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Abstract The evolution of metazoans from their unicellular ancestors was one of the most 

important events in the history of life. However, the cellular and genetic changes that ultimately led 

to the evolution of multicellularity are not known. In this study, we describe an aggregative 

multicellular stage in the protist Capsaspora owczarzaki, a close unicellular relative of metazoans. 

Remarkably, transition to the aggregative stage is associated with significant upregulation of 

orthologs of genes known to establish multicellularity and tissue architecture in metazoans. We 

further observe transitions in regulated alternative splicing during the C. owczarzaki life cycle, 

including the deployment of an exon network associated with signaling, a feature of splicing 

regulation so far only observed in metazoans. Our results reveal the existence of a highly regulated 

aggregative stage in C. owczarzaki and further suggest that features of aggregative behavior in an 

ancestral protist may had been co-opted to develop some multicellular properties currently seen in 

metazoans.

DOI: 10.7554/eLife.01287.001

Introduction
Living organisms emerged from the integration of multiple levels of organization. These levels were 

shaped by both physiochemical constraints and historical circumstances, the latter being more impor-

tant in more complex systems (Jacob, 1977). Therefore, it is important to identify the phylogenetic 

inertia (sensu Burt, 2001) imposed by the raw starting material in order to properly understand major 

evolutionary transitions, such as the origin of metazoan multicellularity (Knoll, 2011). Examination of 

both the genetic repertoire (King, 2004; Ruiz-Trillo et al., 2007; Rokas, 2008) and the cell types present 

in the immediate unicellular relatives of metazoans can provide insights into this evolutionary transition,  

as they reveal the historical constraints in early metazoan evolution. In this regard, the analyses of 

unicellular holozoan genomes, that is choanoflagellates and filastereans, have shown that the genetic 

repertoire of the metazoan unicellular ancestor was much more complex than previously thought 

(Abedin and King, 2008; King et al., 2008; Sebé-Pedrós et al., 2010; Suga et al., 2013).

Multicellularity has been independently acquired multiple times during the evolution of eukaryotes, 

in more than 20 different lineages including animals, plants, fungi, slime molds, green and brown algae, 

and several other eukaryotes (King, 2004; Parfrey and Lahr, 2013). Multicellular organisms evolved 

through two major strategies: aggregation of different cells or clonal division of a single cell. Multi-level 

selection theory has proposed that the most complex multicellular organisms likely arose through 

clonal development rather than by aggregation of genetically diverse cells, since intra-organismal 
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competition in the latter might be expected to be evolutionarily unstable (Grosberg and Strathmann, 

2007; Michod, 2007; Newman, 2012). Accordingly, eukaryotic lineages that attained the most com-

plex multicellular lifestyles (i.e., plants and metazoans) arose through clonal cell division (Grosberg 

and Strathmann, 2007). In contrast to clonal multicellularity, aggregative cell behavior typically repre-

sents a transient life cycle stage. This type of multicellularity arose within several eukaryotic clades, 

including the dictyostelids (Amoebozoa) (Schaap, 2011), acrasid amoebas (Heterolobosea, Discicristata, 

Discoba) (Brown et al., 2011), Guttulinopsis vulgaris (Cercozoa, Rhizaria) (Brown et al., 2012), the 

genus Sorogena (Ciliata, Alveolata) (Lasek-Nesselquist and Katz, 2001), the holomycota Fonticula 

alba (Opisthokonta) (Brown et al., 2009) and the genus Sorodiplophrys (Labyrinthulomycetes, 

Heterokonta) (Dykstra and Olive, 1975) (Figure 1).

Within the opisthokont clade that comprises Metazoa, Fungi and their unicellular relatives (Cavalier-

Smith, 2003; Steenkamp et al., 2006; Ruiz-Trillo et al., 2008), so far only a single taxon has been 

described to have aggregative behavior, which is F. alba (Brown et al., 2009), a close relative of Fungi. 

Moreover, among close unicellular relatives of Metazoa, clonal development is the only known multi-

cellular behavior, as described in choanoflagellates and ichthyosporeans (Dayel et al., 2011; Suga 

and Ruiz-Trillo, 2013). Within metazoans, which have largely clonal development, some cells show 

eLife digest When living things made from many cells evolved from single-celled ancestors, it 

was a breakthrough in the history of life—and one that has occurred more than once. In fact, 

multicellular life has evolved independently at least 25 times, in groups as diverse as animals, fungi, 

plants, slime molds and seaweeds. There are broadly two ways to become multicellular. The most 

complex multicellular species, such as animals, will replicate a single cell, over and over, without 

separating the resultant cells. However, in species that are only occasionally multicellular, free-living 

cells tend instead to join together in one mass of many cells.

Evolution is constrained by its raw materials; so looking at the living relatives of a given species, 

or group, can lead to a better understanding of its evolution because its relatives contain clues 

about its ancestors. To gain insights into how animal multicellular life might have began; Sebé-

Pedrós et al. studied the life cycle of the amoeboid organism Capsaspora owczarzaki. Found within 

the bodies of freshwater snails, this single-celled amoeba is a close relative of multicellular animals 

and could resemble one of their earliest ancestors.

