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ABSTRACT

AKI is pathologically characterized by sublethal and lethal damage of renal tubules.

Under these conditions, renal tubular cell death may occur by regulated necrosis

(RN) or apoptosis. In the last two decades, tubular apoptosis has been shown in

preclinicalmodels and some clinical samples frompatientswithAKI.Mechanistically,

apoptotic cell death in AKI may result from well described extrinsic and intrinsic

pathways as well as ER stress. Central converging nodes of these pathways are

mitochondria, which become fragmented and sensitized tomembrane permeabilization

in response to cellular stress, resulting in the release of cell death–inducing factors.

Whereas apoptosis is known to be regulated, tubular necrosiswas thought to occur by

accident until recent work unveiled several RN subroutines, most prominently receptor-

interacting protein kinase–dependent necroptosis and RN induced by mitochondrial

permeability transition. Additionally, other cell death pathways, like pyroptosis and

ferroptosis, may also be of pathophysiologic relevance in AKI. Combination therapy

targeting multiple cell-death pathways may, therefore, provide maximal therapeutic

benefits.
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AKI is a multifactorial and multiphasic

renal disease characterized by a rapid

decline of renal function, resulting in the

accumulation of metabolic waste and

toxins and consequent complications

and failure of other organs. Clinically,

the causes of AKI mainly include sepsis,

ischemia-reperfusion (IR) injury, and var-

ious endogenous as well as exogenous

nephrotoxins. It is estimated that over 2

millionpeopledieofAKIeachyear around

the world,1 and the prevalence of AKI has

been increasing rapidly.1,2 AKI is also

known for its associationwith unacceptably

high rates of mortality. For example, in in-

tensive care units, AKI is associated with a

mortality rate of 50%–80%.Notably, even if

the patients survived, the post-AKI progno-

sis is dismal, with 7.5% requiring long-term

dialysis and 30%–70% developing compli-

cations, including CKD and ESRD. The an-

nual cost of AKI in the United States is

estimated to exceed $10 billion.3,4

Pathologically, AKI is characterized by

renal tubular damage, inflammation, and

vascular dysfunction. Injury and death of

tubular cells are especially recognized as the

precipitating factors in AKI, and as an ex-

tension, tubular repair andregenerationare

consideredmajor events in kidney recovery

from AKI.5–8 Although sublethal injury is

reversible, the death of tubular cells is ac-

companied by the inevitable loss of the

function of the affected cells, and notably,

it is also frequently the source of damage-

associated molecular patterns (DAMPs),

the stimulating and amplifying factors of

inflammation in tissue damage.9 In AKI,

various forms of cell death are noticeable:

necrosis and apoptosis. This review sum-

marizes the evidence for the various forms

of regulated cell death in AKI, delineates

their underlying mechanisms with an em-

phasis on the new insights, and puts forth

the perspectives of targeting cell death for

theprevention and therapyof kidney injury.

APOPTOSIS—THE CLASSIC VIEW

OF REGULATED CELL DEATH IN

THE KIDNEY

Evidence for Apoptosis in AKI

In 1992, Schumer et al.10 showed DNA

cleavage and nuclear condensation dur-

ing renal IR injury, showing the first ev-

idence of apoptosis in AKI. To date, the

initial observation has been confirmed

and extensively expanded. By morphol-

ogy, apoptotic cells are identified after

renal IR by electron microscopy and var-

ious nuclear staining methods.10–12 Bio-

chemically, renal IR leads to the activation
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of caspases and endonucleases.13,14 In ad-

dition, regulation of apoptotic genes, in-

cluding caspases and Bcl-2 family proteins,

has been shown.13–16

TUNEL staining and the evalua-

tion of in vivo cell death. TUNEL has

been widely used within the last two

decades to evaluate cell death in tis-

sues. Indeed, most dead cells stain

positive for TUNEL, because double-

strand breaks are found in most

programmed cell death. Obviously,

TUNELpositivity is found in apoptotic

cells, but in contrast to the widespread

belief, TUNEL positivity is not limited

to apoptosis, because the cells of reg-

ulated necrosis are TUNEL-positive

as well.173 Therefore, detection of ap-

optosis requires additional staining

(e.g., cleaved caspase 3 [also referred to

as activated caspase 3]) either fromtissue

lysates in Western blot assays or im-

mhunohistochemically. The difference

between TUNEL staining and positivity

for cleaved caspase 3might even be used

to quantify the amount of regulated ne-

crosis in tissues,173 but it cannot further

specify the precise pathway of regulated

necrosis.174 To further distinguish nec-

roptosis from apoptosis, one emerging

marker for the direct detection of nec-

roptosis is an mAb that detects phos-

phorylated MLKL.114 This antibody,

however, only detects human phos-

phorylated MLKL.

Apoptosis is also well recognized in

AKI induced by various nephrotoxins.

For example, cisplatin is a widely used

cancer therapy drug with a major side

effect of nephrotoxicity, which limits it

therapeutic efficacy.17,18 Depending on

the dosage, cisplatin induces both necro-

sis and apoptosis in renal tubular cells in

vitro as well as in vivo in animal models.

