HKUST Theoretical Computer Science Center Research Report HKUST-TCSC-2000-07

Regularly Extended Two-Way Nondeterministic Tree
Automata®

Anne Briiggemann-Klein' Derick Wood?

July 17, 2000

Abstract

We establish that regularly extended two-way nondeterministic tree automata
with unranked alphabets have the same expressive power as regularly extended
nondeterministic tree automata with unranked alphabets. We obtain this result by
establishing regularly extended versions of a congruence on trees and of a congru-
ence on, so called, views. Our motivation for the study of these tree models is the
Extensible Markup Language (XML), a metalanguage for defining document gram-
mars. Such grammars have regular sets of right-hand sides for their productions
and tree automata provide an alternative and useful modeling tool for them. In
particular, we believe that they provide a useful computational model for what we
call caterpillar expressions.

1 Introduction

We became interested in regularly extended two-way tree automata (tree automata that
have a regular set of transitions instead of a finite set and, thus, unbounded degree nodes)
because of our work [3] in which we show that tree languages recognized by caterpillar
expressions are tree regular. Initially, we planned to prove this result by using regularly
extended two-way tree automata to emulate caterpillar expressions and then applying the
main theorem of this paper; namely, we generalize Moriya’s result [8] that demonstrates
finite two-way tree automata have the same expressive power as finite bottom-up tree
automata to regularly extended tree automata. Our proof of this result is, however, very

*The work of the authors was supported partially by a joint DAAD-HK grant. In addition, the work
of the second author was supported under a grant from the Research Grants Council of Hong Kong SAR.

Hnstitut fiir Informatik, Technische Universitit Miinchen, Arcisstr. 21, 80290 Miinchen, Germany.
Email: brueggem@informatik.tu-muenchen.de

!Department of Computer Science, Hong Kong University of Science & Technology, Clear Water Bay,
Kowloon, Hong Kong SAR. Email: dwood@cs.ust.hk

different from Moriya’s. We first establish an algebraic characterization of the languages of
regularly extended two-way tree automata and then show that the languages of regularly
extended two-way tree automata satisfy the characterization. Unfortunately, we were
unable to design a generic emulation of caterpillar expressions with regularly extended
two-way tree automata. Therefore, we ended up using the algebraic characterization to
to prove that caterpillar expressions recognize tree regular languages.

Regularly extended two-way tree automata are also of interest in their own right since
they provide greater programming flexibility than do regularly extended one-way tree
automata in much the same way that two-way finite-state automata do when compared
to one-way finite-state automata. This choice is motivated by the Standard Generalized
Markup Language (SGML) [7] and the Extensible Markup Language (XML) [2], which are
metalanguages for document grammars that rely on these requirements. Although most
work on classes of documents is grammatical in nature, grammars are not always the most
appropriate tool for modeling applications. Murata [9] has argued that regularly extended
tree automata often provide a more appropriate framework for investigating tree transfor-
mations, tree query languages, layout generation for trees, and context specification and
evaluation.

The research on tree automata and regular languages of trees can be divided into two
categories: one dealing with ranked and the other with unranked alphabets. The bulk
of the literature deals with finite, ranked alphabets. Gécseg and Steinby [5] have written
a comprehensive book on tree automata and tree transducers over ranked alphabets (an
updated survey by the same authors appeared recently [6]); see also the text of Comon
and his collaborators [4]. Although ranked and unranked alphabets are both finite, the
transition relations of the corresponding tree automata for ranked alphabets can only be
finite whereas the transition relations of the corresponding tree automata for unranked
alphabets need not be finite. We consider the transition relation to be either regular or
finite in the unranked case. We write finite tree automaton to mean that the tree
automaton has a finite transition relation and we write (regularly) extended tree
automaton to mean that the tree automaton has a regular transition relation.

Tree automata for unranked alphabets appear to have been first developed by Thatcher [11,
12, 13, 14]. He states a number of results on finite tree automata that carry over directly
from the theory of string automata. In particular, he developed the basic theory of finite
tree automata and also introduced and investigated extended tree automata.

Other researchers studied various aspects of finite and extended tree automata; see the
work of Barrero [1], Moriya [8], Murata [9] and Takahashi [10].