At certain stages of the life cycle Sebé-Pedrós et al. noticed that individual amoebae gathered 

together to form a multicellular mass—something that had not been seen before in such a close 

relative of the animals. Moreover, the genes that ‘switched on’ when the amoebae began to 

aggregate are also found in animals; where, together with other genes, they control development 

and the formation of tissues. Sebé-Pedrós et al. suggest that the first multicellular animals could 

have recycled the genes that control the aggregation of single-celled species: in other words, genes 

that once controlled the changes that happen at different times in a life cycle, now control the 

changes that develop between different tissues at the same time.

Sebé-Pedrós et al. also observed that alternative splicing—a process that allows different 

proteins to be made from a single gene—occurs via two different mechanisms during the life cycle 

of Capsaspora. Most of the time Capsaspora employs a form of alternative splicing that is often 

seen in plants and fungi, and only rarely in animals; for the rest of the time it uses a form of 

alternative splicing similar to that used by animal cells.

The evolution of complex alternative splicing mechanisms is a hallmark feature of multicellular 

animals. The exploitation of two major forms of alternative splicing in Capsaspora could thus reflect 

an important transition during evolution that resulted in an increased diversity of proteins and in 

more complex gene regulation. Such a transition may ultimately have paved the way for the 

increased specialization of cell types seen in animals.

This glimpse into the possible transitions in gene regulation that contributed to the birth of 

multicellular animals indicates that the single-celled ancestor of the animals was likely more complex 

than previously thought. Future analyses of the animals’ close relatives may further improve our 

understanding of how single-celled organisms became multicellular animals.

DOI: 10.7554/eLife.01287.002
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aggregative behaviors; for example, mesenchymal 

(O’Shea, 1987) and germ line cells (Savage and 

Danilchik, 1993) during development, sponge 

cells after cell dissociation (Wilson, 1907) and 

arthropod blood cells through active amoeboid 

movement (Loeb, 1903, 1921).

To gain deeper insight into the possible transi-

tions that arose during the emergence of metazoan 

multicellularity, we have performed a detailed 

examination of the life cycle and associated tran-

scriptomic changes of Capsaspora owczarzaki, 

one of the closest known unicellular relatives of 

metazoans (Figure 1). Isolated decades ago as an 

endosymbiont of the fresh-water snail Biomphalaria 

glabrata (Owczarzak et al., 1980), C. owczarzaki 

belongs to the clade Filasterea, the sister-group 

of Metazoa and choanoflagellates (Torruella et al., 

2012). Filasterea also includes a free-living marine 

unicellular species known as Ministeria vibrans 

(Shalchian-Tabrizi et al., 2008).

We analyzed the C. owczarzaki life cycle and 

its regulation using electron microscopy, flow 

cytometry and high-throughput RNA sequencing 

(RNA-Seq). Through these analyses, we show that 

C. owczarzaki life cycle is tightly regulated at the 

level of gene expression and alternative splicing 

(AS). Moreover, we demonstrate the existence 

of an aggregative multicellular stage in C. owc-

zarzaki in which many orthologs of genes import-

ant for metazoan clonal multicellularity are 

upregulated.

Results and discussion
Under initial culture conditions (‘Materials and methods’), C. owczarzaki differentiates into an amoeba 

that crawls over substrate (Video 1), surveying its environment with its filopodia (Sebé-Pedrós et al., 

2013). At this stage, active DNA replication occurs (with >10% of the cells in S-phase) and, within 48 hr, 

the cells enter an exponential growth phase (Figures 2 and 3). Subsequently, the cells start to detach 

from the surface and begin to retract their filopodia and encyst (Figure 3B,C). After 8 days, no attached 

amoebas remain and growth is stabilized (Figures 2 and 3). This cystic stage may represent a dispersal 

resistance form. Strikingly, we observe an alternative path to this process involving the active formation 

of cell aggregates (Videos 2 and 3). In these aggregates, the cells attach to each other and produce 

cohesive extracellular material (Figure 3D) until a compact cell aggregate, in which cells no longer bear 

filopodia, is formed (Figure 3E). Transmission electron microscopy demonstrates the presence of a thick, 

unstructured, extracellular material within the aggregates that appears to prevent direct contact between 

cells (Figure 3F). Clusters of cells appear to occur at random under normal culture conditions.

To investigate whether C. owczarzaki cell clusters are formed through aggregation or clonal division, 

we first mixed two differentially stained populations of cells (‘Materials and methods’) and induced 

aggregate formation, resulting in dual-colored cell clusters (Figure 4A). This indicates that cell clusters 

are not composed of daughter cells resulting from successive cell divisions, which would result in 

single-color cell clusters, but instead by aggregation of multiple cells. We also observed that aggregates 

could form efficiently even when cell division was blocked by two different inhibitors, hydroxyurea and 

aphidicolin (Figure 4B). Finally, by flow cytometry, we observed that the proliferation rate of aggregative 

cells (Figure 4—figure supplement 1) is extremely low (compared with the observations in Figure 2). 

Overall, these results show that C. owczarzaki cell clusters form by active cell aggregation, not by 

clonal cell division. This observation represents the first reported case of aggregative multicellularity 

in a close unicellular relative of Metazoa.

Figure 1. Phylogenetic position of Capsaspora 

owzarzaki within the eukaryotes. The Holozoa clade 

(in yellow) includes Metazoa and their closest 

unicellular relatives: Choanoflagellata, Filasterea, and 

Ichthyosporea. C. owczarzaki represents one of the two 

known filastereans taxa that form the sister-group of 

choanoflagellates and metazoans. Other major eukaryotic 

groups are shown. Within each group, species or clades 

with aggregative multicellularity (see text) are highlighted 

in red.

