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ABSTRACT

It is well-known th&t solving the ini.tial-value problem for the heat equa-

tion forward in time takes ,a "rough"' ihitial temperature into a temperature

which is smooth at later times t > 0. One aspect of this is the validity of

certain estimates 6n tu9 -when u is-,a solution of the heat equation; In this
t

-paper we prove related estimates on nonlinear evolution equations which are

governed by homogeneous nonlinearities. The results apply to classes of nonlinear

diffusion euations and to conservation laws; The results are interesting from

,the point of view 6f identifying a new "regu!arization ' mechanism and the esti-l mates themaselves cast new light on the nature of the solutions of some initial-

-value problems with rough, initial 8&i&

AIMS (MOS) Subject Classifications: 34G20, 35610, 47H07, 47H20.

(Key Words: Nonlinear 'voluti6fii homogeneous -nonlinearity, adcretive operator,

kegui&kizing 6ffddt.
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SIGNIFICANCE AND EXPLANATION

It is well-known that solving the initial-value problem for the heat'V

equation forward in time takes a "rough" initial temperature into a temperature

which is smooth at later times t > 0. One aspect of this is the validity of

certain estimates on tu when u is & solution of the heat equation. In

this paper we prove related estimates on nonlinear evolution equations which

are governed by homogeneous nonlinearities. The results apply to classes of

nonlinear diffusion equations and to conservation laws. The results are

interesting from the point of view of identifying a new "regularization"

mechanism and the estimates themselves cast new light on the nature of the.

solutions, of some initial-value problems With rough initial data.
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REGULARIZING EFFECTS OF HOMOGENEOUS EVOLUTION EQUATIONS

& -Michael G. Crandall andy Philippe Benilan

Introduction
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au 1
(-) (a-u > Iu t > 0, x I ,

holds for nonnegative solutions of any once of the above problems ((5) being understood in

the sense of distributions).

Estimates of the form (4), (5) are types of "regularizing effects" in that the quantities

estimated for t > 0 need not be sensible at t = 0. We comment on the rather subtle impli-

cations of the estimates (4)
, 
and (5) in particular cases at some length in Section 2, and we

pay there due respect to the difference between the assertion (4),.,which is an estimate of

the "speed", and the stronger assertion that the "velocity" u'(t) exists and admits the

corresponding estimate.

This note is divided into two sections. Section 1 presents the abstract results concern-

ing solutions of the equation u' - B(u) and its perturbations uhder various assumptions

(always including that B is~homogeneous). These results are elementary estimates on the

difference quotients h (u(t+h)gu(t). Sectidn 2 discusses the interaction of the abstract

results with-particular problems, including those listed above, and itis partly expository.

Estimates in evolution problems of velocities u'(t) by expressions involving, l/t are

familiar in several contexts. Perhaps the, closest in spirit to those given here occur when

B is the (lihear) infinitesimal generator of a strongly continu6us semigroup, in which case

an estimate of .h IIu(t+h)-u(t)I in the form CIlu(0) 1/t is essentially equivalent to B

'being, the generator of. a holomorphic semigroup (see, e.g., [17b,, w29]) (Tnis, is the, case

for the linear problems ()I= (3)1 in a variety of spjces.) Another known case is the result

of Biezis. (7, chp. III] which applies if B = 3( is the subdifferentialof a convex function

2
ona Hilbert space. Breiis' estimates apply to variants of (1) , (3), to give L- based re-

sults like '(4) which do i6t use the hoiqje ofity 0f'the rigftghahd ,sides. See j3, pg. 2001.

Other regularizing effects-'ai to'be f6und- in [5'f, (414,. J261,.

7-a
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Section 1

Let be asemi normon the vector space X and B D(B) E X-X be an operator

in X which is homogeneous of degree a > 0. That is

(H) B(rx) = r B(.<) for r > 0 and X C D(B)

where it is understood in (H) that rD(B) c D(B) for r > 0. Ile are interested in the

evolution problem,

dt

.u (0) = ,

1 4 but rather than deal withi (E) directly we shall wzork here only with its solutions. These

solutions are assumed to be presented to us 'by some theory or construction in the form

u(t) = S(t)x where each- S t)- 't > 0, isa, mapping S (t) C ->X and C is subset of X.