This paper has four further sections. In Section 2, we introduce the basic notation and
terminology for extended tree automata, in Section 3, we introduce the notion of a top
congruence and of views and, in Section 4, we use these notions to prove that extended
two-way tree automata are only as expressive as extended bottom-up tree automata. Last,

in Section 5, we state some conclusions and provide some research problems.

2 Notation and definitions

We first recall tree and tree automata concepts before introducing the new concepts that
we need.

Definition 2.1 Trees have at least one node; their node labels are taken from a finite
alphabet . We represent trees by expressions that use the symbols in ¥ as operators.

Operators have no rank, so they can have any number of operands, including none. For
example, the term a(a(a()a())a(a()a())) represents a complete binary tree of height two,
whose nodes all have the label a. Observe that external nodes or leaves correspond exactly
to those subterms of the form a().

We denote symbols in ¥ with a, strings over ¥ with w and sets of strings over ¥ (we
call them string languages) with L. The Greek letter A denotes the empty string. We
denote trees with ¢ and sets of trees (we call them tree languages) with 7'. Subscripted
and superscripted variables have the same types as their base names.

Definition 2.2 We define the set nodes(t) of nodes of a tree ¢ as a set of strings of
natural numbers. Its definition is by induction on ¢:

For a tree a(t;---t,), n > 0, we define

nodes(a(t; -+ -t,) = |J - nodes(t;) U {A}.

1<i<n

The nodes of a tree viewed as terms correspond to subterms. We denote nodes of trees
with v.

Definition 2.3 The root node root(t) of a tree t is defined as A. For each node v of ¢
we define the set children(v) of v's children as the set of all nodes v - i in nodes(t).

Definition 2.4 A node v of a tree t is a leaf if and only if children(v) = (). The set of
leaves of ¢ is denoted by leaves(t).

Definition 2.5 For each node v of a tree ¢, we denote the label of v in ¥ by label(v).
More precisely, for a tree t = a(t; ---t,), n > 0, we define:

1. The label of the root node X in ¢ is a.
2. The label of the node i - s in t is the label of the node s in ;.

We are now in a position to define the class of tree automata that we investigate.

Definition 2.6 A (regularly) extended two-way (nondeterministic) tree au-
tomaton M is specified by a triple (Q,d, F'), where @ is a finite set of states, FF C @
is a set of final or accepting states, and § C ¥ x Q* x @ x {u,d, s} is a transition re-
lation that satisfies the condition that, for all ¢ in X, ¢ in @ and m in {u,d, s}, the set
{w e Q* | (a,w,q,m) € §} is a regular set of strings over the alphabet Q).

If, for all @ in ¥, ¢ in @ and m in {u,d, s}, the set {w € Q* | (a,w,q,m) € §} is a finite
set of strings over the alphabet (), then M is a finite two-way tree automaton.

Finite two-way tree automata have been investigated by Moriya [8], whereas our results
are on regularly extended two-way tree automata.

We define the computations of a two-way tree automaton on a tree by sequences of
configurations. A configuration assigns a state of the automaton to each node in a cut of
the tree.

Definition 2.7 A cut C of a tree t is a subset of nodes(t) such that, for each leaf
node v of t, there is exactly one node in C' on the path from the root to v; in other words,
there is exactly one node in C' given by a prefix of v.

Definition 2.8 A configuration ¢ of a two-way tree automaton M = (Q,J, F)
operating on a tree ¢t is a map ¢ : C' — @ from a cut C of ¢ to the set of states @) of M.

Let v be a node of a tree ¢ and let ¢ : C — () be a configuration of the two-way tree
automaton M operating on t. If children(v) C C, then formally c(children(v)) is a
subset of (). We overload this notation such that ¢(children(v)) also denotes the sequence
of states in () which arises from the order of v’s children in t.

Definition 2.9

1. A starting configuration of a two-way tree automaton M = (Q, J, F') operating
on a tree t is a configuration ¢ : leaves(t) — @ such that ¢(v) is any state ¢ in Q)
such that (label(v), \, c(v),u) € 0.