Apoptosis is shown by cell morphology,

caspase activation, and terminal deoxynu-

cleotidyl transferase–mediated digoxigenin-

deoxyuridine nick-end labeling (TUNEL)

assay of DNA damage. Renoprotection

against cisplatin nephrotoxicity is associ-

ated by the suppression of tubular cell

apoptosis,19–24 further supporting the

involvement of apoptosis in cisplatin-

induced renal injury. In human kidneys

of sepsis-associated AKI, tubular cell ap-

optosis is detected by TUNEL and acti-

vated caspase 3 staining.25 Of note, in

some of the previous studies, apoptosis

was detected in kidney tissues by a single

method, such as TUNEL assay, which

may be questionable for its specificity

of apoptosis (Box).

In addition, although tubular apo-

ptosis has often been reported in various

models of AKI, the upstream signaling

pathways leading to apoptosis in these

models can be very different. For example,

distinct pathogenic mechanisms may be

responsible for apoptosis in ischemic and

cisplatin nephrotoxic AKI.26,27

In AKI, apoptotic cells are shown in

both cortical and medullary regions. In

renal tubules, apoptosis occurs in prox-

imal tubules, distal tubules, and tubular

cells of the Henle’s loop.10,12,28–36 Nu-

merous renoprotective agents seem to

ameliorate AKI, at least in part, by

diminishing tubular apoptosis. For ex-

ample, minocycline, a tetracycline de-

rivative, blocks apoptosis during renal

IR, which is accompanied by the ame-

lioration of ischemic renal injury and

renal failure.28,37 Remarkably, deletion

of apoptotic genes specifically from

proximal tubules results in marked de-

creases in apoptosis and protection

from both ischemic and nephrotoxic

AKI.38,39 Together, these studies show

an important role of tubular cell apo-

ptosis in AKI.

Main Pathways of Apoptosis in AKI

Apoptosis can be initiated through sev-

eral pathways (Figure 1). In the intrinsic

pathway, cell stress directly leads to mito-

chondrial outer membrane permeabiliza-

tion (MOMP), resulting in the release of

apoptogenic factors, including cyto-

chrome c, that then bind Apaf-1 to acti-

vate caspase 9. In the extrinsic pathway,

ligation of death receptors leads to the re-

cruitment of adapter proteins and subse-

quent activation of caspase 8.40 Under

endoplasmic reticulum (ER) stress, caspase

12 is activated,41 and more recent studies

suggested that caspase 2 can be an initiator

caspase for apoptosis.42

All aforementioned apoptotic path-

ways have been implicated in AKI. The

extrinsic pathway of apoptosis mediated

by TNF-a and Fas may contribute to tu-

bular cell loss in ischemic and septic

AKI.43–45 Consistently, TNF-a receptor

knockout mice are resistant to cisplatin

AKI, further supporting the involvement

of the TNF-a–mediated extrinsic path-

way in the pathogenesis of AKI.46 In is-

chemic and cisplatin nephrotoxic AKI,

ER stress activation has been documen-

ted, but definitive evidence for the in-

volvement in ER stress–related apoptosis

has yet to be shown.47,48 In contrast, the

role played by the intrinsic pathway of

apoptosis in AKI has been shown con-

vincingly. In 1998, evidence of the acti-

vation of the intrinsic pathway in AKI

was shown by using the experimental

model of hypoxic incubation of renal tu-

bular cells.49 In this model, cytochrome

c is released frommitochondria followed

by caspase activation and tubular cell

apoptosis. Importantly, the activation

of Bax and Bak, two proapoptotic Bcl-2

family proteins, was later confirmed to

be key to the mitochondrial leakage or

MOMP.49–51 In animals, MOMP associ-

ated by cytochrome c release was shown

during ischemia and cisplatin nephro-

toxic AKI.33,37,52 The critical roles of

Bax and Bak in AKI have been shown

recently using global and proximal tubule–

specific gene knockoutmodels.39Notably,

in humans, mitochondrial damage by Bax

and Bak seems to be a key to apoptotic cell

death in kidneys injured by ischemia.53,54

Upregulation of Bcl-2 either pharmacolog-

ically or by gene transfection consistently

blocks Bax and Bak activation, resulting in

the preservation ofmitochondrial integrity

and cell viability and further supporting a

critical role of the intrinsic pathway of ap-

optosis in tubular injury in AKI.28,49–51

Mitochondria and Bcl-2 Proteins:
Central Players in Apoptosis

Despite the different initiation mecha-

nisms,most (if not all) apoptoticpathways

converge on mitochondria (Figure 1). Al-

though the extrinsic pathway of apoptosis

is initiated by ligand binding of death re-

ceptors, caspase 8 (after being activated in

this pathway) can activate the intrinsic
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pathway of apoptosis through Bcl-2 fam-