The property ()of B3 is taken to be reflected in S by e identities

USY A ~S(At)k =S(t),(XA x) for t,'A > 0 and' c-

This is, arrived at in the 1ol:Iwin: way- If u (t is a c:!:sical solution of (E)and (11), holds
an X > 0, 'then v(t) X u CXt) satisfies UVOt A. ), u' (Xt) = A- -B(u(Xt))=

c-

B= (X),-i B(V(t)) sota vis ainaclassical soulnof _(E) and- further satisfies

vi O) -X - u(0)-; the corresponding properity of the notion of solution of 413) Iprovided -by S

is what is requested by, (HIS) .it is understood In (IfS) that rC C for r >, .0. The other

major requirement we place uLpbn,. is the Lipschitz condition

M), -S txS'w)~tI- < Ljx-1jI for 't ; O 0, x, c

-wher~i6 is the- norm- inX-

Theorem 1; Let C A :X aftd- S-(tO C >-X -for t > 0 and- iatisf y ([IS)- with a > 0, a o 1,

-(L)-, 5nd' S'(t),O 0O., Then for *x " C d n-t, h > 0,,



h1-0

IIS(t+h)x -S(t)XII <S 2bIjXjI 11 (1 + ~)~

(6) and, in particular,

IIS(t+h)x -- S(t)xtI 2Lj~i 9
im sup h <C x',,

Proof. We use (HS) with

(7) 1+ h)t

to compute

()S~t+h)x- S(t)x =S(Xt)x- SC:): X cc S (t) XO X) MX

=A (S~t)CA') S~t)x) + (A l)SCt)x

I i Now (8),-(L) and SWtO B 0 imply

IIS(t+h)k S(t)xII X lc Lj A 
1
l jxII + IX 1 .III.II'

=2LIlk 11L 11 -X

The estimates (6)- follow fiom. this and ()

For the next result we assume that X is equipped with-a relation > under which it

is an ordered-vec&toi space and'that SC:t) respects this order.

Theorem 2. Let X be an ordered vector space with the order relation denoted by '.Let

SCt) satisfy

(0) S,(t)x' >'S(t)y if -k,y £ C and x' > y

sand satisfy (HS), with a > 0, a 7' 1. If x c Cr- x > 0 and t,h 0 then

h1-c

(9) (w- 1) (S (t+h) x - S (t) x)- t rciCl+h l)S~t)x

Proof. There are two c~ses,. If a > 1 ,r w'return to (8) and observe that =(1 + t)

an x) Sl (t) x) 0- by(). Te

adA' >1I. Thus 'A "x.> x and so A (S (010" )-St))~O b 0)

7",



inequality (9) is obtained by dropping this nonnegative term from the right hand side of (8)

and multiplying by ax-I > 0. The parallel reasoning if 0 < a < 1 shows that the term just

dropped is now nonpositive, so we have the opposite inequality than above =zoing from (8),

which becomes (9) again upon multiplication by a-l < 0.I

In applications of Theorem 2 there is sometimes a nonnegative linear functional

A x + m which is preserved by S(t) , i.e.

(10) AS(t)x Ax for t >0,x cC, x >0

and- X is a lattice. The notation k supb~c,01, x_ -inffx,0} will be used.

Corollary -3,. In addition to the- conditions of theorem 2 assume that X is a vector lattice,

u ) S(t)x. The following estindm svai for tdh -0 and v c

(1)-A ((u (t4h) -u (t)+ -~A((u (t+h)-< du(t)) = Au(t+h) -Au(t) =0

'From (9) and S(t)x > 0 we-also-hive

(13 -th -, M ( I 1- )S(t)9 *if ae > 1

+ hla
(uth u(t)) I < ((I1+ ) )S(t)x if 0- a < -1

Applying A t6'the neulte.M anusn (1)-mis(1.

Remarks. If A is as-above and-if (10) hols the (0)is

'propertyi

(-14) ~ ~ ~ X A(tY - -tY)5 A(k~y)

See 414) -hence (fi) k~presents a- slight ref inement of 16) with lixil Ak4
. Also -the proof4t

shows '(11) is valid, foi a > rif (16) is weakened to AS(t)x x<Ax.



