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Regularized Transfer Boosting for
Face Detection Across Spectrum

Zhiwei Zhang, Dong Yi, Zhen Lei, and Stan Z. Li, Fellow, IEEE

Abstract—This letter addresses the problem of face detection in
multispectral illuminations. Face detection in visible images has
been well addressed based on the large scale training samples. For
the recently emerging multispectral face biometrics, however, the
face data is scarce and expensive to collect, and it is usually short
of face samples to train an accurate face detector. In this letter,
we propose to tackle the issue of multispectral face detection by
combining existing large scale visible face images and a few multi-
spectral face images. We cast the problem of face detection across
spectrum into the transfer learning framework and try to learn
the robust multispectral face detector by exploring relevant knowl-
edge from visible data domain. Specifically, a novel Regularized
Transfer Boosting algorithm named R-TrBoost is proposed, with
features of weighted loss objective and manifold regularization.
Experiments are performed with face images of two spectrums, 850
nm and 365 nm, and the results show significant improvement on
multispectral face detection using the proposed algorithm.

Index Terms—Face detection, multispectral, transfer boosting.

I. INTRODUCTION

ECENTLY, multispectral face biometrics has been pro-

posed as a novel insight into the face biometrics. By
providing active illuminations, the face recognition process no
longer suffers uncertain environmental illumination risks. In
[1] Li et al. proposed a highly accurate near-infrared (NIR at
850 nm) based face recognition system, and has been success-
fully utilized in many real world applications. Chang et al. [2]
showed than much more facial information can be obtained if
more than one spectrums are used. Moverover, multispectral
imaging is inborn robust to spoofing attacks, and in [3], [4]
promising results are given. Based on the above advantages,
multispectral face biometrics is surely a promising research
area in future.

However, the first and fundamental step, the face detection,
has rarely been studied in the field of multispectral face biomet-
rics. Some works [1], [7] utilized the same methodology as in
visible face detection, while many other works [5], [6] simply
omitted it. Currently, Boosting [20] based Viola-Jones frame-
work [11] dominates the field of face detection, and numerous
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Fig. 1. Some detection examples. The first row is the 850 nm detection results
and the second row is the 365 nm detection results.

variants in either framework or feature types, such as Nesting
[8], Vector Boosting [9], MBLBP [10], have been proposed.
Despite the success, however, they all require a huge number
of training data collection, which is not only time consuming
but also cost expensive. For instance, researches [1], [11] col-
lected thousands, or even tens of thousands of images for the
training, which requires huge manual work on data collection
and sample labeling. For multispectral face biometrics, unfor-
tunately the progress is still initial and only scarce data are ac-
cessible, for instance, in [2] only dozens of people are collected,
which prohibits the face detector training. Considering the vis-
ible face detection is quite mature with many accessible face
databases(such as FRGC, FERET), it is reasonable to ask could
we borrow the strength from these visible face data for the usage
in multispectral case so that the expensive data collection could
be reduced?

The answer is yes. In this letter we propose to combine the
abundant and available visible face data with the few multispec-
tral face data. Specifically we design a novel regularized transfer
boosting algorithm (named R-TrBoost), which features two as-
pects: 1) Data of different domains are weighted differently, so
that in the optimization, more attention is paid on the target data
domain (in our case, multispectral data); 2) manifold regulariza-
tion is imposed to achieve label/score smoothness among target
data, which prevents an overfitting problem trained on the few
target data. Experiments on two spectrum, 850 nm and 365 nm,
clearly prove the effectiveness of the proposed R-TrBoost algo-
rithm. These two spectrums are at two ends of the visible spec-
trum (400 nm—750 nm), and compared with visible faces, very
distinctive facial appearances can be observed (see Figs. 1 and
2). Although [1] reported excellent detection results on 850 nm,
up to 178 000 samples were collected for training. In our experi-
ments we show that with only few accessible data, our algorithm
can greatly improve the performance, both on 850 nm and 365
nm.
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Fig. 2. Some face images used for training, from top to bottom are: visible
face images, 850 nm images and 365 nm images. Distinctive appearances can
be easily observed, especially from 365 nm.