DOI: 10.7554/eLife.01287.003
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The aggregative multicellularity observed in  

C. owczarzaki adds an additional cell behavior to 

those already known among extant close unicel-

lular relatives of Metazoa (i.e., choanoflagellates, 

ichthyosporeans, and filastereans [Torruella et al., 

2012]). We can then infer that multiple cell types 

and behaviors (including aggregative behavior, 

flagellar motility, amoeboid movement, clonal 

colony formation, etc) were most likely present 

among the unicellular ancestors of metazoans. 

This range of cell behaviors may have provided 

the basis for the evolution of the diverse cell 

types seen in animals (Arendt, 2008; Arendt 

et al., 2009). Interestingly, each one of the three 

known unicellular lineages closely related to 

Metazoa (choanoflagellates, ichthyosporeans and 

filastereans) has some kind of simple multicellu-

larity. Moreover, the tight regulation observed in 

C. owczarzaki (see below) emphasizes that a reg-

ulated temporal cell differentiation was already in 

place among unicellular ancestor of animals. This 

reinforces the view that, during the transition to 

animal multicellularity, ancestral premetazoan cell types may have been integrated into a single 

multicellular entity by means of controlling cell differentiation spatially, rather than temporally 

(Mikhailov et al., 2009). An alternative explanation is that some of the cell behaviors observed in 

extant unicellular relatives of Metazoa may had evolved independently in some particular unicellular 

holozoan lineages or species, and do not represent ancestral states. The limited taxon sampling in many 

of these poorly studied lineages makes it difficult to reliably assess whether these are derived or ances-

tral characters and this situation is especially dramatic in the case of filastereans, in which only two species 

have been described so far (C. owczarzaki and the free-living M. vibrans).

To investigate the molecular composition and regulation of the distinct life cycle stages of C. owczarzaki, 

we isolated filopodiated amoebae, aggregates, and cysts, and analyzed their transcriptomes using 

RNA-Seq. Of 8637 annotated genes, 4486 showed statistically significant differential regulation (‘Materials 

and methods’) in one or more pair-wise comparisons between life cycle stages, including 1354 changes 

between filopodial and aggregate stages, 3227 between filopodial and cystic stages, and 3096 between 

aggregate and cystic stages. Moreover, when performing one-versus-all comparisons, each cell stage 

had a specific transcriptomic profile (Figure 5A), indicating tight regulation at the level of gene expression. 

Using both pairwise and one-versus-all comparisons, we identified significantly enriched gene ontology 

(GO) categories (Figures 5 and 6) and Pfam protein domains (Figure 7) in each set of differentially 

expressed (both up and down-regulated) genes (p<0.01 for each significant category; Fisher’s exact 

test). Genes upregulated in the filopodial stage were enriched in signalling functions, such as tyrosine 

kinase activity and G-protein-coupled receptor activity, as well as in transcription factors, especially of 

the Basic Leucine Zipper Domain (bZIP) superfamily (Figures 5 and 6). Genes involved in protein synthe-

sis and DNA replication were also significantly upregulated, consistent with the rapid cell proliferation 

at this stage observed by flow cytometry (Figure 2), and further suggesting a high metabolic rate.

When compared to filopodial and aggregative cells, cystic cells showed significant downregulation 

of genes associated with myosin transport, translation, DNA replication and metabolic activities 

(especially mitochondrial energy production). However, genes involved in vesicle transport and 

autophagy were significantly upregulated at this stage (Figure 5). These differences may reflect 

recycling of intracellular components triggered by starvation or other adverse conditions, as has been 

observed under conditions of adaptive cell survival in other eukaryotes (Kiel, 2010). Protein domains 

involved in the ubiquitin pathway (e.g., UQ_con, zf-RING2 and Cullin domains) and in synaptic cell–cell 

communication, such as SNARE, synaptobrevin and syntaxin, as well specific transcription factor 

families (e.g., bHLH transcription factors), were also significantly upregulated in the cystic cells (Figure 7). 

Altogether, these results suggest that major cytosolic rearrangement and protein turnover occur at 

the cystic stage.

Video 1. C. owczarzaki filopodial amoeba stage cells 

crawling. Dark and refringent vesicles can be observed 

inside each cell. Up to nine different cells can be 

observed in the video. Also available on YouTube: 

http://youtu.be/0Uyhor_nDts.

DOI: 10.7554/eLife.01287.004
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Figure 2. Flow-cytometry analysis of C. owzarzaki cell cycle. (A) Total number of cells per day in each fraction 

(adherent and floating, see ‘Materials and methods’). (B) Proliferation rate per day. (C) Percentage of cells in 

S-phase per day and two examples of DNA-content profiles obtained from days 3 and 11. Note the reduction in 

the number of G2/M cells (second peak) and the drastic reduction in S-phase cells (the area between the two 

peaks). Data from adherent cells (‘Materials and methods’) is shown in green and data from floating cells in red. 

Experimental replicate 1 results are shown with solid lines and replicate 2 results with dashed lines.