ily proteins.55,56 Mitochondria also play

an important role in apoptosis initiated

by ER stress and caspase 2.57,58 Thus, mi-

tochondrial damage characterized by

MOMP is considered a central control

point of apoptosis.59,60

At the molecular level, Bcl-2 family

proteins are the key regulators of mito-

chondrial integrity. Defined by the pres-

ence of Bcl-2 homology (BH) domains,

Bcl-2 family proteins can be proapoptotic

or antiapoptotic.59,61–63 Specific func-

tions of individual Bcl-2 proteins are

dictated by the organization of the BH

domains. Accordingly, antiapoptotic

members, like Bcl-2 and Bcl-XL, usually

contain four BH domains. Proapoptotic

members can be further divided into

two groups: multi-BH domain proteins,

such as Bax and Bak, and BH3-only pro-

teins, such as Bid and PUMA.59,61–63

Antiapoptotic Bcl-2 proteins protect

cells by preserving the integrity of mito-

chondria, whereas the proapoptotic

molecules kill cells by permeabilizing

the organelles.59,61–63 Notably, Bax and

Bak provide a requisite gateway to mito-

chondrial injury in various apoptotic

models.64 Deletion of Bax and/or Bak

consitently leads to a marked resistance

to tubular apoptosis in AKI.39,65

Despite the significance of Bax and

Bak in mitochondrial injury during ap-

optosis, the mechanism underlying their

activation remains elusive. Normally,

Bax is cytosolic, whereas Bak resides on

the mitochondrial outer membrane. On

cell stress or apoptosis, Bax translocates

to mitochondria, inserts to the outer

membrane, and forms oligomers. Mean-

while, Bak is also activated to oligomerize.

Bax activationmay involve the interaction

with specific proteins, such as Bid, p53,

humanin, 14-3-3 protein, ku70, and

Bif-1.66–72 In renal tubular cells, Borkan

and colleagues73 have recently shown the

interaction of nucleophosmin with Bax,

which seems to be critical to Bax activa-

tion during metabolic stress in vitro and

ischemic AKI in vivo. As discussed below,

the activation of Bax and Bak also

involves a striking change of mitochon-

drial morphology and consequent alter-

ations of the membrane property.

Mitochondrial Dynamics in

Apoptosis and AKI

Mitochondrion, of the Greek mito for

thread and chondro for grain, assumes

distinct morphologies. Recent research has

further revealed that mitochondria are a

class of highly dynamic organelles.74,75

Whether mitochondria display a filamen-

tous morphology or punctiform is deter-

mined by two opposing processes: fission

and fusion. Accordingly, fusion of mito-

chondria promotes a filamentous network,

whereas fission fragments mitochondria

into short rods or spheres. In mamma-

lian cells, mitochondrial fusion involves

mitofusin-1,mitofusin-2,andOPA1,whereas

fission depends onDrp-1, Fis-1, and others.

In2001,Youleandcolleagues76 reported

that mitochondrial dynamics are lost

on cell stress or apoptosis, leading to the

fragmentation of mitochondria. Impor-

tantly, inhibition of mitochondrial frag-

mentation blocks cytochrome c release

and apoptosis. In vivo in diseases, the

role of mitochondrial fragmentation was

first suggested by using experimental

models of ischemic and cisplatin nephro-

toxic AKI. Under these conditions, Drp1

translocates tomitochondria,which is fol-

lowed by sequential events of mitochon-

drial fragmentation, Bax/Bak activation,

cytochrome c release, caspases activation,

and apoptosis. Blockade of Drp1 pharma-

cologically or genetically preserves the fil-

amentous morphology of mitochondria,

resulting in the suppression of tubular cell

apoptosis and amelioration of AKI.77

Figure 1. Pathways of apoptosis. In the intrinsic apoptotic pathway, cellular stress leads to
the oligomerization of Bax and Bak, an event that permeabilizes the mitochondrial outer
membrane, resulting in the release of apoptogenic factors, including cytochrome c (Cyt.c).
In the cytosol, Cyt.c binds Apaf-1 to recruit and activate caspase 9, which further cleaves
and activates executioner caspases, such as caspase 3. In the extrinsic apoptotic pathway,
ligation of death receptors leads to the recruitment of adapter proteins and subsequent
activation of caspase 8, which further activate executioner caspases and prevent necroptosis
(Figure 4). Active caspase 8 also cleaves Bid to its truncated form tBid, which translocates to
mitochondria to activate the intrinsic pathway to amplify the apoptotic cascade. In the ER
stress pathway, caspase 12 mediates the activation of executioner caspases. ER stress may
activate the intrinsic apoptotic pathway through Ca2+ signaling and the induction of proa-
poptotic Bcl-2 family proteins, such as PUMA. IP3R, inositol trisphosphate receptor.

J Am Soc Nephrol 25: 2689–2701, 2014 Cell Death in AKI 2691

www.jasn.org BRIEF REVIEW



These findings have been extended to

other disease conditions, such as IR injury

in the heart and brain,78,79 supportingmi-

tochondrial fragmentation as a general

pathogenic mechanism.

Mitochondrial fragmentation is the

result of the disruption of mitochondrial

dynamics. On cell stress, Drp-1 is acti-

vated (as indicated by its translocation

to mitochondria) to accelerate fission.

The regulation of Drp1 involvesmultiple

post-translational modifications. Inmod-

els of AKI, Drp1 is rapidly dephosphory-

lated in renal tubular cells, likely through

calcineurin family phosphotases.80 Pre-

vention of Drp1 dephosphorylation by

calcineurin inhibitors can partially block

mitochondrial fragmentation, cytochrome

c release, and apoptosis, supporting a role

of the dephosphorylation in Drp1 activa-

tion and mitochondrial fission.80 Interest-

ingly, mitochondrial fragmentation not

only involves hyperactivation of fission

but also, depends on the arrest of fusion.