2. A halting configuration is a configuration ¢ : C' — @ such that C' = {root(t)}.

3. An accepting configuration is a configuration ¢ : ¢ — @ such that C' =
{root(t)} and c(root(t)) € F.

Definition 2.10

1. A two-way tree automaton M = (Q, d, F') operating on a tree ¢ makes a transition
from a configuration ¢; : C; — @ to a configuration ¢y : Cy — @ (symbolically
¢ —> o) if and only if it makes an up transition, a down transition or a no-move
transition each of which we now define.

2. M makes an up transition from c; to ¢, if and only if £ has a node v such that the
following four conditions hold:

(a) chzldren() C Ch.

(b) Cy = (Cy \ children(v)) U {v}.

(c) (label(), c1(children(v)), ca(v), u) € 6.

(d) ¢; is identical to ¢ on their domains’ common subset C; N Cs.

3. M makes a down transition from ¢; to ¢y if and only if ¢ has a node v such that
the following four conditions hold:

(a) v € Ch.
(b) Cy = (C1 \ {v} U children(v)).
(c) (label(), c2(children(v)), ¢ (v),d) € 6.

(d) ¢; is identical to ¢ on their domains’ common subset C; N Cs.

4. M makes a no-move transition from ¢; to ¢y if and only if £ has a node v such
that the following four conditions hold:

(a) VECl

(b) C

(c) (lab@l() 1(v), c2(v), 5) € 6.
)

(d) ¢ is identical to ¢y on Cy \ {v}, which is equal to Cy \ {v}.

Definition 2.11

1. A computation of a two-way tree automaton M on a tree ¢ from configuration
¢ to configuration ¢ is a sequence of configurations ¢,...,c,, n > 1, such that
c=c,—>—c,=c.

2. An accepting computation of M on ¢ is a computation from a starting configu-
ration to an accepting configuration.

Definition 2.12

1. A tree t is recognized by a two-way tree automaton M if and only if there is an
accepting computation of M on ¢.

2. The tree language T'(M) of a two-way tree automaton M is the set of trees that are
recognized by M.

Definition 2.13 A (regularly) extended (nondeterministic) bottom-up tree au-
tomaton is an extended (nondeterministic) two-way tree automaton M = (@, §, F') such
that 0 contains only transitions whose last component is u. For a bottom-up tree au-
tomaton M, we consider d to be a subset of ¥ x Q* x Q) by dropping the fourth, constant
component in the transition relation of a two-way tree automaton.

Note that nondeterministic bottom-up tree automata are only as expressive as determin-
istic bottom-up tree automata [9].

Definition 2.14 A tree language is regular if and only if it is the language of an
extended bottom-up tree automaton.

Clearly, since every extended bottom-up tree automaton is an extended two-way tree
automaton, every regular tree language is recognized by some regular two-way tree au-
tomaton. Our goal is to prove that the converse also holds; namely, every tree language
recognized by an extended two-way tree automaton is regular. We establish this result
indirectly by developing an algebraic characterization of regular tree languages and then
proving that the tree languages recognized by extended two-way tree automata satisfy
this characterization.

3 Top congruences

Definition 3.1 A pointed tree (also called a tree with a handle or a handled tree) is
a tree over an extended alphabet ¥ U {X} such that precisely one node is labeled with
the variable X and that node is a leaf.

Definition 3.2 If ¢ is a pointed tree and t' is a (pointed or nonpointed) tree, we can
catenate ¢t and t' by replacing the node labeled X in ¢ with the root of #'. The result is
the (pointed or nonpointed) tree ¢t

Definition 3.3 Let 7 be a tree language. Trees t; and t, are top congruent with
respect to T (t; ~r to) if and only if, for each pointed tree ¢, the following condition
holds:

tt; € T if and only if tty € T.
The top congruence for trees is the tree analog of the left congruence for strings.

Lemma 3.1 The top congruence is an equivalence relation on trees; it is a congruence
with respect to catenations of pointed trees with nonpointed trees.

Definition 3.4 The top index of a tree language 7T is the number of ~r-equivalence
classes.

Lemma 3.2 Fach reqular tree language has finite top index.

A string language is regular if and only if it has finite index; however, that a tree language
has finite top index is insufficient for it to be regular. For example, consider the tree
language

L={a(b'c"):i>1}.

Clearly, L has finite top index, but it is not regular. A second condition, regularity of
local views, must also be satisfied.