DOI: 10.7554/eLife.01287.005
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Remarkably, the aggregative stage showed strong upregulation of the components of the integrin 

adhesome and associated signalling and cell-adhesion proteins (Figures 5 and 8A,B), such as the 

LamininG domain-containing protein CAOG_07351 (which contains a N-terminal signal peptide 

sequence and therefore is likely to be secreted) (Figure 8C), the IPP complex (ILK-PINCH-Parvin) 

signalling module, G-protein α-13 (Gong et al., 2010), several cytoplasmatic tyrosine kinases 

(Hamazaki et al., 1998) and two receptor tyrosine kinases (which possess extracellular DERM 

[Lewandowska et al., 1991] and fibronectin_3 domains, known to interact with integrins [Figure 8C]). 

These observations strongly suggest that the integrin adhesome and the likely associated tyrosine 

kinase signalling genes play an important role in the formation of the C. owzarzaki aggregates. 

Furthermore, we also observed upregulation of genes involved in mitosis and in the tubulin cyto-

skeleton (e.g., kinesins) at the aggregative stage (Figure 5). These results indicate that a molecular 

repertoire associated with animal multicellularity, could function either in aggregative or in clonal 

multicellularity and in different phylogenetic contexts, in line with previous hypotheses (Newman, 

2012).

A hallmark feature of the evolution of metazoan multicellularity and cell type diversity is the expan-

sion of AS complexity and regulation through exon skipping, which has entailed the formation of cell 

type-specific networks of co-regulated exons belonging to functionally related or pathway-specific 

genes (Irimia and Blencowe, 2012). In contrast, differential intron retention is the most widespread 

form of AS found in non-metazoan eukaryotic species (McGuire et al., 2008). To assess the extent to 

which these forms of AS may contribute to gene regulation in C. owczarzaki, we systematically mapped 

reads from each life cycle stage to a comprehensive set of intron–exon and exon–exon junctions 

Figure 3. C. owzarzaki life cycle. (A) Filopodial stage cells, amoebas with long filopodia. (B) Transition from filopodial to cystic stage: cells retract 

filopodia. (C) Cystic stage cells are rounded cysts without filopodia and slightly smaller than filopodial cells. (D) Transition from filopodial to aggregative 

stage: cells attach to each other and an extracellular matrix appears. (E) Mature aggregate. (F) Transmission EM showing adjacent cells in the aggregate 

separated by extracellular matrix. Arrows indicate the observed stage inter-conversions. Scale bars = 1 μm, except in panel D = 200 nm.

DOI: 10.7554/eLife.01287.006
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(i.e., formed by exon/intron inclusion and skip-

ping) to score their differential usage. Of 25,677 

introns with sufficient RNA-Seq read coverage 

across the three life cycle stages, 2986 (11.6%) 

showed ≥20% PSI (Percent Spliced In, percent of 

transcripts from a given gene in which the intron 

sequence is present) in at least one stage, and 

approximately a third of genes had at least one 

such intron retention event. Moreover, we 

observed marked differences in the extent to 

which detected intron retention is differentially 

regulated between the different life cycle stages 

(Figure 9A). In particular, 797 retained introns (in 

441 genes) and 259 retained introns (in 232 

genes) display differential PSI (dPSI) values of 

25% or more in the filopodial and cystic stages 

compared to the other stages, respectively 

(Figure 9B). In contrast, no retained introns were 

found to be differentially spliced at the aggrega-

tive stage. Most (12 out of 15, 80%) of the ana-

lyzed cases of differentially retained introns were 

validated by RT-PCR (Figure 9C and Figure 9—

figure supplement 1).

GO enrichment analysis for the two sets of dif-

ferentially retained introns showed distinct gene 

function enrichment (e.g., protein kinase activity 

and intracellular targeting in the filopodial stage, 

and histone modification and myosin complex in 

the cystic stage) (Figure 6), implying that regu-

lated intron retention plays different roles at 

these stages. A low fraction of read-through 

introns (with length-multiples of three and no in-

frame stop codons) were found among the two 

sets of differentially retained introns, suggesting 

that most if not all of these retained introns act by reducing the levels of spliced mRNAs exported from 

the nucleus and translated into protein, as has been observed previously for regulated retained introns 

in metazoan species (Yap et al., 2012). Moreover, we observe that multiple introns belonging to a 

gene can be retained in a stage-specific manner. For instance, >73% and >29% of multi-intronic genes 

with one differentially retained intron had at least one additional differentially retained intron at the 

filopodial or cystic-specific stages, respectively, and 22% and 5% of genes at these stages showed 

evidence of high retention for all introns in the same genes. Furthermore, RT-PCR analyses and mate 

information from paired-end read analyses suggested that multiple intron retention events often occur 

in a combinatorial manner (Figure 9—figure supplement 1), thereby increasing the potential impact 

of intron retentions on mRNA regulation. All of the above observations were highly consistent across 

three biological replicates (Figure 9B), and not observed for neighbouring genes, ruling out contami-

nation of genomic DNA.

We analyzed different features of differentially retained introns that may account for their stage-

specific regulation. First, we compared intron lengths. While filopodial-specific differentially retained 

introns have a similar length distribution to constitutive (PSI less than 2% across all stages) introns, 

cystic stage-specific introns were significantly longer (p=1.7e−14 Wilcoxon rank sum test) (Figure 9D). 