Intriguingly, fusion arrest is governed by

the interaction of mitofusins with Bak.81

Normally, Bak binds both mitofusin-1

and mitofusin-2. On cell stress or apopto-

sis, Bak dissociates from mitofusin-2 and

binds mitofusin-1 at a higher affinity.

Remarkably, a Bak mutant incapable of

dissociating from mitofusin-2 cannot

induce mitochondrial fragmentation,81

suggesting that Bak contributes to mito-

chondrial fragmentation by switching its

binding from mitofusin-2 to mitofusin-1

(Figure 2). This key finding has been con-

firmed in experimentalmodels of oxidative

lung injury.82 A role of Bak in mitochon-

drial fragmentation has further been

shown in vivo in AKI models by using

gene knockout mice.39 Thus, mitochon-

drial fragmentation is a combined result

of fission activation by Drp1 and fusion

arrest mediated by Bak interaction with

mitofusins.

Of note, mitochondrial fragmenta-

tion is initially reversible; in other words,

fragmented mitochondria can refuse if

the insult is removed from the cell in time.

Then how can mitochondrial fragmenta-

tion, a seemingly morphologic change, af-

fectmitochondrial injury? The answermay

be in the changes of mitochondrial mem-

braneproperties that occur as a result of the

loss ofmitochondrial dynamics. It has been

shown that fragmented mitochondria

are sensitized to Bax insertion and oligo-

merization.83 Thus, mitochondrial frag-

mentation may participate in apoptosis

by facilitating Bax insertion and oligomer-

ization, resulting in outer membrane per-

meabilization and leakage of apoptogenic

factors, such as cytochrome c. In addition,

mitochondrial fragmentation may con-

tribute to mitochondrial permeability

transition (MPT) at the inner membrane,

resulting in necrosis (Figure 2). In kidneys,

mitochondrial fragmentation as a result

of the disruption ofmitochondrial dynam-

ics contributes to not only AKI but also

other renal diseases, including diabetic

nephropathy.84,85

REGULATED NECROSIS

Necrosis is distinguished from apoptosis

by the breakdown of the integrity of the

plasmamembrane. As such, necrotic cell

death is accompanied by the release of

unprocessed intracellular content, in-

cluding cellular organelles, highly im-

munogenic proteins, like IL-33, F-actin,

ATP, IL-1a, andHMGB1, double-stranded

DNA, andRNA.86These proimmunogenic

cellular components are collectively

Figure 2. Mitochondrial dynamics in apoptosis. Under normal in vivo conditions, Bax and
Drp1 are located within the cytosol, whereas Bak is at the mitochondrial outer membrane,
where it binds both mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2) to maintain mitochondrial
fusion, ensuring its filamentous morphology. On cellular stress, Drp1 translocates to mi-
tochondria, where it forms a restriction ring to activate the cleavage of the organelles;
meanwhile, Bak dissociates fromMfn2 to bind Mfn1, which leads to an arrest of fusion and
mitochondrial fragmentation. Fragmented mitochondria are more sensitive to Bax oligo-
merization, resulting in outer membrane permeabilization followed by the release of
apoptogenic factors, such as cytochrome c (cyt.c), to activate the intrinsic apoptotic
pathway. In addition, mitochondrial fragmentation may also contribute to MPT, leading to
necrosis.
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referred to as DAMPs.86,87 The dynamics

of DAMP release in the kidney have re-

cently been shown by intravital micros-

copy.88 Although originally thought to be

accidental, recent work has revealed several

pathways of genetically determined and

regulated necrosis89,90 (Figure 3), and we

are beginning to understand the relative

contribution of these pathways with pre-

sumably overlapping function (see below).

On the molecular level, the best character-

ized pathway of regulated necrosis is nec-

roptosis, an receptor-interacting protein

kinase–based necrotic cell death.91

Necroptosis—a Paradigm Shift

The in vivo relevance of necroptosis has

been undoubtedly clarified by the rescue

of caspase 8–deficient mice by ablation

of receptor-interacting protein kinase

3 (RIPK3).92,93 Whereas caspase 8–

deficient mice die at day 10.5 in utero and

RIPK3-deficient mice have been described

without phenotype,94 caspase 8/RIPK3

double-deficient mice are born at expec-

ted Mendelian frequencies and show a

phenotype that was previously described

as lymphoproliferation or generalized

lymphoproliferative disease in mice that

carry mutations in the Fas-Fas ligand

pathway.92,93 From these groundbreaking

experiments, it became obvious that the

most important function of caspase 8 is

the prevention of necroptotic cell death

by a caspase 8/FLIP long heterodimer93,95

rather than the induction of either apopto-

sis by the caspase 8 homodimer96,97 or in-

flammation, possibly mediated by single

caspase 8 molecules.98 In addition, from

these studies, an in vivo model emerged

that allows for direct investigation of mice

deficient in extrinsic (receptor-mediated)

apoptosis.