S I

We turn now to the "forced" problem

• ii do _

d-- B(uy + f(t)

(FE)u(0) =x

where f 10,T) - X for some T > 0. Again, it is most efficient to assume that solutlo-J

of (FE) are presented to us in the form u(t) S(t,x,f) and lay our conditions directly

upon S. Computing the equation satisfied by v(t) X
- 

uUit) if u is a classical

Isolution of (FEY and B is homogeneous of degree a leads to

(15) v(t) = B(v(t)) + X
e 

f,(t)

In order to minimize bookkeeping problems we will assume simply that X ib a Banach spacc

and CcX x (0,- _ X) is given together with

S : [0,-) x C - X

such that u(t) S(t,x,f) is the solution of (FE) of interest for (x,f) C. We let

._(16) f (t,) -- f(Xt)

and assume (x,f) c C f (x,Cl f ) C for X >0 . The equation (15) satisfied by

x u(t) is to be reflected in S by

1( S(Xt,x,f) S(t a L  
,l

VH SY a 1

ij Motivated by known existence theories (see Section 2) the Lipsehitz condition (L) is general-
.- 't"ized to

" t

(FL) J{S~t,×,f) -S(t,i, ,,) 11 V,{lx- Jj + f {If(,T) -r()lldT-)

-- 0

when -the alj~Ients lie in the domain of (S).

Theorem 4: Let S satisfy (PHs ) , (FQ and S(t,0,0) - 0. If t,h > 0, (x,f) c C,IS
a > 0, aY 1 and u(t) = S(t,x,f),; then

-6-



(17) flu(t+h) - uct) J <( t Ll - (1 + )(21IxII I llf (T) lldT)

0

St hh t
+ 1(1 + + ( 1 - If Ilf(T + h iT) + (1 + h)lac f Ilf(T + h ) - T) IdTc)

0 0

In particular, if

:~ f l(T+&T) f f(T) d
(18) V(t,f) lim sup f

-40 0
then 

+ t

ji hI + (lC___T)1
lim sup Iu(t+h) -u(t)0-1r sh p- 

____-1__+ V(t,f))

and u is Lipschitz continuous on each compact subset of __(0,T] if V(T,f) < ¢

Proofz Of course the argument is just as before. The relation (F11) yields, with
S wit

h

(20) u(t +h) u(t) = S(Xt,x,f) S(t,x,f)

x 1(S(t,X X -A S(t'x'fQ) + -(S(t'x'fA) _ S(tix,f))]

1
+ (XlIr-I)S (t,xf). ..

Using (L11); in conjunction with. (20) prb&ves (17) and (19) follows by taking the indicated

limit.

Remark 5. If f" is absolutely continuous-and differentiable almost everywhere oh.each. com-

pact subset of (OT], then

Ut
(21) V(t,f). f fllf (T)jI Id

0

'In general, (T < is equiValent-to t t tf(t) being--of (essentially) finite variation

on- (0,T) k

17 7-' .ii , ;



Remark 6. It is quite interesting that Theorem 2 has a forced analogue. if S(t,x,f) is
'A

nondecreasing in x and f (where f > g means f(t) > g(t) a.e.) and t ' (cx-l) t-f( ))

Ls nondecreasing in t, then (20) implies (9) with u(t) = s(t,x,f) in place of s(t)x.

The final abstract case we consider is (E) perturbed by a Lipschitz continuous function

p D(p) cX - X. That is

S= 3(u) + p(u)
jd

(PE)

u(O) x

where p satisfies

-22) llp(x) - p(y)II Mlx-yll for xy C D(p)

and some M > 0. We regard (PS) aq a-special case of (FE) in the sense that we assume

I solutions S(t,x,f)- of _(fE) are known and-understand a solution u. of (PE) to be a function

u with values in. D(p) such that (x,p(u))'.e C and u(t) = S(t,x,p(u)). The results will be

a modulus of continuity of any solution u- of -(PE).
I :-

Theorem 7. Let S satisfy the assumptions of Theorem 4-with- a > 0, a 1 1. Let

p : D(p) cX - X satisfy (22), u e C((O,-) D(p)), (x,p(u)-) c C and u-= S(t,x,p(u)-). Then

for each T > 0

-sup lu(t+h) - u(t)-ll c1(T,e,,'llxll,L,M)O<t<T "-

-O<h<t

where the right hand side above depends only on-the indicated.quantities. In particular, u

is L ipschiti -continuou's on dompact subsets of (0,T), for each T > 0.