In line with this observation, the average level of intron retention increased steadily with intron length 

only in the cystic stage (Figure 9E). Furthermore, cystic stage-specific retained introns harbored signif-

icantly weaker canonical 5´ and 3´ splice site signals than other intron sets (p<0.0013 Wilcoxon rank 

sum test for all comparisons). Collectively, these data suggest that differential intron retention in the 

cystic stage may be associated with suboptimal introns (i.e., long and with weak splice sites) that 

are more efficiently spliced in the other cell stages. In the case of the filopodial-specific differentially 

Video 3. C. owczarzaki cells aggregation. Also available 

on YouTube: http://youtu.be/OvI6BvBucrc.

DOI: 10.7554/eLife.01287.008

Video 2. C. owczarzaki cells aggregation. Also available 

on YouTube: http://youtu.be/83HB8srWQw4.

DOI: 10.7554/eLife.01287.007

http://dx.doi.org/10.7554/eLife.01287
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retained introns, analyses of sequence motif enrichment with MEME show enrichment of a long T/G-

rich motif that highly resembles a recently identified consensus binding site for Elav-like protein in 

mammals (Ince-Dunn et al., 2012) (Figure 10). Interestingly, the single ortholog for this gene in 

Figure 4. C. owczarzaki cell clusters form by active aggregation, not clonal cell division. Aggregation was induced in different stained cell populations 

(‘Materials and methods’). (A) Left, population of cells stained with Lysotracker (green), uniformly green aggregates are formed. Center, population of 

cells stained with Chormeo Mitochondrial Staining (cyan), uniformly cyan aggregates are formed. Right, two independently stained populations of cells 

(green or cyan) are mixed and dual color aggregates are formed, indicating that cells from different origins aggregate to each other. (B) Total number of 

cells per day in control cells, aphidicolin-treated cells and hydroxyurea-treated cells. Note that cell division is blocked by both aphidicolin and hydroxyurea. 

Aggregate formation was evaluated under each condition. All cells, even those treated with aphidicolin or hydroxyurea, developed aggregates.  

A representative aggregate is shown for each condition. Scale bars= 10 μm.

DOI: 10.7554/eLife.01287.009

The following figure supplements are available for figure 4:

Figure supplement 1. Proliferation rate per day of aggregative cells. 

DOI: 10.7554/eLife.01287.010

http://dx.doi.org/10.7554/eLife.01287
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C. owczarzaki shows a highly-regulated expression pattern, with lowest expression in the filopodial 

stage (Figure 10C). Therefore, it is tempting to speculate that Elav-like protein may negatively regu-

late filopodial-specific intron retention of some introns. Experimental depletion of Elav-like protein in 

C. owczarzaki will require the development of RNAi or gene-targeting methods in this species before 

this hypothesis can be tested.

Next, we investigated differential exon splicing and identified 191 cassette exons with PSIs <95% 

in at least one life cycle stage, 39 of which display PSIs <85%. 29 of these exons showed a ≥15% PSI 

difference in pairwise comparisons between the cell stages, with lower PSIs typically associated with 

the filopodial stage (Supplementary file 1); RT-PCR assays confirmed skipping for 7 out of 8 tested 

cases (Figure 11A, and Figure 11—figure supplement 1). Most (∼60%) of these exons maintain an 

open reading frame when skipped. In contrast to previous reports demonstrating that differentially-

regulated exons are significantly under represented in modular, folded domains in metazoans 

(Romero et al., 2006; Ellis et al., 2012), two thirds of the differently regulated exons in C. owczarzaki 

overlap annotated domains (Supplementary file 1). Furthermore, genes with differential exon 

Figure 5. Differential gene expression in C. owczarzaki. (A) Heatmap showing differential gene expression in the 

different biological replicates of each stage. Only genes with cRPKM ≥ 5 in at least one sample and with a 2-fold 

expression change in at least one pair-wise comparison are shown. (B) Gene set enrichment analysis (GSEA) for the 

different cell stages (‘Materials and methods’). Orange represents enrichment in the aggregative stage, blue in the 

cystic stage, and green in the filopodial stage, with color intensity proportional to enrichment significance. The 

node size is proportional to the number of genes associated to the GO category, and the width of the edges is 

proportional to the number of genes shared between GO categories. Groups of functionally related GOs are 

manually circled and assigned a label.

DOI: 10.7554/eLife.01287.011
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skipping are statistically significantly enriched in protein kinase activity, impacting both tyrosine 

and serine/threonine kinases (Figure 11B). This observation strongly suggests a role for coordinated 

exon skipping in the modulation of cell signaling in C. owczarzaki. To our knowledge, this represents 

the first example of a regulated exon network linked to a specific biological function in a unicellular 

organism.

In summary, our results offer new insight into the origin of metazoan multicellularity. In particular, 

the observation of an aggregative multicellular stage in C. owczarzaki represents the first example of 

such cellular behavior in a close unicellular relative of metazoans. This observation therefore adds to 

the repertoire of reported complex cellular behaviors among extant unicellular relatives of metazoans—

including clonal colony formation in choanoflagellates and sporangia formation by hypertrophic 

syncytial growth in ichthyosporeans (Dayel et al., 2011; Suga and Ruiz-Trillo, 2013), thus expanding 

Figure 6. GO enrichment in sets of differentially expressed genes. Pairwise (Aggregative vs Filopodial, Cystic vs Aggregative and Cystic vs Filopodial) 

and one-versus-all comparisons are indicated. The significantly overrepresented GO categories (‘Materials and methods’) are shown for sets of 

overexpressed (green) and downregulated (red) genes and for genes with differential intron retention (gray). The number of genes included in each set 

is indicated with the same color code.