The signaling pathway of necroptosis

has been reviewed in detail recently.90,99

Briefly, the main events that trigger nec-

roptosis are engagement of death receptors

in the presence of caspase inhibition,100,101

stimulation of Toll-like receptors,92,102

signaling through interferons,103,104 or

recognition of intracellular viruses by the

protein DAI.105,106 Any of these initial trig-

gers uses an receptor-interacting protein–

homotypic interacting motif (RHIM)

domain to activate the kinase RIPK3,

an essential mediator of necroptosis,107–109

which itself contains an RHIMdomain and

phosphorylates the downstream pseudo-

kinase110 mixed lineage kinase domain–like

(MLKL).111,112 Phosphorylation of MLKL

by RIPK3 leads to a molecular switch

mechanism,which exposes theN-terminal

portion of MLKL113 to induce plasma

membrane rupture.114

In the kidney, necroptosis was first

suggested inrenal ischemicAKIbyshowing

a protective effect of necrostatin-1 (Nec-1),

an inhibitor of RIPK1 (the bona fide up-

stream activator of RIPK3 in the necropto-

sis pathway) (Figure 4).115 Other groups

have subsequently confirmed a role for

Nec-1 in tubular cells,116–118 and the pro-

tectionofRIPK3-deficientmicewas shown

in ischemic and cisplatin-induced AKI.27

Importantly, caspase 8/RIPK3–double

knockout mice did not provide additional

protection in the ischemicmodel but did in

the cisplatin model, suggesting that, unlike

previously suggested,119 extrinsic apoptosis

may be of minor importance in IR injury

but significantly contributes to cisplatin-

induced AKI.27 This assumption is further

underscored by the absence of a protective

effect of the pancaspase inhibitor zVAD in

the model of IR injury,115 whereas zVAD

does prolong overall survival after a lethal

bolus of cisplatin.27 In support of this con-

cept, cyclosporin-mediated tubular dam-

age120 or contrast-mediated AKI121 have

been reported to be prevented by Nec-1.

It should be mentioned, however, that, in

these two cases, a clear detection of cell

death failed and that it cannot formally

be excluded that Nec-1, other than its ob-

vious effects on necroptotic cell death,

might also affect peritubular blood flow

by uncharacterized means. In this sense,

it is noteworthy that the highest expression

of RIPK3, which is thought to indicate the

Figure3. Necrotic cell death in renal tubular epithelial cells. Four-phasemodel of necrosis-
associated release of DAMPs. (A) Tubular epithelial cell layer under physiologic conditions.
(B) On induction of regulated necrosis as the common mechanism of several distinct in-
tracellular signaling pathways, individual cells begin to swell on specific genetically-
determined intracellular programs that decode for regulated necrosis (like necroptosis,
MPT-mediatedregulatednecrosis,pyroptosis,or ferroptosis). (C)Severeswellingoftheluminal
part of a tubular cell that undergoes regulated necrosis. (D) Plasma membrane rupture as-
sociated with DAMP release. Regulated necrosis might, therefore, trigger subsequent detri-
mental immune responses that cause additional organ damage beyond the primary loss of
function from cell death. In transplanted organs, a classic setting for IR injury, DAMPs released
from necrotic cells might trigger rejection, despite the state of immunosuppression.
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cellular sensitivity of necroptosis,108 was

found in glomerular endothelial cells

rather than tubular cells.115

Recently, RIPK3-deficient mice have

beeninvestigatedinthemodelofadriamycin

(ADR)-induced podocytes injury.122 As

expected from previous investigations on

the level of RIPK3 expression in podocyte

cell lines,115RIPK3deficiency did not pre-

vent ADR-induced proteinuria compared

with wild-type mice but strongly pro-

longed overall survival in this model, un-

less the highest concentrations of ADR

were used. Obviously, ADR-induced le-

thality depends on necroptosis, but it

must be concluded that survival in this

model is not dependent on podocyte in-

jury, questioning the usefulness of this sur-

vival readout for podocyte damage. Taken

together, necroptosis has, therefore, been

shown to be critically involved in nephro-

toxicity of cisplatin, cyclosporin, and ADR

as well as, most notably, renal IR injury

and kidney transplantation.

Necrosis by Mitochondiral

Permeability Transition

Mitochondria are of outstanding interest

and significance in cell death research.123,124

As outlined above, MOMP is regarded as

the point of no return in the life and death

decision during apoptosis.123,125 Interest-

ingly, mitochondrial dysregulation, particu-

larly in the form of MPT, is also capable of

inducing necrotic cell death126 (Figure 2).

MPT is a process that leads to the sudden

exchange of solutes between the cytosol

and the mitochondrial matrix through

an elusive MPT pore (MPTP) that spans

both the inner and outer mitochondrial

membranes. The molecular composition

of theMPTP remains elusive and amatter

of debate.126–128 It is, however, generally

accepted that the opening of the MPTP is

regulated by thematrix protein cyclophilin

D (CypD). In line with this finding, CypD-

deficient mice have been shown to be

protected from ischemic AKI.27,129,130

In addition, these mice are protected

from cisplatin-induced AKI.27 Precise

mechanisms about the regulation of the

CypD-mediated opening of the MPTP re-

main unclear. In this regard, p53 has re-

cently been suggested to be involved,131,132

but such reports are under debate.133 MPT

Figure 4. Model of the integrated molecular signaling pathways of regulated necrosis in
renal tubular cells. Four separate pathways of regulated necrosis may contribute to the
overall organ damage inAKI. The commondownstreammechanism that precedes necrotic
cell death is apical swelling, which ultimately induces plasmamembrane rupture as recently
shown by intravital microscopy. RIPK1/RIPK3-dependent necroptosis has been extensively
investigated in the kidney and is triggered by death receptors. RIPK3 is activated by
phosphorylation and in turn, phosphorylates the pseudokinase MLKL, which has been
suggested to be involved in the opening of plasma membrane calcium channels. Calcium-
activatedchlorideandsodiumchannelsmaysubsequentlyopentoincreaseNaClpermeability,
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was long known to be potentially targeted