-Proof. The Lips6h'iti cbfdition (22) implies-

(23) i p(d(t)5Y,11 .a + Mllu(t) 11

for some a. Using (23), (LF)-and S(t,0,0), 0 one-deduces that

-8,-T

'-I

,- /



fU (t)l = t(t, p (U)) - S(t, 0,0)I

<L( lxi + at + 1.1 f 11 u(-r) I~dT)

frcvn which flows the estiinate

(24) Iiu(t)'II - L(IXfl +- aT)e 1T' for 0 < t < T

NexE we use (17). with f(t)- p(u(t).) and the estimnates- (23), (24) to conclude that for

>0and 0 < t <-t+h T there is a constant C =C(T,c,,lixil,L,M) for which

(25) ~ fu(t+h) u M~~j < i h hl-o +.Sth 1 + h (1 + -

h -hI1 +1

-t
4 l+ -+ -11u u(r)$,Ildr)

Set F, h/t above-and

(26) g,(t,)=

then- (25)' implias

(27) ~g(t,'g) C(J. + ~ d]

0

for some-new cbnstarit C -aid 0 < t < T/(1+0) '0 ~< -< < 1I, where S, is chosen in (0,1).

Tiheftirnate (27) gives-a-iew ;estisiate

(28) gt,) <C 'for 0 <- t,~T(+P 0 < -1

where isytaohrcntant, whbse'precise dtrubtdiewe leave to-the raeb~~ed

only -on allowed -4iantities. T beiiig arbitrary th&,krcbf is-coffplete.,



-V Section 2. Examiples and Applications

We begin by reviewing one abstract -heory for (E) which guarantees that (FHS) and (ML)

hold whenever B satisfies (11) and one additional condition. The t,.eory tnvomjrasses the

three classes of examples (1)., (2)a (3 C and generalizationis of them as well as the

equation

au u a
(26) 1-i- - t > 0, x C IIR

and a host of other possibilities.

Following this we discuss briefly the tw-~ classes of examples (1) ~,(2)~ in their

simplest setting to make various p1.i'fts and orient the readt;z. We makt no, attempt to write

down the new results which lobvicusly flow from the-estimates of Section 2 even as applied to

- the Lxamples mentioned here.

Given -a Banach space X and B D(B) c X 4 X, T > 0, and f -1,(0,T . -X) we call

u C CHO0,T) X) a-mild solution of

(EF)" and -fnie (u +ni I uhta

jon (0,T) - vided for every c >0 i:ecan fid a partition (0 E. < t <..<t n of

x x i Z.

(27) t t < C

i+

and - n

U , - -- J 1f ()Ja<C

where

-10



(29) u C(t) x x. for t. <t < t 1 , i = i l.... .n-l

-icw~ cosan a-(9,i~a 
da

Afunction u ,pewiecntnasin(),icled n -approximate solution of (EF'

when the various conditions of (27) are satisfied. Roughly, (27) defines a simple implicit

Euler approximation of (Es')-' and we are defininq solutions of (EF) ' to be the uniform limits

of solutions of these difference approximations. We have: -

Pxoposition 8,. Let -B -be homogeneous-of degree a > 0, a )VI. Let T > 0,_ X > 0 and'

f L(0,T : X). If u C C( (0,T) X) is- a mild solution of (Et), then %i(t), - A'- u(At

a/a-lis a mild- solutioni of (EF) on- [0,T/X) With f replaced by X'fCt).
Tepofis left to~h~e r If9i as isipative (equivalently, -Bis

accretive, - see, e.g;,i [3V,, 1111 , [161)) one has;

Proposition 9. Let a be dissipative. 'Let k* c 6losure(O(B)), T> 0' and fC L (O,T X)

If for each c > 0 there is An c-appkoxiiate souto u f(E) atisfying

(10) xjl < c then (EO) has a mild ,solution, u -on [OT]). Moreover,, if

fK C L (0,T X) And i are mild soluitionsof u -u ' of f,u' B(U) ,+ f respectively,

] u~t, t) 11 11 uI(0), -(0)]j + f 11hf)(s) - I I ids

'riis. is proved in j3,-although tih defififtion of-Pmild-s6lution" is iiot given there.

See algo [i81. -

it -follows fi6m~pr6positiohs 8 afi4 6hat lettii, u() S~~()') when u i-a

midsltono E) and, -B 1s~di ssipative anid mhrogep §f degie6 ac definesyan operator

S' with the desired- Pi6kti~s i(FHS) -and: (FL) 14th. I ( h6 _ "'l das6, ~f 0; gives

(HS)- and _(L) with., -l.:

Asscidte&-,with, eabh,!6f the proble ms (1),, (2 (y, a 0, is a denisely .d~ffipp

irq-dissipitive operator ,B 'n that:is_~ isoiaiv.'n -v6 -ae of

11 AB) ~ is L )frA>0 Ti i conjufidtionwAh.f #io~itioqns 8 and 9, guaantees

the, existence 6f ild ( solutibhs. -6reoverj eah6ib ~ S~ooti'di ~dipsjig

I~1 7 .-ll7 - - , -77



J911

with respect -to the natural order on L ' This provides one precise sense in-which these

problems fall under the scope of this paper; (one may, of course, treat these problems by any

other suitable method which provides the information (FHS) and (FL)-, etc.) Some references

are: Mi [6) which shows how to make precise the n-dissipative operator in L -OR associated

with equations ut = A (u) for more general nonlinearitie§ than- in Wj and- in any number of

dimensions N, (ii)' (41 and [9] which contain results defining i-dissipative operators as!bo-

ciated with initial-boundary value problems for ut A (u), (iii) [2], 123) which contain

results defining in;-dissipative operators in Lp spaces, i <p <,associated with-variants

of (3) (which must be mhodified-for the pure initial value problem)-, (iv): (10], [4] which

establish r-dissipative operators for generalizati6nsg of () Te.qain(6

1 < a < 2, corresponds to an in-dissipative operator in the space of~ uniformly continuous

- ~~functions on IN -, as, is-proved n(2]

of course, there is a- huge-literature concerning othei appr6aches and regults- for these

probl-ems. We continue in this-sect ion-by choosing, (I) a nd (2) afor further discu-ssioh to

-illustrate the infca: 6 the iegults-of Section 1 in application -and s~nething-of the

I relationship with-kfi6wn-,result~i-

The problem M1 for a- is the iniitial- value for the linear heat :equation-which is

* solved by

~lf ~ 4t
--- (30) u (k~ e- u6 (y)dy

-If X, 1i,,ahy one of the iha~h *paceg LPR, I <,p-<- , -f BUR (the bounded uniformly

coftind6ud ifuidti6ns on -it) 'equipped with the usual normni nd. u, c X, -then t u u(' it)

with u 4ivenby (30) is 6-6oitinuobus' urve,,Iih X 'for t >0O. M6ieover uit) u'Ci(*,t)

-in X as t 0. 1h each spadb -X define An opefat*k--b

(31) -b(RA j-v 'e- v" V- c X) and BV= v" -for v C D(B) ,

whrike i~ i in heh 6eise of-distribuiofis; Then it is-,very well- known that B

p - ,- -, is~n~diss~tive -iid; ~ mild ,§6lutibn of t' h; () u i ~'-=ut - ~~c

dxafilihati6n-6f (30), shows that if u6, -X, than, u(t) is differentiable, i_(t) D(B) and

7 79 ....

777 77-7"7,1



-77V

u =() BUMt-- for t > 0. Moreover

(3 2)' du(t W 1 = IIBu(t) 11 Sjj~Iu(O) 11 for t >0

Thus one has very explicit regularizing here, most convincingly illustrated by the formula

(30). The-estimate (32),implies that S(t) is an- analytic semigroup in X (see, e.g., [17-1,

[291). W6 note that while (32) has mfuch the same character as the estimate (6) of Theorem 1,

Theorem 1 does not apply'here for at = 1.

If a 0 and- a 1, we do-not know a formula for the solution~of (1). However, the

operator B in X- L OR) given -by

A,(B ) v eL(P,,I) 'for v c D-(B- n li v' I)
aa

is m-accretive 'in -L (3). ( [6) Th& mild solutions provided by 'this B- 'akd uniquely
a

-6haracteiized'~as solutions of,(l)- in 'the sen & of distributions (see (p1)), Thus for, a- > 0,

a #, 1' The&rinms land&n 2:pipiy with 'these, choices and we conclude that the solution u of

(1 istisfies
'a

(34) lim'sup'f' Iuth- _t< a-IT f' 1Iuo(x) Idk

and, also

au,. l~
' '(5), >U

at (azl)'t

prvde s i , - the andlo~ue of(4 nL()) or -BU(P) does not hold in view

of 'explicit ei~mpldd. -see, .g.. [241. The relatio-h (35)' 'follows from ,'heorem 2 applied to

thig exax ,Ie by' dirdi h afid'letting h 0 (The limjit of (u(t+h,x) - u(t,x))/h

is take'n in fhb s&nse',of -istiibuiibn's.)' The cu~rve 't u u(t) in 1 M) solving (1)

-;i thusg 'hsis '" soed'b oundddin the form 6/t for t >_ 0, ad was true -in ;the linear case, but

'w6 'cafii6t~o- bisily assert here 'tfi6 dkith~b of the-velocity l'ij h 1 (u +h) - u(t)) '~u'(t)

