy the three side conditions Ax =
y, ‖y − yδ‖ ≤ δ and ‖A − Ah‖ ≤ h, since x̂ is the solution of (1.8) we have
‖Bx̂‖2 ≤ ‖Bx†‖2. It gives us

‖x̂− x†‖2
1 ≤ 2E‖x̂− x†‖2−p. (7.9)

From Assumption A1 and the estimate (6.14) of the Theorem 6.2 we obtain

‖x̂− x†‖−a ≤
‖A0x̂− A0x

†‖
m

≤ 2δ + 2h‖x†‖
m

. (7.10)

Now the desired estimate (7.8) can be proven as in the Subsection 7.2, where
instead of (7.6) the estimate (7.10) has to be used. �

Let us give some comments. First, we have to mention that Theorem 7.1
requires the assumption ‖Bx†‖ = R which means that we have to know the exact
magnitude of ‖Bx†‖. We do not know if error bounds (7.2) are valid if ‖Bx†‖ is
not exactly known. Second, we note that both Theorems 7.1 and 7.2 require the
assumption p ≥ 1, that is, the unknown solution has more smoothness than it is
introduced into the problems (1.7) and (1.8). There arises the question whether
the error bounds of the Theorems 7.1 and 7.2 are valid in the case p < 1. We
will answer this question in a forthcoming paper and expect that this will be true
under the two-sided link condition m‖B−a x‖ ≤ ‖A0x‖ ≤ M ‖B−a x‖ instead of
A1. Third, we mention that the power-type link condition A1 does not allow
a study of severely ill-posed problems (1.1) where the operator A0 is infinitely
smoothing and B is finitely smoothing. In such situations the link condition A1
has to be generalized, see [2, 11, 13, 17] for results in the special case h = 0. The
extension of our error analysis to this more general setup will also be subject of a
forthcoming paper.

8. Numerical experiments

In the standard form case B = I both RTLS and dual RTLS lead to solving an
equation of the form (2.6). The same equation appears in the standard Tikhonov
regularization, when data as well as an operator are noisy. So, all these methods
differ only in the choice of the regularization parameter α. In the RTLS this
choice can be made without a knowledge of the noise levels (h, δ). For the stan-
dard Tikhonov regularization such noise level free parameter choice strategies are
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also possible. Presummably, the most ancient of them is the one termed quasi-
optimality. It was proposed in 1965 by Tikhonov and Glasko [19], who suggested
to choose from a geometric sequence

Γp
N = {αi : αi = α0p

i, i = 1, 2, . . . , N}, p > 1,

such α = αm for which the quantity

v(αi) = ‖xδ,h
αi
− xδ,h

αi−1
‖

has the minimum value v(αm) in the chosen set Γp
N . For lack of a knowledge of

noise levels, within the framework of quasi-optimality one needs to try a suffi-
ciently large number N of regularization parameter αi. It means that an equation
of the form (2.6) should be solved many times with different αi.

On the other hand, in RTLS one usually needs to solve only a few such equations
prior the Algorithm 1 arrives at the stage 6.

But unlike quasi-optimality, RTLS requires a reliable bound R for the norm ‖x†‖
of the unknown solution, and as it will be seen from our numerical experiments
below, RTLS is sometimes too sensitive to a misspecification in the value of R.

As to the dual RTLS, it is free from above mentioned drawback of RTLS, and
still only a few calls of a solver for equations of the form (2.6) are necessary. At
the same time, using dual RTLS one needs to know noise levels.

Following [3] to preform numerical experiments we use test problems from [5].
The first test is based on the function shaw(n) in [5] which is a discretization of
a Fredholem integral equation∫ π

2

−π
2

k(s, t)f(t)dt = g(s), s ∈ [−π

2
,
π

2
],

where the kernel and the solution are given by

k(s, t) = (cos(s) + cos(t))2

(
sin(u)

u

)2

, u = π(sin(s) + sin(t)),

f(t) = a1e
−c1(t−t1)2 + a2e

−c2(t−t2)2 ,

a1 = 2, a2 = 1, c1 = 6, c2 = 2, t1 = 0.8, t2 = −0.5.

The kernel and the solution are discretized by simple collocation with n = 30
points to produce a matrix A and the vector x†. Then the discrete right-hand
side is produced as y0 = Ax†.