by either cyclosporin or sanglifehrin A in

vitro and in vivo,27,134–136 and such effects

might be of outstanding clinical im-

portance, because trials have revealed a

cyclosporin-sensitive role for MPT in

myocardial infarction137; however, unfor-

tunately, larger follow-up studies are still

lacking. In addition, it is worth mention-

ing that there is yet another pathway of

regulated necrosis called parthanatos89

because of its dependency on the nuclear

protein PARP1.90 The in vivo relevance of

parthanatos has been made very clear in

both unilateral urethral obstruction and

ischemic AKI.138,139 Future work on the

potential overlay of parthanatos with

MPT will be extraordinary helpful for

untangling the complex web of inter-

connected pathways of regulated necrosis.

Pyroptosis—Maximal

Immunogenicity of Necrosis
Pyroptosis is a necrotic-type cell death

that was thought to occur exclusively in

macrophages,140,141 but recent reports

find comparable features in T lympho-

cytes,142 neurons,143 and tubular epithe-

lial cells.144–147 The unique feature of

pyroptosis comparedwith other pathways

of regulated necrosis is the maturation of

proinflammatory cytokines during the

cell death process,148–150 which depends

on cleavage mediated by nonapoptotic

caspases. Many of the in vivo studies

on pyroptosis have been performed in

caspase 1–deficient mice, which have

been described to carry a passenger muta-

tion that functionally renders them caspase

1/11 double-deficient.151 It was not until

the report of caspase 11–deficient mice

that it was realized that caspase 11mediates

the pyroptotic cell death, whereas caspase 1

is thought to be mainly responsible for

pro–IL-1b and pro–IL-18 cleavage.90

How caspase 11 mediates the downstream

molecular events required for pyroptosis

remains unclear, but in some similarity to

necroptosis, it is speculated that plasma

membrane channels are involved in the

terminal cellular swelling.140 Caspase

11–deficient mice have not yet been stud-

ied in kidney diseases, includingAKI; how-

ever, there are in vitro data pointing to this

direction.145 Pyroptosis may be targeted by

caspase inhibitors or cytokine response

modifier A in the case of caspase 1.152

Ferroptosis—Iron-Dependent

Necrosis

While searching for novel ways to kill

tumor cells, Stockwell and colleagues153

identified a compound named erastin

that induces necrotic cell death in highly

resistant RAS-transformed cancer cells.

Following this path, the previously un-

recognized pathway of regulated necro-

sis turned out to be dependent on iron

and was found to involve glutathione

metabolism. A plasmamembrane Cys/Glu

exchanger (termed system Xc-minus)

was identified to fuel cells with cysteine,

which enables glutathione synthesis

required for the reactive oxygen species–

eliminating action of glutathione perox-

idase 4.154 This enzyme removes H2O2

to prevent intracellular lipid peroxida-

tion, which might directly affect,

among others, lysosomal membranes

and lead to lysosomal membrane perme-

abilization. With the detection of these

molecular events, ferroptosis turned out

to be a druggable pathway of regulated

necrosis through the interference with

the small molecule ferrostatin-1.155 With

respect to kidney tubular cells, first results

from kidney tubular cell lines treated with

tert-butylhydroperoxide116 and freshly

isolated tubules challenged with iron

and hydroxyquinoline in the presence of

ferrostatin-1 strongly increased cellular sur-

vival.156 Additional light has been shed on

the role of iron in the pathophysiology of

AKI from experiments using proximal tu-

bular cell–specific ferritin heavy chain–

deficient mice, which were shown to be

sensitive to cisplatin-induced AKI and

rhabdomyolysis-induced AKI.157 In addi-

tion, renal cell carcinomas were by far the

most sensitive in a panel of 60 cancer

cell lines from eight tissues tested with

erastin.154 Therefore, ferroptosis is one

of the promising therapeutic targets, espe-

cially in diseases dominated by kidney

tubular necrosis,90,158 like ischemic, cis-

platin nephrotoxic, and rhabdomyolysis-

induced AKI.159 In some of these

models, iron chelators have been inves-

tigated long before the detection of

ferroptosis, but those compounds, such

as desferoxamine, never made it into the

clinical routine, despite considerable effects

in ex vivo experiments with kidney tu-

bules. It will, therefore, be of importance

to re-evaluate renal data generated with

desferoxamine in light of the molecular

understanding of ferroptosis.

