

Mathematics Research Center

University of Wisconsin-Madison

610 Walnut Street

Madison, Wisconsin 53706

May 1980
(Received January 11, 1980)

Sponsored by
U. S. Army Research Office
P. O. Box 12211

Research Triangle Park
North Carolina 27709

UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER

REGULARIZING EFFECTS OF HOMOGENEOUS EVOLUTION EQUATIONS

Michael G. Crandall and Philippe Bénilan

Technical Summary Report \#2076
May 1980

ABSTRACT

It is well-known that solving the initial-value problem for the heat equaltron forward in time takes a "rough" initial temperature into a temperature which is smooth at later times $t>0$. One aspect of this is the validity of certain estimates on $\operatorname{tu}_{t}^{7}$ when u is a solution of the heat equation: In this paper we prove related estimates on nonlinear evolution equations which are governed by homogeneous nonlinearities. The results apply to classes of nonlinear diffusion equations and to conservation laws: The results are interesting from the point of view of identifying a new "regularization" mechanism and the esthmates themselves cast new light on the nature of the solutions of some initialvalue problems with rough initial data. AMS (MOS) Subject Classifications: 34G20, 35D10, 47H07, 47H20.

Key Words: Nonlinear evolution; homogeneous nonlinearity, accretive operator, requilârizing effèct.

Work Uni ł Number il Applied Analysis

[^0]
SIGNIFICANCE AND EXPLANATION

It is well-known that solving the initial-value problem for the heat equation forward in time takes a "rough" initial temperature into a temperature which is smooth at later times $t \geqslant 0$. One aspect of this is the validity of certain estimates on $t u_{t}$ when u is a solution of the heat equation. In this paper we prove related estimates on nonlinear evolution equations which are governed by homogeneous noniinearitiè. The results apply to classes of nonlinear diffusion equations and to conservation laws. The results are interesting from the point of view of identifying a new "regularization" mechanism and the estimates themselves cast new light on the nature of the solutions of some initial-value problems with rough initial data.

The responsibility for the wording and views expressed in this descriptive sumary lies with MRC, and nôt with the authors of this report.

REGULARTZING EFFECTS OF HOMOGENECUS EVOLUTION EQUATIONS

Michael G. Crandall and Philippe Bénilan

Introduction
Each of the three evolution equations
(1) α

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}=\frac{\partial^{2}}{\partial x^{2}}\left(|u|^{\alpha-1} u\right) & t>0, x \in \mathbb{R}, \\
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(|u|^{\alpha-1} u\right) & t>0, x \in \mathbb{R},
\end{array}
$$

${ }^{(2)} \alpha$
and
${ }^{(3)} \alpha$

$$
\frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(\left|\frac{\partial u}{\partial x}\right|^{\alpha-1} \frac{\partial u}{\partial x}\right) \quad t>0, x \in \mathbb{R},
$$

may, if $\alpha>0$, be solved subject to the initial condition

$$
\begin{equation*}
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R} \tag{IC}
\end{equation*}
$$

where $u_{0} \in L^{1}(\mathbb{R})$ for a solution $u(x, t)$ in such a way that $t \rightarrow u(\cdot, t)$, which we call $u(t)$, is a continuous curve in $L^{1}(\underline{R})$ and if $S(t)$ is defined by $S(t) u_{0}=u(t)$ then it is a nönex̃pansive sèlf́máp of $L^{l}(\mathbb{R})$ fôr eách $t \geq 0$, (Thiss is discussed further in Section 2, but the reader need know nothing of these matters beforehand.) A main result of this. note, as applied to these three problems, establishes that

$$
\begin{equation*}
\lim _{h \geqslant 0} \frac{\|u(t+h) \div \ddot{u}(t)\|}{h} \geqslant \frac{2\left\|u_{0}\right\|}{|\alpha-1| t} \tag{4}
\end{equation*}
$$

with If \|l the norm of $\mathbb{L}^{1}(\mathbb{R})$, provided $\alpha, \neq \lambda$: Indeed, it is shown that (4) holds for any

 wísèestimăté

[^1]\[

$$
\begin{equation*}
(\alpha-1) \frac{\partial u}{\partial t} \geq-\frac{1}{t} u \quad t>0, x \in \mathbb{R} \tag{5}
\end{equation*}
$$

\]

holds for nonnegatave solutions of any once of the above problems ((5) being understood in the sense of distributions).

Estimates of the form (4), (5) are types of "regularizing effects" in that the quantities estimated for $t>0$ need not be sensıble at $t=0$. We comment on the rather subtle implications of the estimates (4) and (5) in particular cases at some length in Section 2 , and we pay there due respect to the difference between the assertion (4), which is an estimate of the "speed", and the stronger assertion that the "velocity" u ' (t) exists and admits the corresponding estimate.

This note is divided into two sections: Section 1 presents the abstract results concerning solutions of the equation $u^{\prime} \doteq B(u)$ and its perturbations under various assumptions (always including that B is homogeneous) ${ }^{2}$: These results are elementary estimates on the difference quotients $h^{-1}(u(t+h)-u(t) i)$. Section 2 discusses the interaction of the abstract results with particular problems, including those listed above, and it is partly expository.

Estimates in evolution problems of velocities $u^{\prime}(t)$ by expressions involving, $1 / t$ are familiar in several contexts. Perhaps the closest in spirit to those given here occur when B is the (linear) infinitesamal generator of strongiy continuous semigroup, in which case an estimate of $h^{-1}\|u(t+h)-u(t)\|$ in the form $c\|u(0)\| / t$ is essentially equivalent to B Zeing, the generator of a holomorphic semigroup (see, e.g., [17], '29]): (Tnis is the case for the linear problems (1) $)_{1}=(3)_{i}$ in a variety of spaces, Another known case is the result of Brezis. [7, chp. IİI] which applies if $B=\partial \phi$ is the subdifferentịal of a convex function on à Hilpert space. Brezis' estimates apply to variants of (1) α^{\prime} (3) α to give L^{2} based results like (4) which do not use the homogeneity of" the right-hand sides. see [3, [G, 200]. other regulariźing effects däe to be found in [5]; [16] \% [26].