-b () r that it): -c fi(B~ even k~i almiost -all t > 0; If uO u(0) > 0, these

-7/
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desirable properties hold true -see [1)]. The current proof of this is a long story beqin-

ning with (35). (Ongoing work of various investigators indicates that the results of [11

extend to u0 not necessarily of fixed sign and to more general nonlinearities.) However,

it is known that if S(t) is constructed fromn an (abstract) rn-dissipative B as explained

above, then lim IIS(t+h)x - S(t) 44/h < M < exactly when there is a sequence {x ) c D(B)

nihx- S(t)x and, lim sup iIBx_ 11 < bf. (See, e.g., (121., (14]). 'Thus (34) itself and the

explicit nature (33) of B aimply that (iju(t)]ialu(t))" is a measure on, 3R of-variation

at mhost 2/tiL-li.

*With respect to other literature about (1) and variants, we mention in particular that
a

the, L. -non expansiveness is noted in 127), that [3), 1221-,. 124] are of interest and the

references listed therein provide access to the large literature, that the estimate (34) is

not new if uO > 0 (see 11Y, and -that the result -of our paper applied to (1) a nd general-

izations of it with u not of fixed sign and the equation either perturbed or forced seem

to-be- new.

The .Ujstinction -between -finite speed, and possessing a velocity is clearly 'illustrated by

the class of problems (2) The linear problem a - 1 is explicitly solved by

u(x, t) _ u 0 (x+t)-.. If u0 1 C X and' X is one of the spaces L oR).,, 1 < p < - or BU(3R) ,

then u(t) = u- (-+t) is a, continuous curve in X . The velocity u' (t) -exi,*sts- at so~ie. t

if and only if it exists for E =,0 if -and only if u0 6 bAP) "= v F_ X :'-v' c X}-. -The speed

171 - aimr h 144u(t4-h) u(t).[l is infdependent of t and is fJiit6 if- &nd only if
M 0

-)-12 C D(B) when X -Lp (I), < p <

T3)14-Ci u0  is -Lipschitz continubus when XiiIUR

(i) u-~ is of essentially bounded y~riatiori-on it

whnX L (IR)

Moreover, the spoed is 1ItuI11 :l~'~ in case Ui, -he least Lipsdhitz 6onstant -in case

j j - ii) an the vriatio of u0 in case (iii). there -is-ho regularizifig in thisearpe

j 14-
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The differentiability and speed of u are independent of -t. An-estimate on the speed does

-imnply some regularity in x as described above, buta~t-does not imply u(t) c D(B).

The nonlinear problems '(2) ~,a ;4 1, coizesponds to the m-ldissipatiVe operators

(D(B ) V CL (11) (vIOv)~ e L(3R)

in L, (IR) and the operators S~ to which they give-rise'-respect the order of L (in) ((101,

1) . It is not true here that solutions of (1), in' the sense of distributions are unique

and extra conditions must be laid upon solutions,- so caled entro6py conditions. See (201,

(21], (28), which further explain other- aproaches t6_-(1)_. The 6ntiopy s6luti6ns of '(1)

are given'by S ((101),. Simple analyses by the method-6f'characteri'stics shows that even

0

a t'Increases ;. i.6. "shocks- form". This is -ieflect~d, in-the adigerl

t Wu 0  D(B& largie t -and uO Y- 0. Her6 we have '!reguiariiing. " in 'that Theorem i

estimates the speed' of a solution. u(t) in'the' form' c/f 'and addition&l ccnsiderations

zqkplained above then estimate the vaito in x of Iuq(t) V sign~d(t) by the same quantity,

but we also have "roughing," in that ti(t) rnegd not bld gnooth in x ('or even lie in D(8 )

even if u0 is Smooth;.

Estimates bn the variation of solutions of 'au/at + ~f~)8~0which-decay like c/t

are classical for convex functions f (21) ur-estiiatesf6r, e.g., 5u/at + au /ax 0

are pe'rhaps new, -as are the. rpintwise estimates (3Y fok .Fibnnegatiiie solutions and the -esti-

A md~tes-fbr the peiturbed'&nd iorded equations. Seals6' 1151; Conc~r~ii efiializdions of

.(26) see (191-

final, point 6f ifiterest here is that he6i 'di'nt 6a~tuie the rqlrzn~r-

sent in ie: I-inbar heaf,-equation 41)~ da" -indeed;At - ould'~tfrT e e - u b W r~

"'AI
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