whichmay then cause water influx, cellular volume expansion, and plasmamembrane rupture. Ca2+ from this source and othersmight also
be involved inMPT, which directly causes regulated necrosis by unknownmeans. MPT and necroptosis have been clearly shown to exhibit
two separate pathways in AKI. Inhibition of the cell surface cystine/glutamate antiporter system Xc-minus depletes intracellular cystine,
which is reduced to cysteine on the intracellular side and together with glycine and glutamate, required for the synthesis of glutathione
(GSH). Permanent hydrogen peroxide (H2O2) synthesis, especially in stressed cells, requires the GSH-dependent activity of glutathione
peroxidase 4 (GPX4) to prevent H2O2-mediated lipid peroxidation followed by necrotic cell death. Finally, Toll-like receptors (TLRs) are
activated by DAMPs or pathogen-associated molecular patterns (PAMPs) and crystals. TLRs activate inflammasomes, which induce
caspase 1–dependent maturation of the proinflammatory cytokines IL-1b and IL-18. In parallel, inflammasomes trigger caspase 11–
mediated cellular swelling and necrotic cell death, which is referred to as pyroptosis. The combination of DAMP release by necrosis and
cytokine maturation renders pyroptosis an even higher immunogenic entity compared with the other pathways of regulated necrosis.
Necroptosis can be prevented by the RIPK1 inhibitor Nec-1, its more stable variant, or the human-specific MLKL inhibitor necrosulfon-
amide (NSA). MPT can be inhibited by cyclosporin (CsA) or sanglifehrin A (SfA), ferroptosis is blocked by the small molecule ferrostatin-1
(Fer-1), and broad spectrum caspase inhibitors (e.g., zVAD-fmk) interfere with pyroptosis signaling. C. rodentium,Citrobacter rodentium;
cys, Cysteine; E. coli, Escherichia coli; glu, glutamate; L pneumophila, Legionella pneumophila; V. cholerae, Vibrio cholerae.
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RELATIONSHIP BETWEEN

APOPTOSIS AND REGULATED

NECROSIS

As discussed above, apoptosis and regu-

lated necrosis are characterized by dis-

tinguished morphologic, cell biologic,

and biochemical features. However,

these two forms of regulated cell death

are not mutually exclusive, and in many

pathologic conditions, including AKI,

apoptosis andnecrosis coexist. It remains

unclear as to what determines if a given

cell will die by apoptosis or necrosis.

Apoptosis has been discussed to cause

secondary necrosis. However, apoptotic

cells may break down their plasma mem-

braneduringprolonged injury, displaying a

necrotic morphology in vitro. In vivo, apo-

ptotic cells and their debris are thought

to be rapidly removed by phagocytic

cells.160–163 However, traditional apoptotic

signaling, when intercepted, may be diver-

ted to necrosis. This result is well exempli-

fiedbynecroptosis, inwhichdeath receptors

are activated but caspase 8 is blocked by

pharmacologic or viral inhibition,89,90 re-

sulting in RIPK3-mediated phosphoryla-

tion of MLKL and necroptosis.

Apoptosis and regulated necrosis may

also interact at various molecular and

cellular levels. Clearly, as presented above,

both formsof cell death involvepathologic

changes in mitochondria. Moreover, Bax

is known as a classic proapoptotic Bcl-2

protein that permeabilizes mitochondrial

membrane to release apoptotic factors for

intrinsic apoptosis. However, Bax has re-

cently been implicated in the regulation of

MPT-related necrosis by affecting mito-

chondrial dynamics.164 In AKI, the in-

volvement of Bax in necrosis may depend

on experimental models. Although Bax-

null mice showed less tubular apoptosis

and necrosis in cisplatin nephrotoxic

AKI,65 Bax ablation only has significant

effects on tubular apoptosis in ischemia

AKI.39 Recent work also showed that

RIPK3, the key player in necroptosis, is

capable of promoting apoptosis when

the kinase function of RIPK3 is lost in

vivo165 or in complex in vitro settings, in

which cellular inhibitors of apoptosis or

the kinase TAK1 are inhibited.166,167 Fol-

lowing this thought, the effectiveness of

RIPK3 kinase inhibitors seems to depend

on the interaction between RIPK1 and

RIPK3 through their RHIM domains.102

Although these interactions between apo-

ptosis and necroptosis have been worked

out in detail, very limited data are avail-

able on the interaction between apoptosis

and other pathways of regulated necrosis,

especially pyroptosis, which is hard to in-

vestigate because of the limited specificity

of caspase inhibitors168 and the dependency

of both of these pathways on caspases.90 It

is important to understand the complex

interplay of the pathways of regulated cell

death, especially with the therapeutic idea

to target these pathways.

In AKI, very limited information is

available on functional or morphologic

consequences of interference with apo-

ptosis on other pathways of regulated cell

death or vice versa.115 Moreover, the re-

lationship between various forms of cell

death in AKI remains to be examined.