Section 1
Let || || be a semi norm on the vector space X and $B: D(B) \subseteq X \rightarrow X$ be an operator in X which is homogeneous of degree $\bar{\alpha}>0$. That is

$$
\begin{equation*}
B(r x)=x^{\alpha} B(\alpha) \text { for } r \geq 0 \text { and } x \in D(B) \tag{H}
\end{equation*}
$$

where it is understood in (if) that $x D(B) \subseteq D(B)$ for $x \geq 0$. we are interested in the evolution problem.
(E)

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=B(u) \\
u(0)=\dot{x}
\end{array}\right.
$$

but rather than deal with (E) directly we shall work here only with its solutions. These solutions are assümed to be presented to us by some theory or construction in the form $u(t)=S(t) x$ where each $S(t), t \geq 0$, is a mapping $S(t): c \rightarrow x$ and c is subset of x. The property (y) of B is taken to be reflected in S by the identities
(HS)

$$
\lambda^{\frac{1}{\alpha-1}} S(\lambda t) \bar{x}=S(t) \cdot\left(\lambda^{\frac{1}{\alpha-1}} x\right) \text { for } t, \lambda \geq 0 \text { and: } x, c
$$

This is arrived at in the following way: If $u(t)$ is a classical solution of (E) and (1) holds and $\lambda>0$, then $v(t)=\lambda^{\frac{1}{\alpha-1}} u(\lambda t)$ satisfies $\frac{d v}{d t}(t)=\lambda^{\frac{1}{\alpha-1}} \lambda u^{\prime}(\lambda t)=\lambda^{\frac{\alpha}{\alpha-1}} B(u(\lambda t))=$ $B\left(\lambda^{\frac{1}{(-1}} u(\lambda t)\right) \doteq B(\bar{v}(t))$ so that v is again a classical solution of (E) and-further satisfles $v(0)=\lambda^{\frac{1}{\alpha-1}} u(0)$: The corresponding property of the notion of solution of (E) ,rovided by S is what is requested by, (HS). It is understood in (HS) that rcac for $r \geq 0$. The other major requirement we place upon, s is the bipschitz condition

$$
\begin{equation*}
\|s(t) x-s(t) \hat{x}\| \leq L\|x-\hat{x}\| \text { for } t \geq 0 ; x, \hat{x} \& c \tag{L}
\end{equation*}
$$

where || || is the norm- in \bar{x}.

Theorem 1: Let $C \leq X$ and $S(t): C \rightarrow X$ for $t \geq 0$ and satisfy (HS) with $\alpha>0, \alpha \neq 1$, (D) and $S(t) 0 \equiv 0$. Then for $x \subseteq C$ and $t, h>0$,
(6)

$$
\left\{\begin{array}{l}
\|s(t+h) x-s(t) x\| \leq 2 L\|x\| \left\lvert\, 1-\left(1+\frac{h}{t}\right)^{\frac{1}{1-\alpha}}\right. \\
\text { and, in particular, } \\
\lim _{h \neq 0} \frac{\|s(t+h) x-s(t) x\|}{h} \leq\left(\frac{2 L\|x\|}{|\alpha-1|}\right) \frac{1}{t}
\end{array}\right.
$$

Proof. We use (HS) with

$$
\begin{equation*}
\lambda=\left(1+\frac{h}{t}\right) \tag{7}
\end{equation*}
$$

to compute
(8)

$$
\begin{aligned}
s(t+h) x-s(t) x & =s(\lambda t) x-s(t) x=\lambda^{\frac{1}{1-\alpha}} s(t)\left(\lambda^{\frac{1}{\alpha-1}} x\right)-s(t) x \\
& =\lambda^{\frac{1}{1-\alpha}}\left(s(t)\left(\lambda^{\frac{1}{\alpha-1}} x\right)-s(t) x\right)+\left(\lambda^{\frac{1}{1-\alpha}}-1\right) s(t) x
\end{aligned}
$$

Now (8), (L) and $S(t) 0 \equiv 0$ imply

$$
\begin{aligned}
\|S(t+h) x-s(t) x\| & \leq \lambda^{\frac{1}{1-\alpha}} L\left|\lambda^{\frac{1}{\alpha-1}}-1\right|\|x\|+\left\lvert\, \lambda^{\left.\frac{1}{1-\alpha}-1 \right\rvert\, L\|x\|}\right. \\
& =2 \hat{L}\|x\| L\left|1-\lambda^{\frac{1}{1-\alpha}}\right|
\end{aligned}
$$

The estimates (6) follow from this and (7).
For the next result we assume that x is equipped with a relation \geq under which it is an ordered vector space and that $S(t)$ respects this order.

Theorem 2: Let X be an ordered vector space with the order relation denoted by 2 . Let $S(t)$ satisfy
(0)

$$
s(t) x \geq S(t) y \text { if }-\bar{x}, y \in C \text { and } x \geq y,
$$

sand satisfy (HS), with $\alpha>0, \alpha \neq 1$. If $\dot{x} \in C, x \geq 0$ and $t, h>0$ then

$$
\begin{equation*}
(\alpha-1)(S(t+h) x-S(t) x) \geqslant(\alpha-1)\left(\left(1+\frac{h}{t}\right)^{\frac{1}{1-\alpha}}-1\right) S(t) x \tag{9}
\end{equation*}
$$

Proof. There are two cases. If $\alpha>1$, we return to (8) and observe that $:=\left(1+\frac{h}{t}\right)$, and $\lambda^{\frac{1}{\alpha-1}} \geqslant 1$. Thus $\lambda^{\frac{1}{\alpha-1}} x \geq x$ and so $\lambda^{\frac{-1}{\alpha-1}}\left(s(t) \cdot\left(\lambda^{\frac{1}{\alpha-1}} x\right)-s(t) x\right) \geq 0$ by (0). The
inequality (9) is obtained by dropping this nonnegative term from the right hand sade of (8) and multiplying by $\alpha-1>0$. The parallel reasoning if $0<\alpha<1$ shows that the term just dropped is now nonpositive, so we have the opposite inequality than above roming Erom (8), which becomes (9) again upon multiplication by $\alpha-1<0$.