Definition 3.5 Let T be a tree language, a be a symbol in ¥, ¢t be a pointed tree and
Ty be a finite set of trees. Then, the local view of T" with respect to ¢, a and T is
the string language

W,a,Tf (T) = {tl e tn S T; | ta/(tl e tn) c T}

over the alphabet T. For the purposes of local views we treat the trees in the finite set T
as symbols in the alphabet T; the trees in T are primitive entities that can be catenated
to give strings over Ty. Note that we are not catenating trees.

Lemma 3.3 All local views of each reqular tree language are reqular string languages.

Example Let
T = {c(t,---t,) | label(root(t,)) - - - label(root (t,)) € {a'b' |1 > 1}}.

The tree language T has top index four. Two of its equivalence classes are the sets of
trees whose root labels are a or b; the other two are T and the set of trees that are not
in 7', but have the root label ¢. The local view of T' with respect to the pointed tree X (),
symbol ¢ and the finite set of trees {a(),b()} is the non-regular set of strings {a't’ |l > 1}.
Hence, T has finite top index but it is not regular.

Theorem A A tree language is reqular if and only if it has finite top index and all its
local views are reqular string languages.

At first glance it may appear that the local-view condition for regular tree languages is a
condition on an infinite number of trees. But, if we exchange a tree ¢; in a finite set T}
by an equivalent—with respect to top congruence—tree ¢, then %,t,(Tf\{tl})U{tQ}(T) is the
homomorphic image of Vo1 (T') under a string isomorphism. Hence, if T has finite top
index, we need to check the local-view condition for only a finite number of tree sets 7.

4 Regularly extended two-way tree automata
languages

Lemma 4.1 The language of every extended two-way tree automaton has finite top index.

Lemma 4.2 The languages of all extended two-way tree automata have only reqular local
VIeWS.

PRrROOF Let t be a pointed tree, a be a symbol in 3, and T} be a finite set of trees. We
demonstrate that the local view Vi o7, (T) of T with respect to ¢, a, and Ty, namely the
string language

{ti--t, € T} |ta(t, -+ t,) € T},

is regular.

The proof is in three steps.

The first step is to recognize that Viar, 18 a finite union of finite intersections of the
following sets X, and X,,, p,q € Q:

X, = {ti---t, eTJZ‘|
c1— Ca,
c1 is a starting configuration of M on a(ty - - - t,),
¢9 is a halting configuration of M on a(t; - - -t,),
ca(root(a(ty---t,))) = p and

there is no other halting configuration in the computation ¢; — ¢y}

and

Xpg = {ti-tn €Ty
1L —> Cog,
¢ and ¢y are halting configurations of M on a(t; - --t,),

c1(root(a(ty - - -ty))) = p,
ca(root(a(ty---t,))) = q and

there is no other halting configuration in the computation ¢; — ¢y }.

Any computation on ta(t; - - -t,) from a starting configuration to a halting configuration
can be partitioned into those parts that concern only ¢ and those parts that concern only
a(ty -+ t,). The parts that concern only a(t; - --¢,) form a computation from a starting
configuration to a halting configuration, followed by a number of computations from
halting configurations to halting configurations.

Hence, the a(t; - - - t,,)-related parts of any accepting computation of M on ta(t; - - - t,,) first
go from a starting configuration to a halting configuration, having M in some state p at
a(ty -+ - t,)’s root, and then from halting configuration to halting configuration, leading M
from some state p; to some state ¢; on a(t; ---t,)’s root until M finally leaves a(t; ---t,)
and does not return. This implies that ¢, ---¢, isin X, N X, , N---N X, , . The state
sequence p, p1, q1, - - -, Pr, ¢ documents the behaviour of M at the root of a(t; - - - ;) during
an accepting computation of M on the complete tree ta(t; - - - t,).

For any other sequence of trees t|---¢/ in X, N X,, N---NX,,, we can construct
an accepting computation of M on ta(t| ---t,) by patching the a(t; - - -t,)-related parts
of the original computation with computations on a(t] -- -t/) that have the same state-
behaviour at the root as a(t; - - -t,) had. Since t|---t/ isin X, N X,,, N---N X, ., we
can find such patches.

We conclude that the whole set X, N X}, N---N X, 4, is a subset of V; . ;.

Since there are only finitely many sets X, and X, the set V;, 7, is a finite union of finite
intersections of these.