DOI: 10.7554/eLife.01287.012
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the potential starting ‘raw material’ available for the evolution of animal multicellularity. We note that 

the current evolutionary framework on the opisthokonts, based on phylogenomic analyses (Steenkamp 

et al., 2006; Ruiz-Trillo et al., 2008; Shalchian-Tabrizi et al., 2008; Torruella et al., 2012; Paps et al., 

2013), discards the possibility that C. owczarzaki (or choanoflagellates) derives from a more complex 

Figure 7. Pfam protein domain enrichment in sets of differentially expressed genes. Pairwise (Aggregative vs Filopodial, Cystic vs Aggregative and 

Cystic vs Filopodial) and one-versus-all comparisons are indicated. Significantly overrepresented Pfam domains (‘Materials and methods’) are shown for 

sets of overexpressed (green) and downregulated (red) genes and for genes with differential intron retention (gray). The number of genes included in 

each set is indicated with the same color code. Those Pfam domains mentioned in the text are shown in bold.

DOI: 10.7554/eLife.01287.013
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multicellular lineage. The sister-group of opisthokonts is the unicellular biflagellates Apusozoa, 

and complex multicellularity has not yet been observed in any of the non-metazoan holozoan 

lineages.

Furthermore, we show that the complex, metazoan-like genetic ‘toolkit’ of C. owczarzaki (Sebé-

Pedrós et al., 2010, 2011; Suga et al., 2012) is dynamically deployed during its highly-regulated 

life cycle, with upregulation of integrin adhesome and signalling genes linked to multicellularity in 

Figure 8. Expression of cell–ECM adhesion genes. (A) Barplot of the expression values of each gene in the different stages, showing overexpression 

of most components in the aggregate stage (orange). Asterisks indicate that the gene is significantly differentially expressed in both (two 

asterisks) or only one (one asterisk) pair-wise comparison (agg. vs fil. and agg. vs cyst.). Bars show standard error. (B) Schematic representation of 

the putative C. owczarzaki integrin adhesome and putative associated signalling proteins, colored according to overexpression in aggregates as 

shown in the barplot (dark orange, two asterisks; light orange, one asterisk; and white, no differences in expression). (C) Specific protein domain 

architectures for the fibronectin and DERM receptor tyrosine kinases (CAOG_01676 and CAOG_06673) and for the laminin protein (CAOG_07351).

DOI: 10.7554/eLife.01287.014
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metazoans during the aggregative stage. Extensive differential AS between the C. owczarzaki life 

cycle stages likely further contributes to the dynamic gene regulation observed in this species, 

with differential intron retention likely acting as an important mechanism in the control of transcript 

levels between life cycle stages, probably through triggering non-sense mediated decay (NMD). 

Our discovery of an exon network associated with tyrosine kinase genes in C. owczarzaki further 

adds to the metazoan-like features of this species. Together with genes resembling those that 

function in metazoan multicellular processes, the emergence of an exon network that functions in 

conjunction with differentially-regulated intron retention may have provided a degree of proteomic 

and regulatory complexity that was key in the evolution of cell type complexity in metazoans (Nilsen 

and Graveley, 2010). Based on the collective results from our investigation of C. owczarzaki, it is 

intriguing to consider that the integration of regulatory innovations involving differential expression 

Figure 9. Regulated alternative splicing in C. owzarzaki. (A) Plot of percentage of intron inclusion by intron in rank order for the three studied 

cellular stages. Filopodial (green) and cystic (blue) stages show higher intron retention levels than the aggregative stage (orange) (p<2.2e-16, 

Wilcoxon Rank Sum test). (B) Heatmap of PSIs of filopodial- and cystic-specific differentially retained introns across three replicates for each 

cellular stage. (C) Examples of stage-specific intron retention. (D) Intron length distributions for differentially retained introns in cystic (blue), 

filopodial (green), and weakly retained introns (gray). (E) Relationship between intron length and retention. Percentage of average intron retention 

in each of the three cellular stages for different bins of intron size. In the cystic stage, the percentage of intron retention increased with intron 

length.

DOI: 10.7554/eLife.01287.015

The following figure supplements are available for figure 9:

Figure supplement 1. Intron retention validation (see ‘Materials and methods’). 

DOI: 10.7554/eLife.01287.016
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and splicing of metazoan-like genes set the stage for the evolution of cell specialization in the common 

ancestors of metazoans and C. owczarzaki.

Materials and methods

Scanning electron microscopy
C. owczarzaki cells of the corresponding stage were fixed for 1 hr with 2.5% glutaraldehyde (Sigma-

Aldrich, St. Louis, MO, USA), and for another hour with 1% osmium tetroxide (Sigma-Aldrich), followed 

by dehydration in a graded ethanol series (25%, 50%, 70%, 99%) for 15 min per step, followed by three 

15-min rinses in 100% ethanol. Samples were critical-point dried in liquid CO2 using a BAL-TEC CPD 

030 critical-point drying apparatus. They were subsequently glued to SEM stubs with colloidal silver, 

sputter-coated with gold-palladium, and examined with a Hitachi S-3500N (Hitachi High-Technologies 

Europe GmbH, Krefeld, Germany).