In applications of Theorem 2 there is sometimes a nonnegative linear functional $A: \bar{X} \rightarrow \mathbb{R}$ which is preserved by $S(t)$, i.e.

$$
\begin{equation*}
\Lambda S(t) x=\Delta x \quad \text { for } \quad t \geq 0, x \in C, x \geq 0 \tag{10}
\end{equation*}
$$

and x is a lattice. The notation $\dot{x}^{+}=\sup \{x, 0\}, x^{-}=-\inf \{x, 0\}$ will be used.
Corollary 3. In addition to the conditions of Theorem 2 assume that X is a vector latace, A is a nonnegative linear functional on x and (10) holàs: Let $x \in C, x \geq 0$ and. $u(t)=s(t) x$. The following estimate is valid for $t, h \cdots, \overline{0}$ and $v \in\{+,=-\bar{f}$:

$$
\begin{equation*}
\Lambda\left((u(t+h)-u(t))^{v}\right) \leq\left|x-\left(1+\frac{h}{t}\right)^{\frac{2}{1-\alpha}}\right| \Lambda x \tag{11}
\end{equation*}
$$

Proof. From (10) we have

$$
\begin{equation*}
\Lambda\left((u(t+h)=u(t))^{+}=\Lambda\left((u(t+h)=u(t))^{\dot{+}}\right)=\Lambda u(t+h)-\Lambda u(t)=0 .\right. \tag{12}
\end{equation*}
$$

From (9) and $S(t) x \geq 0$ we also hâve

$$
\left\{\begin{array}{l}
(u(t+h)=u(t))^{-1} \leq\left(1-\left(i+\frac{h}{t}\right)^{1-\alpha}\right) s(t) x \text { if } \alpha>\dot{i} \tag{13}\\
(u(t+h)-u(t))^{+} \leq\left(\left(1+\frac{h}{t}\right) \frac{1}{1-\alpha}-1\right) s^{\top}(t) x \quad \text { if } 0<\alpha<1
\end{array}\right.
$$

Applying Λ to the ineçualities (i3) and using (12) implies (11).
Remarks: If A is às above and if (10) holds, then (0) is essentiaily equivalent to the property
(-14)

$$
\Lambda\left((\dot{s}(t)-\dot{x}(t)-y)^{+}\right)^{\prime} \leq \Lambda(\bar{x}-y)^{+}
$$

See $[14 \hat{4}]$. Hence (ī) represents a slight refinement of $\{\overline{5})$ with $\|x\|=\pi x^{+}$. Also the proof shows (11) is valid. for $\alpha>$ if (10) is weakened to $\Lambda S(t) x \leq \tilde{A} x$.

We curn now to the "forced" problem
(EE)

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=B(u)+f(t) \\
u(0)=x
\end{array}\right.
$$

where $f:[0, T] \rightarrow x$ for some $m>0$. Again, it is most efficient to assume that solutions of (FE) are presented to us in the form $u(t)=S(t, x, f)$ and lay our conditions nirectly upon S. Computing the equation satisfiec by $v(t)=\lambda^{\frac{1}{\alpha-1}} u(\lambda t)$ if u is a classacal solution of (FE , and B is homogeneous of degree a leads to

$$
\begin{equation*}
v^{\prime}(t)=3(v(t))+\lambda^{\frac{\alpha}{1-\alpha}} f(\lambda t) \tag{15}
\end{equation*}
$$

In oxaer to minumize bookeepang problems we will assume simply that x is a Banach suace and $c \subseteq x \times \sum_{\text {loc }}^{1}(0, \infty: x)$ is given together with

$$
s:(0, \infty) \times c \times x
$$

such that $u(t)=S(t, x, f)$ is the solution of (EE) of interest for ($x, E)$. C. We let (16)

$$
f_{\lambda}(t)=f(\lambda, t)
$$

and assume $(x, E) \in C \Rightarrow\left(x, \lambda^{\frac{\alpha}{1-\alpha}} f_{\lambda}\right) \subset C$ Eox $\lambda \geq 0$. The equation (15) satisfled by $\lambda^{\frac{1}{1-\alpha}} \underline{u}(\lambda t)$ is to be reflected in S by
$\left(E H_{S}\right)$

$$
\frac{1}{\lambda^{\alpha-1}} s(\lambda, x, E)=s\left(t, \lambda^{\frac{1}{\alpha-1}} x, \lambda^{\frac{\alpha}{\alpha-1}} E_{\lambda}\right)
$$

Motavated by known existence theories (see Section 2) the Lipschitz condition (L) is generalized to
(FL)

$$
\|S(t, x, f)-S(t, \hat{x}, \hat{\varepsilon})\| \leq L\left(\|x-\hat{x}\|+\int_{0}^{t}\|f(\tau)-\hat{E}(\tau)\| d \tau\right)
$$