The next two steps establish that X, and X, are regular string languages.

First, a string ¢;---¢, is in X, if and only if there are py,...,p, in @ such that M,
when operating on ¢; beginning in a starting configuration, eventually reaches a halting
configuration ¢ such that ¢(root(t;)) = p; and (a,p; -+ - pp,p,u) € §. The regularity of the
transition table 0 implies that X, is a regular string language.

Second, let X, be the subset of X}, in which the computation ¢; — ¢, (compare the
definition of X,,) makes just one computation step and let X" be the subset of X, in
which the computation ¢; — ¢, makes more than one computation step. Then, X, is
the (not necessarily disjoint) union of X and X]?. We demonstrate that both subsets
are string regular.

First, note that
X;q = {tl oty € T; | (aapaqa S) € 5}
Hence, X, depends only on a and is either empty or 77. In both cases, X, is regular.

Second, #;---t, € X if and only if there are pi,...,pn,q1,...,qn in @ such that
(a,p1---pn,p,d) is in 6 and M, when operating on t;, makes a computation from a halt-
ing configuration with root label p; to a halting configuration with root label ¢; and

(aa(h"'CIman) 66'

The regularity of the transition table ¢ implies that X7 is a regular string language. a

Theorem B The language of every extended two-way tree automaton is tree reqular.

5 Concluding remarks

Moriya [8] uses crossing sequences to prove that finite two-way tree automata are as
expressive as finite bottom-up tree automata. Thus, one follow-up question is whether
we can prove our result using Moriya’s approach.

We may define context-free two-way tree automata and ask whether they are as expres-
sive as context-free bottom-up tree automata. Moriya [8] considers a variation on tree
automata for which he demonstrates that the two-way version is indeed more expressive
than the bottom-up version.

Takahashi [10], on the other hand, establishes a different characterization of regular tree
languages. We would be interested in knowing whether her characterization can be used

to derive our algebraic characterization and, conversely, can we use our characterization
to prove her’s.

As we mention in the introduction, we originally planned to use extended two-way tree
automata to emulate (or execute) caterpillar expressions. Our difficulty was that we could
not design such an emulation. Therefore, is there an effective emulation of caterpillar
expressions with extended two-way tree automata?

References

1]
2]
3]
[4]

8]
9]
[10]

[11]

[12]

A. Barrero. Unranked tree languages. Pattern Recognition, 24(1):9-18, 1991.

T. Bray, J. P. Paoli, and C. M. Sperberg-McQueen. Extensible markup lan-
guage (XML) 1.0. http://www.w3.org/TR/1998/REC-xml-19980210/, February
1998.

A. Briiggemann-Klein and D. Wood. Caterpillars: A context specification technique.
Markup Languages, 2000. To appear.

H. Comon, M. Daucher, R. Gilleron, S. Tison, and M. Tommasi. Tree automata
techniques and applications, 1998. Available on the Web from 13ux02.univ-lille3.fr in
directory tata.

F. Gécseg and M. Steinby. Tree Automata. Akadémiai Kiadd, Budapest, 1984.

F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Volume 3, Beyond Words, pages 1-68. Springer-
Verlag, Berlin, Heidelberg, New York, 1997.

ISO 8879: Information processing—Text and office systems—Standard Generalized
Markup Language (SGML), October 1986. International Organization for Standard-
ization.

E. Moriya. On two-way tree automata. Information Processing Letters, 50:117-121,
1994.

M. Murata. Forest-regular languages and tree-regular languages. Unpublished
manuscript, 1995.

M. Takahashi. Generalization of regular sets and their application to a study of
context-free languages. Information and Control, 27(1):1-36, January 1975.

J. W. Thatcher. Characterizing derivation trees of context-free grammars through a
generalization of finite automata theory. Journal of Computer and System Sciences,
1:317-322, 1967.

J. W. Thatcher. A further generalization of finite automata. Technical Report RC
1846, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, 1967.

[13] J. W. Thatcher. There’s a lot more to finite automata theory than you would have

thought. Technical Report RC 2852 (#13407), IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, 1970.

[14] J. W. Thatcher and J. B. Wright. Abstract 65T-469. Notices of the American
Mathematical Society, 12:820, 1965.