However, regardless the etiology, AKI is

known to involve mixed forms of regu-

lated cell death, and, as presented above,

suppression of one form of cell death

may have significant renoprotective ef-

fects, which nonetheless, are mostly in-

complete. The contributions of different

forms of cell death in AKI also depend

on the nature (ischemic, nephrotoxic, or

septic AKI) and severity of the injury. It

is important to understand the relative

contributions and the potential redun-

dancy of the cell-death pathways to

guide the therapeutic strategies for AKI

therapy as well as consider the obvious

immunologic consequences on the basis

of the release of DAMPs from necrotic

cell death.169

TARGETING RENAL CELL DEATH

FOR AKI THERAPY

To date, .1400 PubMed-listed studies

on “apoptosis and kidney” or “apoptosis

and renal” have been published; unfor-

tunately, no apoptosis-targeting ap-

proach has beenmade into clinical routine

in any field (not restricted to the preven-

tion of AKI). Unquestionably, apoptosis is

involved in pathologic conditions in kid-

neys, notably AKI, but whether apoptosis

significantly contributes to functional or-

gan failure was recently questioned, be-

cause caspase inhibitors (zVAD-fmk,

q-VD, and zIETD-fmk) are not efficacious

in blocking AKI.27,115 In addition to inhib-

iting caspases, these inhibitors may affect

other cell-death/survival-regulatory path-

ways, such as autophagy.170 Moreover, at

least for death receptor–independent in-

trinsic apoptosis, inhibition of caspases is

at a downstream level of apoptosis, and

without blocking upstream apoptotic

events, such as those at mitochondria, the

viability of renal tubular cells is ultimately

lost. In this regard, intrinsic apoptosis is

not completely prevented in the presence

of caspase inhibitors, like q-VD,171 which

raises important questions as to how to

target apoptosis for the prevention and

treatment of AKI. It is noteworthy that,

in AKI, apoptosis does not occur immedi-

ately or at one time point; rather, it persists

in kidney tissues for days to weeks after in-

jury. For example, in ischemicAKI inmice,

tubular apoptosis starts a few hours after

reperfusion, reaches the maximal level at

24–48 hours, and lasts for days. Thus, ap-

optosis, like regulated necrosis, is a contin-

uous process in the disease condition.

Accordingly, apoptosis is detected in a rel-

atively low percentage of tubular cells in a

snapshot fashion or at any given time

points. Nonetheless, the cumulative num-

ber of apoptotic cells may become remark-

able. In most clinical settings of AKI,

patients have passed the initial injury

phase; if tubular apoptosis was still occur-

ring at the time of diagnosis, there would

be a chance for apoptosis-targeting therapy

toprevent additional deteriorationof tissue

and renal function and time for kidney re-

pair. Additional in vivo investigations with

techniques, such as intravital microscopy,

may gain insights into the dynamics of ap-

optosis in AKI, and,more importantly, up-

stream apoptotic events should be targeted

for effective therapy.

Obviously, as outlined in detail above,

apoptosis is clearly involved in several

pathologic conditions in the kidney, but

significant prevention of the primary

pathology seen in most preclinical con-

ditions of AKI, necrosis, and functional

markers of AKI has not been reproduc-

ibly reported through the addition of
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inhibitors of apoptosis. This finding is in

line with the low levels of detection of

cleaved caspase 3 in lysates taken from

injured kidneys and rarely cleaved cas-

pase 3–positive cells in immunohisto-

chemistry. When it was realized in 2005

that regulated necrosis might serve as a

therapeutic target by the identification of

Nec-1,172 high hopes were raised for

necroptosis-targeting strategies. It was,

therefore, disappointing to realize that

Nec-1 could only partially protect from

ischemic AKI115 and that other pathways

might be of importance other than

necroptosis. Consequently, because

combination therapy seems to be more

effective,27 the protection is still incom-

plete, leaving significant histologic dam-

age and DAMP release. Additional

combinationsmay be useful (e.g., the ad-

dition of ferroptosis inhibitor), but it

must be kept inmind that the translation

of such results into clinical trials is highly

problematic; control groups are required

for any single- and double-therapeutic

strategy, and support of such studies

might become long-winded in the ab-

sence of strong, convincing preclinical

evidence. In addition, for necroptosis,

it is understood that plasma membrane

rupture occurs as early as 20 minutes

after RIPK3 dimerization,91 and application

of Nec-1 30 minutes after the beginning of

reperfusion has no detectable protective ef-

fect.115Therefore, targeting regulatednecro-

sis may be limited to such disorders in

which AKI may be anticipated, like heart

surgery–associated AKI, contrast-induced

AKI, or kidney transplantation.

In conclusion, tubular apoptosis has

beenshownunequivocally invarious types

of AKI, including in diseased human

kidneys, but despite 20 years of intensive

research, an apoptosis-targeting strategy

has not found its way into clinical routine.

Recent work has further implicated dif-

ferent forms of regulated necrosis in AKI.

Although significant advances have been

made in the understanding of the cellular

andmolecular basis of cell death, targeting

of signaling pathwaysof regulatednecrosis

for therapyhasnot yet been investigated in

other than promising preclinical settings.

Strategically, it is clear now that specific

therapeuticshave toblockupstreamevents

of cell death. In this regard,mitochondria,

the converging point of cellular injury

and death, may be a promising target of

therapy, but mitochondria are not in-

volved in some pathways of regulated

necrosis, such as necroptosis, which are

clearly relevant in AKI. Therefore, in view

of the many subroutines of cell death in

AKI, it isnecessary toconsidercombination

therapies that block multiple pathways of

regulated cell death simultaneously or at

different time points to ensure cell survival

and renal function.
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