$\hat{\hat{y}} \quad$ when the axuments lie in the domain of (S).
Theorem 4: Let S satisfy $\left(\mathrm{FH}_{\mathrm{S}}\right),(\mathrm{FL})$ and $\mathrm{S}(\mathrm{t}, 0,0) \equiv 0$. If $t, h>0,(\pi, \varepsilon) \in \mathcal{C}$. $\alpha>0, \alpha \neq 1$ and $u(t)=s(t, x, t) ; \quad$ then
(17)

$$
\begin{aligned}
& \|u(t+h)-u(t)\| \leq L\left(\left.\| 1-\left(1+\frac{h}{t}\right)^{\frac{1}{1-\alpha}} \right\rvert\,\left(2\|x\|+\int_{0}^{t}\|f(\tau)\| a \tau\right)\right. \\
& \left.\quad+\left\|\left.\left(1+\frac{h}{t}\right)-\left(1+\frac{h}{t}\right)^{\frac{1}{1-\alpha}} \right\rvert\, \int_{0}^{t}\right\| f\left(\tau+\frac{h}{t} \tau\right)\left\|d \tau+\left(1+\frac{h}{t}\right)^{\frac{1}{1-\alpha}} \int_{0}^{t}\right\| f\left(\tau+\frac{h}{t} \tau\right)-f(\tau) \| d \tau\right) .
\end{aligned}
$$

In particular, if

$$
\begin{equation*}
v(t, \varepsilon)=\underset{\xi+0}{\lim \sup } \int_{0}^{t} \frac{\|f(\tau+\xi \tau)-f(\tau)\|}{\xi} d \xi \tag{18}
\end{equation*}
$$

then

$$
\begin{equation*}
\lim _{h \neq 0} \frac{\|u(t+h)-u(t)\|}{h} \leq \frac{L}{t} \cdot\left(\frac{2\|x\|+(1+\alpha) \int_{0}^{t}\|f(\tau)\| d \tau}{|\alpha-1|}+v(t, f)\right) \tag{19}
\end{equation*}
$$

and u is Lipschitz continuous on each compact subset of $(0, T]$ if $V(T, F)<\infty$.
proof: Of course the argument is just as before. The relation (FH_{S}) yields, with $\lambda=\left(1+\frac{h}{t}\right)$,

$$
\begin{align*}
& u(t+h)=u(t)=s(\lambda t, x, f)-s(t, x, f) \tag{20}\\
& \quad=\lambda^{\frac{1}{1-\alpha}}\left[\left(s\left(t, \lambda^{\frac{1}{\alpha-1}} x, \lambda^{\frac{\alpha}{\dot{\alpha}-1}} f_{\lambda}\right)-s(t, x, f,)\right)+\left(s\left(t, x, f_{\lambda}\right)-s(t, x, f)\right)\right] \\
& \quad+\left(\lambda^{\frac{1}{1-\alpha}}-1\right) S(t, x ; f)
\end{align*}
$$

Using (Lif) in conjunction with (20) proves (17) and (19) follows by taking the indicated limit.

Remark 5. İ \mathfrak{f}^{-}is ábsolutely continuous and differentiable aimost eveřywhere on each compact subset of ($0 ; T$), then

$$
\begin{equation*}
v(t, f)=\int_{0}^{t} \tau\left\|f^{\prime}(\tau)\right\| d \tau \tag{21}
\end{equation*}
$$

In general $V(T, F)<\infty$ is equivalent to $t+t \dot{f}(t)$ being of (essentialiy) finite variation , on $[0, T]$.

Remark 6. It is quite interesting that Theorem 2 has a forced analogue. If $S(E, x, 5)$ is nondecreasing in x and f (where $f \geq g$ means $f(t) \geq g(t)$ a.e.) and $t \rightarrow(x-1)\left(t^{\frac{a}{\alpha-1}} \leq(t)\right)$ Is nondecreasing in t, then (20) implies (9) with $u(t)=s(t, x, f)$ in place of $s(t) x$.

The final abstract case we consider is (E) perturbed by a Lipschitz continuous function $p: D(p) \subseteq X \rightarrow X$. That is
(PE)

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=\tilde{B}(u)+p(u) \\
u(0)=x
\end{array}\right.
$$

where p satisfies

$$
\begin{equation*}
\|p(x)-\dot{p}(y)\| \leq M\|x-y\| \text { for } x, y \in \dot{D}(p) \tag{22}
\end{equation*}
$$

and some $M \geq 0$. We regard ($P=$) as a special case of (FE) in the sense that we assume solutions $S(t, x, f)$ of (FE) are known and understand a solution u of (PE) to be function u with values in $D(p)$ such that $(x, p(u)) \cdot \epsilon C$ and $u(t)=S(t, x, p(u))$. The results will be a modulus of continuity of any solution u of (PE).

Theorem 7. Let S satisfy the assumptions of Theorem 4 with $\underline{\alpha}>0, \alpha \neq 1$. Let $\underline{p}: D(p) \subseteq x \rightarrow X$ satisfy (22), $u \in C((0, \infty) \vdots D(p)),(x, p(u)) \in C$ and $u=S(t, x, p(u)$). Then for each $T>0$

$$
\begin{aligned}
& \sup _{0 \leq t \leq T} \frac{t}{h}\|u(t+h)-u(t)\| \leq c(\tilde{T}, \alpha,\|x\|, L, \hat{M}) \\
& 0 \leq h \leq t
\end{aligned}
$$

where the right hand side above depenas only on the indicated quantities. In particular, u is Lipschitz continuous on compact subsets of $(0, T]$ for each $T>0$.
proof. The Lipschitz condition (22) implies

$$
\begin{equation*}
\sim \quad\|p(\vec{u}(t))\| \leq+N\|u(t)\| \tag{23}
\end{equation*}
$$

for some à. Ùsing (23), (LF) and $s^{\prime}(t, 0,0) \equiv 0$ one deduces that

$$
\begin{aligned}
\|u(t)\| & =\|s(t, x, p(L))-s(t, 0,0)\| \\
& \leq L\left(\|x\|+a t+n \int_{0}^{t}\|u(\tau)\| d \tau\right)
\end{aligned}
$$

frem which flows the estimate

$$
\begin{equation*}
\|u(t)\| \leq L(\|x\|+a T) e^{L M T^{2}} \text { for } 0 \leq t \leq T . \tag{24}
\end{equation*}
$$