Transmission electron microscopy
Cell aggregates were loaded into the copper tubes and immediately cryoimmobilized using a Self-

Pressurized Freezing System (EM SPF) (Leica-Microsystems, Vienna, Austria). The cells were then stored 

in liquid nitrogen until further use. Peeled copper tubes were freeze-substituted in anhydrous acetone 

containing 2% osmium tetroxide and 0.1% uranyl acetate at −90°C for 72 hr and warmed to room 

temperature, following a 2°C increase per hour in five consecutive steps (−60°C, −30°C, 0°C, 4°C, and 

room temperature) with a total of 8 hr at each temperature and using an EM AFS (Leica-Microsystems, 

Vienna). After several acetone rinses, samples were infiltrated with Epon resin during 7 days and 

embedded in resin and polymerised at 60°C during 48 hr. Ultrathin sections were obtained using a 

Leica Ultracut UC6 ultramicrotome (Leica-Microsystems) and mounting on Formvar-coated copper 

grids. The sections were stained with 2% uranyl acetate in water and lead citrate, and were observed 

in a Tecnai Spirit 120 kv electron microscope (FEI Company, Eindhoven, Netherlands) equipped with a 

Megaview III CCD camera.

Figure 10. Possible role for an Elav-like ortholog in the negative regulation of filopodial stage-specific dRIs. (A) Most significantly enriched motif in 

filopodial stage-specific dRIs, obtained by MEME. (B) Consensus motif obtained by CLIP-Seq data for an Elav-like member in mammals by Ince-Dunn 

et al. (2012) and that closely resembles the motif in (A). T∼U. (C) Expression (measured as cRPKMs) of CAOG_02177, a Elav-like ortholog from C. 

owczarzaki that shows lower expression in filopodial stage.

DOI: 10.7554/eLife.01287.017
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Cell culture conditions
C. owczarzaki cells were grown axenically in 5-ml flasks with ATCC medium 1034 (modified PYNFH 

medium) in a 23°C incubator. Three biological replicates (three independent cell lines) were generated 

by subculturing from a single-founding cell and grown for 2 months. Adherent filopodiated cells were 

obtained by initiating a new 1/100 sub-culture (from an approximately 5 × 106 cells/ml initial culture) 

and, after 3–4 days, cells were scratched from the substrate. Aggregate formation was induced by 

initiating a new 1/250 sub-culture (from an approximately 5 × 106 cells/ml initial culture) and by gentle 

agitation at 60 rpm during 4–5 days. Finally, floating cystic cells were obtained from a 14-day-old culture, 

starting from a new 1/100 sub-culture (from an approximately 5 × 106 cells/ml initial culture).

Aggregation experiments
Two different groups of cells (from two different starting cultures, 5 ml flasks with a cell density of 106 

cells/ml, consisting exclusively of adherent filopodial cells) were stained either with 75 nM (in PBS1x) 

Lysotracker Green DND-26 (Life Technologies, Carlsbad, CA, USA) or with 1 μM (in PBS1x) Chromeo 

Live Cell Mitochondrial Staining Kit (Active Motif Inc, Carlsbad, CA, USA). The cells were stained 

for 30 min at 23°C. After staining, 1/3 of the cells from the two differentially stained populations 

were mixed in a new culture flask and the remaining 2/3 of cells for each staining were kept as  

a control. All three cultures were grown for 2 hr and then the aggregate formation was induced 

(see above, ‘Results and Discussion’). After 8 hr, aggregates were visualized in poly-L-lysine cov-

ered (Sigma-Aldrich, St. Louis, MO) glass-bottom plates in a Leica TCS SP5 confocal microscope 

(Leica-Microsystems).

C. owczarzaki cell division was blocked using 100 mM hydroxyurea (Sigma-Aldrich) or 25 μg/ml 

aphidicolin (Sigma-Aldrich). The effect of both drugs was evaluated by following cultures treated 

with each drug during 7 days, using Neubauer chamber. The cells were cultured in 16-multiwell 

plates and with an initial density of 5 × 104 cells/ml. Once these conditions were established, dif-

ferent cultures were treated with each drug for 1 day and, then, aggregate formation was induced 

(see above). 2 days later, the formation of aggregates was visualized in poly-L-lysine covered (Sigma-

Aldrich) glass-bottom plates in a Leica TCS SP5 confocal microscope (Leica-Microsystems).

RNA-Seq and analysis
C. owczarzaki cells were grown in 5-ml flasks with ATCC medium 1034 (modified PYNFH medium) in a 

23°C incubator. Total RNA from each cell stage (and from three biological replicates from each stage) 

was extracted using Trizol reagent (Life Technologies). Nine libraries were sequenced over 2 lanes 

HiSeq 2000 instrument (Illumina, San Diego, CA, USA), generating a total of 197M 76-base paired 

Figure 11. Regulated exon-skipping in C. owzarzaki. (A) Examples of exon skipping. (B) Gene set enrichment analysis (GSEA) of the genes containing 

cassette exons that are differentially-regulated among cellular stages showing high enrichment for protein kinase-associated activities.

DOI: 10.7554/eLife.01287.018

The following figure supplements are available for figure 11:

Figure supplement 1. Exon Skipping validation by RT-PCR (‘Materials and methods’). 