The issue we tackle is essentially a transfer learning problem
[12], which focuses on the situation when training and testing
data are drawn from different distributions. Methods such as
[13], [14] combine data of different data domains for knowl-
edge transfer. Some other works [15], [16] directly adapted a
pre-trained classifier in target data domain, known as domain
adaptation. For the Boosting based transfer algorithms, how-
ever, we are only aware of Dai’s work [17], which updates the
sample weights in different ways for each distribution while
remaining the objective as the ordinary Boosting algorithms.
[18] further extended Dai’s work by using multiple data sources.
Compared with Dai’s work, our formulation is more biased to
multispectral data, and therefore achieves better results which
is proved by both 850 nm and 365 nm experiments.

The remaining of the letter is organized as follows: in
Section II, we give the detailed procedures of proposed regu-
larized transfer boosting (R-TrBoost) algorithm; In Section III
we give experiments on the visible-850 nm and visible-365
nm cases, which prove the effectiveness of our algorithm. In
Section IV, we conclude the letter.

II. REGULARIZED TRANSFER BOOSTING

Currently almost all of the Boosting algorithms share the
same optimization problem which minimizes the following Ex-
ponential Criteria loss function

I/()SS(.’II7 y.F) = E[eiy(‘E)F(J/)] (1)

where 2 is the training data, y(x) € {41, —1} is data label, and
F is the final strong classifier. At each iteration ¢, F} is updated
by adding a new weak learner f to the current F as

Fpn —F+f st f=argmin E[e v H+D] (2)

As mentioned above, (1) treats all data equally due to the as-
sumption that all data are drawn from the same distribution.
However, the assumption doesn’t hold in many real world appli-
cations as well as the issue we concern. Consequently the loss
function becomes inappropriate and so does the derived strong
classifier F'(z).

We now generalize the Boosting into the regularized transfer
learning version. Suppose we have the large amount of visible
face data, x7 € D¥,+ =1: N, and small amount of multispec-
tral face data z]" € D™, ¢ =1 : M. As the detection accuracy
on multispectral data is our concern, it is reasonable to impose
a higher penalty if a multispectral data is misclassified. Further-
more, as there are only few multispectral face data, the overfit-
ting problem should be considered. Therefore we impose a man-
ifold regularization item, which forces the label/score smooth-
ness among sample neighborhood.
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Based on the above principles, the loss function of R-TrBoost
is formulated as below:
Loss(w,y, F) = E[b(z)e 73’('”)F('T‘)]

+/\Z9

™ ™

Pl = FElE @)

J

where b(z) is the loss Welght over different data and S are the
similarity scores between sample pairs of multispectral data.

The first term reflects the misclassification loss on the com-
bination of ¥ and x™. By proper setting b(-), the optimization
is more biased towards x'". The second term is the manifold
regularization penalty, which gives a high penalty if two sim-
ilar multispectral data are assigned two dissimilar scores (thus
the label). By such a penalty, the label/score smoothness can be
achieved among the sample neighborhood. A controls the bal-
ance between the two terms.

The above optimization, however, is difficult to solve as the
second penalty term cannot be optimized on x directly. There-
fore a relaxed form of (3) is proposed for the sake of optimiza-
tion as follows:

F = arg min E[b(z)e #(F )] &)
where
g~ F+f+Xg
f =argmin E[b(x)e” y(m) (Fe(m )+f(m))]
g=

arg mlnz S wm [(F(z] Hg(x]*))— (F(:I:T)-l—g(:l:;"))]?.

(&)

The original formulation is parsed into two separate sub-

problem, and the final F' is the combination of f and g.

Although it is not the global optimum for the original (3),
numerically we can still get a suboptimal solution.