Next we use (17), with $f(t)=p(u(t)$) and the estimates (23), (24) to conclude that for $\dot{T}>0$ and $0 \leq t \leq t+h \leq T$ there is a constant $\dot{C} \doteq C(T, a,\|x\|, L, M)$ for which

$$
\begin{align*}
\frac{t}{h}\|u(t+h)-u(t)\| \leq & c\left[\left.\frac{t}{h}\left|1-\left(i+\frac{h}{t}\right)^{\frac{1}{1-\alpha}}\right|+\frac{t}{h} \right\rvert\,\left(1+\frac{h}{t}\right)-\left(1+\frac{h}{t}\right)^{\frac{1}{1-\alpha}}\right. \tag{25}\\
& +\frac{t}{h}\left(1+\frac{h}{t}\right)^{1-\alpha} \int_{0}^{t} u \| u\left(\tau+\frac{h}{t}(\tau)-u(\tau) \| c \tau\right]
\end{align*}
$$

Set $\xi=h / t$ above and
(26)

$$
g(t, \xi)=\frac{\|u(t(1+\xi))-\dot{u}(t)\|}{\xi} .
$$

Then (25) implies
(27)

$$
\left.\dot{g}(t, \xi) \leq c i 1+\int_{0}^{t} g(\tau, \xi) d \tau\right]
$$

for some new constant c and $0 \leq t \leq T /(i+\beta) \quad 0 \leq \xi \leq B \leq 1$, where B is chosen in (0,1]. The estimate (27) gives a néw estimate

$$
\begin{equation*}
g(t, \xi) \leq \hat{C} \text { for } 0 \leq t \leq T /(1+B), 0 \leq \xi \leq B \leq \mathbb{F} \tag{28}
\end{equation*}
$$

where \hat{C} is yet another̈ constant, whôse precise structure we leave to the reader, but dejencis only on ailowed quantitieṣ. T being arbitrary the proóf is complete.

Section 2. Examples and Applications

We began by reviewing sne abstract theory for (E) which guarantees that (FHS) and (FL) hold whenever B satisfies (ii) and one additional condation. The ticory onvompasses the three classes of examples (1) $\alpha^{\prime}{ }^{(2)} \alpha^{\prime}{ }^{(3)} \alpha_{\alpha}$ and generalizations of them as well as the equation
${ }^{(26)} \alpha$

$$
\frac{\partial u}{\partial t}=\sum_{i=1}^{N}\left|\frac{\partial u}{\partial x_{i}}\right|^{\alpha-1} \frac{\partial u}{\partial x_{i}} \quad t>0, x \in \mathbb{R}^{N}
$$

and a host of other possibilities.
Following this we discuss briefly the two classes of examples (1) α^{\prime} (2) α in their simplest setting to make varıous puints and orient the reacien. We make no attempt to write down the new results which obvicusly flow from the estimates of Section 2 even as applied to the txamples mentioned here.

Given a Banach space X and $B: \dot{D}(B) \subseteq X+X, T>0$, and $E \in L^{1}(0, T \cdot X)$ we call $u \in \dot{C}([0, T]: X) \quad a$ mild solution of
(EF) ${ }^{\prime \prime}$

$$
u!=B(u)+f
$$

on $\{0, T]$ provided for every $\varepsilon>0$ ve can find a partition $\left\{0=t_{0}<t_{1}<\cdots<t_{n}\right\}$ of $\left\{0, t_{n}\right\}^{\prime}$ and finite sequences $\left\{x_{i}\right\}^{n}{ }_{i=0},\left\{f_{i}\right\}_{i=1}^{n}$ in x such that
(27)

$$
\begin{cases}\text { (i) } \frac{x_{i+1}-x_{i}}{t_{i+1}-t_{i}}=B\left(x_{i+1}\right)=f_{i+1}, & i=0,1, \ldots, n-1 \\ \text { (ii) } t_{i+1}-t_{i}<\varepsilon & i=1, \ldots, n-1 \\ \text { (iii) } 0 \leq T=t_{n}<\varepsilon \\ \text { (iv) } \sum_{i=1}^{n-1} t_{i+1}^{t_{i}}\left\|\varepsilon_{i}-f(s)\right\| d s<\varepsilon,\end{cases}
$$

and
(28)

$$
\left\|u_{\varepsilon}(t)=u(t)\right\| \leq \varepsilon \text { on }\left[0, t_{n}\right)
$$

where

$$
u_{\varepsilon}(t)=x_{i} \text { for } t_{i} \leq t<t_{i+1}, i=1 ; \ldots, n-1
$$

A function ${ }^{\prime} \varepsilon^{\prime}$, piecewise constant as in (2g), is called an ε-approximate solution of (EF)' when the various conditions of (27) are satisfied. Roughly, (27) defines a simple implicit. Euler approximation of (EF)' and we are defining solutions of (EF)' to be the uniform limits of solutions of these difference approximations. We have:
pxoposition 8. Let B be homogeneous of degree $\alpha>0, \alpha \neq 1$. Let $T>0, \lambda>0$ and $\mathrm{f} \in \mathrm{L}^{\frac{1}{1}}(0, T \mathrm{~T}: \mathrm{X})$. If $\left.u \in \mathrm{C}(0, T]: X\right)$ is a mild solution of $(\dot{E F})$, then $\dot{v}(\mathrm{t}) \equiv \lambda^{\frac{1}{\alpha-1}} u(\lambda t)$ is a mild solution of $(E F)$ on $[0, T / \lambda]$ with f replaced by $\lambda^{\alpha / \alpha-1} f(\lambda t)$.