Following [3] the perturbed right-hand side is generated as

yδ = (A + σ‖E‖−1
F E)x† + σ‖e‖−1

2 e,

where E and e are from a normal distribution with zero mean and unit standard
deviation. In all experiments we take σ = 0.1. We present the results where data
errors are in fact between 0.099217 and 0.122227.

To implement the quasi-optimality criterion we take α0 = 10−3, p = 1.1, N =
70.

In Algorithm 1 solving RTLS problem in the standard form case we take ε = 0.8,
R = 8. Making such a choice of R we, in fact, overestimate the norm of the exact
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Figure 1. The graphs of the exact solution, and approxi-
mate solution given by Tikhonov method equipped with the quasi-
optimality criterion are labelled respectively by (?) and (◦). The
gray dash line is RTLS-solution.

solution ‖x†‖. In the presented case the latter one is 5.64. Note also that R = 8

meets the condition (2.8), since in considered case ‖x†δ,h‖ = 7.6705 · 107.
The Algorithm 1 terminates after 5 steps with α = 0.0683 that corresponds

to a relative error 0.1846. The quasi-optimality criterion suggests the choice of
α = 0.0232 (in the presented case the optimal choice is α = 0.0255). It leads to a
relative error 0.1753.

The graphs of corresponding approximate solutions are displayed in Fig.1 to-
gether with the exact one. In considered case the Algorithm 3 solving the dual
RTLS problem terminates with α = 0.2208 and gives a relative error 0.1589.

Thus, all considered methods produce reliable results, but both RTLS algo-
rithms require essentially less computational efforts than the standard Tikhonov
regularization equipped with the quasi-optimality criterion.

In the second test we use a discretization of the Fredholm equations∫ π

0
es cos tf(t)dt = 2

sin s

s
, s ∈ [0,

π

2
],

implemented in the function baart(n) in [5]. The solution is given by f(t) = sin t.
We use baart(n) with n = 32, that gives us a matrix A and the vector y0. Noisy
data are simulated in the same way as in our first test.

At first we implement the Algorithm 1 for RTLS with R = 1.2, which is a good

approximation for the norm ‖x†‖ = ‖ sin(·)‖ =
√

π
2

. The algorithm terminates
with α = 0.0016 and gives a relative error 0.1846. The standard Tikhonov reg-
ularization equipped with quasi-optimality criterion gives a relative error 0.2402
for α = 0.0144. Corresponding graphs are displayed in Fig.2.

To demonstrate an instability of RTLS-algorithm for this particular example
we take R = 2, which is still not so far from the real value of ‖x†‖. In Fig.3 one
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Figure 2. The results of the second experiment. The graphs are
labelled as in Fig.1. In RTLS-algorithm R = 1.2.

Figure 3. The results of the third test. The graphs are labelled
as in Fig.1. In RTLS-algorithm R = 2. The relative error of the
Tikhonov method equipped with the quasi-optimality criterion is
0.1565, α = 0.0010. For RTLS α = 0.0004969, and relative error is
0.9826.

can easily see a dramatic change in the behavior of RTLS-approximate solution.
A relative error is now 0.9826, and it is obtained for α = 0.0004969. In contrast to
our first test, we can observe now a non-disarable sensitivity of RTLS-algorithm
to a misspecification of a bound R for the norm ‖x†‖. It can be explained by the
fact that the kernel of the Fredholm equation is now an analytic function, that
hints at a severely ill-posedness of considered problem, which was not the case in
our first test.
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Figure 4. The gray dash line is a graph of an approximate solu-
tion given by dual RTLS-algorithm. Other lines are labelled as in
Fig.1.

At the same time, dual RTLS realized by the Algorithm 3 demonstrates a stable
behavior, as it can be seen from Fig.4. Of course, it requires a knowledge of a
noise level, which is 0.102796 in considered case. The Algorithm 3 terminates
after 4 steps with α = 0.0822, and gives a relative error 0.3336.

From our numerical experiments one may make a conclusion that in case of
known noise level dual RTLS can be suggested as a method of choice. With-
out knowledge of a noise level Tikhonov regularization equipped with the quasi-
optimality criterion seems to be more reliable than RTLS.
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