A. Misclassification Term for Weighted Loss

For the first misclassification term, we adopt adaptive Newton
method for solution. The first and second derivatives of (4) is:

OJ(F(x) + f(x))

, = — E(ybe ¥¥
of(z) ‘f(m)—ﬂ (ybe )
6(f(7))2 =0 ( [= ) ( )
Thus the Newton update is
_ F'(x) _ E(ybe ")
I= F”( ) E(be vF|x) @

In our specific concern of face detection across spectrum, it
is sufficient that b(x) has only two possible values for our two
distributions, and without loss of generality, () is constructed

as
L,
b(x) = {ﬂ.,
L,

where generally 3 > 1. Obviously if 4 = 0 then only visible
face data are trained; if 3 — oo then only multispectral face data
are trained. As nonface data is generated by randomly sampling
patches in images with no face, it is equivalent for both visible
and multispectral data. Therefore we specify the b(z) = 1 if =
is nonface data.

ifr e D
ifx e D™ ®)
if x is nonface
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B. Score Inconsistency Term for Manifold Regularization

For similar samples, it is reasonable to argue that they should
share similar classification scores, and such neighborhood pre-
serving property is known as manifold regularization [19]. We
firstly define the similarity matrix S in (4) as

N 1, lfTJ € IVk(xi)
Swiwj) = { 0, otherwise

where Nj.(x) indicates the k& nearest neighbors of .. In this letter
we empirically set & = 2 and use Euclidean distance as simi-
larity measure.

Given [%, the update g has

S S(wi ) x [(Fulwi) + gw) — (Fulas) + g(e )
= Z S(J?zj, TJ)

X | (Filwi) = Fulw))? + 2(Fu(a) - Fila,)

®

x (g(x:) — g(zy) + (g(i) — g(z;))* | (10)

Calculate the derivative of the above equation towards
(g9(z;) — g(z;)) (Notice: not on g!) and set it zero, and we have

9(xi) = g(z;) = —(Fu(w) — Fy(z;)). (11)

The equation has a very clear meaning: given strong classifier

Fi(z), the optimum g at this iteration should compensate the

score differences assigned by F;(x). Therefore, one possible g
can be formulated as follows:

g(z) = E((F(x,) — F(@))|zn € Ni(x)). (12)

Based on the above analysis, the final update at each iteration
can be obtained using (5), with a balance parameter A. Although
this is not the exact optimal solution for the original formulation
(3), our experiments show that it can still produce an excellent
result as will be shown in the experiment section.

C. Other Implementation Details for Face Detection

In this letter, we adopt the well known MultiBlock Local Bi-
nary Pattern (MBLBP) Operator as the feature in face detection
[10]. In [10] MBLBP has been shown better performance than
traditional Haar and LBP features, and has now been integrated
into the OpenCV2.3. For weak classifier, as the MBLBP feature
is non-numerical, traditional weak classifiers based on numer-
ical values are inappropriate. We adopt the Lookup Table (LUT)
for it. Cascade is also adopted to achieve both accuracy and ef-
ficiency. Readers are referred to [11] for more details about cas-
cade, and we simply omit it here.

III. EXPERIMENTS

In this section, we give two main experiments covering 850
nm and 365 nm spectrum, to prove the effectiveness of the algo-
rithm proposed in this letter: 850 nm and 365 nm are at two ends
of the visible spectrum (400 nm—750 nm), at which skin has very
different albedos [4]. Illumination at 850 nm is already a mature
spectrum for face recognition, and our data mainly come from
existing database. For wavelength at 365 nm, however, this is a
brand new spectrum for face biometrics with fewer data avail-
able. This in turn proves the necessity of our algorithm to reduce
the manual labor in data collection. See Fig. 2 for examples.
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TABLE I
PARAMETER SETTING IN R-TRBOOST

A 0 | 0.005 | 0.01 | 0.02 | 0.04 | 0.08
8
1 0.81 | 0.81 | 0.84 | 0.84 | 0.82 | 0.81
3 0.85| 0.88 | 0.88 | 0.88 | 0.88 | 0.85
5 0.87 | 091 | 09 |0.89 | 091 0.89
10 0.89 | 0.89 | 0.90 | 0.89 | 0.91 | 0.92
15 0.90 | 091 | 092|092 | 091|091
TABLE II

THE EFFECT OF k

B/A

5/0.04 0.91 | 0.89 | 0.86 | 0.88
10/0.03 0.91 | 0.90 | 0.91 | 0.89
15/0.02 092 | 091 | 0.92 | 091

For all the following experiments, we compare the following

methods.