The proof is left to the reader. If \bar{B} is also dissipative (equivalently, - B is accretive $=$ see, e.g., $[3],[11],[16]$) one has:

Proposition 9. Let B be dissipative' Let $\dot{x} \in \operatorname{closure}\left(D(B), T>0\right.$ and $\dot{f} \in L^{1}(0, T: X)$ é If for each $\varepsilon>0$ there is an ε-approximate solution ${ }_{c} \varepsilon$ of (EF)' satisfying $\left\|u_{\varepsilon}(0)=\bar{x}\right\|<\varepsilon$ then (EF) , has a mild solution u on $\{0, T]$. Moreover, if $f, \hat{f} \in L^{\prime}(0, T: X)$ and u, \hat{u} äre mild solutions of $u^{\prime}=\hat{B}(\hat{u})^{\prime}+\dot{f}, \hat{u^{\prime}}=\hat{B}(\hat{u})=+\hat{f} \quad$ respectively, then

$$
\|u(t)=\hat{u}(t)\| \leq\|u(0)-\hat{u}(0)\|+\int_{0}^{t}\|\tilde{f}(s)-\hat{\mathbf{f}}(s)\| d s
$$

for $0 \leq t \leq T$.
This is proved in [l3], although the definition of "mild"solution" is not given there. See also [i8].
 mild solution of (EF) and, \dot{B} Ls dissipative and homogeneous of degree a defines an operator
 (HS) and (L) with, Lich

 the existence of mild solutions. voreover, éach operator s so obtainedis ordex preserving
with respect to the natural order on L^{1}. This provides one precise sense in which these problems fall under the sçope of this paper: (One may, of course, treat these problems by any other suitable method which provides the information (FHS) and (FL), etc.) Some references are: (i) [6] which shows how to make precise the m-dissipative operator in $L^{2}\left(\mathbb{R}^{N}\right)$ assocsated with equations $u_{t}=\Delta \varphi\left(u^{\prime}\right)$ for more general nonlinearities than in (i) α and in any number of dimensions N, (ii) [4] and [9] which contain results defining m-dissipative operators associated with initial-boundary value problems for $u_{t}=\Delta \varphi(u)$, (iii) [2], [23] which contain results defining, m-dissipative operatcoss in L^{p} spaces, $i \leq p \leq \infty$, ássociated with variants of (3) α (which must be modified for the pure initial value problem), (iv): [10], [4] which establish m-dissipative operators for generalizations of (2) α : The equation (26) α^{\prime} $1<\alpha \leq 2$, correspondŝ tò an m-dissipative opèrator in the space of uniformily continuous

of course, there is a huge interature concerning other approfaches and results for these probiems. We continue in this section by choosing (1) ${ }_{\alpha}$ and (2) for further discussion to illustrate the significance of the results of Section 1 in applications and something of the relationship with known results.

The problem (i) for $\alpha=i$ is the initial-value for the linear heat equation which is solved by
(30)

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} \frac{\frac{-|x-y|^{2}}{e^{2}} 4 t}{u_{0}}(y) d y
$$

If \dot{x} is añy one of the Banach spaces $\mathbb{L}^{p}(\mathbb{R}), 1 \leq p<\infty ;$ of $B U(\mathbb{R})$ (the bounded uniformly coṇtinuous functions on $\vec{R})$ equapped with the usual norm and $u_{0} \bar{\epsilon} X$, then $t \rightarrow u(\cdot ; t)$ with u gịven by (30) is ä continuous curve in x for $t>0$. Moreover $u(t)=u(\cdot, t)-u_{0}$

where differentiattioñ iṣ in the șeñe of distributions: Then it is very wellijnown that 3
 examination of (30) shows that if $u_{0} \in \mathbb{X}$, than $u(t)$ is differentiabile, $u(t) \in D(B)$ and
$u^{\prime}(t)=B u(t)$ for $t>0$. Moreover

$$
\begin{equation*}
\left\|\frac{d u}{d t}(t)\right\|=\|B u(t)\| \leq \frac{c}{t}\|u(0)\| \text { for } t>0 . \tag{32}
\end{equation*}
$$

Thus one has very explicit regularizing here, most convincingly illustrated by the formula (30). The estimate (32) implies that $S(t)$ is an analytic semigroup in X (see, e.g., [17], (291): We note that while (32) has much the same character as the estimate (6) of Theorem 1 , Theorem 1 does not apply here for $\alpha=1$.

If $\alpha>\dot{0}$ and $\alpha \neq 1$, we do not know a formula for the solution of (1). Hõwever, the operato $\ddot{r} B_{\alpha}$ in $X=L^{1}(\mathbb{R})$ given by

$$
\begin{equation*}
\left.f^{(} D\left(B_{\alpha}\right)=\left\{v \in L^{1}(\mathbb{R})^{\prime}:|v|^{\alpha-1} v \in L^{1} 10 c^{1}(\mathbb{R}) \text { ând }\left.| | v\right|^{\alpha-1} v\right)^{\prime \prime} \in \mathbb{L}^{1}(\mathbb{R})\right\} \tag{33}
\end{equation*}
$$

$$
\left(B_{\alpha} v \equiv\left(|v|^{\alpha-1} v\right)^{\prime \prime} \text { for } v \in D\left(B_{\alpha}\right)\right.
$$

is m-accretive in $L^{\prime}(\mathbb{R}):\left([\overline{6})\right.$: Thé mild solutions provided by this B_{α} are uniquely charaçterized.ás solutions of (1) in the ṣensè of distributions (see [8]). Thus for $\alpha>0$, $\alpha \neq 1$ Theorems 1 and 2 apply with these choices and we conclude that the solution u of (1) α satisfies

$$
\begin{equation*}
\underset{h+0}{-1 \text { im } u p} \int_{\mathbb{R}} \frac{|u(x, t+h): u(x, t)|}{h} d x \leq \frac{1}{t} \frac{2}{|\alpha-1|} \int_{\mathbb{R}}\left|u_{0}(x)\right| d x \tag{34}
\end{equation*}
$$

and. also

$$
\begin{equation*}
\frac{\partial u}{\partial t} \geqslant-\frac{1}{(\alpha-1) t} u \tag{35}
\end{equation*}
$$