DOI: 10.7554/eLife.01287.019
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reads. Reads were aligned to the reference genome using Tophat (Trapnell et al., 2012) with default 

options and specifying that this was a strand-specific sequencing, rendering an average mapping of 

90%. Significant differential expression was calculated by performing pairwise comparisons with 

DESeq (Anders and Huber, 2010) (threshold 1e-05), EdgeR (Robinson et al., 2010) (threshold 1e-05), 

CuffDiff (Trapnell et al., 2012) (threshold 1e-05) and NOISeq (Tarazona et al., 2012) (threshold 0.8) 

and only genes that appear to be significant at least in three out of the four methods were considered 

as differentially expressed. Quality control analyses of the data were performed using cummeRbund R 

package (Trapnell et al., 2012). These include count vs dispersion plot to estimate over-dispersion, 

density plot to assess the distributions of FPKM scores across samples and squared coefficient of 

variation plot to check for cross-replicate variability.

A gene ontology of C. owczarzaki’s 8637 genes was generated using Blast2GO (Conesa et al., 

2005) and GO enrichments of the different lists of differentially expressed genes (see above) were 

analyzed using Ontologizer (Bauer et al., 2008) using the Topology-Weighted method. A p-value 

threshold of 0.01 was used. The results from Ontologizer were loaded into Enrichment map cytoscape 

plug-in (Merico et al., 2010) to generate a network visualization. Pfam domains of all genes were 

analyzed using Pfamscan v26 with default Gathering Threshold, and counts were generated using 

custom Perl scripts. Fisher’s exact tests were performed using custom R scripts and a p-value threshold 

of 0.01 was used.

Alternative splicing analysis
Exon skipping and intron retention were analyzed as previously described (Curtis et al., 2012; Han 

et al., 2013). In short, for exon-skipping analyses, multifasta libraries of exon–exon junctions were 

built by combining all forward annotated splicing donors and acceptors. A minimum of eight base 

pairs was required at each boundary to assure specificity. Next, the number of effective mappable 

positions was calculated for each exon–exon junction, as previously described (Labbé et al., 2012; 

Barbosa-Morais et al., 2012). Then, RNA-seq reads (previously trimmed to 50 nucleotides and com-

bining each three replicates to increase read depth) were aligned to these sequences using Bowtie, 

with−m 1 −v 2 parameters (single mapping and two or fewer mismatches). Percentage of exon inclu-

sion was calculated and a minimal read coverage was required, as previously described (Khare et al., 

2012). For intron retention, a similar approach was taken for each contiguous intron–exon and exon–

exon junction, and percentage of intron inclusion (PSI, Percent Spliced In, the percentage of transcript 

for a given gene that contain the intron) was calculated as previously described (Curtis et al., 

2012). For comparisons among cellular stages, only events with enough read coverage in the three 

samples were considered (either (i) ≥10 reads in the exon–exon junction or (ii) ≥10 reads in one 

intron–exon junction and ≥5 in the other), and introns showing >95% inclusion in the three samples 

were discarded. To assess whether differentially retained introns in the same genes were included in a 

coordinated or in a combinatorial manner, mate information of read pairs was used. If each end of a 

read mapped to two different intron retention events, each end may be providing support for retention 

of both introns or splicing of both introns (coordinated regulation), or retention of one and splicing 

of another (combinatorial intron retention). For the 555 pairs of retained introns that had read 

mate information, 196 (35.3%) showed evidence for combinatorial regulation. Finally, for sequence motif 

enrichment analyses, full intron sequences were compared using MEME (Bailey et al., 2009).

RT-PCR
To validate AS analysis predictions, the three stages were induced (RNA-Seq and analysis sections) and 

RNA was extracted using Trizol reagent (Life Technologies). To eliminate genomic DNA, total RNA was 

treated with DNAse I (Roche, Basel, Switzerland) and purified using RNeasy columns (Qiagen, Venlo, 

Netherlands). For each stage, cDNA was produced from 1 μg of total RNA using SuperScript III reverse 

transcriptase (Life Technologies). Pairs of primers of similar melting temperature (60°C) and span-

ning the putative alternatively spliced segments were designed using Geneious software. PCR was 

performed using ExpandTaq polymerase (Roche).

Flow cytometry
C. owczarzaki cells were grown for 10 to 15 days, sampling every day from both the supernatant (to 

obtain floating cells, which after day 7 are completely encysted) and the scratched flask (to obtain  

filopodial adherent cells). Thus, two samples were obtained daily, for floating and adherent cells. For 

DNA-content analysis, a sample was fixed using 70% ethanol and stored at −20°C for one month. The 

http://dx.doi.org/10.7554/eLife.01287
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samples were subsequently fixed and stained with Propidium Iodide (as described in Darzynkiewicz 

and Huang, 2004) and DNA content estimated using FACScalibur flow cytometer (Becton Dickinson, 

Franklin Lakes, NJ, USA). For cell counting, 1 ml of fresh sample (one from the supernatant and one 

from the flask surface) was mixed in a BD Trucount Tube (Becton Dickinson), with a known number of 

beads, so absolute cell number counts could be calculated, using an LSR Fortessa flow cytometer 

(Becton Dickinson). Two replicate experiments (R1 and R2) were performed independently in order to 

confidently establish growth dynamics. Two measures were calculated from the DNA-content analysis. 

First, the proliferation rate, which indicates the proportion of number of cells in S and G2/M phases vs 

the number of cells in G0/G1. Second, the percentage of cells in S-phase.
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