1) R-TrBoost with visible and multispectral face images for
training (R-TrBoost).

2) Traditional method [10] with visible and multispectral face
images for training. This is a special case of R-TrBoost
by setting 5 = 1 and A = 0.(VIS + 850 nm or VIS +
365 nm).

3) With mere visible face images for training (VIS) [10].

4) With mere multispectral face images for training (850 nm
or 365 nm) [10].

5) Dai’s Boosting [17] with visible and multispectral faces for
training (Dai’s).

A. VIS to 850 nm

We design two subexperiments for VIS to 850 experiment.
The first subexperiment is about parameter setting. We simplify
face detection into a binary classification problem on cropped
face images, to choose proper parameters for later detection.
Seven thousand visible and 400 850 nm face images are used
for training, and all images are cropped by eye positions into
the size of 20 x 20. About 40 000 nonface data are randomly
sampled at each stage during cascade training from images with
no faces.

For the first subexperiment, the classification accuracies on
another 1000 cropped 850 nm faces at various parameters are
tested and shown in Table I, from which we can see that the
proposed weighted loss and manifold regularization can both
improve the classification accuracy. Notice when 5 = 1, A = 0,
it is the traditional method [10] treating visible and multispectral
data equally.

We further test the effect of neighbor number % in the man-
ifold regularization under several 3 and A choices, as listed in
Table II. We observe that most of the time & doesn’t effect too
much on the classification result, and for the sake of computa-
tion, our choice of & = 2 is reasonable.

The second subexperiment for 850 nm is about the detec-
tion in practical 850 nm images. Another 858 images without
face localization or cropping, are used to test the detection per-
formance. For simplicity, we just use several parameters from
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Fig. 3. (a) ROC curves for VIS to 850 nm experiment; (b) ROC curves for VIS to 365 nm experiment.

Table I. In Fig. 3 we give the ROC curves of different methods,
which obviously proves the effectiveness of our method over
other methods.

Notice that we deliberately use only 400 training images to
simulate the situation where the multispectral face images are
currently rare and expensive to collect. Meanwhile, we use
much more images for test (up to thousands of 850 nm face
images). The large amount of test data is a strong proof to the
effectiveness of our R-TrBoost algorithm. Furthermore, in the
next experiment we have only hundreds of 365 nm face images
for experiment, indicating that it is necessary to give a test on a
relatively large amount of 850 nm data if possible.

B. VIS to 365 nm

As the 365 nm imaging is still at the beginning of develop-
ment, we have collected only 705 365 nm images for experi-
ment. We use the same 7000 visible face images as above, and
305 face images of 365 nm for training. The detection is con-
ducted on the other 400 face images of 365 nm. As there is no
extra 365 nm face images for the parameter selection, we simply
use the same parameters as in VIS to 850 nm detection exper-
iment. The ROC curves can be seen in Fig. 3, which clearly
proves the superiority of our algorithms. One noticeable point
is that as face tend to exhibit quite distinctive appearance in 365
nm illumination, the accuracy for face detection is lower than
that of 365 nm faces, which are more similar with visible face
images.

From the above two experiments, we can see that neither large
amount of visible data nor few multispectral data alone are suf-
ficient for good detection. By combination, much higher detec-
tion rate can be achieved. Furthermore, by carefully designing
the R-TrBoost algorithm and selecting proper parameters, our
method achieves better result than other boosting algorithms.

IV. CONCLUSION

In this letter, we propose and tackle the issue of face detection
across spectrum. The motivation is derived from the emerging
research on multispectral face biometrics, which suffers the lack
of sufficient face data at the beginning of research. We for-
mulate a novel regularized transfer Boosting (R-TrBoost) algo-
rithm by (1) adding weighted loss function into the optimiza-
tion equation, and (2) adding manifold regularization to enforce
label/score smoothness. The proposed R-TrBoost algorithm is
proved to be effective in both VIS to 850 nm and VIS to 365

nm experiments, which covers two ends of the visible spectrum.
Our future work will be the generalization of R-TrBoost into
other related fields.
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