 of explicit examplés. Seé, e:g. [2́4]. The relation (35) follows from theorem 2 applied to this exam, le by dividing: (9) by h añ letting $h \neq 0$. (The limit of $(u(t+h, x)-u(t, x)) / h$ is taken in the sénse of distributions.) The curve $t \rightarrow u(t)$ in $L^{\prime}(\mathbb{R})$ solving (1) α thứ hàs à"speed" bounded in the form \dot{c} / t for $t>0$, as was true in the linear case, but wé cannot so eásily assert here the existence of the velocity lim $h^{\text {in }}(u(t+h)-u(t))$ = $u^{\prime}(t)$

desirable properties hold true - see [1]. The current proof of this is a long story beginning with (35). (Ongoing work of various investigators indicates that the results of [1] extend to u_{0} not necessarily of fixed sign and to more general nonlinearities.) However, it is known that if $S(t)$ is constructed from an (abstract) m-dissipative B as explained above, then $\lim _{h 10}\|s(t+h) x=S(t)\| / h \leq M<\infty$ exactiy when there is a sequence $\left\{x_{n}\right\} \subset D(B)$ with $x_{n} \rightarrow S(t) x$ and. lim sup $\left\|B x_{n}\right\| \leq M$. (See, e.g., [12], [14]). Thus (34) itself and the explicit nature (33) of $\mathbb{B}_{\alpha}^{n^{+\infty}}$ imply that $\left(|u(t)|^{\alpha-1} u(t)\right) "$ is a measure on \mathbb{R} of variation at most $2 / t|\alpha-1|$:

With respect to other literature about (1) ${ }_{\alpha}$ and variants, we mention in particular that the L^{1}-non expansiveness is noted in [27], that [3], [22], [24] are of interest and the references listed therein provide access to the large literature, that the estimate (34) is not new if $u_{0} \geq 0$ (see [1]), and that the result of our paper applied to (1) ${ }_{\alpha}$ and generalizations of it with u_{0} not of fixed sign and the equation either perturbed or forced seem to be new.

The distinction between finite speed, and possessing a velocity 15 clearly illustrated by the class of problems (2) ${ }_{\alpha}$. The linear problem $\alpha=1$ is explicitly solved by $u(x, t)=u_{0}(x+t)$. If $u_{0} \in \bar{x}$ and x is one of the spaces $L p(R), 1 \leq p<\infty$ or $B U(R)$, then $\dot{u}^{\prime}(t)=u_{0}(-+t)$ is a continuous curve in X. The velocity $u^{\prime \prime}(t)$ exists at some t
 $\lim h^{-1}\|u(t+h)=u(t)\|$ is independent of t and is finite if and only if h 0
(36)

$$
\left\{\begin{array}{l}
\text { (i) } u_{0} \in D(B) \text { when } X=L^{p}(\mathbb{R}), 1<p<\infty \\
\text { (iii) } u_{0} \text { is Lipschitz continuous when } X \dot{B} U(\mathbb{R}, \\
u_{0} \text { iş of essentially bounded variation on } \mathbb{R} \\
\text { when } X=\mathbb{L}^{1}(\mathbb{R})
\end{array}\right.
$$

Moreover, the speed is $\left\|B u_{0}\right\|=\left\|u_{0}\right\| \|$ in case (i), the least Lipschitz constant in case (ii) and the variation of u_{0} in case (iii). There is no regularizing in this example.

The differentiability and speed of u are independent of t. An estimate on the speed does imply some regularity in x as described above, but it does not imply $u(t) \in D(B)$.

The nonlinear problems (2) $\alpha^{\prime} \alpha \neq 1$, corresponds to the m-dissipative operators
(37)

$$
\left\{\begin{array}{l}
D\left(B_{\alpha}\right)=\left\{v \in L^{\infty}(\text { II }):\left(|v|^{\alpha-i} v\right)^{\prime} \in \mathbb{L}^{\perp}(\mathbb{R})\right\} \\
B_{\alpha} v=\left(|v|^{\alpha-1} v\right)^{\prime}
\end{array}\right.
$$

in $L^{1}(\underline{R})$ and the operators S_{α} to which they give rise respect the order of $L^{j}(\mathbb{R}) \quad$ ([10), [4]). It is not true here that solutions of $\left.{ }^{(1)}\right)_{\alpha}$ in the sense of distributions are unique and extra conditions must be laid upon solutions - só called entropy conditions. See [20], [21], [28], which further explain other approaches to (1) α : The entropy solutions of (1) α are given by s_{α} ([10]). Simple analyses by the method of characteristics shows that even if u_{0} is smooth and compactly supported, the solution of (2) must become discontinuous as t increases - i.e. "shocks form", This is reflected in the S_{α} and in general $S_{\alpha}(t) u_{0} \nmid D\left(B_{\alpha}\right)$ largé t and $u_{0} \neq 0$. Here we háve "regularizing! in that Theorem 1 estimates the speed of a solution $\bar{u}(t)$ in the form c/t and additional considerations explained above then estimate the variation in x of $|u(t)|^{\alpha} \operatorname{sign} \dot{u}(t)$ by the same quantity, but we also have "roughing." in that $u^{\prime}(t)$ need not bésmoth in \bar{x} (or even fice in $D\left(B_{\alpha}\right)$) even if u_{0} is smooth:

Estimates on the variation of solutions of $\quad \partial u / \partial t+\partial \dot{f}(\bar{u}) / \partial \dot{x}=0$ which decay like c / t are classical for convex functions f([2ll). Our estimates, for, e.g., $\partial u / \partial t+\partial u^{5} / \partial x=0$ are perhaps new, as are the pointwise estimates (35) for nonnegative solutions and the estiMides for the perturbed and forçed equatiońs. See alsó $\{15\}$: Concerniñ jeréralizations of (26) ${ }_{\alpha}$ see [19].

A fināl point of interest hexe is that Theorem lididnot capture the regularizing present in the linear heat eqquation (1) ${ }_{i}$ and, indeed; it could not for Theorem 1 uses only, properties shared by (2) for which there, is no regularizing.

REFERENCES

[1] Aronsori, D. G. and. Ph. Bénilan, Régularité dès solutions de l'équation des milieux poreux dans \mathbb{R}^{N}, ć. R. Aćad. Sċi. Paris Ser. A-B 288 (1979) 103-105.
[2] Attouch, H. and A. Damlamian, Application des methodes de coñexite et monotonie à l'etude de certaines equations quasi-lineaires, Proc. Royal Soc. Edińburgh, to appear.
[3] Barbu, V., Nonlinear Semigroups and Differential Equatións in Banach Spacès, Norahoff International publishing co'., Leyden (1976).
[4] Bénilan, Ph., Équations d'évolution dans un espace de Banach quelcónque et applicatiōns, thesis. orsay 1972.
[5]. Bénjlan, ph., operrateurs açcrétifs et semi-groupés dans lés éspaces $\mathrm{L}^{\mathrm{p}}(1 \leq \mathrm{p} \leq \infty)$, France-Japañ Seminäri, Tokyo, 1976.

[7] Brezis, H., ópérateurs maximäux monotones et semi-groupes dé contráctions dans les espace de Hilbert, Amisterdam, North-holland, 1977.
[8] Brezis, H. ànd M. G. Crandail, Uniqueness of solutions of the initial-value problem for $u_{t} \doteqdot \Delta \varphi(u)=0$ j. Math. Pures et Appl: 58. (1979) 153-163.
 25 (1973), 15-26.
[10] Crandaly, M: G': The semigroup approach to first order quasilinear equations in several space variabiès, Istael j: Máth. $1 \ddot{2},(1972), 108 \div 132$.
[11] Crandali, M: G., An introduction to evolution governed by accretive operators, Dynamical
 New Yoork, $1976,131 \approx 165$.
[12]. Crandall, M, G., A. generálized domain for semigroup generatoros, proç. Arier̃. Math. Soc: $37,(1973), 434 \div 440$
[13] Crandalí; Ms, G: and Le C. Évans, On the relation of the operator $\partial / \partial s+\partial / a \tau$ to

[14] crandal1, M. G. and L. Taxtar, Some relations between nonexpansive and order preserving -mappingsi Proc. Amer. Math. Soc. (to àppear).
[15] Dafèmos, C., Asymptotic behaviour of solutions of hyperbolic balance laws, in Bifurcátion Phenomena in Mathematical Physics, C. Bardós ànd D. Bessis eds., D. Riedel Publishing Co. (to áppear).
[16] Evañs, L. C., Application of nönlinear semiğoup theory to certain partial diferential equations, Nonlinear Evolution Equations, M. G. Crandall; ed., Academic press, New York, 1978.
[17] Eriedman, À, ? ? artial, Differentiă Equationsi Holt, Rhinehart ańd Winston, Inc., Chlcago, 1969.
[18] Kobayashi, Y; Differenče approximation of cäuchy problems for quasi-dissıpatıve operators and genereation of nónlinear semigroups, J. Math. Sóc : Jàpan 27 (1975); 640-665.
[19] Kružkov, S. N., Generálized solutions of fiřst order noñlinear equàtions in several independent variāblés, I. Mat. Ș. 70 . (i12) , (196́6), 394-415, II. Mat. Sb. (N.Si) 72 (114): 1967, 108~134.
[20] Kružkơv, S : $N:, ~ F i r ̧ s t ~ o r d e r ~ q u a ̀ s i l i n e a ̀ r ~ e ́ q u a t i o n s ~ w i ́ t h ~ s e v e r a l ~ s p a c e ~ v a r i a b l e s, ~ M a t h . ~$ USSR Sb. $10(1970), 217-243$.

[22] Lionṣ, J. L., Quélgués Méthódes de Résolution dés problèmes ąux Linites Non Linéairies, Dưnö; Gauthier-villars; Paris. 1969.

[25] Tamburro, M. B:, The evolution operatör approch to the Hámilton-Jacobi equation; Israel Ј. Matho 26 (19\%7), 232-264.

(28) Vol'pert, A. I., The spaces BV .and quasilinear equations, Math. USSR Sb., 2 (1967), 225-267.
$[29]$ Yos2da, K., Functional Analysis, Fifth Edition, Grundlehren der mathematischen Wissenschaften 123, Springer-Verlag, New York 1978.
:
$-18=$

MRC-MSR-I

16: DISTRABUTIONSTATEMENT (OI thferRoport)
Approved for public release; distribution uni limited.
17. DISTRIBUTIGN STATEMENT (of the abstract ontorad In Block 20, If different from Report)
18. SUPPLEMENTARY NOTES
19. KEY, WORDS (Continuo on reverse side if necessary. and ldontliy: by block numbers)

Nonlinear evolution, homogeneous nonnineäryty, accretive operator, regularizing effect.
20. ABSTRACT (ContInue on reverse soldo. If necogeary end Idontlyy by block number):

It is well -known that solving the initial value problem for the heat equation forward in time takes a "rough" initial temperature into a temperature which is smooth at later times $t>0$. one aspect of this is the validity of certain estmates on tu when u is a solution of the heat equation. In this paper we prove related estimates on nónifneă evolution equations which are governed by homogeneous nonlinearities. The results apply to classes of nonlinear diffusion equations and to conservation laws. The results are interesting from the point (continued)

ABSTRACT (continued)
of view of identifying a new "regularization" mechanism and the estimates thems lve = cast new light on the nature of the solutions of some initial-value problems with rough initial data.

[^0]: Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and WAG $29=80-\mathrm{C}-0041$.

[^1]: Sponsored by the United States Army under contract No. DRAG29-75-C-0024 añd DAAAG29-80-C-0041:

